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Abstract

The next development in building Bayesian networks will mideely entail constructing multi-
purpose models that can be employed for varying tasks andffeyeht types of user. In this position
paper, we argue that the development of a special type ofagytdo organize the knowledge involved in
such a multi-purpose model is crucial for the managemerti@htodel’s content. This ontology should
preserve all knowledge elicited for the construction of thedel and be accessible to domain experts
and knowledge engineers alike. Based on the different wayghich people learn and gain expertise,
we further argue that knowledge elicitation will result ask-specific knowledge mostly, which is best
stored in the format in which it is elicited. To support vargimodel views for different tasks and dif-
ferent types of user, we propose that the elicited knowldmigerganized in a library-style ontology of
separate modules.

1 Introduction

While in the early years of the field of Bayesian networksratten focused primarily on algorithmic is-
sues, the last decade has seen an increasing interest indaétrsupport the construction of such networks.
The field also has become more and more experienced in bgittinision-support systems that include a
Bayesian network. Bayesian networks by now have evolvedimlaboratory settings and are being em-
ployed by non-academic users. In turn, users of these nktiaased decision-support systems are starting
to see the possibilities that these systems offer, and liegask for more. For some of our biomedical
diagnostic applications for example, we have been askedheheie could perhaps adapt the model for
teaching purposes. It is therefore likely that the next tmument in the field of Bayesian networks will
entail building multi-purpose models which can be emplof@diifferent tasks and, in all likelihood, by
different types of user.

In this paper we argue that to support model views for varyasks, a suite of Bayesian networks
should be built rather than a single unified network. We fertargue that in the first step of developing
such a suite, knowledge elicitation will necessarily resutask-specific information mostly, although also
some task-neutral knowledge may emerge. Organizing thigezliknowledge into a library-style ontology
of multiple task-specific and task-neutral modules, is thest suited to empower reuse of knowledge
segments and to facilitate ready composition of model viéWes also reiterate our view that this ontology
should capture all elicited knowledge and be accessibletio domain experts and engineers.

We begin by defining different types of model view in Sectigna®d outline the task model view
under discussion in the current paper. We argue that a unifi@t-purpose model for a range of tasks
would quickly become too large and unyieldy to afford thewtremlge engineers and the domain experts an
overview of its contents. For one of our moderately-sizedl&-purpose networks in the biomedical field,
for example, we noticed already that an experienced knaydeshgineer who was new to the application,
was not quite able to gain an overview of the network’s cotsterithout considerable help from the en-
gineer who had originally constructed the network and isoagmted documentation. Since having a clear



overview of the knowledge involved is crucial for the constion of task views, we advocate building a
suite of, in all likelihood, smaller models, rather thanagée Bayesian network.

In Section 3 we outline our view of ontologies for suites ofyBsian networks. We rationalize why
an ontology should be constructed of the elicited knowledgdore actually developing the suite. Our
ontology provides an unambiguous and well-structured dwmtation ofall elicited knowledge and thus
includes not just the knowledge that is explicitly captuiredhe suite’s models but also any background
and meta-level information that remains implicit in thetsuiThe latter types of information support, for
example, viewing the elicited knowledge from different gpggctives as required for developing different
task views, and are likely to be instrumental in lessenirtgriielicitation efforts for new views which
may not have been foreseen at the suite’s initial constctrhe ontology, moreover, is enhanced with
information to support future modeling efforts for suchwg Note that our view of ontologies for suites
of Bayesian networks thus is more comprehensive than duviews of ontologies for knowledge-based
systems in general. Our rationalization in Section 3 is mindme with our earlier arguments for devel-
oping ontologies for single, task-specific networks [15ur@xperiences with developing ontologies for
single-model applications in the biomedical field more@mmphasize the importance of rich documenta-
tion, not just for constructing the model but also for its @asel maintenance over a longer period of time
[18].

We are not the first to suggest the use of ontologies. Ontedagyie being developed for a variety of pur-
poses, ranging from providing a portal for access to the s¢imaveb, to documenting elicited knowledge
for the development of knowledge-based systems in gerszalfor example [5, 12, 14, 31]. For many
of these purposes, a rigorously formal, logic-based orrotha@thematical ontology language is used to
allow automated processing. For our purpose of supportiaglievelopment and maintenance of a suite of
networks by well-structured documentation however, thilogy should primarily provide a medium for
communication between the engineers and the experts iwdivthe suite’s construction. Having experi-
enced that a rigorously formal language is not easily aetebyg non-mathematical experts, we advocate,
in Section 3, the use of a less formal language for our ontefogOne of the commonly-acknowledged
drawbacks of using informal languages for documentatidhasthey do not allow automated processing.
For our single-purpose Bayesian networks, however, weeatlsr are gaining experience with developing
ontologies using semi-formal representations which dmxalutomated processing to at least some extent
[16].

In Section 4, we address the knowledge content of our congpigite ontologies for suites of Bayesian
networks. In order to align the content of the ontologiesweiicited knowledge, we consider the processes
by which humans learn and structure their own knowledge. kyaeathat the professional knowledge of
practicing experts is mostly both task- and domain-spedifibough also some task-neutral information
may emerge during knowledge elicitation. In Section 5, wpiarthat the elicited knowledge is best stored
in the form in which it is obtained, if only to forestall, as rtuas possible, the introduction of biases by the
knowledge engineers involved. We further propose that licéedd knowledge be organized into separate
modules to support use of segments of the knowledge in thetremtion of the suite’s models and of their
associated task model views. Organizing the modules irrariikstyle ontology further encourages re-use
of knowledge segments when the suite is being extended &r cew tasks.

Considering semi-automated processing and modularizimogvledge, we would like to note that in
our earlier work we propagated the evolution of a meta-tpiEf generic knowledge structures [16]. An
example of such a generic structure for the biomedical fialostures all domain-independent knowledge
that plays a role in relating test results to their undedyirue value [17]. To exploit such a structure,
the knowledge engineer instantiates it with domain-spekifowledge and uses the instantiated structure
for semi-automated design of a segment of the Bayesian nietnmaler construction. Note that while this
meta-library of generic structures includes only knowledghich is domain-independent and preferably
task-neutral, the library-style ontology proposed in therent paper is tailored to a particular domain and
to multiple specific tasks within this domain. The availapiof a meta-library of generic structures would
nonetheless support the construction of an ontology foiita sfiBayesian networks as proposed here.

The paper ends with a discussion and some perspectivestioefelaboration of the presented ideas to
a practicable knowledge-engineering approach to devedpmiulti-purpose suites of Bayesian networks.



2 Model views of Bayesian networks

We distinguish two types of model view for a suite of Bayesitworks, namelyask model viewand
interaction model viewsTo explain the difference between these two types of vieavgigtinguish three
products delivered in the development of a suite of netwakd review the steps to render them. We
illustrate these products and steps by describing the dprednt of a suite of models in the example domain
of oesophageal cancer. Future users of the projected saitdgtanding oncologists, whom the suite should
assist in staging their patients’ cancers [10], and stigjemhom the suite should support by simulating
tumor growth and explaining the consequences involved foatéent; a third group of prospective users
are the engineers who are responsible for debugging andamding the suite.

The first product in the development of a suite of models aigsif a stored pool of knowledge rele-
vant to all tasks to be carried out with the suite. For the gdardomain, the pool should contain knowl-
edge about relating the results of diagnostic tests to astathe cancer, as well as pathophysiological
knowledge about how an oesophageal tumor invades, for deatlpod vessels and thereby gives rise
to secondary tumors distant from the oesophagus. The squoddict encompasses the actual suite of
networks that allows computations to be carried out for thious tasks. For the domain of our example,
the suite would include two models, one for the staging obpbhageal cancer based upon the results of
diagnostic tests and one for simulating and explaining tugnowth. Note that these two models would
differ, at least, in the amount of detail modeled: for exagnpvhile the network for the students would
model the exact process by which cancer cells are conveyedgh the blood vessels, the network for the
oncologists would leave this process implicit, relating pgresence of distant secondary tumors directly to
a specific stage of the tumor’s growth. The third product emdlevelopment of a suite of models comprises
the interfaces, which are the concrete means that allovs igevork with the suite. To allow an attending
oncologist to consult the example suite of models, an iatertlosely resembling a patient’s status would
suffice, in which the test results obtained can be readilgdilh; for the students, the addition of a more
elaborate interface would be required, showing anatonpiclires, animations of tumor growth over time,
and options for posing deeper 'why’ and 'what if’ questions.

In view of the three products outlined above, we briefly cdasthe steps that need to be taken to render
them. The first step, leading to the first product, involvésitadg, structuring and organizing knowledge.
The second step amounts to first selecting, from the poolioited knowledge, the knowledge that is
going to determine the content and the structure of eacheofithdels in the projected suite; the selected
knowledge then is delimited in scope for example by makingtextual assumptions, and subsequently
represented in the mathematical formalism of Bayesian owdsv This second step delivers the actual
suite of models. The final step is characterized by desigmitagfaces to the suite, that is, the different
ways the models can be presented to someone interacting vignthis an engineer or an end-user focused
on a specific domain task.

We consider dask model viewio be one view of a suite of models. The task model view is tkalte
of carrying out the elicitation and structuring of task-traliand task-related domain knowledge and of
making selections of the elicited knowledge to support a@lsior a few closely related tasks. For our
example suite of models, one task model view might suppertitagnostic reasoning task of an attending
oncologist which includes the staging of his patient’s @nwhile another task model view could support
learning to understand the progression of cancer of thepbesus. Note that these different task model
views dictate different levels of modeling detail and, ietfaequire different knowledge contents of the
task-specific models in the suiténteraction model viewson the other hand, comprise the interfaces of
the suite that are tailored to task and user. For the diagsostodel view in our domain, for example,
two interaction model views would be developed: one intégwacmodel view could be optimized for data
entry by an attending oncologist, and another might suppaittenance of the model by the knowledge
engineer.

To summarize, for different tasks to be carried out by défertypes of user, a suite of models can re-
quire several task model views, each of which can need daémgzeaction model views. In an earlier paper,
we laid out some methods to construct effective interaatiodel views for a single-purpose Bayesian net-
work [28]. In the current paper, we concentrate on the aiwn, structuring and organization of domain
knowledge to support the development of multiple task meels with a suite of networks.



3 Ontologies for Bayesian networks

A suite of Bayesian networks that supports several taska epplication domain by different task model
views, is very likely to be of a complexity necessitating eleypment over multiple years, involving possibly
different engineers and experts. Building and maintaimmaglels of such complexity is a hard and time-
consuming process. The expert knowledge elicited in thege® constitutes a rich pool of information,
segments of which can play different roles in the varioukgas the domain at hand. All this knowledge
has to be carefully reviewed and structured, and ultimataptured in the formalism of Bayesian networks.
In this process, a multitude of modeling decisions are tad®ewell as numerous decisions to demarcate
the scope of the model. Such decisions tend to forestall @nview and thorough comprehension of
the model by anyone who has not been intimately involvedsrca@nstruction. We have experienced
that construction and maintenance of large, unified netsvark already seriously hampered if the elicited
domain knowledge and the decisions taken are not made gxplicch documentation [18]. This problem
is bound to grow worse if a suite of networks rather than alsingtwork is to be developed and maintained.

Having observed, in our earlier work, the advantages of ldg@ireg an ontology for an application
domain before actually building a network [15], we feel titla¢ construction of a suite of models will
especially benefit from an explicit, comprehensive ontglegich then serves not just as a documentation
of all elicited knowledge but also, for example, as a mearensfiring consistency over the models within
the suite and as a medium for communication between the &ged engineers involved. In this section,
we discuss the varying roles of such an ontology in the cangtm and maintenance of the suite. We
further address the language to be used for the ontology anc dhat a properly developed ontology
provides a scaffolding for semi-automated constructionedfvork segments.

3.1 The roles of our ontologies

To support building and maintaining knowledge-based syst@ general, sophisticated knowledge-engin-
eering methodologies have been developed; among these isal known and commonly employed
CommonKADS methodology [25]. Most of these generally aggilie knowledge-engineering approaches
strongly recommend the development of a conceptual modéhéodomain of application before actually
constructing a model in the knowledge-representation &ism to be used. Underlying this recommen-
dation is the observation that capturing knowledge diyeitithe projected formalism may result in a
representation in which the domain knowledge is not easiépgnizable as a result of the modeling de-
cisions taken. First developing a separate conceptual hmeale thus prevent unwarranted discrepancies
between the elicited domain knowledge and its represemtatihich otherwise could adversely influence
the system’s contents and hamper its maintenance. In lithethis generally accepted recommendation to
first develop a conceptual model, we recently proposed te ttds conceptual model be an ontology [15].

There exist many views of the concept of ontology in gendoala variety of views, see [5, 12, 14, 31].
In this paper, we use the term ontology to refer to an ex@pécification of the elicited domain knowledge
that is to be shared by the experts and the knowledge engime@ived in the construction and mainte-
nance of a suite of Bayesian networks; the specification avards enriched with modeling information to
support engineering of the suite. Ontologies for knowledaring purposes have been studied extensively,
both in theory [13] and in a more practical setting [14]. Frthis research, a number of criteria emerged
for their construction and use. These criteria stress fangXe the importance of achieving clarity of the
concepts and relations captured in the ontology to both kedge engineers and domain experts, and of
maintaining internal coherence and extendability. Theedon of minimal encoding bias in addition posits
that the representation language to be used in the ontologyld introduce as little bias as possible in
the contents and structure of the elicited knowledge. Amottiten postulated criterion is the criterion of
minimal ontological commitment, which states that the togg should be developed independently of the
projected use of the ontology and its contents, and henaeskenteutral. This criterion originates from the
observation that any commitment for example to the probdetring method that will be applied to the
domain knowledge, will influence and thereby possibly bresknowledge captured in the ontology [4].
In the remainder of this paper, we adopt most of these aitémi Section 4 however, we will rationalize
why we will not adopt the criterion of minimal ontologicalmmnitment just like that.



Ontologies developed for the purpose of knowledge sharlag multiple distinct roles in the con-
struction of a suite of Bayesian networks. One of these rislés make all elicited domain knowledge
explicit. To this end, the ontology specifies not just theWlealge that is to be captured explicitly in at
least one of the networks, but also the relevant backgronod/ledge of the domain that will remain im-
plicit in the suite and the meta-level knowledge of its regities and organizational structure. While all
intricacies of the domain should be captured in the ontotogchieve clarity, that is, to avoid multiple in-
terpretations and lack of understanding, details showld aé hidden by including meta-level information
about the structure of the knowledge to preserve underatilitg and transparency on an overview level.
A second prominent role of our ontology is to provide an esiplinedium for communication between
domain experts and engineers. The contents of the ontolegyyld thus be unambiguously understood
and agreed upon by all agents involved [31], allowing theroammunicate about the domain knowledge
without any misconceptions when building, evaluating araimaining the suite of networks. We return
to these two roles of our ontologies in Section 3.2. Anothgyartant role of ontologies designed as rich
documentations of elicited knowledge, is to scaffold thastauction of the projected suite of networks.
Since the ontology includes all ingredients to be modeletthénnetworks, it essentially allows a process
of semi-automated construction in which the knowledge eegji selects and pre-processes ontology seg-
ments which subsequently are translated into network setmier further processing; we return to this
idea of semi-automated construction of networks from ouolmgies in Section 3.3.

3.2 The language of our ontologies

The representation language used for capturing and origgreficited domain knowledge influences the
extent to which our ontologies can meet the various rolebnaat above. The issue of selecting an appro-
priate language has been addressed by many researcheesssggest that domain knowledge should be
represented in natural language or in a language that isiséonimal [31], yet others argue that ontologies
should be specified in a rigorously formal language and, ¢ty &hould be machine readable [26].

An important argument for using a mathematically formaladogy language is that it allows a highly
structured and unambiguous representation of the elikitesvledge. Such a formal representation in turn
is likely to allow (semi-)automated derivation of segmeuwitshe Bayesian networks under construction.
Rigorously formal languages often have limited express#es however, as is evidenced for example by
the many attempts to extend first-order predicate logicltmainodeling of specific knowledge constructs.
In our view, it is important that an ontology language shoeddne with a rich semantics to introduce as
little bias as possible in the represented contents. Ifahguage would introduce biases, then the resulting
ontology might not properly reflect the intricacies of thewiin. Since the ontology is used for the con-
struction of a network, the resulting model might then beseéhas well, possibly in unforeseen ways. The
development of an independent knowledge model recommdmndebst knowledge-engineering method-
ologies in fact, has its origin in this observation.

While the possibility of automated processing favors usinggorously formal ontology language, the
purpose of knowledge sharing provides a strong argumensiog a less formal one. Since the contents of
the ontology should be unambiguously understood by bothriba/ledge engineers and the domain experts
involved in a suite’s construction, it should be represdiimiea language that is understandable for all. The
language of Bayesian networks is often considered suifabtéis purpose: many argue that the graphical
structures which capture the qualitative domain knowleaigeintuitively understood by all readers, the
domain experts included [20]. We experienced on many oonasihowever, that experts who are not
familiar with the Bayesian-network language nor with thencept of probabilistic independence, tend
to misinterpret the graphical structure [11, 28]. For exéamp medical diagnostic network will typically
contain arcs from a disease to its various symptoms. A playsibowever, may be inclined to reverse these
arcs, since upon establishing a diagnosis for a patienbnéag typically goes from observed symptoms
to disease. Yet, a network containing the reversed arcs roagarrectly represent the independences
that hold in the domain of application. In our opinion, marfytlee formal languages commonly used
for ontologies are unsuitable for checking accumulateditedge with non-mathematical experts. If the
use of a formal language is uncommon in a domain of applinatieen a rigorously formal language is
unsuited for the purpose of knowledge sharing between therledge engineers and the domain’s experts
and a less formal language had best be used.
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Figure 1: Relations between test results and the undertyiregvalues, (a) for a gastroscopic examination
of the circumference of an oesophageal tumor, and (b) foagrdtistic test in oncology in general.

For developing single-purpose Bayesian networks in thenbitical domain, we are currently gaining
experience with a semi-formal ontology language compo$edeti-structured tables, depictions, graphs
and hierarchy representations combined with text [15],clvldan be understood by both domain experts
and knowledge engineers and allow automated processiriddasi some extent. As an example, Figure
1(a) shows part of the ontology that we developed for the dormBoesophageal cancer. The depicted
graphical structure captures knowledge about the relshiprbetween the result of a gastroscopic exami-
nation of the circumference of a patient’s tumor and the dgiwey true circumference. Each node in the
structure depicts a particular state; this state reflectsiation, in time, in which a property of an object
or process has adopted a value. The top leftmost node in fhietdeé structure, for example, models the
true circumference of the oesophageal tumor of a partiqatient; the bottom leftmost node captures the
degree to which the swallowing capabilities of the patiemtimpaired. Labeled arcs are used to denote
relations between the modeled states; associated withrdtis a table which details the relation in terms
of the values of the related states. In our ontology langudifferent types of relation are defined. Figure
1(a) includes, for example, inducing relations and enaptglations. An inducing relation asserts that
a particular state may induce another state; this relatigalves time in the sense that the induced state
cannot occur before the inducing state has occurred, yetddmplicit the process by which the latter state
induces the former one. The inducing relation between tleléftmost nodes in the depicted structure,
for example, expresses that the circumference of a pagieesophageal tumor may induce an impairment
of the patient’s swallowing capabilities; the table asatexd with the labeled arc (not shown in the figure)
further details the relation by describing that the larder tircumference is, the higher the degree of im-
pairment will be. An enabling relation differs from an indoig relation in that it links a state to a relation
rather than to another state; it expresses that the enatilitgy must occur before the enabled relation can
take effect. The enabling relations in the left part of Fgl(a), for example, express that a gastroscopic
examination of the patient’s oesophagus can result in agenfilom which the tumor’s circumference
can be established, only if two conditions are met: the p#siswallowing capabilities should not be too
seriously impaired and the laboratory technician shoulelsafficient skill in performing the gastroscopy.

The entire oesophageal cancer ontology includes not jesknlowledge involved in interpreting the
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result of a gastroscopic examination of the circumfererd@epatient’s primary tumor, but also the knowl-
edge involved in relating the results from various othegdisstic tests to their true underlying values. In
addition to the knowledge pertaining to these tests seggréte ontology specifies the high-level regular-
ities in the knowledge involved. The graphical structurptoaing these regularities is depicted in Figure
1(b). The leftmost part of the structure, for example, expes that the tested property may induce a mani-
festation; this manifestation may enable, possibly neghtithe performance of the test involved, which in
turn may enable, again perhaps negatively, the test to gieddult. In our earlier research, we already ar-
gued that these high-level regularities can be exploitexhigxtending the network with the results of new
tests, which might not have been foreseen at the networ&&pition: the high-level graph shows which
knowledge may be involved and can thereby provide guidamicthé elicitation of knowledge pertaining
to the new tests. The high-level graph in addition is instuatal in maintaining internal coherence and
consistency of the captured knowledge in that it serves @awvdittention to any deviations of the newly
added knowledge from the regularities that are presentaralieady included knowledge.

For further details of our ontology language and of the obsgeal cancer ontology more specifically,
we refer the reader to [18].

3.3 Ontology-supported construction of networks

Upon building a suite of Bayesian networks for an applicatiomain, it is a daunting prospect to have to
capture all elicited knowledge in two ways, that is, first iccenprehensive ontology and then in actual net-
works. A carefully structured ontology, however, can bedusederive the networks’ graphical structures
in a semi-automated fashion. We briefly sketch such senaraatted construction; for further details, we
refer the reader to [16].

Deriving probabilistic graphical structures from an ontgy is done by a sequence of steps, some
of which need be performed by a knowledge engineer and somhich can be supported by automated
processing. First, the knowledge that is to be captured mj@gted network needs to be selected. This first
step involves a careful review of the elicited knowledge amutt necessarily be performed and documented
by the knowledge engineer. In the next step, the states #attbres from the selected parts of the ontology
are combined into a single graphical structure. Automateatgssing can to some extent support the
knowledge engineer in performing this step. The resulttngcsure in essence describes all knowledge that
needs to be captured in the projected network, but is nottgetdsin the language of Bayesian networks:
the structure may for example include enabling relationgctviink a node to a relation rather than to
another node as would be required for a Bayesian network. Werge, however, that the structure states
the selected knowledge in terms of properties of objectsacgsses. Since such properties typically play
the role of variables in the application domain, the streeforovides a convenient point of departure for
deriving an initial network structure.

For deriving a probabilistic graphical structure, first fw@perties from the ontology’s structure are
translated into stochastic variables. From the examplettre of Figure 1(a) for example, the degree
to which a patient’s swallowing capabilities are impairedfranslated directly into a stochastic variable
for the Bayesian network under construction. Since trdimgjgoroperties into stochastic variables may
involve re-defining some of the concepts involved, this sgperformed by the knowledge engineer, pos-
sibly supported by software. The next step is to specify ties éor the network’s graphical structure.
Since the relations in the ontology’s structure capturegtgddirectional influences between the modeled



properties, these relations can be translated more or lesstlg into arcs. Enabling relations, however,
cannot be translated in this way, since the language of Baye&tworks does not allow arcs pointing to
other arcs. We now observe that enabling relations es#lgrdia indirect influences. In Figure 1(a), for
example, the two enabling relations in the leftmost parhef $tructure link an impaired passage of food
to whether or not a gastroscopic examination will yield aprapriate image, and can thus be translated
in an arc from the stochastic variable modeling the degrgme$age impairment to the variable capturing
the gastroscopic image. The steps involved in the traoslati relations from the ontology’s structure to
arcs in the probabilistic graphical structure can be pentt in an automated way. The graphical structure
resulting from this step is stated in the language of Bayes@éworks, but is not guaranteed to properly re-
flect the independences holding in the application domaithé final step of the derivation, therefore, the
engineer has to meticulously verify that the structure ectty captures probabilistic independence. Also,
the structure may need some optimization, for example fduceng the burden of probability elicitation.
Figure 2 shows the probabilistic graphical structure thaytinus be derived from the ontological structure
of Figure 1(a).

4 Eliciting ontology knowledge

Given the prospective advantages of constructing a conepsive ontology before actually building a
suite of Bayesian networks, we now turn to the question of tmarganize the elicited knowledge in the
ontology so that it most usefully supports different taskdeloviews for the suite.

Many researchers recommend that ontologies be constrinetegendently of the projected use of the
ontology and its contents, that is, many researchers ativatiaimizing ontological commitment; see for
example [4]. As already mentioned in Section 3, underlyimg tecommendation is the argument that
any commitment to for example the problem-solving methotdapplied may bias the contents of the
ontology, and may thereby hamper its extendability andse-uConstructing an ontology without any
commitments to a particular task however, requires eitlieitiag task-neutral knowledge from domain
experts, or stripping the task-specific aspects from trated knowledge. In this section, we address the
feasibility of the first option; the second option is briefydressed in Section 5.

We consider eliciting task-neutral information, that ib¢ciing knowledge from experts without them
having a particular task in mind. To provide task-neutrdbimation, experts should be able to gather
such information from their minds, which implies that theolwiedge should be stored in their brains in
such a way that task-neutral aspects are readily sepanatedtésk-specific aspects. We briefly lay out
the different ways in which people learn information, anguar that these learning processes imply that
the knowledge stored in the human brain is largely both doreid task-specific. We then conclude that,
given how knowledge is learned and stored, it would be exgtgmifficult to elicit task-neutral knowledge
from an experienced professional.

4.1 Human knowledge acquisition processes

Humans in general, and hence professionals as well, gatiosvledge over their entire lifetime, not just
during periods of formal education. Many publications il gocial sciences attest to the importance of
learning outside of formal education: incidental, expetied, non-formal, informal and on-the-job learning
are some of the terms used to describe this type of learngegfos example [1, 9, 22]. The definitions for
this type of learning all differ, but they have in common tkia¢ learning occurs in a natural setting, be
that farming in Senegal [23], college teaching in the Nd#ets [7], or a childhood home. Learning in a
natural setting can be intentional, in the sense that thredeas actively trying to learn something. Such
learning occurs, for example, through an apprenticeshipyomodeling, that is, purposely attending to
how an expert performs a task with the intention to copy thikssk he learner can also acquire knowledge
incidentally, having no intention to learn. This type oftleiag occurs very frequently: a child, forexample,
picks up seeing, hearing, feeling, tasting and smellintissiki order to make sense of ambient information,
and learns to interact with its environment by movementsylage and social skills, all without any formal
teaching or any intention to learn. A physician similarlgls up medical knowledge and professional
social skills while practicing medicine. Intentional amatidental non-formal learning share the fact that



knowledge is acquired in the context of performing tasksmatral setting, which usually is much richer
than the setting provided in formal eduction. Early reskéras already shown that incidental learning does
not necessarily have to result in less knowledge than iiteaklearning [19].

Emphasizing the omnipresence of non-formal learning aedrttportance of the setting in which the
learning occurs, a unified view of learning was popularizedhie late 1990s [32]. Although this view
of learning may not be a mainstream learning theory, we fesl it provides a useful way to think about
how and when what type of knowledge is acquired by humansreigé To support our rationalization of
why it will be difficult to elicit task-neutral knowledge fro experienced professionals, we therefore briefly
describe this unified learning view.

In the unified view of learning, knowledge gathering is deddinto four categories: transmission,
acquisition, accretion, and emergence. The four learninggsses are summarized in Figure 3; the left
part of the figure describes which learning processes areodt at which stage of a lifetime, the right
part shows the proportions of knowledge accounted for byftlie processes. When people are asked
to describe learning processes, they generally only meitie intentional processes wansmissiorand
acquisition We therefore describe these two processes first. Knowlgdtpered during formal education
from books and teachers is explicitly transmitted, thateschers tell their students what to read and do
when, and provide explanations and scaffolding so thatttigests are encouraged to store the knowledge
in their brains. Language and mathematical skills are exesmyf such transmitted knowledge. Note that
these skills are not specific to a particular task. In faensmitted knowledge is often purposely task-
neutral. In transmission learning, the knowledge is intarally offered, but the amount that actually ends
up in the brain depends highly on the student. The learniegy @istimates that over the course of a lifetime
transmission accounts for only some 10% of the knowledg@a @ivarage person [32].

Further intentional learning iacquisition learningwhich is estimated to be good for some 20% of a
person’s knowledge. Acquired knowledge is gathered byehenler’'s own initiative: by exploring, exper-
imenting, self-instruction, inquiry, intentional modedj and the like; this type of learning has also been
termed active learning or inquiry-based learning [27, 38cause acquired knowledge is gathered by the
learner’s initiative, the chance that it will actually enplim the brain is higher than for transmitted knowl-
edge, where the learner may or may not be interested enougtbrethe knowledge. Whether acquired
knowledge is task-neutral or task- and domain-specific dépen the setting in which it is gathered. If the
knowledge is acquired within the formal education prociésaay still be partly task-neutral; if it is gath-
ered in a natural setting, it will most certainly be task- alwinain-specific, because it will be embedded
in and driven by the demands of the setting.

When asked to distinguish between different learning psses, people may perhaps menténer-
gencein addition to transmission and acquisition learning; tbarth type of learning, calledccretion
does not commonly come to mind however. Yet, while emergénestimated to account for only some
1-2% of the knowledge of an average person, accretion imastd to account for as much as 70% of
what a person knows [32]. Although emergence is relativahg rit is important for example in pushing
science ahead: it is the result of self-constructing nevwasdand meanings that did not exist before. While
accounting for most of what is stored in a person’s brainyet@mn is often not thought of as learning: it
is the gradual, often subconscious, process by which we feaexample social rules and behaviors [32].
Accreted skills are typically learned without the mediatmf language and are picked up just by sensing
and processing information and by acting in and reactingtsed information in a natural setting. Accre-
tion, however, is not just about the large amounts of infdromethat are unconsciously being processed,
it is also about information that may be consciously proeddsut is not intentionally learned. Just by
processing encountered information, a trace of it is stimettie brain. As with all learned information,
the setting in which the information was learned is storetth\ti Accreted knowledge is used intensively:
it is triggered, or recognized, every time a situation isexignced that contains enough aspects that are
similar to the one the information was learned in. The faet thhuch accreted knowledge is not avail-
able on demand, meaning that we cannot readily activate @omgcious effort, doesn’t make it any less
powerful or important. The unconscious processing systefadt has a much higher processing capacity
than the conscious system [6]. Current research even showbeé better to only use unconscious thought
when making complex decisions, as the limited capacity oscius thought leads us to focus on subsets
of information which quite often are not optimal [6, 24]. dliows from the above that because accreted
knowledge is generally picked up and triggered within rictumal settings, it is largely both task- and
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Figure 3: Knowledge gathered by the four different learrpngcesses.

domain-specific.

4.2 Example: the acquisition of medical knowledge

While the four processes reviewed above relate to genexalileg practices, they are easily mapped onto
what happens in the course of gathering professional krdy@eAlthough the exact percentages may vary
somewhat for experienced professionals, the four prosesdecreate roughly the same proportions of
their knowledge. We illustrate the different learning peeses with the example of gathering professional
knowledge in medicine [3].

The basics for medical knowledge are taught by transmidgsiamiversities. The transmitted knowl-
edge consists of task-neutral biomedical information,clvhis mostly causal and definitional in nature
and describes the functioning and possible dysfunctioofnifpe human body [3]. It is this transmitted
knowledge that upon elicitation would result in task-nalfinowledge segments. Next, in internships, the
students are confronted with real patients in a real hdspétting. They now have to link the transmit-
ted task-neutral information to actual clinical situasorin contrast to most biomedical knowledge, the
knowledge required to attend to real clinical problemss&iapecific in nature. It consists of knowledge of
symptoms, of differential diagnoses and how to construstrthand of treatments for diseases and how to
weigh the benefits and risks of these treatments, all emlggddmncrete medical situations [3]. In intern-
ships, some transmitted information is still offered, buidents are also acquiring knowledge by trying to
figure out diagnoses and treatment plans themselves. Amtistalso at work, continually recording infor-
mation from all perception faculties. Examples of accrdtedwledge range from how to read symptoms
from patients’ look, smell, utterances and behavior, to bmwommunicate with colleagues, patients and
their next of kin, to how to get around in the hospital and mather aspects of work. All that is learned is
now embedded in the task at hand and in the medical culturpmaatices. In cognitive science terms, we
say that the knowledge stuated

It is taking the step from employing task-neutral knowledygeollege to having to apply task-specific
knowledge in a hospital setting that makes the transitiomfthe university classrooms to practice so prob-
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lematic for many medical students [3]. Students may havaézhwhich disease causes which symptoms,
and maybe even have seen pictures of such symptoms. Howesegnizing the symptoms when exhib-
ited by a patient is a very different matter. Each patientigjue, and may or may not exhibit all of the
symptoms, which may or may not look like the description atymie in the book. Patients may further
have more than one disease, which may result in an indigtidire of symptoms. And confusingly,
many early symptoms of severe illnesses can look like kadbtinnocent diseases. Last but not least, the
reasoning required now goes diagnostically from symptantigease, not causally from disease to symp-
toms. To allow its ready activation, the knowledge involvesgkds to be re-represented in the brain. The
issue of having to re-represent knowledge is supported $sareh in various other contexts, from which
it is also clear that switching information from one repmsgion to another is very difficult. Switching
representations, in fact, does not occur spontaneouslynaistibe explicitly and extensively taught [2, 29].

Professional learning in medicine does not stop with theritghip phase. It continues largely by a
mixture of accretion and acquisition during the entire ear@ll knowledge picked up in this phase is in a
task-specific format, because it is learned while carryingspecific tasks in the professional setting. In a
physician, for example, interaction with patients is tygig stored as cases, which are exemplars of sick
people complete with diagnosis, treatment plan, and outsormhe theory of situated learning describes
this phenomenon and argues that learning as it normallyredswa function of the activity, context and
culture in which it occurs [21, 27]. In fact, the theory argugpecifically that learningeveroccurs in a
task-, context-, and culture-neutral manher.

4.3 Eliciting task-specific knowledge

From the above observations, we conclude that the bulk qittbhiessional knowledge of an expert is stored
in the brain in a task- and domain-specific format. It is tf@me reasonable to assume that most of the
knowledge that comes to the fore upon elicitation is taskl @main-specific. Of course an engineer can
explicitly ask a domain expert to provide task-neutral kiexige. If experience from practice is requested,
however, the engineer is asking for extra information pssagg from the expert: the expert has to relate
his or her knowledge in a different way than is stored in therrThis, as argued in the example above of
the medical students’ transition from textbook knowledgdiagnostic and treatment knowledge, requires
non-trivial effort, which, as it is to be done in real-timeijhat least considerably slow down the elicitation.
More potentially damaging even is that asking people toyrkteowledge in a way that requires them to
reasorabouttheir stored knowledge always increases the risk of inteityierrors [8]. We conclude that,
except for information that was transmitted in a task-redufashion, it will be difficult, time-consuming
and error-prone to try to elicit task-neutral knowledgefirdomain experts.

Two recent examples from our own research will serve astithtions. As a first example, when we
asked experienced pig veterinarians to supply us with aeedisease symptoms for pigs that were sick,
most of them provided us with symptoms belonging to one paldr illness rather than a context-free aver-
age; some gave symptoms associated with a particular gifazlpsely related diseases such as infections
of the respiratory tract. A likely explanation of what happd is that the veterinarians called to mind a pig
having a particular disease, of which they provided the gpmg: the veterinarians unwittingly related our
guestion to their daily practice, thereby situating it il etting in which they had learned the requested
information, and consequently rendered their knowledgléway it was stored. The veterinarians pro-
viding a few more symptoms ostensibly generalized but dgtueere doing exactly what their colleagues
did: they provided the symptoms of diseases encounteréinitie same differential diagnosis.

As a second example, we recall a knowledge-elicitation@esshere we asked a group of veterinary
experts to reason out loud about particular pig cases ofiwtiie clinical symptoms were described in
terms of variables and values. When asked what would happéretr assessment of the case when a
particular symptom was changed from present to absent, bthe articipants asked, in earnest, how he
could possibly change the symptoms of a pig. Very likely,wberinary expert had called the case to mind
as a concrete pig for which he had to come to a diagnosis. rarik this task-related setting, he could
not imagine physically changing a pig’s symptoms, whichisgality of course indeed impossible.

1According to this theory, the knowledge transmitted in neatischool is also not task-neutral: the task is passingsthme For
our purpose, however, the issue is that the knowledge ipemtent of specific medical tasks.
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5 Storing the elicited knowledge

Having established that it is rather unlikely that an engimveill elicit knowledge from a domain expert that
is altogether task-neutral, we now address how the eliditexaviedge is best stored in an ontology. More
specifically, we compare constructing a single unified tasltral ontology that is free of task biases, with
constructing multiple task-specific ontology modules, egjdct the former option in favor of the latter one.
We then argue that a library-style organizational struefor the ontology best supports the development
of a suite of Bayesian networks with multiple tasks views.

5.1 A single unified ontology or multiple ontology modules

We begin by comparing capturing all elicited knowledge inirgke unified task-neutral ontology, with
modeling it in multiple (mostly) task-specific ontology mdds. For the construction of a single unified
ontology, be it composed of task-neutral or task-specifm®adge, plead that no duplication of knowledge
is needed and that it will be easier to ensure internal ctersiy upon maintenance and extension. In spite
of these advantages, however, we reject building a singlelagy. A unified ontology for a suite of
Bayesian networks with multiple task model views is likedybecome quite large in size. Evenif it is well
organized and highly structured, its mere size will causekiowledge engineers and the domain experts
to quickly lose track of its contents. Another argument aggtihe construction of a single unified ontology
is that it may be much more difficult to build multiple task nebdiews from a single entity than from a
collection of entities. Given the stronger arguments agfagnunified ontology, we propose to construct
multiple task-focused ontology modules.

Addressing the format of the ontology’s content, we not¢ there are quite strong arguments for stor-
ing knowledge in a task-neutral fashion. For example, if dipaar segment of the domain knowledge
plays a role in multiple different tasks, then storing it iteak-specific fashion would require capturing it
multiple times, each time from a different perspective.ridtpthe knowledge in a task-neutral fashion, on
the other hand, would not need such duplication. Also, whean task model views need to be developed,
it is quite likely that these are already supported by thelalbke task-neutral knowledge. If the knowl-
edge had been stored in a task-specific fashion, developiewdask-specific ontology module would be
required.

Although there are strong arguments for storing the elickeowledge in a task-neutral fashion, it
generally will be infeasible to do so. In Section 4, we argtret the bulk of the elicited knowledge will
be available in a format that is both task- and domain-spedfonstructing a task-neutral ontology would
thus require stripping the elicited knowledge from its tés&ses and integrating the resulting segments
of neutral knowledge. The task of stripping the elicited Wiexige from its task-specific context is non-
trivial, however. In our opinion, it is even infeasible sinoot just the experts but also the engineers will
have particular tasks in mind when surveying the varioussags of knowledge. The engineers moreover
are likely to be insufficiently knowledgeable in the domaimpplication to recognize the various included
task biases. Although storing knowledge in a task-neugsthibn is preferred, therefore, its infeasibility
supports storing the bulk of elicited information in a tasgdecific format.

We would like to note that although most of the elicited knesige will be available in a task-specific
fashion, some of it may be task-neutral, for example if oxaging from the transmission phase of learning
professional knowledge. Also, some of the elicited infatioracan be easily abstracted to create segments
of task-neutral knowledge. An example of the latter obstimmacomes from one of our veterinary ap-
plications. Upon reviewing the knowledge involved in maasyia pig's body temperature, our veterinary
practitioners mentioned that catching a pig will causesstte the animal and thereby raise its body temper-
ature. The stress effects of catching a pig are not specifibétask for which it is being caught however,
and hence are relevant for any task in which the animal isgoeémdled. Some of the knowledge elicited
in the contexts of the various tasks to be supported thuspboitky reusable and can in fact be stored in
the prefered task-neutral format.
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Figure 4: A library-style ontology for developing task mo&&ws: the library of ontology modules is
supplemented with a library of generic knowledge structaned a document of modeling decisions; drawn
arcs indicate instantiation of modules, dashed arcs itel®election.

5.2 Alibrary of ontology modules

Based upon the observations above, we envision captutieticGied knowledge in an ontology composed
of multiple modules, most of which are domain- and task-gjge&nd some of which are task-neutral. As
an example we consider again our application in oncologyfearlier sections. Some of the modules of
the ontology contain background knowledge that is commalltimsks in the domain yet independent of
a specific task. An example of such knowledge is anatomicavledge summarizing the structure and
elements of the oesophagus and its neighboring organs imutin@n body. This knowledge is common to
most tasks in the domain yet is not specific for any task inqaér. It would be stored therefore in one or
more task-neutral ontology modules. Other modules of thelogy contain knowledge that is common to
one task but holds across domains. The graphical struactureFigure 1(b) pertaining to the interpretation
of the results of diagnostic tests, showed a segment of snotvledge. The majority of the modules,
however, capture knowledge that is both task- and domageiip. Knowledge of which test results are
the strongest indicators for particular stages of the ptitic¢ancer for example, is strongly linked to the
task of diagnosis and would be included in a task-specifiologyy module for diagnostic tasks. Note that
knowledge may have varying gradations of task specificity.dxample, knowledge of when a patient for
which cancer stages can be subjected to curative treatmdnien he should receive palliative care, is
not just linked to the choice of treatment but also to the tfgkognostication. This segment of knowledge
may thus be captured in more than one task- and domain-spefiule, possibly described from varied

perspectives.
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From the above observations, we have that the domain kngeleticited for a suite of Bayesian
networks is captured in a collection of, mostly task- and domspecific, ontology modules. To support the
construction of multiple task model views for the suite, vasvrenvision storing these ontology modules
in a library-style organizational structure. For develapia particular task model view, the knowledge
engineer retrieves from this library the required moduled @ombines them into a task-focused ontology to
supportthe view. For example, to construct a concretetiasksed ontology for the model view of teaching
diagnostics for the domain of oesophageal cancer, thertasital modules of anatomical knowledge would
be selected as well as modules related to the tasks of disgarabprognostication; the modules of anatomy
and prognostication would be included in the task-focusedlogy to serve both simulation purposes and
answering in-depth ‘what-if’ questions. Note that the othedules from the library need not be considered
upon constructing the teaching-view ontology. For sugpgra model view of diagnostics for an attending
oncologist, on the other hand, the knowledge from the taskral modules of anatomy would most likely
not be included explicitly in the task-focused ontology,tias model to be developed could leave this
knowledge implicit. Now suppose that an ontology for the nask model view of predicting the effects
of treatment is to be developed. Any task-neutral knowledggired for the new model view ideally is
already present in the library and can be pulled in. Also thidlegy module of prognostication already
present in the library, captures some of the knowledge ferrtbw task and can be used. In addition,
however, new task-specific modules describing the phygictd effects of treatment need to be developed
and included. The knowledge for these new modules needsebdited from domain experts, where the
elicitation can focus on just the task at hand.

Figure 4 sketches the basic idea of our library-style omgplfor a suite of Bayesian networks. The
top right part of the figure depicts the collection of task#mal and task- and domain-specific ontology
modules. This collection of modules is the pool of all eécitknowledge which constitutes the basis
for developing different task model views for the suite. Tbp left part of the figure depicts the meta-
library of generic knowledge structures mentioned in thteoisuction and conveys the idea that generic
knowledge structures can be exploited to support captutorgain knowledge in ontology modules. The
bottom right part of the figure shows the collection of taskdeloviews for the suite of networks. These
task model views are constructed by selecting appropregensnts of knowledge from the library and
combining these into a unified view. Upon constructing tis& taodel views typically many modeling and
demarcation decisions are taken. The bottom left part ofithee suggests that these decisions are also
documented and maintained in the overall ontology.

6 Concluding observations

In this position paper, we argued that multiple task modeivs for a suite of Bayesian networks are best
supported by a library-style ontology composed of maingktaand domain-specific knowledge modules.

In posing our views, we addressed several issues. We begaiténating the need of documenting all
elicited knowledge. If this knowledge is not properly doamted, construction and maintenance of large
suites of networks inevitably become problematic. We rem@mded building an ontology to provide a
well-structured explicit specification of the elicited kmedge and a medium for communication for the
knowledge engineers and the experts involved in the nestddvelopment. We argued that the ontology
should not only store the knowledge needed for the differadel views, but also any relevant background
knowledge. Documentation of the information that cannotdsed off the suite of networks directly is
especially important when the development of the suitereld@ver several years of research and the suite
ultimately is handed off to industry. We also attended toltmguage to be used for our ontologies. The
necessity of including all types of relevant knowledge dedsaa language that has a rich semantics and
permits semi-automated model building. We stressed tledatiguage used should be accessible for non-
mathematical domain experts. Earlier research had shoatrritforously formal representations, be they
logic-based or stated in another mathematical languagmotaeadily be understood by domain experts
who are not trained in such representations. When stategémaformal language that is accessible for
the experts, a comprehensive ontology can provide a meaosmofunication between the knowledge
engineers and the experts, which serves to minimize theofigkmitting important information and of
including erroneous information.

14



Next, we argued for aligning the content of the ontology withw practicing experts learn and store
knowledge in their minds. Some knowledge, we argued, isdtar a task-neutral fashion, and should
also be stored in this way in the ontology. However, we cam¢eithat most knowledge of domain experts
is inherently related to specific tasks and is stored in thet im their brains. Constructing a task-neutral
ontology would thus require stripping the task-specificfessional knowledge from its task biases. This,
however, is highly demanding, either on the part of the eixpeon the part of the knowledge engineer,
and error-prone. We therefore proposed storing task-8péciowledge in a task-specific fashion. Lastly,
we proposed to develop a library-style ontology, compodetti® aforementioned task-neutral and task-
specific knowledge modules which subsequently are combiniedask-specific ontologies to support con-
crete task model views for a suite of Bayesian networks. Wstiated the ease of development of multiple
views and demonstrated that reuse of information is engaaréy organizing the domain knowledge in
modules.

In the near future, we intend to further develop our concé@roontology library by using it in the
development of a suite of Bayesian networks in the field oésmeary science. By doing so, we hope to
initiate the distribution of a publicly available collegti of ontology modules and inspire the uncertainty
community to contribute.
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