
Partitioning Sparse Graphs Into Triangles

Relations to exact satisfiability and very fast

exponential time algorithms

Johan M. M. van Rooij

Marcel E. van Kooten Niekerk

Hans L. Bodlaender

Technical Report UU-CS-2010-005

Januari 2010

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl



ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht

The Netherlands



Partitioning Sparse Graphs Into Triangles
Relations to exact satisfiability and very fast exponential time algorithms

Johan M. M. van Rooij Marcel E. van Kooten Niekerk

Hans L. Bodlaender

Department of Information and Computing Sciences, Utrecht University,

P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

jmmrooij@cs.uu.nl, markonie@xs4all.nl, hansb@cs.uu.nl

February 17, 2010

Abstract

We consider the problem of partitioning bounded degree graphs into triangles. We show

that this problem is polynomial time solvable on graphs of maximum degree three by giving

a linear time algorithm. We also show that this problem becomes NP-complete on graphs

of maximum degree four. Moreover, we show that there is no subexponential time algorithm

for this problem on maximum degree four graphs unless the Exponential Time Hypothesis

fails. However, the partition into triangles problem for graphs of maximum degree at most

four is in many cases practically solvable as we give an algorithm for this problem that runs

in O(1.0222n) time and linear space. We note that the running time of this algorithm does

not involve any large hidden polynomial factors.

1 Introduction

In his weblog of February 2009 [9], R. J. Lipton quotes Alan J. Perlis, the first Turing Award
winner:

For every polynomial-time algorithm you have, there is an exponential time algorithm
that I would rather run.

His point is simple: if your algorithm runs in n4 time, then an algorithm that runs in n2n/10

time (alternatively denoted as n1.07178n time) is faster if for example n = 100 (this holds for all
n ≤ 236).

The same observation for NP-hard problems in stead of polynomial time solvable problems
was made by Woeginger in his well known survey on exact exponential time algorithms [11].
Woeginger considers the fact that algorithms for NP-hard problems with exponential running
times may actually lead to practical algorithms: he compares O(n4) with O(1.01n). We, however,
are not aware of any papers on natural1 NP-hard problems with exponential time algorithms
with running times anywhere near O(1.01n) without involving huge polynomial factors (either
visible, hidden in the notation, or hidden in the decimal rounding of the exponent in the big-O).
In this paper, we will give such an algorithm running in time O(1.0222n) or O(2n/31.58) for the
Partition Into Triangles problem restricted to maximum degree four graphs.

The Partition Into Triangles problem is one of the classical NP-complete problems [4].
In this paper, we study this problem restricted to bounded degree graphs and obtain a series of
results. On graphs of maximum degree three, we show that the problem is linear time solvable.
On graphs of maximum degree four, we show that there exists a strong and interesting relation

1I.e., without making artificial constructions like Independent Set restricted to graphs in which 99% of the
vertices have degree at most two.

1



between Partition Into Triangles and the Exact 3-Satisfiability problem. We exploit this
relation is in several ways. First, we use it to show that the Partition Into Triangles problem
becomes NP-complete on graphs of maximum degree four. Second, we use it to show that there
exists no subexponential time algorithm for Partition Into Triangles on maximum degree
four graphs unless the Exponential Time Hypothesis [5] fails. Thus it seems that Partition

Into Triangles restricted to graphs of maximum degree four is a hard problem. However,
as a third application of the relation to Exact 3-Satisfiability, we give an O(1.0222n) time
algorithm for this problem by presenting an algorithm for Exact Satisfiability that is specially
tailored to inputs obtained from Partition Into Triangles instances of maximum degree four.
The running time of this algorithm involves no large hidden polynomial factors which makes it
effective in practice. On these instances, it is significantly faster than the result of applying any
of the fastest known algorithms for Exact Satisfiability or Exact 3-Satisfiability [3].

On general graphs, the Partition Into Triangles problem can be solved using set partition-
ing via inclusion-exclusion [2] in O(2nnO(1)) time and polynomial space. This can be improved
as a side result of two recent papers. Koivisto [7] has given a general covering algorithm that
can be used to solve the problem in O(1.7693n) time and space. And, Björklund [1] has given
a general randomised partitioning algorithm that can be used to solve the problem in O(1.496n)
time and polynomial space while having a probability of failure which is exponentially small in n.
On bounded degree graphs, we are unfamiliar with any results besides Kann who proved that the
optimisation variant (cover by maximum number of triangles) is Max-SNP-complete on graphs
of maximum degree at least six [6].

Our paper is organised as follows. After some preliminaries, we give a simple linear time
algorithm for Partition Into Triangles on graphs of maximum degree three in Section 3.
Then, we look at the relation between the problem on graphs of maximum degree four and Exact

3-Satisfiability in Section 4. We use this to show NP-completeness of the problem in Section 5.
In this section, we also show that there is no subexponential time algorithms for the problem unless
the Exponential Time Hypothesis fails. We give our fast exponential time algorithm in Section 6.
Finally, some conclusions are given in Section 7.

2 Preliminaries

Let G = (V,E) be a simple n-vertex graph. The degree of a vertex v ∈ V is its number of
neighbours in G: d(v) = ∣{u ∈ V ∣ (u, v) ∈ E}∣. A r-regular graph is a graph in which all vertices
have degree r; a cubic graph is a 3-regular graph. The (closed) neighbourhood of a vertex N [v] is
the set of vertices at distance at most one from v: N [v] = {v} ∪ {u ∈ V ∣ (u, v) ∈ E}. In this
paper, we will use the term local neighbourhood of a vertex v referring to the graph induced by
N [v], i.e, the graph H = (N [v], E ∩ (N [v]×N [v])) where N [v] is taken in G.

A triangle is a collection of three vertices in G in which each pair is joined by an edge. A
triangle partition of G is a partitioning of V in n/3 disjoint subsets such that each such subset
forms a triangle. This paper considers the problem Partition Into Triangles: given a graph
G, does G have a triangle partition?

A literal is a variable x or its negation ¬x. We will often use reasoning involving the Exact

Satisfiability problem (XSAT). In this problem, we are given a set of variables X and a set
of clauses C containing literals of the set of variables X; we have to decide whether there exist a
truth assignment of the variables such that each clause contains exactly one literal that is true.
The Exact 3-Satisfiability problem (X3SAT) is the Exact Satisfiability problem with the
restriction that all clauses have size at most three.

The 3-Satisfiability problem (3SAT) is also used: given a set of variables X and a set
of clauses C of size at most three, does there exist a truth assignment of the variables such
that each clause contains at least one literal that is true. Unless stated otherwise, any given
clause is considered to be a clause of an exact (3-)satisfiability problem instance. When there is
the possibility of confusion, we denote a 3SAT clause by SAT(x, y, z) and an X3SAT clause by
XSAT(x, y, z).

2



Algorithm 1 A linear time algorithm for graphs of maximum degree three.

Input: A graph G = (V,E) of maximum degree three.
Output: A triangle partition T of G or No if no such partitioning exists.
1: if ∣V ∣ is not a multiple of three then return No

2: while G is non-empty do

3: Take any vertex v ∈ V .
4: if N [v] contains a vertex of degree at most two then

5: Reduce the graph using Lemma 1. If a triangle is selected, then add it to T .
6: else if N [v] corresponds to cases 1, 3, or 4 of Figure 1 then

7: return No

8: else //case 2 of Figure 1
9: Add the triangle in N [v] to T and remove its vertices from G.

10: return T

The number of positive literals of a variable x ∈ X is denoted by f+(x) and the number
of negative literals by f−(x). The frequency f(x) of a variable x ∈ X is its total number of
occurrences in a problem instance: f(x) = f+(x) + f−(x). We also use the notation F (x) for the
tuple F (x) = (f+(x), f−(x)). A unique variable is a variable of frequency one.

When an algorithm repeatedly branches on an instance of size n obtaining subproblems of sizes
n − r1, n − r2, . . . , n − rl, then the algorithm generates at most �(r1, r2, . . . , rl)

n subproblems in
total. Here, �(r1, r2, . . . , rl) is called the branching number. It equals the smallest positive real
root of the equation 1 = x−r1 + x−r2 + . . . + x−rl . When an algorithm has multiple branching
rules, then at most �n subproblems are generated, where � is the maximum over the branching
numbers of all its branching rules. For more details on branching numbers, see [8].

The Exponential Time Hypothesis (ETH) [5] is the complexity theoretical assumption that
there is no algorithm solving the 3SAT problem on n variables in O(2�n) time, for all � > 0.

3 A Linear Time Algorithm on Graphs of Maximum Degree

Three

We begin by considering Partition Into Triangles on graphs of maximum degree three. We
will prove that this problem is polynomial time solvable on this graph class by giving a linear time
algorithm: Algorithm 1.

Lemma 1 Let G = (V,E) be an instance of Partition Into Triangles restricted to graphs of
maximum degree d containing a vertex v of degree at most two. In constant time, we can either
decide that G is a No-instance, or we can transform G into an equivalent smaller instance.

Proof: If v has degree at most one, then this vertex cannot be in any triangle and the instance is
a No-instance. Otherwise, v has degree two; let u,w be the neighbours of v. As G is of constant
maximum degree, we can test in constant time whether (u,w) ∈ E. If (u,w) ∈ E, then {u, v, w} is

1 2 3 4

v v v v

Figure 1: Possible edges within the local neighbourhood of a vertex in a cubic graph.

3



the unique triangle containing v, and we remove this triangle from G to obtain a smaller equivalent
instance. If (u,w) ∕∈ E, then v is not part of any triangle, and we again have a No-instance. □

Theorem 1 Algorithm 1 solves Partition Into Triangles on graphs of maximum degree three
in linear time.

Proof: For correctness, we note that the number of vertices must be a multiple three in order
to partition G into triangles. Furthermore, correctness of the first case in the main loop follows
from Lemma 1. For the other two cases, we observe that any local neighbourhood of v must equal
one of the four cases in Figure 1. In case 1, no triangle containing v exists, and, in cases 3 and 4,
the fact that G is cubic results in that removing any triangle would lead to vertices of degree at
most 1 which can no longer be in a triangle. Hence, these are all No-instances. In case 2, v can
only be part of one triangle which Algorithm 1 selects. We conclude that the algorithm is correct.

Each iteration of the main loop requires constant time, since inspecting a neighbourhood in
a cubic graph can be done in constant time. In each iteration, Algorithm 1 either terminates,
or removes three vertices from G. Hence, there are at most a linear number of iterations. We
conclude that Algorithm 1 runs in linear time. □

4 The Relation Between Partition Into Triangles on Graphs

of Maximum Degree Four and Exact 3-Satisfiability

When we restrict the Partition Into Triangles problem to graphs of maximum degree four,
an interesting relation with Exact 3-Satisfiability emerges. This relation will be the topic of
this section.

We will give three lemmas similar to Lemma 1 and Theorem 1 that allow us to either decide
that an instances is a No-instance, or that it can be reduced to an equivalent smaller instance.
These lemmas will apply to any instance of Partition Into Triangles on maximum degree
four graphs unless all vertices in the instance have a local neighbourhood which is identical to
one of two possible options. After reducing an instance in this way, connected series of one of the
remaining locals neighbourhoods (which we will later call clouds) can be interpreted as a variable
that can be set to true or false depending on in which of the two possible ways it will be partitioned
into triangles. Under this interpretation, the other possible local neighbourhood (which we will
later call a fan) can be interpreted as a clause of size three in which exactly one variable must be
set to true. In this way, remaining instances can be interpreted as an Exact 3-Satisfiability

instance.
We will now give the three lemmas. The first one deals with any instance that is not 4-regular.

Lemma 2 Let G = (V,E) be an instance of Partition Into Triangles of maximum degree
four containing a vertex v of degree at most three. In constant time, we can either decide that G
is a No-instance, or we can transform G into an equivalent smaller instance.

Proof: We can assume that v has degree three: otherwise the result follows by applying Lemma 1.
Similar to in the proof of Theorem 1, the local neighbourhood of v corresponds to one of the

four cases in Figure 1. If this neighbourhood corresponds to case 1, then all edges incident to v
are not part of any triangle. If this neighbourhood corresponds to case 2, then the edge between
v and the bottom vertex is not part of any triangle. In these two cases, we remove these edges
and apply Lemma 1 to v which now has degree at most two. If this neighbourhood corresponds
to case 4, then, since G is of maximum degree four, selecting any triangle in the solution results
in the creation of a vertex of degree at most one: we can conclude that we have a No-instance.
The same holds for case 3 unless the vertices a and b (see Figure 2) are of degree four.

In this last case, we reduce the graph in the following way; see Figure 2. Notice that either
vertex a or vertex b must be in a triangle with u and v. Because of this, the other vertex from a

4



v

u a

b

v

u a

b

ab

Figure 2: Reducing an instance with a degree three vertex by merging its neighbours.

and b must be in a triangle with its other two neighbours. Therefore, an edge between a neighbour
of a and a neighbour of b outside the shown part of the graph cannot be in a triangle in any
solution: we remove these if any exist. Next, we merge the vertices a and b to a single vertex and
remove both u and v. Notice that the new vertex is part of only two different triangles, and each
of these possibilities corresponds to taking one of the two possible triangles containing v in the
original graph. Also, no extra triangles are introduced as we have removed the edges between the
neighbours of the merged vertices. We conclude that the new smaller instance is equivalent. □

As a result, we can reduce any non 4-regular instance. In a 4-regular graph, a vertex v can have
a number of possible local neighbourhoods, all shown in Figure 3. In the next lemmas, we show
that we can reduce any instance having a vertex which local neighbourhood does not correspond
to cases 2b or 3a in Figure 3. Notice that the numbering corresponds to the number of edges
between neighbours of v.

Lemma 3 Let G = (V,E) be a 4-regular instance of Partition Into Triangles containing a
vertex v which local neighbourhood is different from cases 2b, 3a and 3b in Figure 3. In constant
time, we can either decide that G is a No-instance, or we can transform G into an equivalent
smaller instance.

Proof: We inspect the possible local configurations around a vertex of degree four; these are all
shown in Figure 3.

If the local neighbourhood of v corresponds to case 0, 1 or 2a, then v is incident to an edge which
is not part of any triangle in G since both endpoints do not have a common neighbour. For these
cases, we remove the edge and apply Lemma 2 to v, which now has degree three. Furthermore, if
the local neighbourhood of v corresponds to case 5 or 6, then we have a No-instances since picking
any triangle containing v results in a vertex of degree at most one.

To complete the proof, we consider the remaining two cases: 4a, and 4b.
Case 4a: Consider the edge from the top left vertex to the bottom right vertex. This edge is

part of two triangles, one with the centre vertex v and one with the top right vertex. If we would
take any of these two triangles in the solution, a vertex of degree one remains. Hence, this edge
cannot be part of a triangle in the solution and we can apply Lemma 2 after removing this edge.

Case 4b: Consider one of the four edges in N [v] not incident to v, say the edge between the top
two vertices. This edge is part of one or two triangles, one with v, and one with a possible third
vertex outside of N [v]. Assume that we take the triangle with this edges and v in a solution, then
the remaining two vertices will get degree two and thus they can only be in a triangle together
and with a common neighbour. Hence, for each of the four edges in N [v], we can remove it if
the endpoints of both the edge and the opposite edge (edge between the other two vertices in
N [v] ∖ {v}) have no common neighbour except for v.

We remove these edges. We observe that there is no instance in which all four edges remain.
This is so since each of the four corner vertices has only one neighbour outside of N [v], and hence
there can be at most two such common neighbours, and if there are two then they must involve
the endpoints of opposite edges. Hence, we can apply Lemma 2. □

5



1 2a 2b 3a

3b 4a 4b 5

0

6

v v v v v

v v v v v

u w

Figure 3: Possible edges within the local neighbourhood of a degree four vertex.

Having reduced the number of possible local neighbourhoods of a vertex in an instance to
three, we now remove one more such possibility.

Lemma 4 Let G = (V,E) be a 4-regular instance of Partition Into Triangles in which the
local neighbourhood of each vertex corresponds to case 2b, 3a or 3b in Figure 3. Then, the vertices
which local neighbourhoods correspond to case 3b form separate connected components in G. If
such a connected component exists, then we can either decide that G is a No-instance, or we can
transform G into an equivalent smaller instance by removing these connected components.

Proof: Let v be a vertex which local neighbourhood corresponds to case 3b of Figure 3. Let u be
the top left vertex in this picture and consider the local neighbourhood of u. This neighbourhood
cannot equal case 2b of Figure 3 as it has contains one vertex adjacent to two other vertices in
the neighbourhood. The neighbourhood can also not equal case 3a, since v is of degree four and
thus cannot have an extra edge to the neighbour of u outside N [v]. We conclude that the local
neighbourhood of u must equal that of case 3b in Figure 3. Thus, the top two vertices have a
common neighbour outside N [v].

We can repeat this argument and apply it to u to conclude that the top right vertex in
the picture w also has the same local neighbourhood. This shows that w and the new vertex
created in the previous step must have another common neighbour. By repeated application, we
conclude that every vertex in the connected component containing v has this local neighbourhood.
Moreover, this connected components consists of a circular chain of these configurations as shown
in Figure 4.

Figure 4: A connected component where each local neighbourhood equals case 3b of Figure 3.

6



Figure 5: A fan and an example of a cloud and the two ways it can be partitioned into triangles.

It is not hard to see that such a connected component can be partitioned into triangles if and
only if the number of vertices in this connected component is a multiple of three. Namely, if we
take any triangle in the solution, this will fix other triangles in the solution because vertices will
now get degree two. This effect will propagate over the circular chain and result in a triangle
partition if and only if the number of vertices is a multiple of three. Therefore, if this number of
vertices is a multiple of three, then we can remove it to obtain an equivalent smaller instance, and
otherwise we can decide that we have a No-instance. □

We define a reduced instance of Partition Into Triangles on maximum degree four graphs
to be an instance to which Lemmas 2, 3 and 4 do not apply, i.e., a 4-regular instance in which
each local neighbourhood corresponds to case 2a or 3a in Figure 3.

If a vertex in a reduced instance has a neighbourhood corresponding to case 3a in Figure 3,
then by definition of this local neighbourhood and because we have a reduced instance, it has
one neighbour with this same neighbourhood and it has two neighbours which neighbourhoods
correspond to case 2a. We refer to a combination of two vertices corresponding to case 3a in
Figure 3 as a fan. We will refer to adjacent series of vertices which local neighbourhoods correspond
to case 2a as a cloud of triangles. See also Figure 5.

Observe how these reduced instances can be partitioned into triangles. In order to partition
a fan into triangles, we must select a triangle containing the middle two vertices and exactly one
of the three vertices on the boundary. Similarly, in a cloud each triangle is either selected or
all its neighbouring (cloud or fan) triangles are selected. Hence, in any partitioning of a cloud
into triangles, adjacent triangles will alternate between being selected and not being selected: see
Figure 5. As a result, an instance with a cloud that contains a cycle of triangles of odd length is a
No-instance since there cannot be such an alternating cycle. Every other cloud has two groups of
boundary vertices connecting it to fans: in any solution all fan triangles connected to one group
will be selected and all fan triangles connected to the other group will not (see also Figure 5). The
only exception to this is the single vertex cloud that directly connects two fans; here the single
vertex is in both groups of endpoints.

Now, the relation between Partition Into Triangles on graphs of maximum degree four
and Exact 3-Satisfiability emerges. Namely, we can interpret a reduced instance as an X3SAT
instance. We interpret a fan as a clause containing three literals represented by its adjacent clouds:
exactly one fan triangle must be selected and this choice determines exactly which triangles in the
adjacent clouds will be selected. In this way, we interpret a cloud as a variable that can be set to
true or false. Both truth assignments correspond to one of the two possible ways to partition the
cloud into triangles. The two groups of vertices on the boundary of a cloud then form the positive
and the negative literals; these are contained in the clauses represented by adjacent fans. It is not
hard to see that this X3SAT interpretation of a reduced instance is satisfiable if and only if the
partition into triangles instance has a solution.

Note that an Exact 3-Satisfiability instance that is obtained in this way can have multiple
identical clauses. We also have the following property.

7



Proposition 1 For any variable x in an X3SAT instance obtained in the above way, the number
of positive literals f+(x) and the number of negative literals f−(x) differ a multiple of three.

Proof: Let t+, t− be the number of triangles selected within the cloud representing x when x is
set to true or false, respectively. A cloud has a fixed number of vertices and for each corresponding
truth assignment each vertex is either selected in a triangle or part of a corresponding literal; thus
3t+ + f+(x) = 3t− + f−(x). Hence, f+(x) ≡ f−(x) (mod 3). □

The following two propositions show how we can model instances of Exact 3-Satisfiability

by reduced instances of Partition Into Triangles of maximum degree four.

Proposition 2 Any variable x whose number of positive and negative literals differs a multiple
of three can be represented by a cloud.

Proof: Consider a cloud representing a variable, without considering its adjacent fans. Notice
that we can increase the number of positive or negative literals of a variable by three in the
following way. Take a chain of three triangles connected by common endpoints and identify the
loose endpoint of the middle triangle with a vertex representing a literal of the cloud.

Without loss of generality let f+(x) > 0. Starting from the single vertex cloud with F (x) =
(1, 1), a single triangle with F (x) = (3, 0), two adjacent triangles with F (x) = (2, 2), or a chain
of four triangles with F (x) = (3, 3), we can create any combination F (x) = (f+(x), f−(x)) given
that their difference is a multiple of three. □

Proposition 3 Any variable x can be represented using 2f(x)− 3 vertices.

Proof: See the construction in the proof of Proposition 2. The proposition holds for the initial
cases and is maintained every time three triangles are added: this adds six vertices and increases
f(x) = f+(x) + f−(x) by three. □

We conclude by expressing the relation between Partition Into Triangles on graphs of
maximum degree four and Exact 3-Satisfiability in the following theorem.

Theorem 2 There exist linear time transformations between instances of Partition Into Tri-

angles on graphs of maximum degree four and instances of Exact 3-Satisfiability in which
each variable x has f−(x) ≡ f+(x) (mod 3) such that the following holds:

1. A given instance has a solution if and only if its transformed instance has a solution.

2. An Exact 3-Satisfiability instance with variable set X and clause set C obtained form
transforming an n-vertex Partition Into Triangles instance of maximum degree four
satisfies: 2∣C∣+

∑
x∈X (2f(x)− 3) ≤ n.

3. A Partition Into Triangles instance on n vertices obtained form transforming an Ex-

act 3-Satisfiability instance in which each variable x has f−(x) ≡ f+(x) (mod 3) with
variable set X and clauses set C satisfies: 2∣C∣+

∑
x∈X (2f(x)− 3) = n.

Proof: Given an instance of Partition Into Triangles on graphs of maximum degree four,
we can exhaustively apply Lemmas 2, 3 and 4 to obtain an equivalent reduced instance. This
can be done in linear time by keeping proper collections of vertices with different degrees and
types of neighbourhoods. The resulting reduced instance can be transformed into an equivalent
Exact 3-Satisfiability in which each variable x has f−(x) ≡ f+(x) (mod 3) as described in
the discussion above. It is not hard to see that this last step can be implemented in linear time.

For the reverse transformation, we can use Proposition 2 to construct the required clouds given
that the input instance satisfies Property 1. Thereafter, we add fans representing the clauses of
the Exact 3-Satisfiability instance. The resulting Partition Into Triangles instances is
a reduced instance and is equivalent by the discussion above.

8



Regarding the size of instance, each fan, and thus each clause, uses two vertices in the Parti-

tion Into Triangles instance given that we count the three vertices surrounding it as part of the
clouds. By Proposition 3 each variable x uses 2f(x)− 3 vertices. Hence, the transformation from
Exact 3-Satisfiability to Partition Into Triangles satisfies 2∣C∣+

∑
x∈X (2f(x)− 3) = n.

In the reverse transformation, a series of reductions are applied first, and therefore this transfor-
mation satisfies 2∣C∣+

∑
x∈X (2f(x)− 3) ≤ n. □

5 Hardness on Graphs of Maximum Degree Four

Having formalised the relation between Partition Into Triangles on graphs of maximum
degree four and Exact 3-Satisfiability in the previous section, we are now ready to prove some
hardness results. In this section, we will show that the problem Partition Into Triangles on
graphs of maximum degree four is NP-complete, and that no subexponential algorithm for this
problem exists unless the Exponential Time Hypothesis [5] fails.

Theorem 3 Partition Into Triangles on graphs of maximum degree four is NP-complete.

Proof: Clearly, Partition Into Triangles on graphs of maximum degree four is in NP .
For hardness, we reduce from the NP-complete problem Exact 3-Satisfiability [4]. Given

an instance of Exact 3-Satisfiability, we can use Theorem 2 if the instance satisfies f−(x) ≡
f+(x) (mod 3), for each variable x, to obtain the required equivalent polynomial size Partition

Into Triangles on graphs of maximum degree four. If the instance does not satisfy this property,
then we can easily force this by making three copies of each clause: every variable x now has that
f+(x) and f−(x) differ a multiple of three. We complete the proof by noting that this clearly is a
polynomial time transformation. □

Theorem 4 There is no subexponential time algorithm for Partition Into Triangles on
graphs of maximum degree four unless the Exponential Time Hypothesis fails.

Proof: Consider an arbitrary 3SAT instance with m clauses. We create an equivalent X3SAT
instance with 4m clauses by using an equivalence from [10].

SAT(x, y, z) ⇐⇒ XSAT(x, v1, v2) ∧XSAT(y, v2, v3) ∧XSAT(v1, v3, v4) ∧XSAT(¬z, v2, v5)

This Exact 3-Satisfiability instance can then be transformed to an instance of the described
triangle partitioning problem using the construction in Theorem 3. This construction can triple
the number of clauses to 12m, and thus the total sum of the number of occurrences of the literals
will be at most 36m. By Proposition 3, the variables x can be represented by clouds using less
than 2f(x) vertices each. In total, this gives at most 94m vertices: 72m for the variables and
another 24m for the two vertices of a fan for each clause.

Suppose there exists a subexponential time algorithm for Partition Into Triangles on
graphs of maximum degree four running in time O(2�n), for all � > 0. Then, this algorithm solves
given 3SAT problems in O(2�m) for all � > 0 by using the above construction and � = �/96. This
contradicts the Exponential Time Hypothesis as under this assumption no such algorithm exists
by the sparsification lemma [5]. □

6 An Exponential Time Algorithm for Graphs of Maximum

Degree Four

In this section, we give a very fast exponential time algorithm solving Partition Into Triangles

on graphs of maximum degree four in O(1.0222n) time and linear space. The running time does

9



not involve any large hidden polynomial factors. Actually, our algorithm is an algorithm for
Exact Satisfiability that we apply to instances obtained from applying Theorem 2 to the
input Partition Into Triangles instance of maximum degree four.

In principle, we could use any known algorithm for Exact 3-Satisfiability or Exact Sat-

isfiability to solve Partition Into Triangles problems of maximum degree four, for example
those by Byskov et al. [3]. We do not do so. Instead, we present an algorithm that is specifically
tailored to the fact that the input is obtained from an Partition Into Triangles instance.
This algorithm had been designed and will be analysed using the number of vertices in a Par-

tition Into Triangles instance used to build the different structures involved in an Exact

3-Satisfiability instance as a measure of progress.
Our algorithm works on Exact Satisfiability instances (not X3SAT). The algorithm is

a branch and reduce algorithm. This means that the algorithm exhaustively applies a series
of reduction rules. If no such rule applies, then the algorithm branches generating two or more
subproblems that are solved recursively. The branching is done in such a way that if any generated
subproblem is a Yes-instance, then the original problem is a Yes-instance.

To analyse the resulting algorithm by bounding the number of subproblems generated, we will
use the following measure of progress k on instances with variable set X and clause set C.

k = 5∣X∣+
∑

C∈C,∣C∣≥3

2
1

3
(∣C∣ − 3)

Before justifying this measure, we introduce some standard reduction rules used in many
algorithms for XSAT. Besides these reduction rules, we always decide that we have a No-instance
if two or more variables in a clause are set to True. Also, we set any literals to False if they
occur in a clause with a literal set to True, and hereafter we remove the clause. After doing so, we
remove all literals set to False from the remaining clauses and decide that we have a No-instance
if this results in an empty clause.

Below, we let x and y be arbitrary literals (possibly negated), we let C and C ′ be arbitrary
(sub)clauses, and we let Φ be the rest of the current XSAT formula. By Φ : a → b, we denote
the formula Φ with all occurrences of the literal a replaced by b and all occurrences of the literal
¬a by ¬b. This notation is extended to sets of variables, for example in Φ : C → False. The
numbers behind the reduction rules represent the minimum reduction in the measure as a result
of the reduction.

1. C ∧ C ∧ Φ =⇒ C ∧ Φ (0)
2. (x) ∧ Φ =⇒ Φ : x → True (-5)
3. (x, y) ∧ Φ =⇒ Φ : y → ¬x (-5)
4. (x, x, C) ∧ Φ =⇒ C ∧ Φ : x → False (-5)
5. (x,¬x,C) ∧ Φ =⇒ Φ : C → False (-5)
6. (x, y, C) ∧ (x,¬y, C ′) ∧ Φ =⇒ (y, C) ∧ (¬y, C) ∧ Φ : x → False (-5)
7. (x, y, C) ∧ (¬x,¬y, C ′) ∧ Φ =⇒ Φ : y → ¬x; C,C ′ → False (-5)
8. C ∧ C ′ ∧ Φ with C ⊂ C ′ =⇒ C ∧ Φ : (C ′ ∖ C) → False (-5)
9. (x,C) ∧ (y, C) ∧ Φ =⇒ (x,C) ∧ Φ : y → x (-5)

10. (x,C) ∧ (C,C ′) ∧ Φ with ∣C∣, ∣C ′∣ ≥ 2 =⇒ (x,C) ∧ (¬x,C ′) ∧ Φ (−2 1
3 )

11. (x,C) ∧ (¬x,C ′) ∧ Φ with x,¬x ∕∈
∪
Φ =⇒ (C,C ′) ∧ Φ (−2 2

3 )
12. If, after application of reduction rules 1-11, Φ contains a variable x and a series

of variables y1, . . . , yl only occurring in clauses with x such that every clause that
contains x contains exactly one of the variables yi, then set x to False.

(-5)

Lemma 5 Reduction rules 1-12 are correct and result in the given minimum reductions in the
measure k.

Proof: Reduction rules 1-11 are used in many papers on XSAT, for example [3]; their correctness
is evident. For the correctness of rule 12, consider a variable x and a series of variables y1, . . . , yl
as in the statement of the reduction rule. Since rules 6 and 7 do not apply, the sign of all literals

10



of x must be equal, and the same goes for each of the individual variables yi; without loss of
generality, we assume all their literals to be positive. Consider any solution with x set to True.
Since the yi occur in clauses with x, they are all set to False. Correctness follows because none of
the yi occur in clauses together or in a clause without x, therefore we can replace this assignment
by an equivalent one by setting x to False and all the yi to True.

Now, consider the reductions in the measure. In all of the reduction rules except 1, 10 and
11, at least one variable is assigned a value without increasing the size of clauses. Hence, in these
cases the measure is reduced by at least 5. Clearly, reduction rule 1 does not increase the size
of the measure as it removes a clause. Reduction rule 10 reduces the size of one clause of size at
least four by one, and hence reduces the measure by 2 1

3 . Finally, reduction rule 11 removes one
variable and one possibly large clause of size s reducing the measure by 5 + 2 1

3 (s− 3). However,
this reduction rule also increases the size of another clause by s − 2 increasing the measure by
2 1
3 (s− 2). Together this leads to a total reduction of 5− 2 1

3 = 2 2
3 . □

We now justify our measure.

Lemma 6 Given an instance G of Partition Into Triangles of maximum degree four on n
vertices, we can either decide that it is a No-instance, or we can transform it in polynomial time
into an equivalent Exact Satisfiability instance of measure k satisfying k ≤ n.

Proof: We first apply Theorem 2 to G. If this theorem does not decide that we have a No-
instance, it gives us an equivalent Exact 3-Satisfiability instance with variable set X and
clause set C satisfying 2∣C∣+

∑
x∈X (2f(x)− 3) ≤ n.

Now, we distinguish between two types of variables x ∈ X: variables with f(x) = 2 and
F (x) = (1, 1), and all other variables, which by Property 1 satisfy f(x) ≥ 3. Let n2 be the number
of variables with f(x) = 2, and let n≥3 be the number of other variables. Then:

n ≥ 2∣C∣+
∑

x∈X

(2f(x)− 3) ≥ 2∣C∣+ n2 + 3n≥3 = 5n≥3 + 2
1

2
n2

where the last equality follows from redistributing the two vertices used by the clauses of size three
to the variables: these are given 2

3 vertices for each occurrence in C.
To this instance, we exhaustively apply reduction rules 1-12. We note that the result of this will

not be an instance of X3SAT, but an instance of XSAT instead. The reduction rules, specifically
reduction rule 11, will remove all variables x with f(x) = 2 and as a result the clauses will increase
in size. Clauses increase at most one in size per removed variable, hence:

n ≥ 5n≥3 + 2
1

2
n2 ≥ 5n≥3 +

∑

C∈C,∣C∣≥3

2
1

3
(∣C∣ − 3) = k

This proves that k ≤ n. □

We note that the reductions in the measure proven in Lemma 5 as a result of the reduction
rules only apply after first applying Lemma 6: Lemma 6 uses these reductions, specifically those
due to reduction rule 11, for its correctness.

The new Exact Satisfiability instance does no longer satisfy Property 1. We notice that
in the previous situation Property 1 only held if we counted identical clauses multiple times, and
multiple identical clauses have no effect on the satisfiability of an XSAT instance.

Reduction rules 1-12 enforce some new constraints on the resulting XSAT instances. These
will be proven in the next lemma. Remind that a unique variable is a variable x with f(x) = 1.

Lemma 7 After exhaustively applying reduction rules 1-12 to an Exact Satisfiability in-
stance, it satisfies the following properties:

1. All clauses have size at least three.

11



2. All variables occur at most once in each clause.

3. If variables occur together in multiple clauses, their literals in all clauses have identical signs.

4. For any two clauses, each clause contains at least two variables not occurring in the other.

5. There are no variables x with F (x) = (1, 1).

6. Every clause contains at most one unique variable.

Proof: (1.) Smaller clauses are removed by reduction rules 2 and 3. (2.) Reduction rule 4 or 5
applies if a clause contains a variable two or more times. (3.) If their literals do not have the same
signs, reduction rule 6 or 7 would have been applied. (4.) No clauses are identical by reduction
rule 1. Also, no clause is a subclause of another by reduction rule 8. And, if a clause contains only
one variable that does not occur in the other clause, reduction rule 9 or 10 is applicable. (5.) By
reduction rule 11. (6.) If a clause has more than one unique variable, reduction rule 12 applies. □

What remains is to give a series of lemmas that describe the branching rules of our algorithm.
This is what we will do next. Since we first exhaustively apply the reduction rules, we will in
each lemma implicitly assume that our reduction rules do not apply, and that directly after the
branching all reduction rules are exhaustively applied again. In each lemma, we prove that the
described branching has associated branching number at most 1.02220. These branching numbers
are computed using the measure k as a measure of progress of the algorithm.

Lemma 8 If an XSAT instance contains a variable x occurring both as a positive and as a negative
literal, then we can either reduce the instance to an equivalent smaller instance, or we can branch
on the instance such that the associated branching number is at most 1.02220.

Proof: Let us first consider branching on a variable x with f+(x) ≥ 2 and f−(x) ≥ 2, i.e., we
have the following situation:

(x,C1) ∧ (x,C2) ∧ (¬x,C ′
1) ∧ (¬x,C ′

2) ∧ Φ

We distinguish between different cases: for each of the Ci and C ′
i, we consider a subccase where

this Ci or C ′
i has size two and a subcase where the Ci or C ′

i has size at least three.
If we set x → True, we obtain the following reductions in the measure. We give these reduction

by a series of bullets. Below, we will compute the corresponding sums of the individual reductions
for each of the subcases considered.

∙ 5 for removing x.

∙ 5 for each literal in C1 or C2 as these are set to False. Note that by Lemma 7(4), no variable
occurs both in C1 and C2. If ∣C1∣ = ∣C2∣ = 2, then we obtain a reduction of 20, otherwise,
we obtain a reduction of at least 25.

∙ 5 per C ′
i with ∣C ′

i∣ = 2 because ¬x is removed from the corresponding clauses resulting in
the removal of at least one more variable by reduction rule 3. Notice, that by Lemma 7(3):
(C1 ∪ C2) ∩ (C ′

1 ∪ C ′
2) = ∅.

∙ A number of times 2 1
3 for reducing the sizes of the clauses.

The situation is symmetric, hence setting x → False reduces the measure by the same quan-
tities after replacing Ci by by C ′

i and vice versa.
The table below gives all considered cases together with the minimum reductions in the measure

obtained by each of the above reasons. In the first two columns, we give the number of Ci and C ′
i

with ∣Ci∣ ≥ 3 and ∣C ′
i∣ ≥ 3, respectively. We assume that all other Ci and C ′

i have size two. In the
third and forth column, we give the reductions in the measure as a sum of four terms: the first
one corresponds to the first bullet given above, the second corresponds to the second bullet, etc.
In the last column, we give the branching number � associated to this branching. By symmetry
reasons, we can restrict ourselves to the given cases.

12



#Ci : #C ′
i : reduction of the measure k when we set x to

∣Ci∣ ≥ 3 ∣C ′
i∣ ≥ 3 x → True x → False �

0 0 5 + 20 + 10 + 0 = 35 5 + 20 + 10 + 0 = 35 1.02001
1 0 5 + 25 + 10 + 2 1

3 = 42 1
3 5 + 20 + 5 + 2 1

3 = 32 1
3 1.01886

2 0 5 + 25 + 10 + 4 2
3 = 44 2

3 5 + 20 + 0 + 4 2
3 = 29 2

3 1.01910
1 1 5 + 25 + 5 + 4 2

3 = 39 2
3 5 + 25 + 5 + 4 2

3 = 39 2
3 1.01763

2 1 5 + 25 + 5 + 7 = 42 5 + 25 + 0 + 7 = 37 1.01773
2 2 5 + 25 + 0 + 9 1

3 = 39 1
3 5 + 25 + 0 + 9 1

3 = 39 1
3 1.01778

While there are variables x with f+(x) ≥ 2 and f−(x) ≥ 2, we branch on such a variable. So,
by negating variables, assume without loss of generality that for each variable x we have have
f−(x) ∈ {0, 1} and f+(x) ≥ 1.

If f+(x) ≥ 3, we can make a similar table associated to the following situation:

(x,C1) ∧ (x,C2) ∧ (x,C3) ∧ (¬x,C) ∧ Φ

Again, the first two columns give the size of ∣C∣ and the ∣Ci∣; the third and the fourth column
contain the reductions in the measure in both branches as a sum of the reductions based on each
of the four bullets given above; and the fifth column gives the associated branching number.

#Ci : reduction of the measure k when we set
∣C∣ ∣Ci∣ ≥ 3 x → True x → False �
2 0 5 + 30 + 5 + 0 = 40 5 + 10 + 15 + 0 = 30 1.02015
2 1 5 + 35 + 5 + 2 1

3 = 47 1
3 5 + 10 + 10 + 2 1

3 = 27 1
3 1.01924

2 2 5 + 35 + 5 + 4 2
3 = 49 2

3 5 + 10 + 5 + 4 2
3 = 24 2

3 1.01963
2 3 5 + 35 + 5 + 7 = 52 5 + 10 + 0 + 7 = 22 1.02013

≥ 3 0 5 + 30 + 0 + 2 1
3 = 37 1

3 5 + 15 + 15 + 2 1
3 = 37 1

3 1.01874
≥ 3 1 5 + 35 + 0 + 4 2

3 = 44 2
3 5 + 15 + 10 + 4 2

3 = 34 2
3 1.01773

≥ 3 2 5 + 35 + 0 + 7 = 47 5 + 15 + 5 + 7 = 32 1.01794
≥ 3 3 5 + 35 + 0 + 9 1

3 = 49 1
3 5 + 15 + 0 + 9 1

3 = 29 1
3 1.01820

Again, while there are variables x with f+(x) ≥ 3 and f−(x) ≥ 1, we branch on such a variable.
Because variables x with F (x) = (1, 1) are removed by the reductions rules (Lemma 7(5)), the
only remaining variables x for which we have to prove the lemma are those with F (x) = (2, 1).
Let x be such a variable with F (x) = (2, 1).

If the negated literal of x occurs in a clause of size three, we apply the following transformation:

(x,C1) ∧ (x,C2) ∧ (¬x, v1, v2) ∧ Φ =⇒ (v1, v2, C1) ∧ (v1, v2, C2) ∧ Φ

This transformation is well known under the name resolution; see for example [3]. In this trans-
formation, we remove one variable, but increase two clauses in size by one. Therefore, this trans-
formation does not increase the measure: it is reduced by 5− 2× 2 1

3 = 1
3 .

If the negated literal of x occurs in a clause of size at least four, this corresponds to the following
situation with ∣C∣ ≥ 3.

(x,C1) ∧ (x,C2) ∧ (¬x,C) ∧ Φ

In this case, we branch on x. We again consider a number of subcases corresponding to the Ci

having size two or at least three. The associated branching numbers are again computed in a table
similar to the two tables given above.

reduction of the measure k when we set
∣C1∣ ∣C2∣ x → True x → False �
2 2 5 + 20 + 0 + 2 1

3 = 27 1
3 5 + 15 + 10 + 2 1

3 = 32 1
3 1.02357

2 ≥ 3 5 + 25 + 0 + 4 2
3 = 34 2

3 5 + 15 + 5 + 4 2
3 = 29 2

3 1.02183
≥ 3 ≥ 3 5 + 25 + 0 + 7 = 37 5 + 15 + 0 + 7 = 27 1.02209

13



At this point, each case except one gives a branching number that is smaller than the claimed
1.02220. So, to obtain our result, we must analyse this case in more detail: this is the case where
the variable x has F (x) = (2, 1) and where ∣C1∣ = ∣C2∣ = 2 in the above situation. A refined
analysis of the obtained reduction give the result.

Let us inspect this one case a little more thoroughly; it corresponds to the following situation:

(x, v1, v2) ∧ (x, v3, v4) ∧ (¬x,w1, w2, w3) ∧ Φ

To obtain a branching number that improves upon the one given in the above table, we look
at the effect of the branching on Φ. Consider setting x to True and hence the vi to False. At
least two of the variables vi must also occur somewhere in Φ by Lemma 7(6).

Let us first assume that a literal ¬vi occurs in Φ, and without loss of generality let this be
¬v1. Consider the clause with ¬v1. By Lemma 7(4), this clause cannot contain a literal of v2, and
it must contain at least two literals that are not literals of the variables v3 and v4. Hence, this
clause must contain at least one variable that we have not considered this far. The literal of this
variable will be set to False reducing the measure by at least an additional 5.

If no literals of the form ¬vi occur in Φ, at least two positive literals of the vi must occur
in Φ; these literals will be set to False. We now consider several cases with a clause containing
these literals depending on the number of literals in the clause that are not among the vi. By
Lemma 7(4), each clause in Φ can contain at most two vi and thus must contain at least one literal
of a different variable. If these literals fill a clause except for one spot, as in (v1, v3, y), then y is
set to True reducing the measure by at least an additional 5. And, if these literals fill a clause
except for two spots, as in (v1, v3, y1, y2), then reduction rule 3 replaces y2 by ¬y1 also reducing
the measure by an additional 5. Finally, if these literals fill a clause except for at least three spots,
then each such literal will be removed reducing the measure by an additional 2 1

3 each.
Altogether, we conclude that with at least two vi in Φ, this reduces the measure by at least

an additional 4 2
3 . Therefore, we obtain a branching number of �(27 1

3 + 4 2
3 , 32

1
3 ) = �(32, 32 1

3 ) <
1.02179. □

We notice that systematic subcase analyses as in the proof of the above lemma will be used
throughout the rest of this section. We will more often first enumerate the different effects that
reduce the measure in general by giving a series of bullets. For each bullet, we will also give
the associated reduction in the measure associated with each of the specific properties of possible
subcases. Thereafter, we will perform the subcase analysis by giving a table with a row for each
subcase giving the relevant properties of this subcase, the total reduction of the measure in each
branch as a sum of the effects of each bullet in the before given enumeration, and the associated
branching number.

From now on, we assume, without loss of generality, that all variables occur as positive literals
only. Based on this assumption, we can give a simple lower bound on the reduction of the measure
when we set a number of literals in Φ to False. This is formalised in the following proposition.
Its proof corresponds somewhat to the last few paragraphs of the proof of Lemma 8.

Proposition 4 Let Φ be an XSAT formula containing positive literals only. Consider setting
some variables with a total of l literals in Φ to False. Let Φ contain at least one variable that is
not set to False. Then, setting the literals to False reduces the measure of Φ by at least 2 1

3 × l if
l ≤ 2 and 5 if l ≥ 3 besides the reduction due to removing the corresponding variables.

Proof: If Φ contains a clause in which all literals are set to False, then Φ is not satisfiable
resulting in the removal of the whole formula. If Φ contains a clause in which all literals except
for one are set to False, then the last literals is set to True removing a variable and reducing the
measure by at least 5. If Φ contains a clause in which all literals except for two are set to False,
then the variables corresponding to the last two literals will be replaced by one by reduction rule
3 reducing the measure by at least 5. Finally, if Φ contains a clause in which a literal is set to
False and in which at least three literals are not assigned a value, then this reduces the size of
the clause reducing the measure by at least 2 1

3 each.

14



We conclude that the minimum reduction in the measure is min(2 1
3 × l, 5) corresponding to

the statement of the lemma. □

We now continue with the next lemma related to the branching of our algorithm.

Lemma 9 If an XSAT instance contains two clauses that have two or more variables in common,
then we can either reduce the instance to an equivalent smaller instance, or we can branch on the
instance such that the associated branching number is at most 1.02220.

Proof: Notice, that all literals are positive literals at this point, otherwise, we apply Lemma 8.
Let C be the set of literals contained in both clauses, and let C1 and C2 be the literals in each

clause not contained in the other. We have the following situation:

(C,C1) ∧ (C,C2) ∧ Φ

with ∣C∣ ≥ 2 as stated in the lemma, and ∣C1∣, ∣C2∣ ≥ 2 by Lemma 7(4).
In most cases, we will branch in the following way. In one subproblem, we assume that a literal

in C will be true; consequently, we set all variables in C1 and C2 to False. In the other subproblem,
we assume that none of the literals in C will be true; we set the corresponding variables to False.
We will distinguish different cases with ∣C∣, ∣C1∣ and ∣C2∣ equal to two or at least three.

In the first subproblem, where the literals in C1 and C2 are set to False, this leads to the
following reductions in the measure k:

∙ 10 per Ci with ∣Ci∣ = 2 and 15 per Ci with ∣Ci∣ ≥ 3 for removing the variables set to False.
This is correct since by Lemma 7(2) all variables occur at most once per clause.

∙ 5 if ∣C∣ = 2 because then reduction rule 3 will fire and remove one more variable.

∙ a number of times 2 1
3 depending on the size of C, C1 and C2 for reducing the size of the two

clauses.

∙ 4 2
3 if ∣C1∣ = ∣C2∣ = 2 and 5 otherwise for the extra reduction of the measure of Φ. By

Lemma 7(6), at least two literals in Φ are set to False if ∣C1∣ = ∣C2∣ = 2 and at least three
literals otherwise. The given reductions correspond to the ones proven in Proposition 4.

In the second subproblem, where the literals in C are set to False, this leads to the following
reductions in the measure k:

∙ 10 if ∣C∣ = 2 and 15 if ∣C∣ ≥ 3 for removing the variables set to False.

∙ 5 for each Ci with ∣Ci∣ = 2 because, in these cases, reduction rule 3 will remove additional
variables.

∙ a number of times 2 1
3 depending on the size of C, C1 and C2 for reducing the size of the two

clauses.

∙ a quantity due to the reduction in the measure of Φ. If ∣C∣ = 2, this is 2 1
3 because by

Lemma 7(6) one of the variables in C must occur in Φ; this leads to the given reduction due
to Proposition 4. If ∣C∣ ≥ 3, this is 4 2

3 by the same reasoning.

Next, we compute the branching numbers associated with the branching in the form of a table
as in the proof of Lemma 8.

#Ci : reduction of the measure k when we set
∣C∣ ∣Ci∣ ≥ 3 C1, C2 → False C → False �
2 0 20 + 5 + 4 2

3 + 4 2
3 = 34 1

3 10 + 10 + 4 2
3 + 2 1

3 = 27 1.02298
2 1 25 + 5 + 7 + 5 = 42 10 + 5 + 7 + 2 1

3 = 24 1
3 1.02167

2 2 30 + 5 + 9 1
3 + 5 = 49 1

3 10 + 0 + 9 1
3 + 2 1

3 = 21 2
3 1.02088

≥ 3 0 20 + 0 + 9 1
3 + 4 2

3 = 34 15 + 10 + 9 1
3 + 4 2

3 = 39 1.01921
≥ 3 1 25 + 0 + 11 2

3 + 5 = 41 2
3 15 + 5 + 11 2

3 + 4 2
3 = 36 1

3 1.01797
≥ 3 2 30 + 0 + 14 + 5 = 49 15 + 0 + 14 + 4 2

3 = 33 2
3 1.01712

15



Hence, we have proven the lemma for all cases except when ∣C∣ = ∣C1∣ = ∣C2∣ = 2. In this case,
we have the following situation:

(x, y, v1, v2) ∧ (x, y, v3, v4) ∧ Φ

If, in the branch in which we set C1, C2 → False, the additional reduction of the measure of Φ is at
least 7, then we obtain the required branching number since �(20+5+4 2

3 +7, 27) = �(36 2
3 , 27) <

1.02220.
By Lemma 7(6), at least two occurrences of the literals of v1, v2, v3, and v4 must occur in Φ. If

these are exactly two occurrences, then both x and y must occur at least once in Φ also as reduction
rule 12 would otherwise be applicable. In this case, the additional reduction in the measure of Φ in
the branch where we set C → False can be lower bounded by 4 2

3 in stead of 2 1
3 by Proposition 4.

In this case, we obtain a branching number of �(34 1
3 , 10+10+4 2

3 +4 2
3 ) = �(34 1

3 , 29
1
3 ) < 1.02207.

If there are at least three occurrences of the literals of v1, v2, v3, and v4 in Φ, yet setting them
to False reduces the measure by less than 7, then all of these vi must occur in clauses of size
three with exactly one other variable z; as for example in: (v1, v3, z) ∧ (v2, v4, z). This is because
all literals occur only as positive literals, and all other configurations that do not directly give a
No-instance lead to an additional reduction in the measure of Φ of at least 7: at least three clauses
of size at least four will be reduced in size (3× 2 1

3 = 7), or at least two variable will be removed
(2× 5 > 7), or exactly one variable will be removed and at least one clause of size at least four is
reduced in size (5 + 2 1

3 > 7).
In fact, the only remaining situation is the following:

(x, y, v1, v2) ∧ (x, y, v3, v4) ∧ (v1, v3, z) ∧ (v2, v4, z) ∧ Φ

This is so since if z exist in a clause of size three with any of the vi, then z will not occur in a
clause of size three with the same vi again due to Lemma 7(4). Hence, in order to put at least
three of the vi in size three clauses with no other variables than z, exactly one occurrence of each
of the four vis is necessary.

In this special case, we branch z in stead. If we set z → True, this results in v1, v2, v3 and v4
being set to False, and in the replacement of y by ¬z by reduction rule 3. Thus, this removes a
total of 6 variables and 2 clauses of size four reducing the measure by at least 6×5+2×2 1

3 = 34 2
3 .

If we set z → False, this directly results in the following replacements: v3 → ¬v1 and v4 → ¬v2.
In the two clauses with x and y this leads to the following situation (x, y, v1, v2)∧ (x, y,¬v1,¬v2).
This situation is reduced by reduction rule 7 by setting x and y to False. In this branch, a
total of 5 variables and 2 clauses of size four are removed reducing the measure by at least
5× 5+ 2× 2 1

3 = 29 2
3 . The associated branching number equals �(34 2

3 , 29
2
3 ) < 1.02183 completing

the proof of this lemma. □

The next step is to remove variables of relatively high frequency: variables x with f(x) ≥ 4.

Lemma 10 If an XSAT instance contains a variable x with f(x) ≥ 4, then we can either reduce
the instance to an equivalent smaller instance, or we can branch on the instance such that the
associated branching number is at most 1.02220.

Proof: We can assume that Lemmas 8 and 9 do not apply, otherwise we are done. Therefore,
each variable only has positive literals and no two variables occur together in a clause more than
once. This means that we have the following situation:

(x,C1) ∧ (x,C2) ∧ (x,C3) ∧ (x,C4) ∧ Φ

We branch on x and again distinguish several cases based in the sizes of the Ci. If we set
x → True, we have the following reductions in the measure.

∙ 5 for removing x.

∙ 5×
∑4

i=1 ∣Ci∣ for removing the variables in the Ci; these are set to False.

16



∙ a number of times 2 1
3 for reducing the clauses.

∙ 5 extra since by Lemma 7(6) at least 4 variables must also occur in Φ and this leads to an
additional reduction of at least 5 by Proposition 4.

If we set y → False, we have the following reductions in the measure.

∙ 5 for removing x.

∙ 5 for each Ci with ∣Ci∣ = 2 because, in these cases, reduction rule 3 will remove a additional
variables.

∙ a number of times 2 1
3 for reducing the clauses.

Identical to the proofs of the previous lemmas, we calculate the branching numbers for each
of the considered cases in a table. In this table, we compute the reduction in the measure in each
branch as a sum of the above bullets.

#Ci : reduction of the measure k when we set
∣Ci∣ ≥ 3 C1, C2 → False C → False �

0 5 + 40 + 0 + 5 = 50 5 + 20 + 0 = 25 1.01944
1 5 + 45 + 2 1

3 + 5 = 57 1
3 5 + 15 + 2 1

3 = 22 1
3 1.01891

2 5 + 50 + 4 2
3 + 5 = 64 2

3 5 + 10 + 4 2
3 = 19 2

3 1.01859
3 5 + 55 + 7 + 5 = 72 5 + 5 + 7 = 17 1.01849
3 5 + 60 + 9 1

3 + 5 = 79 1
3 5 + 0 + 9 1

3 = 14 1
3 1.01859

This completes the proof. □

What remains is to remove variables x with f(x) = 3. Hereafter, only variables x with
F (x) = (1, 0) and F (x) = (2, 0) remain. At this point, the problem is solvable in polynomial time
as noted in many earlier papers on XSAT, for example [3].

Before giving the last lemmas dealing with the branching of the algorithm, we first introduce
a new proposition dealing with the additional reductions of the measure due to setting a number
of literals in Φ to False under some extra conditions: under these conditions, this will improve
upon Proposition 4. Hereafter, we will introduce a new reduction rule that will make sure that
these extra conditions apply when needed.

Proposition 5 Let Φ be an XSAT formula containing positive literals only. Consider setting
some variables with a total of l literals in Φ to False. Let Φ contain at least three variables that
are not set to False. Then, setting the literals to False reduces the measure of Φ by at least the
following amounts besides the reduction due to removing the corresponding variables.

1. min(2 2
3 × l, 15) if no variables exist in Φ that in at least two clauses only occur with literals

that have been set to False.

2. min(5⌊l/4⌋ + 2 1
3 (l mod 4), 15) if no variables exist in Φ that in at least three clauses only

occur with literals that have been set to False.

Proof: We start with the first situation where no variables exist in Φ occurring only with literals
that have been set to False in at least two clauses. If any of the l literals that are set to False
occur in a clause of size at least four in Φ, then this removes one literal reducing the measure
by 2 1

3 . This shows that the minimum reduction of the measure is at most 2 1
3 × l. We will show

that this minimum reduction can also be lower bounded by min(2 1
3 × l, 15). Doing so, we consider

clauses in Φ with the literals that have been set to False and show that every other configuration
reduces the measure by at least as much, or removes at least three variables.

We can assume that there are no clauses containing only literals that are set to False as
this results in a No-instance and will remove the whole formula Φ. First, consider clauses in Φ
containing only one literal z that is not set to False. In these cases, the variable z will be set to

17



True. We note that in the current situation there can be at most one such clause with z. If the
clause has size three, two occurrences of the vi lead to the removal of one extra variable which has
more measure than 2× 2 2

3 . And, with larger clauses, we reduce the measure by an additional 2 1
3

per extra literal: this remains more than given by 2 1
3 × l.

Second, consider clauses in Φ containing two or more literals that have not been set to False
in advance. If more than one of these literals is set to True because they also occur in clauses
considered in the previous paragraph, then we have a No-instance and Φ is removed completely.
Hence, at most one literal can be set to True. If one literal has been set to True in a clause of size
three, the remaining one will be set to False reducing the measure by an additional 5 while using
only one occurrence of the l literals: this is more than given by 2 1

3 × l and will remain more if we
consider larger clauses also. And, if one literal has been set to True and all other literals have been
set to False by the new assignments of the previous step, then, because no two literals may occur
in a clause together more than once, at least three different variables that not among the variables
initially set to False are given a value: this gives the term 15 in the minimum min(2 1

3 × l, 15).
What remains is to considering clauses in Φ containing two or more literals that have not been

set to False in advance and in which no literals are set to True due to the effects in the previous
paragraph. Here, we will distinguish between literals that are set to False in advance, literals that
are set to False due to the effects in the previous paragraph, and literals of variables that have no
given value yet. Again, if all literals have been set to False, then we again have a No-instance.
If all literals except for one have been set to False due to the effects of the previous paragraph,
then the last literal will be set to True; if the clause has size three, this removes one variable
while using one occurrences of the l literals, and if the clause is larger, each extra literal increase
the reduction of the measure according to the formula 2 1

3 × l. If all literals except for two have
been set to False due to the effects of the previous paragraph, then reduction rule 3 will fire also
removing one additional variable leading to the same effect. Finally, if some literals have been set
to False due to the effects of the previous paragraph, but at least three others remain, then each
of the l literals only reduces the size of the clause giving exactly the reductions in the measure of
the formula 2 1

3 × l.
This proves the bound on the additional reduction of the measure of Φ under the first condition

in the proposition.
For the reduction under the second condition, we can repeat the same proof. The only difference

is that Φ can contain one structure that reduces the measure by less than given under the first
condition. This is the case if a variable in Φ exists only with some of the l literals that are set to
False in two clauses: the situation excluded in the first point. If both clauses are of size three,
four of the l literals set to False are used while removing only one additional variable. This
reduces the measure by 5 per four literals set to False. Using larger clauses, this again increases
the reduction of the measure by 2 1

3 each. We conclude that the measure is reduced by at least
min(5⌊l/4⌋+ 2 1

3 (l mod 4), 15). □

If reduction rules 1-12 and Lemmas 8, 9 and 10 do not apply, we try the following new reduction
rule. This reduction rule considers a variable x of frequency three as in the following situation:

(x, v1, v2, . . .) ∧ (x, v3, v4, . . .) ∧ (x, v5, v6, . . .) ∧ Φ

13. If, in the above situation, there exists a variable z in Φ that occurs in one clause
with only literals of the variables vi, and all vi from one of the clauses with x
occur in some clause with z, then we apply the replacement: z → x.

(-5)

Lemma 11 Reduction rule 13 is correct and reduces the measure by at least five.

Proof: Setting x → True implies z → True because z occurs in a clause in which it only occurs
with variables that are among the vi. Also, setting z → True implies x → True because the vi
that are set to False set all literals in a clause with x to False except for x itself. We conclude
that x = z in any solution.

Since this removes a variable, it reduces the measure by at least five. □

18



Now, we continue by giving the remaining lemmas related to the branching of our algorithm.

Lemma 12 If an XSAT instance contains a variable x with f(x) ≥ 3 occurring only in clauses
of size three such that the clauses containing x do not have the following form: (x, v1, w1) ∧
(x,w2, u1) ∧ (x,w2, u2) with f(v1) = 3, f(wi) = 2, and f(ui) = 1, for all i. Then we can either
reduce the instance to an equivalent smaller instance, or we can branch on the instance such that
the associated branching number is at most 1.02220.

Proof: We can assume that Lemmas 8, 9 and 10 do not apply, otherwise we are done.
We consider the following situation:

(x, v1, v2) ∧ (x, v3, v4) ∧ (x, v5, v6) ∧ Φ

Branching on x removes four variables if we set x → False by reduction rule 3. If we set x → True
this results in the removal of seven variables and an additional reduction in the measure of the
instance because of the effect that setting the vi → False has on Φ. Let l be the number of
occurrences of the literals of vi in Φ, and let k(l) be the minimum additional reduction in the
measure of Φ as a result of setting these literals to False. In this way, we obtain a branching
number of �(20, 35 + k(l)) < �(20, 49) < 1.02171 if k(l) ≥ 14.

Notice that Φ cannot contain a variable z that occurs in two clauses with only variables that
are among the vi as this must be at least four different variables vi and then reduction rule 13
applies. Hence, we can apply Proposition 5: k(l) ≥ min(2 2

3 × l, 15).
We will consider the branching numbers for three different values of l. By Lemma 7(6) at least

3 of the vi must also occur in Φ. Actually, we can make this argument a little stronger by noticing
that x may only occur in clauses with at most two unique variables as reduction rule 12 would
otherwise apply. I.e., the vi must occur at least 4 times in Φ: l ≥ 4.

If l ≥ 6, then k(l) ≥ 14 giving a branching number of �(35 + 14, 20) = �(49, 20) < 1.02171.
If l = 4, then exactly four of the vi occur exactly once in Φ and the other two do not occur

in Φ. This means that at least one of the clauses with x must contain two literals also occurring
in Φ; without loss of generality let these variables be v1 and v2. Since F (v1) = F (v2) = (2, 0),
these two variables are combined to one variable y with F (y) = (1, 1) by reduction rule 3 in the
branch where x → False. This fires reduction rule 11 reducing the measure of the instance in this
branch by an extra 2 2

3 by Lemma 5. Hence, we obtain a total reduction of the measure of at least
20 + 2 2

3 = 22 2
3 when x → False. Since k(l) ≥ 9 1

3 , the associated branching number is at most
�(35 + 9 1

3 , 22
2
3 ) < 1.02173.

Finally, let l = 5. If any of the three clauses with x contains two vi with F (vi) = (2, 0) then
we can repeat the argument of l = 4 as reduction rule 11 reduces the measure by an extra 2 2

3 in
the branching where we set x → False.

The case that remains is when l = 5 and no clause containing two vi with F (vi) = (2, 0) exists.
In this case, two vi must be unique variables and one vi must have F (vi) = (3, 0): this is the one
special case excluded in the statement of the lemma. □

Lemma 13 If an XSAT instance contains a variable x with f(x) ≥ 3 occurring in two clauses
of size three and one clause of size four, then we can either reduce the instance to an equivalent
smaller instance, or we can branch on the instance such that the associated branching number is
at most 1.02220.

Proof: We can assume that Lemmas 8, 9, 10 and 12 do not apply, otherwise we are done.
We have the following situation:

(x, v1, v2) ∧ (x, v3, v4) ∧ (x, v5, v6, v7) ∧ Φ

If we set x → True, the measure is reduced by 40 for removing eight variables, 2 1
3 for removing

one clause of size four and an additional kΦ for the additional effect on Φ. If we set x → False,

19



the measure is reduced by 5 for removing x, 10 for the two replacements due to reduction rule 3,
and 2 1

3 for removing one clause of size four. To obtain a bound on kΦ, we first observe that at
least five occurrences of the vi exist in Φ because otherwise reduction rule 12 fires. If there exists
no variable z that occurs in clauses in Φ in at least two clauses only with literals of the vi, then
we apply Proposition 5 to conclude that kΦ ≥ 11 2

3 . In this case, we obtain a branching number of
�(54, 17 1

3 ) < 1.02181.
The only case that remains is if there exists a variable z that occurs in at least two clauses in

Φ only with literals of the vi. If these are at least three clauses or one of them has size at least
four, then literals of at least five vi are in these clauses as no literal may occur in a clause with z
twice: in this case reduction rule 13 applies. Hence, exactly four literals of the vi occur in clauses
with z. I.e., the situation is isomorphic to the following:

(x, v1, v2) ∧ (x, v3, v4) ∧ (x, v5, v6, v7) ∧ (v1, v5, z) ∧ (v3, v6, z) ∧ Φ

In this specific case, we branch on z. Setting z → True directly results in the removal of z, v1, v3,
v5 and v6 and indirectly removes three more variables as reduction rule 3 sets v2 → ¬x, v4 → ¬x
and v7 → ¬x, i.e., eight variables are removed reducing the measure by 40. Setting z → False
results in the removal of z and the setting of v5 → ¬v1 and v6 → ¬v3. This results in the following
clauses with x: (x, v1, v2) ∧ (x, v3, v4) ∧ (x,¬v1,¬v3, v7). To this instance, reduction rule 6 fires
setting x → False resulting in v2 → ¬v1 and v4 → ¬v3. In total, six variables are removed and a
clauses of size four is reduced: the measure is reduced by 32 1

3 . This gives a branching number of
�(32 1

3 , 40) < 1.01943. □

Lemma 14 If an XSAT instance contains a variable x with f(x) ≥ 3, then we can either reduce
the instance to an equivalent smaller instance, or we can branch on the instance such that the
associated branching number is at most 1.02220.

Proof: We can assume that Lemmas 8, 9, 10, 12 and 13 do not apply, otherwise we are done.
This means that we only have to consider the following remaining cases:

Two clauses of size three and one clause of size at least five. We have the following situation:

(x, v1, v2) ∧ (x, v3, v4) ∧ (x, v5, v6, v7, v8, . . .) ∧ Φ

Setting x → False removes three variable through reduction rule 3 and it reduces the larger
clauses in size: this gives a reduction in the measure of 15+2 1

3 = 17 1
3 . Setting x → True removes

at least nine variables, removes a clause of size at least five, and sets at least six literals in Φ to
False as reduction rule 12 would otherwise fire. Reduction rule 12 ensures that at least six literals
in Φ are set to False. Hence, this reduces the measure by at least 45+4 2

3 +9 2
3 = 59 1

3 if the effect
of the six False literals in Φ is at least 9 2

3 : this is the case if the second case of Proposition 5
applies. The resulting branching number equals �(59 1

3 , 17
1
3 ) < 1.02062.

To show that the second case of Proposition 5 applies, we do the following. We can restrict
ourselves to the case where the large clause with x is of size at most six, otherwise at least two
extra variables are removed when x → True which is more than the 9 2

3 we are proving. Now, if
Φ contains a variable that contains in three clauses with literals of the vi, then, these must be
with at most 5 vi if the third clause has size five, and at most 6 vi is the third clause has size six,
as otherwise reduction rule 13 applies. However, no such variable with five vi exist, and we have
already branched on variables with six vi using Lemma 12.

One clause of size three and two larger clauses. We have the following situation:

(x, v1, v2) ∧ (x, v3, v4, v5, . . .) ∧ (x, v6, v7, v8, . . .) ∧ Φ

Setting x → False removes two variable as reduction rule 3 sets v2 → ¬v1, and reduces the
two larger clauses in size: this gives a reduction in the measure of 10 + 2 × 2 1

3 = 14 2
3 . Setting

x → True removes at least nine variables, removes two clauses of size at least four, and sets at
least six literals in Φ to False as reduction rule 12 would otherwise fire. This reduces the measure

20



by at least 45 + 4 2
3 + 9 2

3 = 59 1
3 if the effect of the six False literals in Φ is at least 9 2

3 : this
is the case if the second case of Proposition 5 applies. The resulting branching number equals
�(59 1

3 , 14
2
3 ) < 1.02207.

Now, the second case of Proposition 5 applies for the same reasons at with two clauses of
size three and one clause of size at least five: either two additional variables are removed when
x → True, or no variable in three clauses with the vi exists because either reduction rule 13 is
applicable, or we have already branched on such variables.

Three clauses of size at least four. If all clauses have size at least four, then we have the
following situation:

(x, v1, v2, v3, . . .) ∧ (x, v4, v5, v6, . . .) ∧ (x, v7, v8, v9, . . .) ∧ Φ

Setting x → False removes one variable and reduces all three clauses in size: this gives a reduction
in the measure of 5 + 3 × 2 1

3 = 12. Setting x → True removes at least ten variables, removes at
least three clauses of size at least four, and sets at least seven literals in Φ to False as reduction
rule 12 would otherwise fire. This reduces the measure by at least 50 + 7 + 10 = 67 since again,
by the same reasoning as the above two cases, either two additional variables are removed, or the
second case of Proposition 5 applies to the at least seven literals that are set to False in Φ The
resulting branching number equals �(67, 12) < 1.02212.

The special case of 3 clauses of size 3. At this point, the only variables x with f(x) = 3 that
remain correspond to the following situation:

(x, v1, v2) ∧ (x, v3, u1) ∧ (x, v4, u2) ∧ Φ

with f(v1) = 3, f(v2) = f(v3) = f(v4) = 2 and f(u1) = f(u2) = 1.
Since these are the only remaining variables of frequency three, v1 must be a similar variable.

Hence, a more specific view of the current case is:

(x, v1, v2) ∧ (x, v3, u1) ∧ (x, v4, u2) ∧ (v1, v5, u3) ∧ (v1, v6, u4) ∧ Φ

with f(vi) = 2 and f(ui) = 1.
Branching on x results in the required branching number of �(45 + 4 2

3 , 20) = �(49 2
3 , 20) <

1.02154. Namely, setting x → True removes seven variables in the clauses with x, and two
variables in the other two clauses due to reduction rule 3. Moreover, the measure of Φ is reduced
by at least 4 2

3 by Proposition 4 since v2 and v3 also occur in Φ. Setting x → False removes x and
three other variables due to reduction rule 3. □

We now take all our lemmas together to obtain our final result.

Theorem 5 There is a O(1.02220n) time and linear space algorithm for Partition Into Tri-

angles on graphs of maximum degree four.

Proof: We first use Theorem 2 and Lemma 6 to obtain an Exact Satisfiability instance of
measure at most n that is equivalent to the Partition Into Triangles instance.

To this instance, we exhaustively apply reduction rules 1-12 and Lemmas 8-14. As a result,
we generate a branching tree with at most 1.02220n leaves, each containing an instance of Exact

Satisfiability in which all variables x satisfy F (x) = (1, 0) or F (x) = (2, 0). These instances
can be solved in polynomial time and linear space since the problem is equivalent to the question
whether the following graph H = (V ′, E′) has a perfect matching.

Let X be the set of variables, and C be the set of clauses of a remaining XSAT instance. We
construct H be letting V ′ = C and introducing an edge for each variable x ∈ X of frequency two
between the corresponding clauses. We also add self-loops to all clauses containing a variable x
of frequency one. It is not hard to see that every solution of the XSAT instance corresponds to a
perfect matching in H and vice versa. □

We notice that the polynomial part of the running time of this algorithm consists of only
two components. One, the time required to test which reduction rules and which lemmas should

21



be applied to the current instance. Two, the the required to test whether there exists a perfect
matching in the graphs we build in the leaves of the search tree. Both can be implemented quite
efficiently, and thus no large polynomial factors are hidden in the running time of the algorithm.

7 Conclusion

We have shown that the Partition Into Triangles problem is linear time solvable on graphs
of maximum degree three, that it is NP-complete on graphs of maximum degree at least four, and
that no subexponential time algorithm for this last problem exists unless the Exponential Time
Hypothesis fails. For this seemingly hard problem on graphs of maximum degree four, we have
given an efficient O(1.0222n) time algorithm using only linear space. This raises the question: is
this really a hard problem?

To obtain these results, we use an interesting relation between Partition Into Triangles

on graphs of maximum degree four and Exact 3-Satisfiability. This relationship emerges by
reducing Partition Into Triangles instances of maximum degree four until each vertex can
have only two different local neighbourhoods. Connected series of vertices with one of these local
neighbourhoods then form the variables of an Exact 3-Satisfiability instance and pairs vertices
with the other local neighbourhood form the clauses of this Exact 3-Satisfiability instance.

References

[1] A. Björklund. Exact covers via determinants. In Proceedings of the 27th International Sym-
posium on Theoretical Aspects of Computer Sciences, STACS 2010, 2010. To appear.

[2] A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via inclusion-exclusion. SIAM
Journal of Computing, 39(2):546–563, 2009.

[3] J. M. Byskov, B. A. Madsen, and B. Skjernaa. New algorithms for exact satisfiability. Theo-
retical Computer Science, 332(1-3):515–541, 2005.

[4] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, New York, 1979.

[5] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential com-
plexity? In Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 1998, pages 653–663. IEEE Computer Society, 1998.

[6] V. Kann. Maximum bounded 3-dimensional matching is max snp-complete. Information
Processing Letters, 37(1):27–35, 1991.

[7] M. Koivisto. Partitioning into sets of bounded cardinality. In Proceedings of the 4th Inter-
national Workshop on Parameterized and Exact Computation, IWPEC 2009, volume 5917 of
Lecture Notes in Computer Science, pages 258–263. Springer Berlin/Heidelberg, 2009.

[8] O. Kuhllmann and H. Luckhardt. Deciding propositional tautologies: Algorithms and their
complexity. Manuscript, 1997. http://cs-svr1.swan.ac.uk/∼csoliver/Artikel/tg.ps.

[9] R. J. Lipton. Gödel’s lost letter and P=NP, fast exponential algorithms. Weblog, February
2009. http://rjlipton.wordpress.com/2009/02/13/polynomial-vs-exponential-time/.

[10] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th Symposium
on Theory of Computation, STOC 1978, pages 216–226, 1978.

[11] G. J. Woeginger. Exact algorithms for NP-hard problems: A survey. In Combinatorial
Optimization: ”Eureka, you shrink”, pages 185–207, Berlin, 2003. Springer Lecture Notes in
Computer Science, vol. 2570.

22


