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Abstract

For many combinatorial problems the solution landscape is such that near-
optimal solutions share common characteristics: the so-called commonalities or
building blocks. We propose a method to identify and exploit these common-
alities, which is based on applying multistart local search. In the first phase,
we apply the local search heuristic, which is based on Simulated Annealing, to
perform a set of independent runs. We discard the solutions of poor quality and
compare the remaining ones to identify commonalities. In the second phase, we
apply another series of independent runs in which we exploit the commonalities.
We have tested this generic methodology on the so-called job-shop scheduling
problem, on which many local search methods have been tested. In our computa-
tional study we found that the inclusion of commonalities in simulated annealing
improves the solution quality considerably even though we found evidence that
the job-shop scheduling problem is not very well suited to the use of these com-
monalities. Since the use of commonalities is easy to implement, it may be very
useful as a standard addition to local search techniques in a general sense.

Keywords. Local search; commonalities; building blocks; job shop scheduling;
simulated annealing; multistart.

1 Introduction

With the upcoming World Soccer Championships the question arises in the participat-
ing countries of which players should be selected. Obviously, the coach of the national
team decides, but since in each country at least 50% of the inhabitants considers
himself/herself as an expert on this point, we may think of the following democratic



selection procedure. First, 1000 (or more) of the self-proclaimed experts are asked
to select the best team. Then the inquiries are compared and the players who are
mentioned by at least 90% (or some other percentage) are automatically selected for
the team; a player mentioned so often must be very good and indispensable to the
national team. The final selection is then done by the coach of the national team.
The above, hypothetical case is an example of working with commonalities. The
basic idea is that an element of the solution that occurs in so many high quality solu-
tions must be a good element. As far as we know, the name commonality originates
from the work by Schilham (2001), who investigated local search methods for combi-
natorial optimization problems, like the job-shop problem and the traveling salesman
problem. Based on his experiments, he formulated the following two hypotheses:

1. Good solutions have many building elements (which he called commonalities) in
common.

2. The number of commonalities increases with the quality of the solution.

These observations led him to the following idea: when you get stuck in a run of a
local search algorithm, do not apply a random restart, but use information from the
solutions obtained so far. He implemented it by applying random perturbations to
the current solution, where the probability of perturbing a building element depends
on the number of times that it occurs in a reference pool containing ‘good’ solutions
found earlier in the run.

Commonalities show strong resemblance to the so-called building blocks, which
are widely believed to determine the success of genetic algorithms. The idea is that
solutions sharing these parts will become dominant in the pool of solutions, which
makes it very likely that they will be part of the final solution.

We have looked at the possibility of applying commonalities to find a good solution
of the job-shop problem (see Section 2 for a description), just like Schilham did. In
contrast to Schilham, we explicitly determine the commonalities by running a first
series of independent runs of a local search algorithm. After having determined the
commonalities, we apply a second series of independent runs in which we favor the
occurrence of the commonalities. With some imagination, this approach can be viewed
upon as the application of a genetic algorithm without having to bother about how to
code a solution and how to define the cross-over operator and the selection mechanism.
We have applied our algorithm to a number of benchmark instances.

The outline of the paper is as follows. In Section 2 we describe the job-shop
scheduling problem, which we use to test the merits of our approach. In Section 3 we
describe the disjunctive graph model. In Section 4 we present our initial simulated
annealing algorithm, the derivation of the commonalities, and the incorporation of



the commonalities in the simulated annealing algorithm. In Section 5 we present our
computational results, and in Section 6 we draw some conclusions.

2 The job-shop scheduling problem

In a job-shop scheduling problem (JSSP) we have m machines, which have to carry
out n jobs. In our variant of the JSSP, we assume that each job has to visit each
machine exactly once; hence, each job consists of m operations, which have to be
executed in a fixed order. For each operation we are given the machine by which it
must be carried out without interruption and the time this takes, which is called the
processing time. Each operation can only start when its job predecessor (the previous
operation in its job) has been completed. All machines are assumed to be continuously
available from time zero onwards, and each machine may only carry out one operation
at a time. There is no time needed to switch from carrying out one job to another.
Waiting between two operations of the same job is allowed, just like waiting between
two operations on the same machine. The problem is to find a feasible schedule, which
is fully determined by the completion time of each operation; the completion times can
easily be computed when the order in which the operations are executed is known for
each machine, since it is never advantageous to leave the machine idle if there exists
an operation to start. The goal is to minimize the time by which the last machine (or
job) finishes; this is also called the makespan or the length of the schedule.
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Figure 1: Example with optimal solution for a JSSP instance with 4 machines and 7
jobs.

There exist many practical problems that boil down to a job shop scheduling problem
(see for example Schmidt, 2001). Unfortunately, this problem is known to be N'P-
hard in the strong sense, even if each job visits each machine in the same order (the
so-called flow-shop problem). Moreover, Williamson et al. (1997) have shown that
already the problem of deciding whether there exists a feasible schedule of length 4 is
NP-hard in the strong sense, which implies that no polynomial algorithm can exist
with worst-case bound less than 5/4, unless P = N'P. Furthermore, these problems

3



are also very hard to solve in practice; instances with more than 20 jobs usually are
computationally intractable. Therefore, many researchers have studied local search
methods, like for example tabu search based algorithms (Taillard (1994) and Nowicki
and Smutnicki (1996)), simulated annealing based algorithms (Yamada and Nakano,
1996) and, more recently, hybrid genetic algorithms (Gongalves et al. (2005) and
Moraglio et al. (2005)); all of these studies report that good results are obtained.
We will use simulated annealing as our basic local search algorithm, in which we
incorporate the use of commonalities.

3 The disjunctive graph model

It has become standard now to model a job shop scheduling algorithm using a disjunc-
tive graph, as was introduced by Roy and Sussman (1964). This graph is constructed
as follows. The vertices V' of the disjunctive graph represent the operations; vertex
v;, corresponding to operation i, gets weight equal to its processing time p;. Further-
more, there are two dummy vertices vgqr¢ and ve,q. We draw an arc (v;,v;) between
vertices v; and v; if the operation j is the direct successor of operation 7 in some job.
Furthermore, we include an edge between each pair of vertices that correspond to two
operations that must be executed by the same machine and that do not belong to the
same job. All arcs and edges get weight zero. Finally, we add arcs from vy, to the
first operation of each job and arcs from the last operation of each job to v.,s. In the
example Figure 2 each job has a separate color and the edges are depicted by dotted
lines.

Figure 2: A disjunctive graph representing a JSSP instance.

Since a schedule is fully specified when the order of the operations on the machines is
given, we have to direct the edges such that an acyclic graph remains. See Figure 3

4



for an example. After the edges have been oriented, we call them machine arcs; to
distinguish these from the original arcs in the graph, the latter ones are called job arcs.

Figure 3: Directed acyclic graph representing a solution for a JSSP instance.

Given the directed graph, we can compute the starting time of each operation as the
length of the longest path in the graph from v+ to the vertex corresponding to this
operation. Hence, the makespan is equal to the length of the longest path to vepq.
Adams et al. (1988) have shown that the calculation of the longest path on a directed
acyclic graph can be done in linear time. A longest path in the directed acyclic graph
is also called a critical path; the critical path does not have to be unique. We can
decompose a critical path into critical blocks, where each critical block consists of one
or more operations that are carried out contiguously on the same machine; at the end
of a critical block, the critical path jumps to another machine. See Figure 5, taken
from Gongalves et al. (2005), for an example of a critical path and its critical blocks.

Although the exact details of the implementation of our algorithm are for the most
part irrelevant in this paper, it is important to note that objects representing graph
nodes (operations) have at most four explicit edges in our implementation. Two job
arcs are represented by references to the job predecessor and job successor, and two
machine arcs are represented by references to the machine predecessor and machine
successor. Job arcs between two operations that are not directly consecutive are not
needed by the algorithm and left out of the model, and the remaining machine arcs
between all operations on a machine are only implicitly defined by keeping a list of
operations on each machine in order to save memory (and possibly to increase speed).



4 A simulated annealing based algorithm

We need an initial solution to get the local search algorithm going. There are many
methods for generating a good starting solution for the JSSP like the Shifting Bottle-
neck procedure (see Adams et al. (1988)). We decided to start with a random initial
solution, since we observed in our experiments that our algorithm always moved to a
good schedule quickly (for instance, see Figure 4). The same behavior was shown in
the second phase of the algorithm in which we used the commonalities.

Makespan history of best solution ::

3081 7 JEEP INSTANCE SIMULATED AMMEALIMNG

la40.bd Initial acceptance treshald: 0.9

15 jobs ¥ 15 machines alpha {rrultiply factor): 0.85

Optimal walue: 1222 alpha applied every 500 iterations.
Terminate at treshald: 0.01

1
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Figure 4: Regular simulated annealing run, with random starting schedule.

In our simulated annealing algorithm we use the standard neighborhood of reversing
machine arcs on the longest path. Van Laarhoven et al. (1992) have shown that this
will lead to a feasible schedule. Moreover, Nowicki and Smutnicki (1996) have shown
that we can restrict ourselves to moves in which we reverse the execution order of
either the last two operations in the first critical block, the first two operations in
the last critical block, or the first or last two operations in any intermediate critical
block. The possible pairs in this neighborhood function are shown with thick arrows in
Figure 5. In an iteration, we choose one of these at random. Consequently, we update
the references to the machine predecessor and successor of two operations have to be

modified.

Determining critical paths and makespan

There are a few calculations which we have to do frequently on the solution graph,
like calculating the makespan, which is equal to the start time of the dummy node
Veng- Calculating the start times of the operations can be done by first obtaining a
topological sorting of all graph nodes with a simple depth-first search. Then, we iterate
over the topological sorting and determine the start time S; of each operation i as

max Sy + pp;
heb, h Dh;
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Figure 5: Blue indicates the critical blocks, arrows indicate possible swaps.

here P; is the list of i’s predecessors (both on the machine and in the job) and pj,
is the processing time of operation h; we initialize by putting the start time of the
dummy node vgq,,+ equal to 0. This procedure for calculating all start times runs in
linear time. Note that when two operations are swapped only the start times of all
operations in the subgraph beginning at the swapped operations are changed, so the
calculation of start times with a topological sorting can be done with the first of the
swapped operations as start node, saving some calculation time.

In order to identify possible operation swaps we need to calculate all critical paths.
This can also be done with a topological sorting: for each node ¢ in the topological
sorting, a critical predecessor j can be determined as

J < argmax Sh + Dn;

because of the computation of S;, we have that j is simply a predecessor for which
S; +p; = S;. Note that j does not have to be unique. When all critical predecessors
are known, the critical paths can be obtained by walking back from the end dummy
node to the start dummy node following only arcs that connect an operation to its
critical predecessor, which can be implemented to run in linear time.

Exploiting commonalities in solutions

In the first phase of our algorithm, the regular simulated annealing method described in
the previous sections is run for a number of times we consider large enough to gather
useful information with. During these runs, datastructures counting the number of
occurrences of machine arcs are continuously updated. After all the regular simulated
annealing runs have been completed, commonalities among the best solutions found
in each run are identified using these datastructures. We distinguish four types of
commonalities; we discuss the thresholds later.



1. all-pairs commonalities (APC). An APC corresponds to an ordered pair of op-
erations ¢+ and j that are executed in this order on the same machine with or
without idle time and/or other operations in between. Note that such a pair
corresponds to a machine arc in the disjunctive graph.

2. start/end commonalities (SEC): An SEC corresponds to a single operation that
occurs either first or last on a machine.

3. direct-pairs commonalities (DPC): A DPC corresponds to an ordered pair of
operations that are executed contiguously on the same machine.

4. critical-pairs commonalities (CPC): A CPC corresponds to an ordered pair of
contiguously executed operations on the same machine that are part of a critical
path.

For each commonality type we require that a commonality occurs in at least a certain
threshold percentage of the best solutions found in the first phase in order to be
identified as a piece of useful information.

After all these commonalities have been identified, the second phase is started.
The simulated annealing algorithm that we apply is essentially the same one as in the
first phase but with penalties given out to solutions that violate the commonalities.
The objective function in the first phase was to minimize the makespan; in the second
phase the objective is to minimize the sum of the makespan and the total penalty in
order to generate good solutions that make the best use of the commonalities. The
four commonality types differ greatly in both significance and occurrence frequency
and therefore the penalties also differ. Just like the temperature in the simulated
algorithm, the values of the penalties are lowered over time. The idea behind this is
that we first steer the algorithm in a good direction quickly, after which it tries to
preserve commonalities while exploring new and possibly better areas of the search
space.

5 Experiments and computational results

5.1 Parameter tuning

Even though we are mainly concerned with the measure of improvement due to adding
the commonalities, we want to tune the parameters such that the simulated annealing
algorithm finds reasonably good solutions in the first phase; after all, according to
the hypothesis by Schilham, the better the solutions, the more commonalities they
share. To make the algorithm run, we must specify a starting temperature, a cooling



off speed, and an end temperature at which point the algorithm terminates. The
simulated annealing settings which seemed to work best on most problems instances
and which we used throughout the rest of our experiments are as follows:

e The initial acceptance threshold ¢ = 0.5 (the probability that a move to a worse
solution is accepted)

e After every 500 iterations, the acceptance threshold is multiplied by a = 0.95

e The algorithm terminates at ¢ = 0.01 (this works out to 38,500 iterations per
run)

Next, we needed to determine the thresholds for accepting commonalities and the
penalties for violating them. During many experiments with running the regular sim-
ulated annealing algorithm of the first phase on various problem instances of m ma-
chines and n jobs, we observed the following frequencies with which the different types
of commonalities occurred in the best solutions:

1. all-pairs commonalities (APC): These occur a lot, usually around n - m times
even with a high acceptance threshold (> 0.9).

2. start/end commonalities (SEC): Usually around m times with a low acceptance
threshold (< 0.7).

3. direct-pairs commonalities (DPC): Usually less than m times even with a low
acceptance threshold (< 0.7).

4. critical-pairs commonalities (CPC): Most uncommon, these do not occur at all
on larger problem instances.

From these observations, type 4 did not turn out to be useful and was not used in
any further research. It is also clear that type 1 occurs a lot and should have a
high acceptance threshold and low penalties, and type 2 and 3 should have a low
acceptance threshold and higher penalties than type 1. During further experiments
with the height of penalties, we observed that the settings from Table 1 below produced
the best results on most of the problem instances we used for testing (ranging from
size 5 x 10 to 20 x 20), so we use these values in the rest of our experiments.



Commonalities Type | Acceptance Threshold | Penalty
APC 0.95 0.1
SEC 0.60 1.0
DPC 0.60 1.0

Table 1: Settings for our algorithm involving commonalities

5.2 Other observations during experiments

During all experiments, it became clear that commonalities did not appear as fre-
quently as we would have expected. A possible explanation for this is that we observed
that many good schedules for the same problem instance are very different from one
another, making it hard to identify commonalities. The schedules below, in Figure 6,
form a good example. Not only is the order of operations on machines very different,
the critical paths (indicated by red lines around the operations) are also different in
every schedule.

5.3 Other, less satisfactory experiments

During our research project, there were a few ideas we tried to apply to our algorithm
but we discarded them for various reasons. These include:

e Fixing certain commonalities in solutions in the second phase, as opposed to
giving penalties for violating them. This narrowed the search space down to the
point where the algorithm never reached any good solution at all.

e Trying to determine a bottleneck machine and then focusing the algorithm on
fixing common machine arcs on that machine. This also narrowed down the
search space too much. Furthermore, many problem instances turn out not to
have a single machine that is the bottleneck so the algorithm focuses on the
wrong information.

e Making the penalties for violating commonalities dependent on the occurrence
of those commonalities: the more often a commonality occurs, the higher the
penalty. This had no noticeable effect on the quality of the found schedules.

e Executing more than two phases, identifying commonalities again after each
phase. The idea behind this was that the identified commonalities would be
increasingly useful after each phase so that the quality of found schedules would
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Figure 6: Four good but very different schedules for problem instance abz9.

improve. However, no improvement in quality was found in any third phase or
later.

e Using bigger structures as commonalities than just pairs of operations. No such
structures could be identified that occurred in schedules often enough to be useful
(see again Figure 6).

5.4 Final experiment results

The final experiment we carried out involved running the algorithm with and without
commonalities on a series of benchmark problem instances used throughout the liter-
ature, retrieved mainly from the OR-library. On each problem instance, we ran the
regular simulated annealing algorithm without commonalities (SA) for 100 runs, and
then ran the two-phase algorithm that exploits commonalities (SA+C) with 50 runs
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in both phases, in order to make a fair comparison. In all experiments, we used the
simulated annealing parameters and settings involving commonalities established in
the previous sections. The computational results are listed below. For a wider com-
parison with current technology, the results for a recently developed advanced hybrid
genetic algorithm (GTS, see Moraglio et al., 2005) are also included in the table. The
‘time’ column, included to be able to make a comparison in speed as well, indicates
the average CPU time in seconds needed to execute one run of the algorithm. Our
algorithm was run on a 2GHz processor, the GTS algorithm was run on a Sun Sparc
station.

Problem SA SA+C GTS

instance ‘ nxm ‘ opt || avg ‘ best ‘ time | avg ‘ best ‘ time || best ‘ time

1a02 10 x5 | 655 | 663 | 655 14 661 | 655 15 655 1
lal9 10 x 10 | 842 || 848 | 842 | 37 845 | 842 | 39 842 4
ft10 10 x 10| 930 | 961 | 934 | 38 958 | 930 | 39 930 7
orbl 10 x 10 | 1059 | 1097 | 1066 | 41 | 1090 | 1059 | 44 -
la21 15 x 10 | 1046 | 1070 | 1055 | 51 | 1063 | 1054 | 56 || 1047 | 12
la27 20 x 10 | 1235 || 1280 | 1250 | 58 | 1275 | 1239 | 60 | 1235 | 26
1a40 15 x 15 | 1222 || 1254 | 1232 | 69 | 1252 | 1229 | 75 || 1226 | 19
abz7 |20 x 15| 655 | 687 | 672 | 86 684 | 669 | 91 658 | 176
abz9 20x 15| 656 || 719 | 699 | 105 || 713 | 694 | 115 | 682 | 125
ynl 2020 | 846 || 921 | 900 | 174 || 916 | 892 | 193 - -

Table 2: Computational results of regular simulated annealing (SA), our algorithm
with commonalities (SA+C), and a recent advanced hybrid genetic algorithm (GTS).

A few obvious remarks can be made after reviewing the computational results
above:

e SA+C performs better than SA on all problem instances (both with average
makespan and best makespan).

SA+C finds an optimum on all instances of 10 x 10 or smaller.

SA is always a little bit faster than SA+C.

GTS gives the best results of all three algorithms.

GTS is faster on all smaller problem instances, but the running time increases
dramatically on larger instances.
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6 Conclusions

From the computational results in the previous section it can be concluded that ex-
ploiting commonalities in solutions for the JSSP improves the quality of schedules for
both the average makespan and the makespan of the best solution. The improvement
is less than a percent of the value of the optimum, but it closes a reasonable part
of the gap to the optimum. We find that the only types of commonalities that are
somewhat useful are all-pairs commonalities, start/end commonalities and direct-pairs
commonalities. An explanation for the improvement being small is that in the JSSP,
good solutions have so many differences (as can be seen in Figure 6) that it is hard to
identify commonalities between them, so that the improvement from this is limited.
Therefore, using commonalities is not well suited to the JSSP and our algorithm does
not perform as well as current, advanced algorithms specialized for the JSSP.

However, we have shown that the technique is easy to implement in addition to a
more standard local search algorithm. Whereas a highly specialized algorithm such
as the one by Moraglio et al. (2005) is well suited to only the JSSP, the use of
commonalities is a more general concept and applicable to many problems. It is
undoubtedly an improving addition to local search based algorithms for any problem
in which some type of commonality can be detected. Moreover, for problems other
than the job shop problem, in which commonalities occur in all or almost all good
solutions, we may apply the concept of a commonality to reduce heuristically the size
of the instance by fixing one or more commonalities.
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