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Abstract. The isotonic regression is a useful technique in many statistical estimation problems with
order constraints, as well as in the related problem of learning monotone models from data. We show
that the computation of the isotonic regression decomposes over the connected components of the
violation graph. This allows a straightforward divide-and-conquer strategy for its solution.

1 Introduction

The isotonic regression is a useful technique in many statistical estimation problems with
order constraints [6]. It is also applied in machine learning and data mining for learning
monotone models from data [1, 5]. We show that the computation of the isotonic regression
decomposes over the connected components of the violation graph. Hence, a substantial
simplification of its computation is possible.

2 The isotonic regression

In this section we define the isotonic regression, for a detailed description we refer to [6].
Let X = {x1, x2, . . . , xn} be a set of constants and let � be a partial order on X. Any

real-valued function f on X is isotonic with respect to � if, for any x, x′ ∈ X, x � x′ implies
f(x) ≤ f(x′). We assume that each element xi of X is associated with a real number g(xi),
and a positive weight w(xi). An isotonic function g∗ on X now is an isotonic regression of
g with respect to the weight function w and the partial order � if and only if it minimizes
the sum

n∑
i=1

w(xi) [f(xi)− g(xi)]
2 (1)

in the class of isotonic functions f on X. Brunk [3], proved that g∗ exists and is unique.
Hence it makes sense to talk about the isotonic regression of g on (X,�) with respect to
w.

Next, we introduce some useful concepts to describe the computation of the isotonic
regression. The downset ↓x of x is the set {x′ ∈ X : x′ � x}. Likewise, the upset ↑x of x
is the set {x′ ∈ X : x � x′}. Also, for S ⊆ X, we define ↓S=

⋃
x∈S ↓x. A subset L of X is

a lower set of X if it contains the downset of all its elements. Likewise, a subset U of X
is an upper set of X if it contains the upset of all its elements. The weighted average of g,
with weights w, for a nonempty subset A of X is defined as

Av(A) =

∑
x∈A w(x)g(x)∑

x∈A w(x)
(2)



The minimum lower sets algorithm [2] given in Algorithm 1 correctly computes the
isotonic regression for arbitrary partial orders. This algorithm is not really practical, due
to the huge size of L even for relatively small problems, but we will use it to prove the
correctness of our decomposition. The best exact algorithm known computes the isotonic
regression by solving at most n maximum flow problems on a transportation network with
n + 2 nodes, and hence has time complexity O(n4), see [7].

Algorithm 1 MinimumLowerSets(X, �, g(x), w(x))
1: L ← Collection of all lower sets of X with respect to �
2: repeat
3: B ←

S
{A ∈ L : Av(A) = minL∈L Av(L)}

4: for all x ∈ B do
5: g∗(x)← Av(B)
6: end for
7: for all L ∈ L do
8: L← L \B
9: end for

10: X ← X \B
11: until X = ∅
12: return g∗

The algorithm can be described informally as follows. We start with (X,�) and find
a minimum lower set B, that is, a lower set with minimum weighted average. For each
element x of B we put g∗(x) = Av(B). Then the points in B are removed from X, and the
order is restricted to the induced suborder on X \ B. Then we find a minimum lower set
for this reduced problem, and so on, until X is exhausted. Hence, the isotonic regression
partitions X into a number of blocks, where each block is a lower set of an upper set of X.
On each of these blocks, the isotonic regression is constant and equal to the block average.

In Algorithm 1 we take the union of all minimum lower sets in line (3), in order to get
the maximal size minimum lower set, but in fact it doesn’t matter which minimum lower
set we pick. In particular, we can pick a minimum lower set of smallest size. This variant
of the minimum lower sets algorithm is given in Algorithm 2: it computes what Dykstra
et al. [4] call the maximal partition of X with respect to the isotonic regression. In line (6)
of the algorithm we choose an arbitrary minimum lower set of smallest size, in case there
is more than one. It is this version of the minimum lower sets algorithm that we actually
use in our proof.

Finally, it is convenient to work with the following graph representation. Let the order
graph OG = (V, E) be defined as the directed graph with nodes V = {1, 2, . . . , n}, where
node i corresponds to xi, and (i, j) ∈ E if and only if xi � xj. The violation graph
V G = (V, E ′) has the same set of nodes as OG, with (i, j) ∈ E ′ if and only if

xi � xj and g(xi) > g(xj). (3)



Algorithm 2 MaximalPartition(X, �, g(x), w(x))
1: L ← Collection of all lower sets of X with respect to �
2: MaxPart ← ∅
3: repeat
4: B1 ← {A ∈ L : Av(A) = minL∈L Av(L)}
5: B2 ← {A ∈ B1 : |A| = minL∈B1 |L|}
6: B ← rnd(B2)
7: MaxPart ← MaxPart ∪ {B}
8: for all x ∈ B do
9: g∗(x)← Av(B)

10: end for
11: for all L ∈ L do
12: L← L \B
13: end for
14: X ← X \B
15: until X = ∅
16: return g∗, MaxPart

Obviously, E ′ ⊆ E, so all lower sets of the OG are also lower sets of the VG, but not
the other way around. We denote the downset of a point x in the violation graph as ↓vg

x .
Note that ↓vg

x ⊆↓og
x .

3 Decomposition

Lemma 1. Let M denote an arbitrary set of incomparable elements of the violation graph.
Furthermore, let A =↓vg

M , and let S = {x ∈ M : g(x) ≤ Av(A)}. Then

Av(↓og

S ) ≤ Av(A)

Proof: Note that S can not be empty, otherwise all elements of A would have above
average g-values. We have

Av(↓vg

S ) ≤ Av(A),

because for all x ∈ (↓vg
M \ ↓vg

S ): g(x) > Av(A). Furthermore,

Av(↓og

S ) ≤ Av(A),

because for all x ∈ (↓og
S \ ↓vg

S ): g(x) ≤ Av(A); otherwise x would be in conflict with some
element of S, and hence contained in ↓vg

S . �

Next, we state our main result.

Theorem 1. Let C1, C2, . . . , Ck be the connected components of the violation graph on X1.
Then:

g∗X = (g|C1)
∗ ∪ (g|C2)

∗ ∪ . . . ∪ (g|Ck
)∗,

that is, the isotonic regression decomposes over the connected components of the violation
graph.

1 In a slight abuse of notation, C refers to a connected component, as well as the corresponding nodes of the
violation graph and the corresponding elements of X.



Proof: The proof uses Algorithm 2. In line (6) a minimum lower set of smallest possible
size is chosen. We show that such a lower set cannot contain elements from different
connected components of the violation graph.

Let L be a minimum lower set of smallest possible size. Suppose the violation graph on
L decomposes into connected components C1, . . . , Cm. From the properties of the weighted
average, it follows that either:

1. There is a component Ci, 1 ≤ i ≤ m, with lower average than L.
2. All components have the same average as L.

Starting with the first case, let M denote the maximal elements of the violation graph
on Ci. Since L is a lower set, we have ↓og

M⊆ L, and Ci =↓vg
M . Then, according to lemma 1:

Av(↓og

S ) ≤ Av(Ci),

where S = {x ∈ M : g(x) ≤ Av(Ci)}. Hence, there is a lower set L′ =↓og
S with lower

average than L. This contradicts the assumption that L is a minimum lower set.
In the second case we apply lemma 1 to all connected components Cj, 1 ≤ j ≤ m,

and their maximal elements Mj. At least one of the resulting lower sets must have smaller
size than L. This contradicts the assumption that L is a minimum lower set with smallest
possible size.

Hence, the violation graph on L must be connected, and therefore cannot contain ele-
ments of different connected components of the violation graph on X.�

Since the connected components of a graph can be computed in linear time, this de-
composition may give a substantial reduction of the computation time for the isotonic
regression.

We call a point x ∈ X monotone if it satisfies the following two conditions:

1. for all x′ ∈↓og
x : g(x′) ≤ g(x), and

2. for all x′ ∈↑og
x : g(x′) ≥ g(x),

that is, x does not violate monotonicity with any other point.

Corrolary 1 For every monotone point x, we have g∗(x) = g(x).

Proof: A monotone point is obviously a connected component in the violation graph.

4 Examples

Consider the order graph on X = {x1, x2, x3, x4} given in the left part of figure 1.
Table 1 shows the computation of the isotonic regression with the minimum lower sets

algorithm as given in Algorithm 1. Table 2 shows its computation with Algorithm 2. The
minimum lower set chosen in each iteration is shown in bold. From table 2, we learn that
the maximal partition with respect to the isotonic regression is {{x1, x3}, {x2}, {x4}}.
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Fig. 1. Order graph on X = {x1, x2, x3, x4} with values of g shown inside the nodes (left). The violation graph is
given at the right. For ease of computation, weights are all set to one.

Table 1. Computation of the isotonic regression with Algorithm 1.

Iteration 1 Iteration 2

Lower Set Av Lower Set Av

x1 3 − −
x1x2 2.5 − −
x1x3 2 − −
x1x2x3 2 − −
x1x2x3x4 2.5 x4 4

g∗(x1) = g∗(x2) = g∗(x3) = 2 g∗(x4) = 4

Table 2. Computation of the isotonic regression with Algorithm 2.

Iteration 1 Iteration 2 Iteration 3

Lower Set Av Lower Set Av Lower Set Av

x1 3 − − − −
x1x2 2.5 x2 2 − −
x1x3 2 − − − −
x1x2x3 2 x2 2 − −
x1x2x3x4 2.5 x2x4 3 x4 4

g∗(x1) = g∗(x3) = 2 g∗(x2) = 2 g∗(x4) = 4



From the violation graph in the right part of figure 1, we learn that the isotonic re-
gression can be computed for the connected components C1 = {x1, x2, x3} and C2 = {x4}
separately. Since x4 is a monotone point (and hence a connected component on its own),
we can conclude immediately that g∗(x4) = g(x4) = 4.

As a second example, consider the order graph on X = {x1, . . . , x7} depicted in figure 2
(to avoid clutter, the transitive reduction is shown).
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Fig. 2. Transitive reduction of the order graph on X = {x1, . . . , x7} with values of g shown inside the nodes.

The corresponding violation graph is shown in figure 3. The partitioning of X corre-
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Fig. 3. Violation graph corresponding to the order graph shown in figure 2.

sponding to the connected components of the violation graph is {{x1, x2}, {x3}, {x4, x5, x6}, {x7}}.
Hence, the computation of the isotonic regression can be decomposed accordingly. Figure 4
shows the corresponding induced subgraphs of the order graph given in figure 2.
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Fig. 4. Induced subgraphs of the order graph corresponding to the decomposition into connected components of
the violation graph. The isotonic regression can be computed on each component separately.



5 Conclusion

We have shown how the isotonic regression decomposes over the connected components of
the graph that represents the violations of the monotonicity constraint. This allows for a
straightforward divide-and-conquer strategy to compute the isotonic regression. Since the
best exact algorithm known has time complexity O(n4), whereas the connected components
of the violation graph can be computed in linear time, this may result in a substantial
reduction of computation time.
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