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Abstract

Subgroup discovery can generate descriptive patterns given a nominal or binary target
variable. To do so, subgroup discovery uses quality measures that define the quality of a
subgroup given the target values of the subgroup. However, not all problems are nominal in
nature. More specifically, data can be either ranked and/or the target can be continuous.
In the past, non-nominal targets needed to be discretized. Discretization can lead to less
powerful or even faulty patterns, due to loss of information. Quality measures capable of
dealing with continuous and even ordinal targets directly can help to overcome these issues.
In this research, such quality measures are investigated and tested on the problem of gene set
enrichment. Here, the goal is to find common functional knowledge on ranked genes. In this
case, the genes are ranked according to their relevance to neuroblastoma, the most common
extracranial solid tumour found in children. The results of the experiments are promising
and show that subgroup discovery can be an addition to conservative research methods in for
instance biology.
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1 Introduction

In the recent past, it has become immensely popular to store all kinds of data. Moreover, it has
become much easier to store large amounts of data, due to the developments in the hardware
industry: hard disks and internal memory have become relatively cheap, and computers have
become very fast.

In the field of biology and biomedicine, the ability to store vast amounts of data has been
warmly welcomed. Ever since the human genome is known, genetic data is used to understand
the function of (parts of) the DNA, up to understanding which genes and cell processes are of
particular interest considering the causation of diseases. Storing such amounts of data also gives
rise to a new problem. Data potentially contains valuable information, but searching through
large amounts of data to retrieve this information is not done easily by hand. The situation in
biology is no different. Although the search through data is still partly done by hand, by looking
at irregularities and patterns in the data, it can be argued that the human eye can not fully find
all irregularities and patterns. Therefore, along with the growing popularity of data storage, data
mining has become equally popular, either to fully take over the data mining from human experts,
or to aid experts in their search for valuable information.

In this thesis research, the technique of data mining is used to search for interesting and possibly
unknown information considering the cause of neuroblastoma, one of the most common tumours
found in children. It is thought that data mining can provide us with valuable information on
the causation of neuroblastoma, or at least can give a better understanding of the development of
neuroblastoma. It is believed that a more thorough understanding can help to improve existing
therapies or even help the search for new ways to treat neuroblastoma. To achieve a deeper
understanding, the idea is to enrich genetic neuroblastoma data with other data sources on genetics
in general. Therefore, the technique of aggregation through multi-relational data mining is used,
in order to combine the different sources and to find patterns from the combined sources.

1.1 Data Storage and Data Mining

Stored data can take many shapes. The simplest representation is data stored in a text file, where
each line represents a record. A more elaborate representation is when data is stored in a database,
such as commonly used relational database management systems. No matter what shape the data
is in, data is usually stored as a collection of individuals, where each individual is called a record.
An individual is just a collection of attribute-value pairs, where in some cases one of the attributes
is viewed as the target or class attribute. Stored data can hold valuable information, for instance
through patterns (relations, dependencies), which are obscured by the vast amount of the data.
The main idea of data mining is the retrieval of valuable information by means of identifying
patterns, to either describe the data or to classify new data [37, 25].

1.1.1 Subgroup Discovery

One of the techniques with which one can mine data, is subgroup discovery. A subgroup is a subset
of individuals in the database, where the individuals in the subgroup are set apart from all other
individuals by the characteristics of their attributes. These characteristics ensure that a subgroup
displays a different distribution on the target attribute, compared to the distribution on the target
attribute in the complete dataset. The characteristics of a subgroup are captured by a condition,
where only individuals meeting this condition are part of the subgroup. To make things more
clear, let us look at an example, as shown in Table 1.

This is a very small dataset, with attributes gender, age and married. Consider the attribute
married to be the target attribute, i.e. we aim to search for characteristics of individuals given that
the individual is married (married = true). A condition on which to characterize the subgroup is
the age of a person: when one is older than 30, one is more likely to be married. This relationship
can be formalized into the rule: age > 30 → married = true. The conditional part of the rule,
age > 30, gives an interesting different distribution of the data. When the data is divided on the
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Gender Age Married
M 33 true
M 27 false
F 32 true
F 40 true
M 25 false

Table 1: Exemplary dataset

basis of the age of persons, the data shows a different distribution on the class variable married.
In the whole population (all records in the dataset), 60% of the individuals are married, whereas
100% of the individuals are married when condition age > 30 is met.

Subgroup discovery is a rule learner, but it is not the only algorithm which mines for interes-
ting rules. Originally, rule learning is concerned with classification (learning predictive rules) or
learning descriptive rules. Subgroup discovery is a supervised learning technique, like other classifi-
cation algorithms. However, instead of learning predictive rules, it generates descriptive rules, like
association rule learning and other non-classification rule induction techniques [23, 28, 37, 1, 2].
Furthermore, unlike these techniques, subgroup discovery generates the interesting rules by means
of a quality measure (utility function), where different measures return different rules, thus giving
the user the ability to adapt the behaviour of subgroup discovery in general. Moreover, the rules
found by subgroup discovery are relatively simple, and thus easy to understand [23, 3, 28, 36].
These characteristics, i.e. supervised rule learning, learning descriptive rules and the ability to
adapt subgroup discovery, have made this technique more and more popular over the years, espe-
cially in the field of bioinformatics.

1.1.2 Quality Measures

The strength of subgroup discovery is also its drawback. Although current quality measures like
novelty (a.k.a. weighted relative accuracy [29]) and information gain, are highly functional and
heavily used as utility functions, they are not able to deal with numeric (or even ordinal) targets,
such as age. To make this possible, the most easy solution would be to discretize (or even binarize)
the target itself [45], and thus lose important information that is captured by the target variable.
Apart from that, there is the issue of where to place the cut-off value when binarizing the data.
To decide on the cut-off value, a data analyst has to have proper knowledge of the domain, which
is not always the case.

To address this problem, one needs to define quality measures that can deal with numeric or
ordinal target values. There are only a few measures currently known (and used) to evaluate
numeric targets. Most of these measures use the mean of a subgroup for evaluation [20, 45].
Ordinal targets, where individuals display a certain meaningful order, pose an even bigger problem.
For ordinal targets, quality measures to define interestingness are rare. Most solutions are about
manipulating the target itself, changing it into a numeric or discrete target, or limiting the number
of possible class values [27, 26, 15]. Purely statistical evaluation functions for ordinal data are also
not that common, although they can be found in the field of nonparametric statistics or statistics
for categorical data. When the ordinal target is a discrete one, preferably with a small number of
categories, statistical measures for categorical data can be found in the field of behavioral sciences
[4, 19]. In other cases, when the ordinal target is a ranking or is even continuous, nonparametric
statistics are a better choice, such as the Wilcoxon’s Rank Sum test and the Mann-Whitney U test
[10, 6]. In this thesis, new quality measures are proposed in order to apply subgroup discovery to
numeric and ordinal targets.
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1.2 EET Pipeline

The idea to define new quality measures to evaluate subgroups with numeric or ordinal targets
stems from situations where data can be ordered and/or where the target is continuous. For
instance, genetic data can display an ordering, such as a ranking. What does ranked genetic
data mean? When biomedical experts try to find out which genes play a role in the development
of a disease, they measure for instance the gene expression of the DNA of each patient. Using
data mining or another processing tool, the genes whose expression stand out when compared to
normal gene expression, are believed to be important for the disease under investigation. Given
the irregular gene expressions, the genes can be ranked, where the gene with the most interesting
differential expression is set to be the gene with the highest rank. For this thesis research, we were
presented with such genetic data, both with unprocessed genetic data and processed data, i.e. a
gene ranking. Our genetic data was made available by the European Embryonal Tumour Pipeline
poject, EET Pipeline or EETP in short. Within this project, several research groups work together
to get a better understanding of embryonal tumours, such as neuroblastoma, medulloblastoma and
retinoblastoma. Of the available datasets, the data on neuroblastoma is largest, which is the reason
why only neuroblastoma was chosen as a research topic for this thesis.

1.2.1 Neuroblastoma

Neuroblastoma is the most common extracranial tumour found in children younger than 15 years
and originates from primitive neuroblasts [32, 9]. Most of the research on neuroblastoma is dedi-
cated to achieve a better understanding of the functioning of genes and their signalling processes
with respect to neuroblastoma [7, 32, 9, 43]. Hence, the focus in the EET Pipeline also lies on the
analysis of genomic and gene expression data. Four datasets were made available, three of which
contain information on the genetic disposition of the neuroblastoma patients under investigation.
These three datasets contain DNA, mRNA and miRNA data. The fourth dataset contains impor-
tant clinical information on the patients, such as age at diagnosis, whether or not a clinical event
had taken place and the stage of the neuroblastoma, which is related to the type of tumour. The
genomic and gene expression datasets, DNA, messenger RNA (mRNA) and microRNA (miRNA),
are interrelated in the following way. RNA is produced from DNA, it is a ‘working copy’ of the
DNA that can be used for further processes in the cell. After that, mRNA is transcribed from
RNA in such a way that only selected parts of the DNA (and thus RNA) end up in the mRNA.
miRNA’s are copies of very small portions of DNA that regulate whether proteins are translated
from mRNA. miRNA’s thus have a hand in which genes of the DNA (mRNA) are translated into
proteins. From these three datasets, gene rankings can be made. Each ranking tells us which
genes play a role in neuroblastoma and how important they are compared to other genes.

1.2.2 Meta Information on Genes

Apart from finding lists of ranked genes, there is even more that data mining can offer. As briefly
mentioned above, the data from the project is interconnected by genes and proteins. Next to the
gene rankings, there is also meta information available on genes. For instance, to which proteins
genes code, to which protein families proteins belong, and whether a protein interacts with other
proteins in the cell. There is even more interesting knowledge to explore: the gene ontology
(GO) [18]. The gene ontology is an ontology of concepts related to genes, which strives for the
standardization of the representation of genes and their characteristics, functions and products.
There are of course many other knowledge domains that have a relation with genes and can provide
additional information. Although it might seem evident that there is a lot to gain by using all
kinds of meta information, it is not done that often. Why? There are several reasons for this. The
most important one is the difficulty to combine and mine all data, a task that can be done through
aggregation. The more conventional ways to deal with data are not well suited for aggregation.
Mining multi-relational data in a multi-relational way is one of the best options to deal with
aggregation problems.
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Figure 1: Data mining task: aggregating meta information and ranked data

1.3 Multi-Relational Data Mining

Currently, most data mining tools assume that data can be easily captured in a single file or a
simple tabular structure. In real life however, data usually has a more complex structure, which
is not easily captured in a single table. Even so, if it is possible to make the data tabular, this
might clutter the data or information might become lost [11, 25]. For instance, for the aggregation
problem described above, consider a single gene. We would have to store the gene, its position on
the genome, interacting genes, protein families and GO-terms in one file. Although it is possible
to store the data in such a way, it would be troublesome to decide on dimensionality and it would
over-complicate the data file too much. Furthermore, relations between and knowledge of the
different domains might get lost. Especially the tree structure of GO-terms is difficult to translate
and lots of information can become lost after translation.

There are very few tools available that can fully tackle data mining problems in a multi-
relational way. One tool that can mine multi-relational data properly is Safarii, a generic multi-
relational data mining environment [25, 34]. Apart from that, subgroup discovery is available
in Safarii, thus making it a logical choice to use Safarii as the tool for the mining tasks in this
thesis. For the goals of this thesis, Safarii is enhanced so that it can perform subgroup discovery
on numeric and ordinal targets too.

1.4 Combining All Issues

The enhancement of subgroup discovery and aggregating multiple data sources in order to aid in
the neuroblastoma research, is done as follows. From the EET Pipeline data sources (the DNA,
mRNA and miRNA data), gene rankings are made, using any (clinically interesting) target. Here,
the stage of neuroblastoma tumour and whether a clinical event (such as a relapse) has taken place
were identified as the most interesting targets. The obtained gene rankings are then enriched with
additional knowledge domains, which are the location of the gene on the genome, interacting
genes, GO-terms and protein families. This enrichment is done through aggregation: the gene
ranking is mined multi-relationally with the domain knowledge data. The enrichment provides us
with possibly valuable information and knowledge, in order to better understand which processes
are involved in the development of neuroblastoma. Furthermore, the enrichment can help further
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research on neuroblastoma, for instance to decide if the research focus needs to be adjusted.
In order to perform aggregation, specifically ordinal subgroup discovery is needed, since the

targets, the gene ranking and the corresponding numeric attribute, are ordinal. Nevertheless,
although the problem under investigation here is multi-relational, both Safarii and ordinal/numeric
subgroup discovery can of course be applied to propositional data as well. Figure 1 shows how
the research is performed. Here, OSD stands for ordinal subgroup discovery, and RSD stands for
regressional subgroup discovery, which is subgroup discovery on numeric targets.

This thesis is structured as follows. In Chapter 2, a more extensive explanation of the EET
Pipeline project and neuroblastoma is given. Following, Chapter 3 will thoroughly describe the
data from the EET Pipeline project and the additional data sources that were used for this thesis.
Also, preprocessing and alteration steps performed on the data, in order to obtain a gene ranking,
are explained here. In Chapter 4, the concept of multi-relational data mining is described. In
order to get a good understanding of subgroup discovery, Chapter 5 describes the concepts of
this technique, and the subtypes of subgroup discovery are discussed here. Chapter 6 explains
what kind of characteristics of (or intuitions on) subgroups are important when evaluating new
subgroups. In Chapter 7, several (new) quality measures, which are capable to cope with numeric
and ordinal targets, are described. Also, the measures are evaluated in terms of the intuitions
from Chapter 6. In Chapter 8, experiments done on the neuroblastoma data enriched with the
additional data are discussed. Finally, Chapter 9 concludes this thesis.
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2 European Embryonal Tumour Pipeline Project

The European Embryonal Tumour Pipeline Project, EET Pipeline or EETP in short, is an EU-
funded project that focuses on improving diagnostics and treatment for embryonal tumours. The
tumours under investigation here include, among others, medulloblastoma, retinoblastoma and
neuroblastoma (nb). For all these tumour types, the biologists and physicians involved in the
EET Pipeline project are responsible for retrieving clinical and genetic data (meaning genomic
and gene expression data) on patients. Apart from these researchers, also computer scientists are
involved in the project. They are responsible for mining the available data in order to provide
biologists and physicians with additional knowledge on the causation of the tumours considered
in the project. The biologists and physicians are primarily located in Ghent, Belgium, and Essen
and Heidelberg, Germany. The core of the computer science group resides in Ljubljana, Slovenia.

Considering all tumours under research in the EET Pipeline, most patients are diagnosed
with neuroblastoma. Within the project, data from 101 patients diagnosed with neuroblastoma
is available. Although a set of 101 individuals is small, seen from a data mining point of view,
this is a rather large set of records in the opinion of biologists and physicians. Since for the other
tumours the number of patients in the project is relatively small (around 30 or less), only the
neuroblastoma data is used in this thesis.

2.1 Neuroblastoma

Neuroblastoma is the most common extracranial solid tumour found in children. It originates from
neuroblasts, which are primitive cells of the sympathetic nervous system, mostly of the adrenal
glands. The tumour can develop in nerve tissues in the neck, chest, abdomen and pelvis. The
tumour is rare in older children or adults, only 10% of the cases occur in children of age>5. Of
4000 neuroblastoma cases only 2% of the patients were older than 18 [49].

Each case of neuroblastoma is classified into one of 5 (6) stages: 1, 2 (2a and 2b), 3, 4 and 4s,
where classification is done upon diagnosis. Of all these stages, stages 4 and 4s are very important,
and stage 2a and 2b are not distinguished in our data. Stage 4, metastatic neuroblastoma, is mostly
found in children older than 1.5 years. Spontaneous regression or maturation of the tumour is
frequently found in younger children, even when the disease is metastatic, which is the case for
nb stage 4s. Spontaneous regression or maturation also occurs when young children (age ≤ 1.5
years) are diagnosed with stages 1 and 3 [32]. Stage 4 and 4s tumours look more or less the same.
Both are metastatic, although in stage 4s the dissemination is still limited. The biggest difference
between the two stages is that patients diagnosed with stage 4s tumours have a good survival
rate, whereas patients diagnosed with stage 4 tumours have a high mortality rate: 80% of survival
versus 30% [7].

The causality of neuroblastoma is not well understood. Neuroblastoma develops at an early age,
even in embryos. A mass screening study in the industrialized world has shown that the incidence
of neuroblastoma is fairly uniform. Furthermore, research into (environmental) risk factors is
ongoing, but current results have been inconclusive. Taking all the insights in consideration, and
especially the early onset, it seems unlikely that environmental factors play an important role
[49, 7]. Thus, current research has focused on getting a better understanding of which genes and
processes govern the disease [9]. The best option would be to compare normal – non-tumour –
cells, i.e. neuroblasts, to neuroblastomas. The difficulty here is that neuroblasts are not detectable
in postnatal life [9]. Despite this problem, previous research on neuroblastoma has shown that at
least the status of gene MYC-N and chromosome 17 signal higher or lower risks, depending on the
stage of the tumour and if MYC-N and/or chromosome 17 are amplified or deleted [7, 43, 32, 9].

The research on neuroblastoma is still ongoing, with an interest in the genetic, cellular and
molecular processes and functions that are involved in the development of neuroblastoma. Some
research using meta information is done already, for instance by De Preter et al. [9, 8].
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Figure 2: Relation between DNA, mRNA and proteins

2.2 EET Pipeline Data

During the lifespan of the EET Pipeline project several datasets have become available. At first,
only a small set of (neuroblastoma) patients was examined. In the winter of 2009 a larger group
was examined, and different types of data became available. All data that is of specific interest for
this thesis is about genes in some way. To be more precise, DNA, messenger RNA and microRNA
data is available, alongside clinical information on the patients. The three types of genetic data
are interrelated in a specific way. The RNA is produced from the DNA in the cell, making RNA
a ‘working copy’ of the DNA. In each cell the DNA has to perform different actions, depending
on the cell in which the DNA resides. For the DNA(RNA) to behave differently, messenger RNA
(mRNA) is produced from RNA through transcription. During transcription, bits of the actual
RNA (thus DNA) are copied into mRNA, where the copied parts of the DNA are important to
the cell at hand. The mRNA is then used to translate genes into proteins, through translation.
The process of translating proteins from mRNA can be manipulated in several ways. MicroRNA,
(miRNA, µRNA), which are very small pieces of RNA copied from the DNA strand, is one way
how translation into proteins is regulated. For instance, miRNA can keep a gene from translating
into a protein (lower expression), or miRNA gives genes a higher expression by allowing the gene
to translate into a multitude of proteins (amplification). Figure 2 shows the relation between
DNA, mRNA and proteins. How miRNA is copied and how it interacts with mRNA is not shown.

Each cell in an organism has the same DNA. Also, each cell in an organism has a specific
function, and multiple cells can have the same function. For a cell to behave differently from other
cells, certain parts are active where other parts are not. For instance, the cells in the ear that enable
an organism to hear, need a different functionality from the cells in the eye, and vice versa. A cell
can obtain its function through its DNA and the mRNA produced from the DNA. Depending on
the function of the cell, parts of the DNA are of no use, where other parts are heavily important.
The important parts are thus transcribed into mRNA. Thus, when investigating the role of genes
in the development of tumours, it is vital to obtain genetic information from tumour cells and
preferably their healthy counterparts. The genetic data sources (DNA, mRNA and miRNA data)
available from the EET Pipeline are more fully described in Chapter 3.
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2.2.1 Previous Work on EET Pipeline Data

A lot of research has already been done on older EET Pipeline data. In Van de Koppel et al.
[42], initial data mining was performed on the data that was available to the project at that
time. One of the goals was to get predictive models on different targets, such as the stage of
the neuroblastoma. For this research, multiple datasets were used to combine information and to
build the predictive model. This study suffered from a few problems. First, the number of records
per dataset was very small (ranging from 19 to 63 neuroblastomas). Secondly, the intersection of
the used datasets was even smaller than the individual datasets. These problems made it difficult
to do a proper aggregation on the data and held back the accuracy of predictive models. In
February 2009, a bigger sample set became available. This new dataset was used in the research
of De Preter et al. [8]. The goal of this study was to find new therapeutic compounds to treat
neuroblastoma. The search for new compounds was done through an integrative genomic meta-
analysis of neuroblastoma cells and a comparison of these cells to neuroblast cells. For the full
study, the reader is referred to [8].

Although further research upon the EET Pipeline data is currently conducted, none of it is
published yet. One ongoing study performed at the Jožef Stefan Institute (IJS) is of particular
interest. In this study, different datasets are combined in order to create rankings of differentially
expressed genes. The focus of this study is how to create a proper ranking on genetic data, using
different techniques and quality measures, such as the median value of the expression of individual
genes. One of the rankings of their study was also used in this thesis study. For further information
on the experiments conducted on the EET Pipeline data for this thesis, see Chapter 8.

2.2.2 Domain Knowledge

Since genes play an important role in regulating all kinds of processes in a cell, it is interesting
to investigate which processes are regulated by which genes. Just looking at the genes that seem
important for neuroblastoma is not enough. Specific domain knowledge is needed in order to
understand which processes are involved. Such domain knowledge of course resides in biologists,
physicians and several other specialists, but using human specialists for their knowledge on genetic
processes in tumour research poses the same problems as leaving the data mining itself to human
specialists. Thus, to be able to fully use domain knowledge on genetic processes, data mining can
again be used, this time for enrichment. Still, specialists are needed to decide which knowledge
is of importance. For the EET Pipeline, several sources were identified as interesting and easy to
use, although in the future more sources can become interesting or usable due to ongoing research:

Protein Families Proteins, translated directly from genes on the mRNA, belong to protein
families depending on the structure of the protein. Thus, proteins that look alike, or have the
same function, belong to the same family. Families, in turn, are part of an even bigger structure:
clans [13]. Information on protein families can be found at http://pfam.sanger.ac.uk.

RNA Families RNA, more specifically microRNA, can be categorized into families because of
their similar structure and sequence. RNA families can be browsed at http://rfam.sanger.ac.
uk.

Protein-Protein Interactions Proteins can interact with each other in order to change func-
tionality and behaviour in the cell. Since proteins are translated from genes, protein-protein
interactions can be viewed as gene-gene interactions. Protein-protein interactions can be found at
the Human Protein Reference Database, http://www.hprd.org.

Gene Ontology - GO Terms The gene ontology is a structure in which genes are assigned
to multiple terms. It was brought into life to provide consistent descriptions of gene products:
the terms. There are three large subgroups of terms: cellular component, biological process and
molecular function. Although GO is a highly interesting source of information, it has to be
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Figure 3: Splicing of RNA (pre-mRNA) to mRNA

viewed with a certain reservation considering its authority. The reason for this is the difficulty to
empirically validate the GO terms assigned to genes, which can only be done through extensive
research. Furthermore, defining the terms and their internal relationships is difficult. Information
on the Gene Ontology can be found on http://www.geneontology.org.

Genetic Pathways - KEGG Genetic pathways are, like GO, a bit controversial considering
their authority. Nevertheless, the information genetic pathways can provide is highly interesting.
Genetic pathways are about the activation and signalling of genes/proteins through a (possibly
large) network of genes. Thus, one gene at the top of the pathway can have an effect on a gene
at the bottom, although there is no other way to tell these two genes have some effect on each
other, except through the pathway. KEGG suffers from the same issues as GO. Information on
genetic pathways, or KEGG, the Kyoto encyclopedia of genes and genomes, can be found at
http://www.genome.jp/kegg/.

Other Sources The sources described above are highly informative and provide us with useful
domain knowledge on genes and their functionality in cells. Of course, there is even more infor-
mation available. For instance, when DNA is transcribed into mRNA, this process is done by
splicing. During splicing, specific parts of the RNA, exons, end up in the mRNA. The exons which
eventually end up in the mRNA are not always the same. Thus, determining which splice variants
are coded, can be highly informative. The process of splicing, where exons are the parts that can
end up in mRNA and introns signal when to start copying RNA to mRNA, is depicted in Figure
3.

Furthermore, DNA is a backbone to which nucleotides are attached, where the sequence of
nucleotides gives the genetic makeup of an individual. DNA can have minor differences in those
nucleotides when compared to the DNA of another individual. In particular cases, when such
minor changes occur in a larger set of the population and when the change only involves one
nucleotide in a larger sequence of nucleotides, they are referred to as SNPs (which stands for
single-nucleotide polymorphisms, and is pronounced as snips). An example of a SNP: AAGCCTA
versus AAGCTTA. Although this information can be very useful, it was not feasible to explore
the possibility of including these extra sources, given the scope of this study.

Only a few of the additional information sources above are used in this thesis, primarily since
some data sources lacked a proper representation. In these cases, it was too time-consuming to
preprocess the data to achieve the proper format. Only for protein families (PFAM), gene-gene
interactions (which are the same as the protein-protein interactions) and GO/KEGG, a proper
representation was available or easily acquired. These data sources are further described in Chapter
3.
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stage event deceased total stage total
1 no no 22
1 yes no 1 23
1 yes yes 0
2 no no 4
2 yes no 2 7
2 yes yes 1
3 no no 4
3 yes no 4 11
3 yes yes 3
4 no no 16
4 yes no 6 43
4 yes yes 21
4s no no 17
4s yes no 0 17
4s yes yes 0

Table 2: Distributions of patients on target types

3 Data

The data used in this thesis consists of data received directly from the EET Pipeline project and
data retrieved from external sources on the internet. The data will be described more thoroughly
in this chapter. Also, steps that were taken to (pre)process the data are discussed here.

3.1 Data from EETP

Preceding the winter of 2009, 101 neuroblastoma patients were examined. This data was made
available in February 2009. This set is not so large seen from a data mining point of view, although
it is a large set of patients by the opinion of biologists/physicians. Unfortunately, not all datasets
have data on all 101 patients, and in some cases there are missing values. All data except the
clinical data is recorded using probes. Each gene is covered by more than one probe and each
probe can cover one or more genes. For these probes, their expression, which is a numeric value, is
recorded. Thus, each probe shows the expression of (more than) one gene. One of the goals is to
find genes that have a descriptive value to neuroblastoma, in other words, to find genes that are
differentially expressed. To do this, the genetic probe data of the patients is mined using targets
such as the stage of the tumour or the occurrence of an event. There are four datasets available:
the clinical dataset and the DNA, mRNA and miRNA datasets. These datasets are described
below.

3.1.1 Clinical Information

The clinical dataset contains important clinical information of the examined patients. Information
is recorded on the stage of the neuroblastoma, the age of the patient at diagnosis, whether there
has been some sort of event (such as a relapse of the tumour), if the patient is still alive, etc.
From this data, multiple useful and interesting target attributes can be chosen to mine the data
for differentially expressed genes. Of all these attributes, the stage of neuroblastoma and whether
there has been an event (death or relapse) have been identified as highly interesting to use as
target variables [8, 43]. Table 2 shows the distribution of patients according to these targets. The
combined target deceased = yes ∧ event = no is not shown, since deceased = yes also sets event
to yes. When event is used as the target attribute, there are 38 positive cases (event = yes), as
opposed to 63 negative cases (event = no). When taking the NB stage as the target, this attribute
is binarized as follows. Stage = 4, which gives a bad prognosis, is set as the positive case in terms
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Dataset Measuring # Patients # Probes Gene mapping Missing values
Array CGH DNA 96 30813 Yes Yes
Array CGH (CBS) DNA 96 39573 Yes Yes
Affymetrix mRNA 101 284288 Yes No
Affymetrix (core) mRNA 101 22012 Yes No
qPCR miRNA 99 354 No Yes

Table 3: Characteristics of genetic datasets

of data mining, resulting in 43 cases. The compound of NB stages 1, 2, 3, and 4s is set to be the
negative class (stage 6= 4), adding up to 58 patients.

3.1.2 DNA

The DNA dataset is retrieved using the technique of array CGH [46]. Array CGH data shows
whether a gene, (parts of) a chromosome or cytoband are amplified or deleted. In the case of
amplification, a gene or (a region of) a chromosome is duplicated. The opposite is deletion, where
the gene or (a region of) a chromosome no longer exists. Both amplification and deletion are
believed to play an important role in the evolution and the occurrence of diseases. For all datasets
described in this subsection, the DNA, mRNA and miRNA data all compare neuroblastomas to
a control sample to compute the relative expression values of genes. In the case of array CGH,
a healthy control sample was used. In other words, in array CGH the neuroblastoma cells are
compared to neuroblast cells, which are the predecessors of neuroblastoma cells. The array CGH
data is available in two flavours: normalized data and data preprocessed using the CBS algorithm
[33, 44]. The CBS algorithm reduces the noise in a dataset, but can also modify the original
values. Due to the data manipulation and loss of information that can occur when using CBS
as a preprocessing algorithm, the normalized data is considered as best to use. Both datasets
contain a fair amount of null values. The array CGH dataset contains 30813 probes, whereas the
CBS variant contains 39573 probes. For both datasets there is a mapping from probes to genes
available.

3.1.3 mRNA

The technique of gene expression profiling through DNA microarrays [47] is used to compute the
mRNA data. Specifically, Affimetrix chips were used to profile the mRNA [48]. The mRNA
dataset also needs a control sample in order to compare and compute the expression of genes. In
contrast to the DNA data, mRNA uses a compound of 100 neuroblastoma samples as a control
sample. There are two types of data available: the single probeset and the core probeset. In the
case of the core probeset, each compound probe covers a larger part of DNA, usually one or more
complete genes. The single probes mostly only cover a small part of a gene. Both mRNA datasets
are normalized and have no missing values. The single probeset data is comprised of 284288
probes, making it the largest. The core probeset contains 22012 probes. For both datasets, a gene
mapping is available.

3.1.4 miRNA

The miRNA dataset is made using the technique of qPCR [50]. As is the case with mRNA, miRNA
uses a compound of 100 neuroblastoma samples as a control sample. Compared to the other two
datasets, this dataset has a small number of probes, where each probe is one miRNA. The miRNA
dataset only contains 354 probes, making this the smallest data set. The miRNA dataset is also
normalized and contains a fair amount of null values. There was no mapping available from probes
to genes.

Table 3 gives an schematic overview of the genetic datasets and their characteristics.
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Figure 4: Data mining task: aggregating meta information and ranked data

3.2 Preprocessing EET Pipeline Data

The data described above has to be preprocessed before it can be properly used in the second
data mining step, where aggregation takes place. For gene enrichment, a list of ranked genes is
needed. To make a list of ranked genes, one genetic dataset is mined. There are two targets used,
event = yes and stage = 4. The goal was to make rankings for all types of genetic data, but
only the mRNA dataset is chosen. Only for this dataset a proper mapping from (core) probes to
genes is available, and there were no missing values. For the rankings, core probe expressions were
mined. After mining the probes, the probes were mapped to genes.

Two rankings in this thesis were made using Safarii and the subgroup discovery algorithm
in Safarii, one mRNA gene ranking with target event = yes and one with target stage = 4.
The quality measure used for subgroup discovery is novelty. Safarii and subgroup discovery are
discussed in Chapters 4 and 5 respectively. The research group in Ljubljana provided the third
ranking, a mRNA gene ranking with target event = yes.

3.3 Meta Information

Figure 4 shows how to aggregate the rankings with the meta information. As described in Chapter
2, there are many data sources interesting for aggregation. Of all these sources, only three were
chosen for their ease of retrieval and their informative value. The only problem in adding new data
sources is to get the data in a good format – a mapping to gene names is necessary. Furthermore,
the extensive time needed to retrieve new data sources can be an issue, which was the case in this
study.

Aggregating data is not new, especially in the field of bioinformatics. A method for multi-
relational subgroup discovery and aggregation to search and enrich differentially expressed genes
was developed by Trajkovski et al. in 2008 [41]. As opposed to the method of Trajkovski et al.,
it is very simple to add new data sources for aggregation in our approach, due to the generic
multi-relational data mining tool Safarii.
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3.3.1 GO/KEGG

The GO/KEGG dataset contains information on gene ontologies (GO) and genetic pathways
(KEGG) in one. The dataset originally had a list of GO- and KEGG-terms per gene, where
each gene, GO-term and KEGG-term was denoted by a numeric identifier. For the use in this
research, the identifiers were changed to the gene names and GO/KEGG identifiers and names.
Furthermore, genes are no longer stored with a list of GO- and KEGG-terms, but rather as gene-
GO/KEGG-term pairs. Thus, for each gene, it is possible to have more than one pair in the
database, although each pair is unique. This format was chosen in order to have no restrictions on
the GO/KEGG terms selected during mining and to make proper multi-relational mining possible.
There is only one drawback, resulting from the dataset itself. Both GO and KEGG have a tree-like
structure. Thus, a term can have parent terms (and children terms). These parent terms, if any,
are not all available. Availability depends on the structure of the tree, and whether a gene was set
to both a GO term and its parent. One can argue that all parental terms can provide additional
knowledge and thus should be accessible, but the data did not support this. The GO/KEGG
dataset was made available by the Jožef Stefan Institute in Ljubljana, Slovenia, thanks to the
research of Trajkovski [41, 22].

3.3.2 Gene to Gene Interaction

Genes can interact with each other through the proteins they translate into. The data for gene to
gene interaction is stored as gene-gene tuples, where each tuple is unique. This dataset was also
available with only numeric identifiers. The dataset was altered in such a way that each identifier
was replaced by the corresponding gene name. Like the GO/KEGG dataset, for each gene in the
dataset there was a list of interacting genes available, this was altered to obtain the gene-gene
tuple format. This dataset too was received from the Jožef Stefan Institute in Ljubljana, Slovenia,
thanks to the research of Trajkovski [41, 22].

3.3.3 Protein Families PFAM

The protein family dataset is publicly available from the PFAM website [13]. The mapping from
protein family identifiers to genes was retrieved from Ensembl, a project to produce and maintain
automatic annotations [12, 35]. This website can be used to retrieve many mappings from genes
to a large range of other sources.

3.3.4 Gene Location

Since the mapping from genes to their (exact) location on the genome was not available, this
mapping was added after retrieval from Ensembl [12, 35], using BioMart. This dataset contains
information on the gene and its position on the chromosome. The position is available on chro-
mosome and cytoband level. This data is useful since it is interesting to see whether differentially
expressed genes lie on the same chromosome or on the same cytoband. Such information can let
biologists and physicians decide to take a closer look on a specific chromosome or cytoband.
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Figure 5: From multi-relational data to propositional data

4 Multi-Relational Data Mining

As explained earlier, the data used in this thesis is best represented in a multi-relational way,
since the data is highly structured. However, in the case of the EET Pipeline data, it is possible
and feasible to modify the data to make it propositional. Figure 5 shows the data for the EET
Pipeline, divided into four separate datasets. From here, it can be seen that it is possible to
combine the clinical information dataset with one of the high throughput data, such as the mRNA
dataset. Although propositionalizing is feasible here, it is not necessary since Safarii can mine
multi-relational data.

It is altogether different in the case of the meta information. Figure 6 shows which meta
data is chosen for aggregation, and how difficult it is to propositionalize this data. For instance,
in the case of gene interactions, should gene to gene interactions be stored as tuples? Or as an
n-dimensional gene to genes tuple? Clearly, it is best to tackle the aggregation multi-relationally.
Thus, the data will remain flexible and relations between different sources and in one data source
are preserved.

Although many data mining techniques (or software, for that matter) focus on tabular data,
data usually does not keep itself to such restrictions. Unfortunately, there are not that many tools
available that can mine multi-relational data, without resorting to techniques to propositionalize
the data. There are, however, a few tools that can mine data multi-relationally. For instance,
MIDOS [51], a tool which can find subgroups in multi-relational data. Another example, although
domain specific, is SEGS [41, 39], which is short for Search for Enriched Gene Sets. This tool also
can perform multi-relational subgroup discovery on genes, gene-gene interactions, and GO/KEGG-
terms simultaneously. MIDOS, however, is not domain specific. Most of these approaches, like
SEGS and MIDOS follow the ideas of (Inductive) Logic Programming (ILP), thus restricting the
data to be in a first order logic format. Furthermore, the results are also bound by constraints,
usually set by the developer of the tool. Thus, a user can not easily adapt the representation
of the results. More information on the history of multi-relational data mining, inductive logic
programming, and tools created for the multi-relational data mining task can be found in [11, 14].

4.1 Safarii

Although most multi-relational data mining tools adopt the concepts of ILP, there is at least one
that does not. Safarii, developed at Utrecht University by dr. A.Knobbe, is based on the concepts
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Figure 6: Fully multi-relational data

of the relational database model, which is still the dominant model for industrial database systems
[25]. Safarii can mine data stored in a relational database management system, and is of course
also capable of mining propositional data [34].

Safarii can be used to build a classifier on data or just to find interesting patterns (subgroups)
in the data. The search for patterns can at least be done by the subgroup discovery algorithm,
which was used in this thesis and will be discussed more thoroughly in Chapter 5. Safarii initially
could only perform subgroup discovery on nominal targets. Furthermore, as is the case with other
mining tools, even propositional mining tools, mining data with numeric targets or ordinal targets
was not possible.

Given the multi-relational data, and the research question to mine lists of ranked genes, Safarii
was enhanced so that it can find interesting patterns when dealing with numeric and ordinal targets
whilst making use of the specific characteristics of these target types. This enhancement is called
for, since former approaches to deal with numeric and ordinal targets mostly focused on discretizing
or binarizing the target attributes, which is usually not done without hazard. Subgroup discovery
and quality measures for ordinal and numeric targets are discussed in Chapters 5 and 7.
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5 Subgroup Discovery

Subgroup discovery is a rule learning technique. Rule learning is usually divided into two separate
techniques: classification rule learning and association rule learning. In the case of classification,
the goal is to construct predictive/classification rules, and is a form of supervised learning. Asso-
ciation rule learning is about descriptive rule induction, a form of unsupervised learning, aiming
to identify interesting patterns in the data [31, 37, 1, 2]. Thus, where the rules in classification
are used to predict the class of a new individual, the rules in association rule learning are used to
describe the data given the attributes of the data. Descriptive rules in this sense can thus be used
to understand relations in the data, irrespective of some class (target) attribute.

Subgroup discovery is on the intersection of predictive and descriptive rule induction. The
main goal of subgroup discovery is to find interesting patterns in the data given a target attribute.
Thus, subgroup discovery can provide us with rules that describe the data given a target attribute,
showing us underlying relations in the data. In contrast to classification rule induction, subgroup
discovery does not build models or rules to maximize classification accuracy. Therefore, subgroup
discovery can select rules more loosely, the only constraint is that rules should be interesting
according to the user. Here, interestingness is usually defined in terms of the target attribute
distribution. The rules found by subgroup discovery are usually simple in the sense that they
are easy to understand by a user, especially a domain expert. Therefore, subgroup discovery has
gained large interest from the field of expert guided data mining [17, 36, 31].

How does subgroup discovery work? Subgroup discovery finds groups of attributes, where the
attributes render a different distribution on the target attribute, when compared to the distribution
on the target given the complete set of attributes. In other words, subgroup discovery tries to find
conditions on (a subset of all) attributes which divide the dataset into individuals belonging to
the subgroup (these individuals meet the conditions) and individuals belonging to the complement
of the subgroup: all other individuals. The individuals of the subgroup display a different and
interesting distribution on the target attribute, compared to the distribution of the target attribute
given the whole dataset, or the target attribute distribution of the individuals in the complement
of the subgroup.

A rule in subgroup discovery is defined as follows:

rule = B → H, (1)

where B is named the body (condition), and H the head (class, target) of the rule. Subgroup
discovery uses the condition of the rule (the body) to set individuals apart from the whole po-
pulation. In other words, the individuals meeting the condition of the rule belong to the same
subgroup. The class (target) values of the individuals are used to calculate the interestingness of
the subgroup, by means of a utility function (heuristic, quality measure). In the case of nominal
subgroup discovery, the head of a rule is the target value indicating the positive class, such as
target = 4. The body of a rule defines the attributes and specific conditions on these attributes
that specify a subgroup. Given the example from figure 1 with rule: age > 30→ married = true,
then age > 30 is the body of the rule, displaying the attribute and its condition. Married = true
is the head of the rule.

5.1 Target Attributes

The focus in subgroup discovery has been primarily on data where the target attribute is nominal.
Of course, there are more types of target attributes, as there are more variants of attributes in
general. When the target is nominal, it can only obtain a value from a (predefined) small set of
values. The best known case is when the target attribute is binary. For nominal subgroup discovery
(or data mining on nominal targets in general), there are many quality measures already available
and well-researched. Nominal subgroup discovery is discussed further in Section 5.1.1 Apart from
nominal targets, there are at least two other types of targets. One of them is the numeric target,
where the target attribute can assume a range of values, particularly from a continuous interval of
numbers. Understandably, deciding on whether a subgroup is interesting in the case of a numeric

19



id target
1 5.01
2 3.27
3 0.98
4 1.25
5 2.89
6 0.01
7 0.25
8 0.26
9 4.28
10 7.65

Table 4: Numeric target

target is a bit different from handling nominal targets. Subgroup discovery on numeric targets,
regressional subgroup discovery, is discussed in Section 5.1.2. A special subtype of both numeric
and nominal targets is the ordinal target. In this case, the target attribute can pick a value from
a range of discrete or continuous numbers or categories. Here, the numbers or categories display
a certain order. For instance, the ranking of popular movies is an ordinal target. Because of the
specific characteristics, ordinal targets should be handled appropriately, taking advantage of the
characteristics. Ordinal subgroup discovery is further discussed in Section 5.1.3.

5.1.1 Nominal Subgroup Discovery

Subgroup discovery on nominal targets is the best researched variant of subgroup discovery. In
this case, the target attribute can assume a value from a predefined finite range of values. Usually,
the target is binarized, by taking one value as one class, and combining all other values into the
complement class. An example is the neuroblastoma stage attribute, which is depicted in figure
2. Here, the stage can assume 5 values (1, 2, 3, 4 and 4s), but subgroup discovery is performed
by comparing patients with stage 4 to all other patients, thus aggregating all patients with stages
1, 2, 3 and 4s into the compound class stage 6= 4.

As stated previously, subgroup discovery uses a quality measure in order to define whether a
subgroup is interesting [3, 25, 28, 36]. One widely used quality measure for subgroup discovery in
the field of bioinformatics and genetic research is the novelty (weighted relative accuracy, WRAcc)
of a subgroup [23, 30, 36]. The novelty defines how different or novel the distribution of the target
is given a rule, compared to the target distribution of the complete dataset. The novelty is defined
as follows:

novelty(B → H) = p(BH)− p(B)p(H), (2)

where B and H again stand for the body and head of a rule, p(BH) for the probability of B and
H, also known as the support (correctly classified examples) of a rule, and p(B) and p(H) are the
probabilities of the body and of the head of the rule respectively. The value of the novelty ranges
from -0.25 to 0.25. A value of 0.25 indicates a strong relation between B and H, whereas -0.25
indicates a strong relation between BC , the complement of B, and H. A value of 0 tells there is
no relation between B and H, i.e. B and H are independent. A few other quality measures are
for instance the entropy [5], and the χ2 statistical test [10, 6].

5.1.2 Regressional Subgroup Discovery

Of course, not all possible target attributes are nominal. Target attributes can also be numeric,
and continuous. Numeric targets can assume a large range of values, where the range can be either
discrete or continuous. In the case of discrete numeric targets, the range of values is very large,
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id target numeric rankpartial

1 huge 5 1.5
2 huge 5 1.5
3 big 4 3.5
4 big 4 3.5
5 normal 3 6
6 normal 3 6
7 normal 3 6
8 small 2 8.5
9 small 2 8.5
10 tiny 1 10

id target rankcomplete

1 0.15 1
2 0.145 2
3 0.144 3
4 0.12 4
5 0.118 5
6 0.112 6
7 0.11 7
8 0.09 8
9 0.086 9
10 0.08 10

Table 5: Ordinal targets with partial and complete rankings

possibly infinite. In the case of continuous attributes, the range is by definition infinite. Table 4
shows a dataset with a numeric (continuous) target.

One way to deal with numeric targets is to discretize them, preferably in such a way that
the target becomes binary. Usually, this is done by discretizing the target into intervals [45].
Understandably, this can result in a loss of valuable information. Therefore, it is a better idea
to use quality measures that can deal with numeric targets properly. Thus, a more appropriate
approach is to use quality measures in which the distribution of the numeric target attribute
is used. Logically, metrics such as mean and standard deviation are useful, which can then be
compared to the metrics on the overall population or the complement of the subgroup. As is the
case with nominal subgroup discovery, there are statistical measures available which can deal with
continuous attributes, such as the mean itself, or the t statistic.

Previous research on regressional rule learning focused on finding new quality measures (for
subgroup discovery) and dealing with numeric target attributes (and rule learning in general) can
be found in [45, 41, 20, 24]. Quality measures for regressional subgroup discovery will be discussed
in Chapter 7.

5.1.3 Ordinal Subgroup Discovery

Another interesting target type is the ordinal one. Ordinal targets are targets where the order of
the target values captures information, consider for instance the ranking of athletes, where the top
ranked athletes are the best athletes. Ordinal targets are usually numeric or can be represented
numerically. Let’s consider for example the fictitious datasets shown in Table 5. Here, we have two
datasets containing 10 elements, where the target of each element is its size. On the left, the size
is recorded by choosing from textual categories. Evidently, this textual category can be translated
into a numeric one, which is already done in the example. The category “tiny” is represented by
the number 1, whereas the highest category (huge) is represented by the number 5. This gives
us a numeric order on the target, ranging from 1 to 5. Furthermore, let’s assume that larger
elements are preferred over smaller ones. This assumption can give us a ranking on the elements,
as depicted in the column rankpartial. On the right, the size is recorded as a number, where the
ranking of these elements is shown in column rankcomplete. As can be seen, when a complete
ranking can be constructed, there are no two elements with the same underlying numeric target.
On the other hand, whenever there are individuals with equal target values, the ranking derived
from the target is called an partial ranking.

Let’s assume that ordinal targets are always numeric, since each type can be changed into a
numeric one, whilst preserving the order. Then, interesting subgroups can be found through the
techniques of regressional subgroup discovery. Although this is a good start, this approach plainly
ignores the characteristics of the target, namely the ordering. It is not enough just to compare
the distributions on the target of subgroups by the usual metrics, such as mean and standard
deviation, like in the case of numeric targets. Especially if we are only interested in specific
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individuals, such as top-ranked individuals. In the case of ordinal targets, no assumptions can be
made on the distribution of the target attribute. This specifically calls for quality measures that
can deal with a biased search, such as searching for the biggest elements or the best performing
athletes.

Although ordinal targets and quality measures on such targets are not well-researched in the
field of computer science, there is a strong interest from the field of behavioural sciences [4, 19].
The approaches presented there assume that the ordinal target only contains a (small) finite set
of categories, or the target is modified into a finite set of categories [4, 26, 27]. Sometimes, the
target is bluntly discretized or even binarized [15, 27].

Such alterations, like limiting the number of categories for the target, might not be justified.
When considering the case of the ranking of athletes, where the ranking or even their running
times can be used as a target attribute, the number of possible categories is infinite. This calls
for a different approach on ordinal targets, where quality measures can deal with both finite and
infinite ordinal targets. The discussion on quality measures for ordinal targets is continued in
chapter 7.
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Rankcomplete Rankpartial Target s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
1 1.5 0.150 1 0 1 0 1 1 0 1 0 1
2 1.5 0.150 1 0 1 0 1 0 1 1 0 1
3 3 0.140 1 1 1 0 1 1 0 1 0 1
4 4.5 0.130 1 1 0 0 1 0 1 1 0 1
5 4.5 0.130 1 1 0 0 1 1 0 1 1 1
6 6 0.110 1 1 1 1 0 0 1 1 1 0
7 7 0.100 1 1 1 1 0 1 0 1 1 0
8 9 0.090 1 1 0 1 0 0 1 0 1 0
9 9 0.090 1 1 1 1 0 1 0 0 1 0
10 9 0.090 1 1 0 1 0 0 1 0 1 0
11 11.5 0.070 0 1 0 1 0 1 0 0 1 0
12 11.5 0.070 0 1 0 1 0 0 1 0 0 0
13 13.5 0.035 0 0 1 1 1 1 0 0 0 0
14 13.5 0.035 0 0 0 1 1 0 1 1 0 0
15 15 0.001 0 0 1 1 1 1 0 1 0 0
subgroup size 10 10 8 10 8 8 7 9 7 5

Table 6: Subgroups in a dataset (including the auxiliary complete ranking)

6 Intuitions on Subgroups

As explained in Chapter 5, subgroup discovery uses quality measures to calculate the quality of the
subgroup. Subgroups, like quality measures, have certain characteristics, where the characteristics
determine which subgroup is better, i.e. which subgroup should receive a higher evaluation value.
The characteristics of quality measures are not always the same. Thus, it can be the case that the
subgroup defined as best by one quality measure is not classified as such when using a different
quality measure.

Furthermore, an analyst performing the subgroup discovery might also have certain ideas on
what kind of characteristics good subgroups have. In other words, a user can have wishes on the
characteristics of subgroups that should be generated. Such wishes can be translated into quality
intuitions on subgroups. Since the characteristics of quality measures also determine what kind of
subgroups are found, quality intuitions and quality measure characteristics are strongly related.

Each quality measure has a way to calculate the target attribute distribution of the subgroup,
and some also have a way to calculate how different the target distribution of the subgroup is
compared to the target distribution of the whole population, i.e. the dataset. Nevertheless, the
calculation differs for each quality measure. The measures use certain factors (characteristics) of
the subgroups, such as the subgroup size. Thus, quality intuitions are derived from the factors of
a subgroup.

6.1 Preliminaries

Quality intuitions and quality measures on subgroups are best explained through examples. For
this reason, a fictitious dataset is created, and depicted in Table 6. This dataset will also be
used in further chapters. As can be seen from Table 6, our exemplary dataset consists of only
15 individuals. These individuals, and to which of the 10 subgroups they belong, are depicted
on the right side of the table. The first three columns denote the different target types, where
target stands for the original numeric target and rankpartial denotes the partial ranking made from
the original target. Rankcomplete is the complete ranking produced from the data, where ties in
the partial ranking are cut arbitrarily. Although the order and ties of the original ranking should
always be captured in the artificial ranking, the complete ranking is added since it is helpful to
get a better understanding of quality intuitions and quality measures.

The subgroups in the table are denoted by si, where i is the identifier of the subgroup. The
individuals covered by a subgroup are denoted by the value ‘1’, whereas ‘0’ means that the indivi-
dual is not present in the subgroup. As explained earlier, certain factors can be taken into account
in order to define the quality of a subgroup. One such factor is the subgroup size. The subgroup
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size of si is denoted by ni. For instance, the size of subgroup s1 is n1 = 10. Moreover, there are
several factors that can be used to calculate for instance the target distribution of the subgroup,
or to compare this distribution to the target distribution of the population. In the case of nominal
targets, the distribution of the subgroup can be defined as the probability that an individual in
the subgroup has the desired target value. This can be done by counting the individuals with
the desired target value and dividing this number by the total number of individuals present in
the subgroup. For nominal targets it is of course clear what kind of target value is desired, thus
calculating the distribution is not that difficult. However, when considering numeric and ordinal
targets, just counting individuals is not enough, since it is not clear how we should define which
target values are desirable. For this purpose, standard statistical metrics of distributions are used,
such as the mean and variance (standard deviation) of a subgroup. Hence, these metrics are de-
fined as follows. The mean of subgroup si is denoted by µi, and the standard deviation, which is
the square root of the variance, is depicted by σi. For instance, for subgroup s1 with the original
target, the mean is µ1 ≈ 0.118, and the standard deviation is σ1 ≈ 0.025.

The goal here is to qualify subgroups, where the quality depends on intuitions. Therefore, we
define the quality of subgroup si as qi, where the quality is solely dependent on the intuition at
hand. All intuitions presented here are applicable to both numeric and ordinal target types, unless
stated otherwise. Although the focus here is on intuitions for numeric and ordinal targets, they
are in essence also applicable to nominal targets.

6.2 Defining Quality Intuitions

One of the most interesting intuitions considers the size of the subgroup. Experts can for instance
search for descriptive patterns, where the patterns cover many individuals in the dataset. One
reason to search for large subgroups, is that the patterns accompanying these subgroups are very
generic. In such a case, the pattern can reveal a very common relation in the data. This intuition
can be stated as follows: if two subgroups, si and sj , are completely equal except for their size,
then the subgroup with the biggest size has the highest quality. To put it more formally:

Intuition 1 (Subgroup size maximization) Given subgroups si, sj, for which the following
holds: µi = µj, σi = σj, and ni > nj, then qi > qj

In some cases, an expert might be interested in relatively small subgroups. Such subgroups
render patterns that are highly specific. For these subgroups the opposite of the subgroup size
maximization is desired: the minimization of the subgroup size. The intuition can be changed
accordingly: given two subgroups which are exactly the same except for their size, then the smallest
subgroup is of a better quality.

Intuition 2 (Subgroup size minimization) Given subgroups si, sj, for which the following
holds: µi = µj, σi = σj, and ni < nj, then qi > qj

As can be seen, the second intuition, subgroup size minimization, is the exact opposite of the
subgroup size maximization.

Apart from the subgroup size, there are several other important characteristics of subgroups.
For instance, how the individuals of a subgroup are spread throughout the population, in other
words, how the individuals are clustered. If individuals are evenly distributed in the population
with respect to their target attribute values, the subgroup itself is not considered to be very
different from the population. Consequently, the interestingness of a subgroup becomes highly
questionable whenever the individuals of a subgroup are evenly distributed (i.e. the individuals
are loosely clustered). The variance or standard deviation of the subgroup is a good metric to
calculate the spread of subgroup individuals, since the variance generally tells us how closely the
subgroup individuals are to the subgroup mean. Thus, given that two subgroups have equal size
and have the same mean, but a different standard deviation, then the individuals of the subgroup
with the highest deviation are more evenly spread throughout the population. This subgroup is
then considered to be of lesser quality. Formally:
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Intuition 3 (Spread of individuals (Deviation)) Given subgroups si, sj, for which the fol-
lowing holds: ni = nj, µi = µj, then qi > qj iff σi < σj

Consider for instance subgroups s7 and s9 in Table 6, with the complete ranking as the target.
Both have equal sizes and equal means: n7 = n9 = 7 and µ7 = µ9 = 8. Their standard deviations
are σ7 ≈ 4.32 and σ9 ≈ 2.16. Thus, subgroup s9, which has a viewable smaller spread of individuals
(the individuals are more tightly clustered) than subgroup s7, is better compared to subgroup s7
given Intuition 3.

The position of the subgroup individuals, i.e. the position of the cluster, is another interesting
factor. Instead of determining that each tight cluster is equally good, the analyst might also have
a preference for a certain position of the cluster. For instance, any cluster is good, as long as
it is not clustered around the population mean. Thus, if there are two subgroups for which the
individuals have an equal spread throughout the population (i.e. they have the same standard
deviation), but the clusters of individuals have a different mean, then the subgroup with the best
mean is considered the best subgroup. Take for instance the complete ranking as the target, where
individuals with a top rank (small ranking number) are desired over individuals with bottom ranks.
Then, the mean should be small for a subgroup to be qualified as a better subgroup.

Intuition 4 (Cluster position) Given subgroups si, sj, with equal sizes ni = nj and equal stan-
dard deviations σi = σj. Then, qi > qj iff µi < µj in the case of mean minimization. Consequently,
qi > qj iff µi > µj in the case of mean maximization.

Let’s consider subgroups s1 and s4 from Table 6, given the complete ranking as the target. For
this target, we wish to minimize the mean, since individuals with top ranks are considered to be
better. Both subgroups have an equal standard deviation: σ1 = σ4 ≈ 3.028. The means of these
subgroups are µ1 = 5.5 and µ4 = 10.5. Then, subgroup s1 is considered to be better given Intuition
4. Due to the definition of this intuition, it is specifically applicable to ordinal targets. For ordinal
targets it is our prime goal to find subgroups with a preference toward a cluster position, such as
the minimization of the mean when a ranking is used as the target.

Analogous to the cluster position intuition, we can formulate an intuition about the difference in
target attribute distribution. To be more precise, subgroups are generally considered more interes-
ting whenever their target attribute distribution is different from the target attribute distribution
given the whole population. Consequently, if the target distribution of one subgroup differs more
from the population target distribution than the target distribution of another subgroup, then the
first subgroup is considered to be better. Whether two distributions differ, can be calculated by
substracting their target means with the population target mean.

Intuition 5 (Distribution difference) Given subgroups si, sj, with equal sizes ni = nj, stan-
dard deviations σi = σj, and unequal means µi 6= µj. Consider population p with mean µp. Then
qi > qj iff |µi − µp| > |µj − µp|

Let’s again consider subgroups s1 and s4 in Table 6, together with subgroup s2, given the complete
ranking as the target. All three have the same standard deviation (σ ≈ 3.028), but have different
means: µ1 = 5.5, µ2 = 7.5, µ4 = 10.5. The population mean is µp = 8. Subgroups s1 and s4 are
of equal quality, their difference is |µ1 − µp| = |µ4 − µp| = 2.5. Subgroup s2 however, is of lesser
quality: |µ2 − µp| = 0.5.

6.3 Quality Intuitions versus Quality Measures

As explained earlier, the quality intuitions presented here are derivations of wishes an analyst might
have considering the quality of the subgroups that are found. Of course, since these intuitions
are used to describe characteristics of subgroups, they can be used to describe characteristics of
quality measures as well. Nevertheless, one has to keep in mind that not all intuitions necessarily
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have to be applicable to a quality measure or a subgroup at once. The quality intuitions can also
be viewed as features that might hold for a quality measure, up to a certain degree. For most
quality measures, several of the intuitions are applicable at once, although not with equal weight.
Thus, defining which quality measures to use given the wish list of a user, is a matter of deciding
which wishes are more important. To what extent the intuitions are applicable to the measures,
is discussed in Chapter 7.
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7 Quality Measures

The evaluation values calculated by the quality measures define the quality of subgroups. To
calculate the evaluation values, several (statistical) metrics can be used. These metrics tell some-
thing about the characteristics of the subgroup, such as the deviation of the subgroup individuals.
Although quality measures are based on statistical metrics and statistical tests, they are not com-
pletely the same. The quality measures have to be looked upon as heuristics and are only usable
for evaluation.

As such, several requirements and assumptions accompanying the statistical metrics and tests
do not have to be met. Consequently, if a data analyst wishes to make statistical inferences based
on the metrics and test statistics, this should be done with great caution. For instance, for some
quality measures, the evaluation values can be used to tell how significant a subgroup is. During
mining, none of the requirements needed to obtain a confidence level, such as hypothesis testing
and correction upon multiple hypothesis testing, are met. The approach to treat measures as
heuristics is not novel, but has a rich background in the field of subgroup discovery and rule
evaluation methods [24, 16, 3].

Only quality measures which are capable to deal with ordinal or numeric target attributes are
presented here, since subgroup discovery is enhanced to find subgroups with such target attributes.
For quality measures on nominal target attributes, the reader is referred to Chapter 5 and articles
on subgroup discovery on nominal target attributes, such as [3, 30].

7.1 Preliminaries

Most quality measures make use of standard statistical metrics on a subgroup s and the population
p. The population meant here is the complete dataset that is available for mining [24, 20, 38, 41, 3].
As such, the definition of the population is by no means equal to a population seen from a statistical
point of view. The dataset is just treated as if it is a population from which a random sample
– the subgroup – is drawn. Strictly speaking, the dataset itself is also just a random sample.
Here, the statistics on the dataset are used as population estimates. This is statistically somewhat
problematic. It would be more sound not to treat the dataset as the population, but to divide
the dataset into all individuals covered by the subgroup and all individuals not covered by the
subgroup: the complement of the subgroup. This calls for two-sample tests on subgroups (and their
complements) whenever two distributions are compared. It is currently unclear whether treating
the dataset in a proper way would result in better subgroups. Nevertheless, it is believed that,
as long as the subgroups are viewed as being highly informative and are not used for statistical
inferences, the current approach is not problematic. One benefit of this assumption is that the
computation of statistics (and tests) can be done relatively easy, as opposed to when the subgroup
and the dataset are treated properly from a statistical point of view. Furthermore, this approach
enables subgroup discovery to produce rules that might not be statistically highly interesting,
although they can be informative to the user.

One of the most important metrics used, is the size of either the subgroup and the population.
These sizes are denoted by ns and np respectively. Some standard statistical metrics used are
the average and standard deviation. The estimated mean of the target values of the subgroup is

denoted by µs =

∑ns

i=1
ti

ns
, the estimated mean of the target values of the population is µp =

∑np

i=1
ti

np
.

Whenever the standard deviation is mentioned, the standard deviation from the estimated variance
is meant, despite the use of the σ for these deviations. Although there are several estimators known,
we chose to use the unbiased estimator of the variance for both the population and the subgroup
target attribute standard deviations: σ̂2

t = 1
nt−1

∑n
i=1(ti − µt). The standard deviation is then

just the square root of the variance estimator: σt =
√
σ̂2
t . Thus, σp and σs stand for the estimated

standard deviations of the population target values and the subgroup target values.

27



Rankcomplete Rankpartial Target s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
1 1.5 0.150 1 0 1 0 1 1 0 1 0 1
2 1.5 0.150 1 0 1 0 1 0 1 1 0 1
3 3 0.140 1 1 1 0 1 1 0 1 0 1
4 4.5 0.130 1 1 0 0 1 0 1 1 0 1
5 4.5 0.130 1 1 0 0 1 1 0 1 1 1
6 6 0.110 1 1 1 1 0 0 1 1 1 0
7 7 0.100 1 1 1 1 0 1 0 1 1 0
8 9 0.090 1 1 0 1 0 0 1 0 1 0
9 9 0.090 1 1 1 1 0 1 0 0 1 0
10 9 0.090 1 1 0 1 0 0 1 0 1 0
11 11.5 0.070 0 1 0 1 0 1 0 0 1 0
12 11.5 0.070 0 1 0 1 0 0 1 0 0 0
13 13.5 0.035 0 0 1 1 1 1 0 0 0 0
14 13.5 0.035 0 0 0 1 1 0 1 1 0 0
15 15 0.001 0 0 1 1 1 1 0 1 0 0
subgroup size 10 10 8 10 8 8 7 9 7 5

Table 7: Subgroups in a datase (including the auxiliary complete ranking)

In the case of quality measures for ordinal targets, some metrics need to be redefined. Here, the
means of a subgroup or the population µs and µp are the means of the ranks, unless stated oth-
erwise. Accordingly for the standard deviation, which becomes the estimated standard deviation
of the ranks.

Some measures do not compare the distribution of the subgroup to the distribution of the
population, but to the distribution of the complement of the subgroup: c = p− s. The size of the
complement is thus nc = np − ns.

If needed, the dataset from Chapter 6, depicted here in Table 7, is used to gain a better
understanding of quality measures.

7.2 Quality Measures for Regressional Subgroup Discovery

Most quality measures currently available and used for numeric target attributes are derived from
statistical measures or tests, which are applicable to numeric attributes in general. Thus, the
measures presented here are also capable of dealing with complete and partial rankings, although
they are not specifically designed for ordinal numeric attributes.

7.2.1 Average

A relatively simple and effective quality measure is the average µs [10, 6] of a subgroup. Depending
on the subgroup search objectives, a maximum of all averages or minimum of all averages is best.
For instance, if the ranking on the original targets is used as target for subgroup discovery, then
usually the top ranked individuals are considered best. In this case, the subgroup discovery
algorithm using the average as quality measure should return subgroups with the lowest average
on top (minimization). Given the list of subgroup target attribute values ts with size ns, then the
mean is calculated as follows:

Definition 1 (Average) ϕavg(s) =

∑ns

i=1
ti

ns

7.2.2 Mean Test

A more complex measure is the mean test. This measure was introduced by Klösgen [24], and
adopted by Grosskreutz [20]. The latter has applied the mean test as a quality measure in subgroup
discovery on numeric targets. The mean test is capable to compare the distribution of the target
attribute in the subgroup to the distribution in the whole population, as opposed to the mean
itself. Furthermore, it also takes the size of the subgroup into account.
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Definition 2 (Mean test) Given subgroup size ns, subgroup mean µs and population mean µp,
then ϕmt(s)=

√
ns(µs − µp)

7.2.3 Z-Score

The z-score [10, 6] is a metric that measures how many standard deviations an individual is away
from the population mean. Here, we are not interested in the z-score of just one individual, but
in the z-score of the whole subgroup, which is a set of individuals. The z-score for a group of
individuals can be calculated by the standardized version of the z-score [38]:

Definition 3 (Standardized z-score) Given subgroup mean µs, population mean µp, popula-

tion standard deviation σp and subgroup size ns, ϕz(s) =
µs−µp
(
σp√
ns

)
=
√
ns(µs−µp)

σp

The standardized z-score measures how far the mean of the subgroup is away from the mean of
the population, in terms of standard deviations. The bigger the value for the z-score, the bigger
the difference between the population and the subgroup. The z-score has a strong background in
the normalization of data.

ϕz(s) and ϕmt(s) are strongly related in the sense that they are order equivalent: ϕmt(s)∼ϕz(s).
Order equivalence is defined as follows:

Definition 4 (Order equivalence) Two functions ϕ1(s) and ϕ2(s) are order equivalent ϕ1(s) ∼
ϕ2(s), iff ϕ1(s1) > ϕ1(s2)→ ϕ2(s1) > ϕ2(s2) ∧ ϕ1(s1) = ϕ1(s2)→ ϕ2(s1) = ϕ2(s2) ∀s1, s2 ∈ s.

ϕmt(s) and ϕz(s) are order equivalent given ϕz(s) = ϕmt(s)
σp

. Dividing a quality measure by

any constant, such as σp, does not affect the internal order of subgroups, given the old and new

quality measures. If ϕz(s1) > ϕz(s2), then ϕmt(s1)
σp

> ϕmt(s2)
σp

≡ ϕmt(s1) > ϕmt(s2). Equivalently,

if ϕz(s1) = ϕz(s2) then ϕmt(s1)
σp

= ϕmt(s2)
σp

≡ ϕmt(s1) = ϕmt(s2). When two quality measures are

order equivalent, the underlying order of subgroups is equal for both functions, although evaluation
values may differ.

Although the value of the ϕz(s) itself is already highly interesting, it is also interesting to see
whether subgroups are significant and to what level. Furthermore, although the value returned
by Safarii is not suitable to determine significance levels, it can be used to approximate the
significance1. To obtain the significance level, the p-value can be looked up using the ϕz(s)-
value. The p-value for a certain ϕz(s)-value can be found in the table of z-values of the normal
distribution, which is depicted in Appendix C.1. For example, let’s consider subgroup s4 from table
7, with the original target. For this subgroup, the metrics needed for the z-score are µs ≈ 0.069,
µp ≈ 0.093, σp ≈ 0.045, and ns = 10, given the raw target as target attribute. This results in

ϕz(s4) =
√
10(0.069−0.093)

0.045 ≈ −1.687 ≈ −1.69. To look up the p-value, this number has to be
chopped in two portions: 1.6 and 0.09. The p-value can be found at the intersection of the row
of 1.6 with the column of 0.09. Thus, the p-value of s4 is 0.9545. In other words, subgroup s4
and the population are distributed differently with a confidence of 95%. A good rule of thumb
for using the ϕz(s) is that the further the value is away from 0, the more significant the subgroup
is. The z-score is also one of the tests the SEGS tool to find enriched gene sets uses, in order
to classify gene sets [38, 40]. For more information on the z-score, the reader is referred to any
statistics handbook, such as [6, 10].

7.2.4 t Statistic

A somewhat different statistic than the z-score is the t statistic that is used in the Student’s t test
[10, 6]. The t statistic is much more accurate for smaller sample sizes, and thus more suited when
subgroup sizes can or should be small. To obtain a higher accuracy, the statistic uses the subgroup

1For all quality measures directly derived from statistical tests, it holds that values returned by Safarii can
be used to approximate the significance level, although the obtained level does not have the proper statistical
validation.
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deviation instead of the population deviation. This makes the t statistic also more sensitive to
differences in variances in subgroups.

Definition 5 (t-Statistic) Given subgroup mean µs, population mean µp, subgroup standard de-

viation σs and subgroup size ns, then ϕt(s) =
µs−µp
( σs√

ns
)

=
√
ns(µs−µp)

σs

Like in the case of the z-score, the higher the value for the t statistic (or lower, for a negative
difference), the more significant the difference is, and the more interesting the subgroup is. Let’s
take a look at subgroup s4 with the original target. It has the following metrics: µs ≈ 0.069,

µp ≈ 0.093, σs ≈ 0.035, and ns = 10. Then, ϕt(s4) ≈
√
10(0.069−0.093)

0.035 = −2.168. To obtain the
p-value for this ϕt(s4) value, one has to look up the p-value in the table of the t distribution, such
as the one in Appendix C.2 [6, 10]. To do so, the degrees of freedom is needed. The degrees of
freedom is the sample size (here: the subgroup size) minus one. For instance, for the example
shown above, the degrees of freedom is df = 10− 1 = 9. Then, with the ϕt(s)-value for subgroup
s4 and df = 9, the p-value lies between 0.95 and 0.975, but is more close to the latter. Subgroup
s4 therefore has an approximated significance level of at least 95%. For more information on the
Student’s t-test and the t statistic, the reader is referred to any statistics handbook, such as [6, 10].

7.2.5 Median χ2 Statistic

The median χ2 statistic [10, 6] does not define the difference in distributions through the mean of
either the subgroup or the population, but uses the median of the population instead. The median
is a more robust metric than the mean, since it is less sensitive to outliers in the data. Seen from a
statistical point of view, no assumptions on the underlying distribution have to be met, it is thus
a nonparametric test.

The test works as follows. The median χ2 statistic takes the individuals in both the subgroup
and the population, and divides them in whether the target attribute value of the individual lies
above or below the population median medp. If the target value of the individual is equal to
the population median, it is grouped with the individuals whose value lie below the population
median. A schematic view of the information needed by the median χ2 statistic is given in table
8.

Above medp At or below medp
Subgroup Sa Sb

Population Pa Pb

Table 8: Counts of individuals for the median χ2 statistic

In table 8, Sa and Pa represent the number of individuals in both the subgroup and the
population whose target values lie above the population median. Accordingly, Sb and Pb are the
numbers of records (individuals) whose target value is at or below the population median, for
the subgroup and the population respectively. Using these counts, statistical tests can be used
to tell whether the distribution of the subgroup is (significantly) different from the population
distribution. One such test, although not the most sensitive one, is the χ2 test. Despite the
insensitivity of this test, it is easily implemented and gains sensitivity with sufficiently large record
counts.

Definition 6 (Median χ2 statistic) Given subgroup and population counts Sa, Sb and Pa, Pb,

then ϕχ2(s) = (Sa−Pa)2
Pa

+ (Sb−Pb)2
Pb

Although the degrees of freedom df is not compulsory for subgroup discovery, it is needed if
one wishes to get an approximation of the significance of the subgroup. The degrees of freedom
here is solely dependent on the number of categories being compared, in this case whether the
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value of an individual lies above or below the population median. Thus, there are only 2 categories
here, resulting in a degrees of freedom df = 2− 1 = 1.

Let’s again look at subgroup s4, using the original target as target attribute. The population
median is medp = 0.09, resulting in Pa = 7 and Pb = 8. The counts for s4 are Sa = 2 and Sb = 8.

Thus, after substitution in the formula for the median χ2 statistic ϕχ2(s4) = (2−7)2
7 + (8−8)2

8 ≈
3.571. If one wishes to retrieve an approximation of the significance of the subgroup, one has to
look up the p-value in the table of the χ2-distribution, such as the one in Appendix C.3. Looking
up the value for ϕχ2(s4), gives a p-value which lies between 0.9 and 0.95, although it is more close
to 0.95. Thus, the significance of subgroup s4 is at least 90%.

Unfortunately, this measure does not make a difference between subgroups where the majority
of individuals have a target value above the median or below the median. Therefore, when such
subgroups should be treated as distinct subgroups, this measure is not the best to use. On the
positive side, this measure can be used given any target type, numeric or ordinal. Still, as already
mentioned, this measure is not very sensitive. It only works well if the counts of each cell in table
8 are at least 1.5, although a minimum of 5 is preferred [6, 10].

7.3 Quality Measures for Ordinal Subgroup Discovery

As explained previously, ordinal target attributes display a certain ordering, and usually the best
individual has the top rank, i.e. 1. As stated earlier, there are two types of ranking, the complete
and the partial ranking. A complete ranking is a ranking where all underlying target values are
different. In the partial ranking, there exist ties between the target values of individuals. The first
and second column of Table 7 give examples of a complete and partial ranking, remember that
the complete ranking here is auxiliary.

From a statistical point of view, ordinal data is data for which it is not known from what kind
of distribution the data originates. More specifically, it is assumed that such data does not even
follow a distribution. Therefore, in the field of statistics, nonparametric tests are used to make
inferences on ordinal data. Thus, the quality measures used for subgroup discovery on ordinal
data are either based on nonparametric tests or inspired by them.

Nonparametric tests, and therefore the measures derived by and inspired on them, are less
sensitive than their parametric counterparts, such as the t-test and z-score. This is due to the
fact that for nonparametric statistics no assumptions on the underlying data are made, resulting
in less specific information (and inferences) on the data at hand. Usually a drop in sensitivity is
accompanied by an increase in robustness: due to the absence of specific information on the data,
the inferences on the data should be more general to be powerful, resulting in more robust tests.
Accordingly, the measures presented here are less sensitive, but more robust.

For all measures in this section and in order to use them in Safarii, it is assumed that the
ranking of the target attribute is added to the dataset by the data analyst as a preprocessing step.
Moreover, it is assumed that rankings are in ascending order, rendering the top ranked individuals
to be the more desirable ones. Furthermore, the measures presented here only work on rankings,
both partial and complete, unless stated otherwise.

7.3.1 AUC of ROC

The area under the Receiver Operating Characteristic (ROC) curve [21, 16] is traditionally a
metric to compare the performance of classifiers. In such classification tasks, the target attribute
variable is binary: there are only two class types considered, class = 1 and class = 0 [21]. Ordinal
target attributes, however, do not separate individuals into classes 0 and l. The AUC of ROC
can be modified in such a way that it can measure how interspersed the individuals of a subgroup
are in the overall population. In other words, this measure is very useful in order to define the
position of the subgroup individuals in the population and if they are grouped together or more
spread out. To do so, the AUC of ROC divides the individuals into ’belonging to the subgroup’
and ’not belonging to the subgroup (thus belonging to the complement)’:
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Figure 7: ϕroc(s) scores for subgroup s1 and s3 respectively

Definition 7 (AUC of ROC for ordinal targets) Given subgroup s, its complement c, the
sum of ranks of the complement of the subgroup ςc, subgroup size ns and complement size nc, then

ϕroc(s) =
ςc−nc(nc+1)

2

ncns

The ϕroc(s) measure can only be used on complete rankings. The highest possible result is 1 for
the best subgroup, whereas the worst subgroup will receive a 0. For a subgroup to return a 1, all
individuals of the subgroup should be grouped together, and the first individual is the top ranked
individual of the population. If the measure returns a 0, this means again that all individuals
are grouped together, but now the individual with the worst rank also has the worst rank in the
population ranking. All other values indicate that the individuals are either not closely packed
and/or the best (or worst) individual is not present in the subgroup. The size of the subgroup
does not affect the value of ϕroc(s).

In short, this measure does the following. It starts on point (0, 0) on the ROC curve, and for
every individual it takes a 1

ns
step up (denoted by a +) if it is present in the subgroup, and a

1
nc

step to the right (denoted by a −) if it is not. Let’s consider subgroups s1 and s3 from table
7. For subgroup s1, there are 10 individuals in the subgroup, all grouped together, resulting in
the following walking pattern: (+,+,+,+,+,+,+,+,+,+,−,−,−,−,−). Subgroup s3 shows a
different walking pattern: (+,+,+,−,−,+,+,−,+,−,−,−,+,−,+). The two walking patterns

result in the following areas under the curve: ϕroc(s1) =
65− 5(5+1)

2

5·10 = 1, and ϕroc(s3) =
64− 7(7+1)

2

7·8 ≈
0.64. The walking patterns and the values of ϕroc(s1) and ϕroc(s3) are shown in figure 7.

7.3.2 Wilcoxon-Mann-Whitney Ranks statistic

The Wilcoxon-Mann-Whitney Ranks (wmw) statistic [10, 6], is derived from the nonparametric
Wilcoxon-Mann-Whitney Ranks test. It has a strong relation to the z-score, since it calculates the
difference of the means of the ranks through the z-statistic. Instead of comparing the population
distribution directly with the subgroup distribution, the distribution of the subgroup is compared
to the distribution of the complement of the subgroup. If both distributions are the same, i.e. the
wmw statistic is near 0, then the population distribution is equal to the subgroup distribution.
If the distribution of the subgroup and its complement are not the same, the individuals of the
subgroup are differently dispersed throughout the population distribution than the individuals of
the complement [6, 10].
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Definition 8 (Wilcoxon-Mann-Whitney Ranks statistic) Given subgroup size ns and sub-
group complement size nc, sum of ranks of the subgroup ςs, rank mean of the population µp =
ns(np+1)

2 and rank deviation of the population σp =
√

nsnc(np+1)
12 , then ϕwmw(s) =

ςs−µp
σp

Like in the case of the ϕz(s) and ϕt(s) measures, the value returned by this metric can be
either positive or negative. When the value is positive, the subgroup mean of ranks is larger than
the subgroup complement mean (and thus the population mean), indicating that the individuals
of the subgroup are concentrated among the bottom ranks. When this value is negative, the
majority of the individuals of the subgroup are grouped near the top ranks. And similar to the
ϕz(s) and ϕt(s), the further away the returned value is from 0, the more significant the found
subgroup is. To check upon an approximation of the significance level, the p-value can be looked
up in Appendix C.2.

Let’s again look at an example, such as subgroup s1 from table 6, with target attribute
rankpartial. Here, ns = 10, nc = 5, ςs = 55, µp = 80, and σp ≈ 8.16. Then, ϕwmw(s) =
55−80
8.16 ≈ −3.06, with df = ns− 9. Given the Appendix C.2, the (approximated) p-value is at least
p = 0.99.

7.3.3 Median MAD Metric

Apart from the tests described above, a new metric was developed. This new metric maximizes on
the subgroup size and minimizes on the median and median absolute deviation, the mad. This test
is strictly only applicable to both complete and partial rankings. The test does not compare the
subgroup distribution to the population distribution, but just calculates a ratio for the subgroup
size and the position of the individuals (cluster) in the subgroup.

Definition 9 (Median MAD metric) Given subgroup median size ns, subgroup median ms

and subgroup median absolute deviation mads, then ϕmmad(s) = ns
2·ms+mads

The median absolute deviation [10] is defined as follows:

Definition 10 (Median Absolute Deviation (mad)) Given the target attribute list ts = t1, t2, . . . , tk
of the subgroup with median ms, then mads(ts) = median(y), where y = {|t1 −ms|, |t2 −ms|, . . . , |tk −ms|}

As stated previously, the quality measures for ordinal targets are usually somehow derived
from or inspired by nonparametric tests. One of the characteristics of such tests is that they are
usually more robust to anomalies in the data. Apart from robust tests, the field of statistics also
has some standard metrics which are more robust, metrics that are less sensitive to anomalies such
as outliers. Two of such metrics are the median and the median absolute deviation, where the
latter is similar to the standard deviation of the mean. One of the reasons to develop a whole new
quality measure, is that there are not many quality measures currently available which sufficiently
take the size of the subgroup into account, even though the coverage of a subgroup can be an
important characteristic of the subgroup. Apart from that, it can be argued that for the sake
of generality, the qualification of a subgroup should not suffer too much from a few anomalies
in the data, especially if the subgroup is considerably large. All these considerations call for a
different heuristic than the ones presented earlier. The new heuristic is specifically designed to
give a higher qualification to larger subgroups, hence the factor ns in the numerator. To make
sure that subgroups where the majority of individuals (despite some anomalies) are highly ranked,
are preferred over other subgroups, the median and median absolute deviation of the subgroup are
calculated. Of course, the median and median absolute deviation should be as small as possible.
The median is given a higher weight than the median standard deviation for obvious reasons,
the requirement that the majority of the individuals should be among the top ranks is stronger
than whether these individuals are too dispersed throughout the population. Part of the latter
requirement is also met by the median itself. Hence, to minimize on the median and deviation of
the median, they are grouped together in the denominator of the equation. One can wonder why
the deviation is added to the median instead of multiplied by it. The reason for this is that it is
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ϕavg ϕmt ϕz ϕt ϕχ2 ϕroc ϕwmw ϕmmad
Numeric/Ordinal targets both both both both both ordinal ordinal ordinal
Complete/Partial ranking both both both both both complete both both
Symmetric no yes yes yes no no yes no
Distribution information s s&p s&p s&p s&p s&c s&c s
p-value approximation no no yes yes yes no yes no

Table 9: Quality measures and their characteristics

relatively common to obtain a 0 for the median deviation. For instance, consider the situation in
which a subgroup only contains four elements with the following ranks: (2, 2, 2, 4). The median
of this subgroup would then of course be 2. The vector for the absolute deviations would thus be
(0, 0, 0, 2), for which the median is 0. Due to the characteristics of the median and its deviation, it
was chosen to add the median and the deviation instead of multiplying them, to avoid a division
by 0.

All in all, the ϕmmad(s) maximizes on the size of the subgroup, and minimizes on the median
and deviation of the subgroup, hence showing a bias toward subgroups where the majority of the
individuals have top ranks. Since this measure is completely new, it is important to get a feeling of
the performance of this measure. Consider subgroups s1 and s2 from table 7 with rankpartial as the
target. Subgroups s1 and s2 have the following target values: ts1 = 1.5, 1.5, 3, 4.5, 4.5, 6, 7, 9, 9, 9
and ts2 = 3, 4.5, 4.5, 6, 7, 9, 9, 9, 11.5, 11.5. The medians of these subgroups are ms1 = 5.25 and
ms2 = 8. Then, the deviations are: ys1 = 3.75, 3.75, 2.25, 0.75, 0.75, 0.75, 1.75, 3.75, 3.75, 3.75 and
ys2 = 5, 3.5, 3.5, 2, 1, 1, 1, 1, 3.5, 3.5, resulting in mads1 = 3 and mads2 = 2.75 as median absolute
deviation values. Both subgroups are of equal size: ns1 = ns2 = 10. The evaluation values for the
subgroups are ϕmmad(s1) = 10

2·5.25+3 =≈ 0.741 and ϕmmad(s2) = 10
2·8+2.75 ≈ 0.533, thus subgroup

s1 is the better one.

7.4 On Quality Intuitions and Quality Measures

In order to use the presented quality measures properly, it is important to get a good understanding
of the characteristics of the quality measures. Table 9 lists the characteristics of the quality
measures. This table shows what kind of targets the measures can deal with (ordinal or numeric).
Also, whether a measure can deal with partial or complete rankings is shown here. Symmetry is
a characteristic that needs a little more explanation. Symmetry means that the values returned
by the measure are grouped around 0. Moreover, if the target distribution of the individuals
in a subgroup is symmetric to the distribution of individuals in another subgroup, then the two
subgroups would be qualified with the same value. Although the values would be symmetric,
they are distinguishable by their sign: one of the subgroup values is positive, the other is negative.
When the evaluation value of a symmetric measure is 0, the evaluated subgroup has the same target
distribution as the population. The fourth characteristic is about the distribution of the subgroup,
the population and/or the subgroup complement. It tells what kind of distribution information
the quality measure uses to evaluate a subgroup. The fifth characteristic, the possibility to retrieve
an approximation of the p-value, might seem a bit strange. It does not mean that the measure
itself returns the (approximation of the) p-value, since Safarii can not calculate the approximation.
Nevertheless, for the quality measures for which an approximation of the p-value can be made,
this approximation can be looked up in distribution tables, such as the distribution tables given
in Appendix C.

It is important to get a feeling of the performance of all quality measures, and to understand
which intuitions are covered by which measures. The understanding of the quality measures helps
to make an educated choice about which measures are suitable to use in a data mining task. The
small exemplary dataset from table 7 is used for this purpose. All subgroups in this dataset are
evaluated using the quality measures presented here. The results are depicted in table 11. As can
be seen, the quality measures were used on all targets, depending on whether the measure can deal
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ϕavg ϕmt ϕz ϕt ϕχ2 ϕroc ϕwmw ϕmmad
Configurations (max/min/abs) max&min all all all max max all max
Original target ND ND ND ND ND NA NA NA
Ranking (1 is best) min min min min max max min max
Ranking (max is best) max max max max max NA max NA

Table 10: Maximizing or minimizing on evaluation values

with the target type. The best evaluation values are in bold. Whether the best evaluation values
of the subgroups are the maximum or minimum values, depends heavily on the target attribute
and the search objective. Table 10 can be used to understand how to use the quality measures,
i.e. whether the evaluation values should be maximized or minimized. NA means that evaluation
is not possible for a given target, thus a definition of whether the measure should minimize or
maximize is not available. ND stands for not defined, i.e. it is impossible to decide whether the
measure should maximize or minimize without knowing the properties of the target attribute. For
quality measures ϕmt, ϕz, ϕt and ϕwmw, it is also possible to take the absolute value. In this
case, one is only interested in whether the individuals of a subgroup are differently distributed
given their target values, compared to the distribution of the population target values. Thus, it is
unimportant where the majority of the individuals of the subgroup lies, either left or right of the
population mean.

Below, all quality measures are informally qualified given the intuitions from Chapter 6: In-
tuitions 1 (size), 3 (spread of individuals), 4 (cluster position), and 5 (distribution difference).
Intuition 2 is left out, since this is the exact opposite of Intuition 1.

ϕavg: Only Intuition 4 holds for this measure, for obvious reasons. It can be argued that this
measure favours smaller subgroups where the individuals are grouped together, to ensure that the
mean of the subgroup sets the subgroup apart. Therefore, Intuitions 3 and 5 both hold partly.
Consequently, Intuition 1 does not hold: the larger the subgroup, the more the mean is likely to
move toward the population mean.

ϕmt: This measure is an improvement over ϕavg, in the sense that the distributions of the sub-
group and the population are compared. Equivalently, Intuitions 4 and 3 are partially applicable.
Intuitions 5 and 1 are completely applicable, since this measure maximizes both the size of the
subgroup and the difference in target distributions to evaluate the subgroup.

ϕz: ϕz and ϕmt are order equivalent, as argued before. Hence, ϕz is not particularly an im-
provement over ϕmt, and the same intuitions are applicable here. The only improvement is that
ϕz enables the user to make an approximation of the significance of a subgroup and subgroup
evaluations are comparable irrespective of the target that is used. Like ϕmt, this measure is also
available in other tools as well [38, 41].

ϕt: ϕt does take the deviation of the subgroup into account and is thus more sensitive to changes
in the spread of a subgroup with the same size. However, this measure is more likely to favour
smaller subgroups over larger onces, since smaller subgroups tend to have a smaller deviation.
Look for instance at subgroups s2 and s3, given the rankpartial as target attribute. ϕz qualifies s3
as a better subgroup, although the individuals of this subgroup show a larger deviation. Subgroup
s2, in which the individuals are closely packed, is qualified as better. Intuitions 3, 4 and 5 all hold.
Intuition 1 is not fully applicable to this measure.

ϕχ2 : ϕχ2 only measures to what extent the subgroup contains individuals which are unevenly
distributed throughout the whole population. This measure does not differentiate between in-
dividuals being above or below the population median. The problem with this quality measure
is, that it does not matter where the individuals reside. Thus, two subgroups with a different
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ϕavg ϕmt ϕz ϕt ϕχ2 ϕroc ϕwmw ϕmmad
target=Rankcomplete

s1 5.5 -7.906 -1.768 -2.611 3.571 1 -3.062 0.741
s2 7.5 -1.581 -0.354 -0.522 1.786 0.6 -0.612 0.571
s3 7 -2.828 -0.632 -0.555 3.411 0.64 -0.926 0.471
s4 10.5 7.906 1.768 2.611 3.125 0 3.062 0.426
s5 7.125 -2.475 -0.553 -0.424 3.411 0.63 -0.81 0.667
s6 8 0 0 0 3.286 0.5 0 0.4
s7 8 0 0 0 4.286 0.5 0 0.35
s8 6.333 -5.001 -1.118 -1 3.696 0.78 -1.768 0.75
s9 8 0 0 0 4.286 0.5 0 0.389
s10 3 -11.18 -2.5 -7.072 8.125 1 -3.062 0.714

target=Rankpartial
s1 5.5 -7.906 -1.781 -2.66 5 -3.062 0.741
s2 7.5 -1.581 -0.356 -0.532 2.2 -0.612 0.533
s3 7.063 -2.65 -0.597 -0.512 3.4 -0.868 0.464
s4 10.5 7.906 1.781 2.66 2.5 3.062 0.44
s5 7.125 -2.475 -0.557 -0.425 3.3 -0.81 0.667
s6 8.125 0.354 0.08 0.071 3.3 0.116 0.395
s7 7.857 -0.378 -0.085 -0.091 4.3 -0.116 0.333
s8 6.278 -5.166 -1.164 -1.056 2.7 -1.827 0.783
s9 8 0 0 0 4.6 0 0.35
s10 3 -11.18 -2.518 -7.454 7.5 -3.062 0.667

target=Targetraw
s1 0.118 0.079 1.757 3.162 3.125
s2 0.102 0.028 0.632 1.138 1.696
s3 0.097 0.011 0.251 0.21 3.696
s4 0.069 -0.076 -1.687 -2.168 3.571
s5 0.096 0.008 0.189 0.137 3.696
s6 0.09 -0.008 -0.189 -0.163 3.286
s7 0.096 0.008 0.176 0.209 4.286
s8 0.105 0.036 0.8 0.679 4.5
s9 0.097 0.011 0.235 0.557 4.286
s10 0.14 0.105 2.335 10.51 8.571

Table 11: Evaluation values on example database. Best evaluation values are in bold

ϕavg ϕmt ϕz ϕt ϕχ2 ϕroc ϕwmw ϕmmad
I1: Size −− ++ ++ + −− −− ++ ++
I3: Spread of individuals + + + ++ −− ++ + +
I4: Cluster position ++ + + + −− ++ + +
I5: Distribution difference + ++ ++ ++ ++ −− ++ +

Table 12: Informal qualification of quality measures given intuitions
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distribution of individuals can be qualified as equal. Look for instance at subgroups s7 and s9,
given the original target. ϕχ2 qualifies them as being equal, since they have the same number of
individuals whose values lie above the median and below (or at) the median. When looking at
these subgroups, one can see that the deviation of the individuals in subgroup s7 is larger than
the deviation in subgroup s9. Consequently, only Intuition 5 holds for this measure.

ϕroc: As was already mentioned at the presentation of this evaluation measure, this measure
shows a big tendency toward topmost individuals in the subgroup. This is shown by the evaluation
of subgroups s1, s10, and s8, where these subgroups contain individuals mostly or exclusively from
the top ranks. Looking at the evaluation values, ROC does not value bigger subgroups over smaller
ones, something that becomes clear when looking at subgroup s1, with size 10 and subgroup s10
with size 5, where both are evaluated equally. Due to the preference of having individuals in one
block, especially when the block covers the top individuals, Intuitions 3 and 4, are accounted for.
Unfortunately, this does not count for Intuitions 1 and 5.

ϕwmw: ϕwmw calculates the subgroup mean and deviation in such a way that it becomes highly
dependent on the subgroup, and its complement. Furthermore, both mean and standard deviation
are dependent on the sizes of the subgroup and the subgroup complement. All this ensures that
Intuition 1 is covered by ϕwmw, whereas 3 is covered partly. When looking at the evaluation of
the subgroups from the example dataset, this quality measure works fairly well. It is the only one
in which subgroups s1 and s10 tie.

ϕmmad: ϕmmad is especially designed to favour a bigger subgroup size over a small difference
in median. Furthermore, since both the median and the MAD are used, this measure has a bias
toward topmost individuals, with preferably a small deviation in the target distribution of the
individuals. Thus, this metric covers intuitions 1, and 4 and 3. When looking at subgroups s1 and
s8 for instance, it can be seen that both subgroups have almost the same size, 10 and 9 respectively.
Due to the smaller number of individuals with top rankings in subgroup s8, this subgroup gets
assigned a smaller median and median absolute deviation. Thus, ϕmmad favours s8 over s1. Both
subgroups s1 and s8 get a better qualification than subgroup s10, since the size of subgroup s10
is very small compared to the other two subgroups. One has to note, however, that the median
and mad metrics are robust metrics. Thus, ϕmmad accepts subgroups where there are a few ‘bad’
individuals, individuals which reside in the bottom of the population. Hence, although ϕmmad
does take the variance of the target distribution of the individuals into account, it is insensitive
to a small number of outliers.

Table 12 informally classifies the quality measures given the quality intuitions. The exemplary
dataset shows that all measures for numeric targets are heavily in favour of subgroup s10. Only the
ordinal quality measures show a different picture, where subgroups s1 and s8 are also categorized
as important subgroups. All in all, the choice upon quality measures for mining should be guided
by the characteristics of the quality measures and their behaviour according to the intuitions as
defined in Chapter 6. Since the choice upon quality measures also heavily depends on the data at
hand and the research questions, this discussion is continued in Chapter 8.
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8 Experiments & Results

As set out in previous chapters, the objective of this thesis study was to enhance subgroup discovery
in order to be able to perform subgroup discovery on numeric and ordinal targets. The reason for
this enhancement stems directly from the EET Pipeline project, although there are many more
applications thinkable where ordinal or numeric subgroup discovery are very useful.

The second objective of this thesis study is aggregation. More precisely, the aggregation of
genes with meta information on genes. Before aggregation, the genes are ranked according to their
expression given a neuroblastoma target, such as nbstage = 4 and event = 1. The ranking of the
genes is then used for aggregation.

The background on the aggregation and the enhancement of subgroup discovery is given in
previous chapters. Let’s now put things in perspective and take a look at the behaviour and
performance of the aggregation. Furthermore, it is important to take a closer look at the behaviour
of the new quality measures with respect to the EET Pipeline data. First, the rankings used for
aggregation are discussed, together with how they were produced. After that, the experiments
done on aggregation are discussed.

8.1 Ranking the Genes

As described in Chapter 3, the EET Pipeline project provided us with four datasets, of which one
contains clinical information and the other three contain information on gene expressions. Of the
three genomic datasets, only the mRNA dataset was chosen for this thesis study, due to the ease
with which the probes in this dataset could be mapped to genes. Two of the clinical attributes
were classified as being good targets to search for interesting genes considering neuroblastoma.
One of them is the status: event = 1. If an event has taken place, the patient has had a relapse
of the tumour, or is deceased. The other attribute is the stage of the tumour: stage = 4. Stage 4
tumours are most severe, and patients diagnosed with this type of neuroblastoma are most likely
to suffer from a relapse or death [7, 32, 9, 43].

The rankings are made using the core probeset of the mRNA data. The raw mRNA data is
acquired by measuring the expression of a large number of genetic probes, where each probe covers
only part of a gene, or in some cases, parts of more than one gene. This raw data can then be
compounded into a smaller datafile, the core probeset. In the core probeset, each probe covers at
least one gene, sometimes more than one. Instead of covering only a small part of a gene (as is
the case in the single probeset), the core probeset covers complete genes. The core probeset data,
in other words the compounded raw data, was made available by the research group in Ghent,
Belgium.

Although the raw dataset is usable for mining, it was chosen not to use the raw dataset for
further mining steps. This is due to some issues that accompany this dataset. For instance, it
is the goal to map the ranked probes to genes, but it is difficult to decide how. Before ranking?
After ranking? When done before ranking, the same compounding step is performed as described
above, and is thus obsolete. When the mapping is done after ranking, a new evaluation value
has to be chosen to replace the values from the individual probes. A good option is to take
the median (or the mean), but this approach can result in values such that genes are no longer
properly distinguishable from each other. This is undesirable, since the second data mining step,
the aggregation, relies heavily on the evaluation values for a good performance. Thus, we chose
to mine the core probeset with targets event = 1 and stage = 4 subsequently, using the Safarii
tool. An additional ranking was received from the research group from the Jozef Stefan Institute
[22], Ljubljana, Slovenia. This ranking was made using event = 1 as the target.

8.2 Mining Meta Information

The gene rankings and meta information are aggregated (see Chapter 3), in order to find interesting
genes and additional information on genes for neuroblastoma. Three types of experiments on
aggregation are performed here. The first compares the meta information domains. The layout
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of the experiment and the results are described in Section 8.2.1. Secondly, the performance of
each quality measure is monitored. This experiment is done on only one ranking, using multiple
targets, depending on the quality measure at hand. Further in-depth information and results
are presented in Section 8.2.2. Lastly, two mining tools are compared, namely Safarii (using
regressional subgroup discovery) and SEGS [38, 39], which stands for Search for Enriched Gene
Sets tool and was developed at the Jozef Stefan Institute in Ljubljana, Slovenia. The details of
this experiment can be found in Section 8.2.3.

8.2.1 Comparison of Knowledge Domains

The first experiment compares the various domains of meta information, i.e. GO/KEGG terms
(GO in short), gene-to-gene interactions (abbreviated by gene2gene or G2G), protein families
(PFAM in short), and gene locations (abbreviated by LOC). The idea is to compare these do-
mains in order to see how the domains perform considering subgroup size and evaluation values.
Moreover, the differences between the three rankings are investigated, together with the differences
in targets. For this experiment, only one quality measure was used, the z-score, ϕz. This quality
measure was chosen since it has a good background in subgroup discovery, either as the z-score
itself or through the order equivalent mean test [24, 20, 38]. Furthermore, preliminary tests have
shown that ϕz performs reasonably well in terms of subgroup size. Although the sizes of subgroups
tend to be on the larger side, the sizes still vary, as opposed to for instance when ϕt is used as the
quality measure, which has a preference to smaller subgroups (see the experiments in Section 8.2.2
for further detail). ϕz can be used on both target types (numeric or ordinal), whilst preserving the
ability to compare evaluation values, irrespective of the target type. Lastly, ϕz can be used to give
an indication of the p-value of a subgroup, although the reader has to remember that subgroup
discovery and accompanying quality measures (in Safarii) are not designed for significance testing,
but rather for exploratory data analysis.

For the experiment, all three rankings are used, i.e. the Safarii event = 1 and stage = 4
rankings, and the IJS event = 1 ranking. Each ranking is aggregated with GO/KEGG terms,
gene2gene interactions, PFAMs and gene locations subsequently. For aggregation, two targets
were used subsequently: the novelty (measure for the IJS ranking), which is a numeric target, and
the partial ranking, which is of course ordinal.

The top-25 patterns for all aggregations can be found in Appendix A. The progression of the
evaluation values over subgroup ids is shown in Figures 8(a), 8(b) and 9(a). Tables 13 and 14
show the averages and standard deviations for the ϕz evaluation values and subgroup sizes for each
ranking, domain and target. The evaluation values show that the best performing domains are
GO/KEGG terms and gene2gene interactions, followed by the gene locations and protein families.
In some cases, a domain might have a better start, but the subgroup evaluations devaluate more
rapidly. This happens for instance with the gene2gene domain compared to the gene locations
domain, for the Safarii stage = 4 ranking, both with target novelty. Here, the gene locations
domain performs much better until subgroup 17, where the gene2gene domain starts performing
better. Furthermore, the gene2gene domain devaluates less rapidly and thus has a lower standard
deviation: an average standard deviation of 1.53 for the GO/KEGG terms domain, as opposed to
an average standard deviation of 0.68 for the gene2gene domain. Although the GO/KEGG terms
domain performs better on the first 25 subgroups, the gene2gene domain probably performs better
down the list, since the evaluation values of this domain degrades with a smaller factor than the
values of the GO/KEGG domain. Figures 8(a), 8(b) and 9(a) and Table 13 indicate this, since
the evaluation values of the gene2gene and GO/KEGG terms domains converge to each other
toward subgroups further down the lists. It also has to be noted that for all domains the drop in
evaluation values stabilizes when moving down the list of subgroups.

On choosing a target for aggregation, the experiments suggest that the novelty is the best to
use for the Safarii rankings. This is mainly due to the high evaluation values at the start, the
data suggest that the partial rank results in a smaller drop (i.e. smaller standard deviation) of the
evaluation values (see for instance the gene2gene and GO/KEGG terms domains for both targets
for the Safarii event = 1 ranking, in Figure 8(b)). For the IJS ranking, however, the partial
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ranking is definitely the best choice for the target, since this target results in better evaluation
values and a smaller drop of evaluation values over subgroup ids.

Apart from looking at the evaluation values themselves, it is also interesting to consider the
sizes of the subgroups that the various domains return. The sizes of the found subgroups are
depicted in Figures 10(a), 10(b) and 9(b). The averages and standard deviations of the top-25
subgroups are depicted in Table 14. In general, the GO/KEGG terms and gene locations domains
return relatively large subgroups, as compared to the gene2gene and PFAM domains. Only the
subgroup sizes of the gene2gene domain portray a relatively small standard deviation, as opposed
to the subgroup sizes of the other domains. Here, the standard deviations are always bigger than
the average of the subgroup sizes itself. This indicates that all domains except the gene2gene
domain can return both large and small subgroups, whereas subgroups are generally small when
the gene2gene domain is used. This suggests that genes do not interact with a very large number
of other genes, at least not the most interesting genes for neuroblastoma. Please note that the ϕz
quality measure itself has a small bias toward larger subgroups.

It is also important to investigate what kind of subgroups the aggregations produce, to be more
precise, to look at the conditions of the subgroups. The subgroups and their conditions can be
found in Appendix A.

GO/KEGG Terms First of all, the absolute top of the subgroups are generally equal, except
for the top of the subgroups given the IJS event = 1 ranking, with the measure as the target.
GO/KEGG terms that are of high interest are, amongst others, DNA replication, cell cycle, mitosis
and nucleus. The GO/KEGG terms generated from the different rankings do not differ much. Only
the IJS event = 1 ranking, with t = measure shows many different GO/KEGG terms at the top,
such as 3-chloroallyl aldehyde dehydrogenase activity and chromatin assembly complex. At least
the GO/KEGG terms DNA replication, cell cycle and DNA replication initiation can be found in
the literature [9].

Gene-to-gene Interactions Again, as is the case for the GO/KEGG terms, the topmost genes
returned by the aggregation are more or less equal, independent of ranking and target type.
High scoring interacting genes are, amongst others, BIRC5, RAD51, CDC2, CDC7, CDC6, E2F4,
MCM2, MCM3 and BRCA1, of which at least BIRC5 can be found in the literature [9]. Moreover,
genes from the MCM group and the CDC group are found both in the literature and in the
aggregation results.

Protein Families Analogously to the found genes in the gene2gene aggregation, the PFAM
aggregation returns MCM, Rad51 and E2F TDP as high scoring protein families, amongst other
high scoring protein families such as Cadherin, Kinesin and Histone. None of the families are
found in literature, this is mainly due to the fact that the protein families knowledge domain has
not been used in other studies yet.

Gene Locations When searching through the literature, it becomes evident that there are many
parts of the chromosome that play a role in the development of neuroblastoma, either through the
deletion or the gain of (parts of) the chromosome. However, whether (a part of) a chromosome is
deleted or gained, is no longer clear during aggregation. Nonetheless, many chromosome regions
found in literature are also found in our analysis, with the following difference. In literature, the
chromosome regions are usually only specified until the chromosome arm, whereas in our analysis,
the chromosome regions can be specified much further. Compare for instance region 17p, as
found in [9]. In our analysis, chromosome 17 and region 17p11.2 are both presented as interesting
considering an unfavorable nb stage (stage = 4). Other interesting chromosomes and regions that
were found are chromosomes X, 6 and 2 and regions Xq28, 6p22.1.
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Concluding Remarks The results of this experiment show that there are several differences in
the knowledge domains. First and foremost, the GO/KEGG terms and the gene2gene interactions
perform well, together with the gene locations domain. Other research on neuroblastoma and meta
information has focused on these domains [9, 7, 38] as well. Given our results, the protein family
domain also seems highly interesting, performing reasonably well compared to the other domains.
Furthermore, this domain can give information on groups of genes that might be interesting, such
as the MCM family, harboring genes MCM2, MCM3, MCM7 and so forth. Also, the analysis
presented here shows that an automated informative analysis on neuroblastoma data and meta
information can give information that can also be found in other research (think of the found
GO/KEGG terms, the gene2gene interactions and gene locations). This gives rise to the idea
that the information presented here that is not found in the literature, is still of value to domain
experts. In other words, an automated analysis and aggregation of the neuroblastoma data can
aid domain experts in their search of relevant processes considering neuroblastoma.
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Figure 8: ϕz evaluation values for event = 1 rankings
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Figure 9: ϕz evaluation values and subgroup sizes for stage = 4 ranking
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Figure 10: Subgroup sizes for event = 1 rankings
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Safarii event = 1 ranking, target=novelty
normalized ϕ values d=3 σd=3 d=4 σd=4 µ µσ
ϕavg 0.89 0.05 0.95 0.02 0.92 0.03
ϕmt and ϕz 0.67 0.14 0.86 0.06 0.77 0.1
ϕt 0.59 0.14 0.66 0.11 0.62 0.13
ϕχ2 1 0 1 0 1 0
µ 0.76 0.09 0.87 0.05

Safarii event = 1 ranking, target=rankpartial

normalized ϕ values d=3 σd=3 d=4 σd=4 µ µσ
ϕavg 0.36 0.2 0.36 0.15 0.36 0.17
ϕmt and ϕz 0.72 0.14 0.86 0.07 0.79 0.11
ϕt 0.42 0.22 0.38 0.22 0.40 0.22
ϕχ2 1 0 1 0 1 0
ϕroc 0.93 0.03 0.98 0.01 0.96 0.02
ϕwmw 0.69 0.14 0.85 0.07 0.77 0.11
ϕmmad 0.42 0.24 0.46 0.22 0.44 0.23
µ 0.66 0.14 0.72 0.1

Table 15: Averages and standard deviations of normalized evaluation values, for Safarii event = 1
ranking, all targets and all quality measures

8.2.2 Performance of Quality Measures

Of course, ϕz is not the only quality measure available. Moreover, the different quality measures
that are present in Safarii portray different preferences considering the subgroups that are returned.
Therefore, the second experiment compares the quality measures on one ranking, given both target
types. The IJS ranking performed not as good as the two Safarii rankings, thus, this ranking was
decided against. Both Safarii rankings would have been a good choice, but mainly because the
performance on the topmost subgroups of the event = 1 ranking is quite good and better than
the performance of the stage = 4 ranking, the event = 1 ranking was chosen (see Section 8.2.1 for
further details).

The experiment is set up as follows. For the Safarii event = 1 ranking, aggregation was done
with target = novelty using all regressional quality measures, i.e. ϕavg, ϕmt, ϕz, ϕt and ϕχ2 , and
using all meta information. Different search depths were also chosen. Search depth here denotes
how many domains (database tables) Safarii is allowed to combine in its search for interesting
patterns. Depth d = 3 renders primarily subgroups with only one condition in the pattern. Depth
d = 4 also returns patterns with more conditions in the pattern, usually two. The latter variant
can give interesting combinations of meta information. When two conditions are combined in one
pattern, this is denoted by ∧. Furthermore, the ranking was also aggregated using the partial rank
as the target, for all quality measures, including the ordinal ones: ϕavg, ϕmt, ϕz, ϕt and ϕχ2 , ϕroc,
ϕwmw and ϕmmad. Please note that the ϕroc quality measure can not be used on partial ranks,
thus, only for this quality measure, a complete rank was produced, deciding upon ties arbitrarily.
Again, this aggregation is performed on two search depths, d = 3 and d = 4.

Figures 11, 12, 13, 14 and Tables 15 and 16 show the results of this experiment. Full results
for the top-25 subgroups can be found in Appendix B. Due to the characteristics of the different
quality measures and evaluation values, the evaluation values are also normalized, to enable a
quality measure comparison. For normalization, the best scoring value, which is the value of the
first found subgroup, is set to be the maximum, and gets assigned 1. All other evaluation values
are divided by this maximum. This ensures that all evaluation values obtain a value between 0
and 1, where 1 is the new maximum evaluation value. If a subgroup is evaluated to 0, it also
gets assigned 0 when normalized. The normalization gives us the evaluation trends of the quality
measures, and also enables us to compare the behaviour of the quality measures. The normalized
values in Figures 11, 12 and Table 15 show that building slightly more complex patterns stabilizes
the devaluation of the quality measures. Not only that, the original evaluation values also show
that the performance of the quality measures is better with d = 4. The original evaluation values
can be found in Appendix B.
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Safarii event = 1 ranking, target=novelty
subgroup sizes d=3 σd=3 d=4 σd=4 µ µσ
ϕavg 7.68 3.79 5.48 1.08 6.58 2.44
ϕmt and ϕz 429.8 875.81 284.56 630.34 357.18 753.07
ϕt 479.4 877.58 208.68 649.46 344.04 763.52
ϕχ2 5 0 5 0 5 0
µ 270.34 526.6 157.66 382.24

Safarii event = 1 ranking, target=rankpartial

subgroup sizes d=3 σd=3 d=4 σd=4 µ µσ
ϕavg 6.72 2.78 5.48 1.12 6.1 1.95
ϕmt and ϕz 525.88 856.66 332.72 661.11 429.3 758.89
ϕt 156.92 623.33 5.84 1.07 81.38 312.2
ϕχ2 5 0 5 0 5 0
ϕroc 6.72 2.78 5.44 1.08 6.08 1.93
ϕwmw 536.36 852.16 280.48 631.85 408.42 742.01
ϕmmad 1400.48 799.84 1524.12 761.95 1462.3 780.9
µ 395.50 499.28 311.48 339.91

Table 16: Averages and standard deviations of subgroup sizes, for Safarii event = 1 ranking, all
targets and all quality measures

ϕχ2 seems to be the best performing measure, but unluckily, this measure only produces very
small subgroups (all of size 5), and the top-25 consists solely of protein families. The data shows
that ϕmt, ϕz and ϕwmw behave similarily compared to each other, considering the progression of
the evaluation values, and also considering subgroup sizes. This is very logical, since ϕmt and ϕz
are order equivalent. ϕwmw, on the other hand, is not strictly order equivalent, but does calculate
the z-statistic, which is also calculated by the ϕz.

When looking at Figure 12, it becomes apparent that ϕavg, ϕt and ϕmmad are the worst
performing measures, although ϕmmad still performs better than ϕavg and sometimes even better
than ϕt (especially in the case of more complex patterns, with depth d = 4). However, when
looking at the sizes of the subgroups in Figures 13 and 14, ϕmmad performs very well on large
subgroup sizes: it is the only quality measure that steadily finds large subgroups. Not surprisingly,
ϕχ2 , ϕavg, ϕroc and occasionally ϕt perform worse on the subgroup size, they all show a bias toward
smaller subgroups. Furthermore, ϕmt, ϕz and ϕwmw do not seem to have a preference in either
very large or very small subgroups, although the tendency in this data is toward larger subgroups.
Despite this tendency, the variance in subgroup size is high.

Choosing a Measure How to choose a quality measure then? This all depends on the objective
of the researcher, although trying out at least two different types of quality measures is good and
can be very informative. When several quality measures are tried, it is obviously best to try
measures that do not belong to the same performance group, so to say. For instance, trying ϕmt,
ϕz and ϕwmw in one go is rather uncalled for if one wishes to obtain different patterns. In such a
case it is better to try out ϕz together with for instance the ϕroc and ϕmmad. Then, how to choose
one quality measure from a set of likewise performing measures? This depends on the targets at
hand and if a ranking can be made. Of course, when no ranking can be produced, the choice is very
limited. If a choice has to be made between ϕmt and ϕz, ϕz should be probably favoured over ϕmt.
ϕz and ϕmt perform equally, due to their order equivalence. The scores for ϕz can always be easily
compared with one another and is also easily understandable, due to the statistical background.
The trouble with ϕz though, is that the evaluation values can be easily misused for significance
testing. Furthermore, ϕz is computationally a little more complex, but this complexity is in most
cases no issue. The reasoning for ϕwmw is equivalent to the reasoning for ϕz, although one has
to keep in mind that ϕwmw can only be used on a ranking. The ϕavg, ϕt, ϕχ2 and ϕroc measures
should only be considered when the subgroup size should be reasonably small, with a probability
to fairly large subgroups, for instance when using ϕt. There are no real reasons to favour one over
the other, although it can be said that ϕχ2 has such a preference toward small subgroups, that
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the patterns returned are not extremely interesting, especially when a multitude of domains are
used in aggregation. If a ranking can be made, ϕroc seems a better choice than ϕavg. They both
produce almost identical patterns, but ϕroc has a smaller slope of quality devaluation. Then, last
but not least, ϕmmad. This measure is the measure to use when one wishes to obtain really big
subgroups, containing patterns that are very generic.

Choosing a Target Of course, not only the quality measures are important to the results of the
data mining exercise. The target which is used for the data mining is also very important. How
to choose a target depends first of all on what kind of information the analyst seeks. If an ordinal
target is chosen, or when the numeric target is in essence also ordinal, then both numeric and
ordinal measures can be used. For this, a small experiment can be done, using for instance two
quality measures on the raw numeric target and the ranking. The results from our experiment
show us that, no matter what quality measure is chosen, all quality measures show the same
preference to some target. In our case, the measures work better on the novelty, and the novelty
was a proper target to begin with. One of the reasons for this behaviour can be that the novelty
can show a more ‘rough’ pattern in value assignment, whereas the ranks for the individuals increase
evenly. In other words, the novelty can make differences between individuals more extreme (or, in
some cases, less extreme), whereas these differences are approximately equal for the rankings. In
some cases, an ordinal numeric target can not be properly used for data mining. In such a case,
the complete or partial ranking should always be used.

On Search Depths Our experiment shows that the search depth influences the performance
of the quality measures heavily, either by higher subgroup qualities or by subgroup sizes. This is
very logical. In theory, deepening the search (allowing more domains to be combined, even one
domain being combined with itself) always ensures that the performance of the quality measures
becomes better. When the search is performed too deep, subgroup discovery tends to overfit the
data with its patterns. Overfitting [5, 37] is a hazard of data mining in general, and subgroup
discovery is no exception. The main problem with overfitting lies in the generality of the patterns.
Once the patterns overfit the data, they are no longer generally applicable and their informative
value becomes questionable. Thus, deepening the search should only be done with great caution.

Patterns Found It is also interesting and important to consider the differences in patterns
returned by the different aggregation methods. The first thing to note is that the bigger the
subgroup, the more likely it becomes that the pattern holds one or more GO/KEGG terms or
gene locations. Furthermore, some patterns that scored high in the previous experiment (Section
8.2.1) also score high in the more extensive aggregations, such as GO terms cell cycle, nucleus
and mitosis, or even combinations of these GO terms (i.e. cell cycle ∧ nucleus). Some patterns
pop up regularly, such as PFAM=Histone, sometimes together with chromosome region 6p22.1, or
PFAM=MCM, coupled with different interacting genes of this family: MCM6. Also, genes from
the CDC range occur generally, such as CDC7 together with MCM6 or several GO/KEGG terms.
Genes of the CDC range also often occur together with genes from the CDK range: interacting
genes CDK3 and CDC2 are found on a regular basis together. The largest subgroups, subgroups
covering a multitude of differentially expressed genes, can be found using conditions such as GO
terms nucleus, membrane, protein binding and metal ion binding, or on chromosomes (or regions)
such as chromosomes 1, 11 and 19.

Concluding Remarks First of all, this experiment supports the finding that the novelty is
the best target to use for our data. Which quality measure to use, depends on the objective of
the researcher. If, for instance, subgroup sizes have to be very large, ϕmmad is the best option.
Furthermore, if a domain expert prefers smaller subgroup sizes or has no specific preference,
other quality measures are better. All in all, all quality measures perform reasonably well on
the data, the patterns have reasonably high scores. Also, the patterns returned by the different
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quality measures seem highly interesting, considering that some of the patterns can be found in
the literature.

8.2.3 Safarii vs. SEGS

SEGS, like Safarii, is a multi-relational subgroup discovery tool. However, SEGS can do relational
subgroup discovery solely on gene rankings. Furthermore, SEGS is only capable to aggregate
with gene-to-gene interactions and GO terms. Thus, to make the comparison between Safarii and
SEGS honest, rankings are mined with a smaller set of meta information in Safarii, namely only
gene2gene interactions and GO terms. Unfortunately, the gene2gene interactions are not available
as such in SEGS, SEGS tries to couple the interacting genes with GO terms, whereas Safarii does
not. Furthermore, SEGS uses several (complicated) quality measures for subgroup discovery, of
which only the Z-Score was available to Safarii as ϕz. Additionally, SEGS also calculates the
p-values for each found subgroup, whereas Safarii is not able to calculate p-values.
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Figure 11: Quality measures evaluation values for RSD, normalized
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Figure 12: Quality measures evaluation values for OSD, normalized
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Figure 13: Subgroup sizes for RSD
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Figure 14: Subgroup sizes for OSD
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For this experiment, two rankings are used and compared, namely the IJS event = 1 ranking
and the Safarii event = 1 ranking. Tables 17 to 20 show the results of this experiment. In the
tables, a ∧ stands for AND, thus ∧ denotes that terms or interactions are combined together
in the pattern. From the top GO terms (and for SEGS, indirectly interactions), there are not
many terms that overlap. However, some (partial) patterns occur using both rankings, and both
tools. These partial patterns are for instance DNA binding, nucleus and DNA repair. Although
the results are a bit saddening, it does not necessarily mean that either SEGS or Safarii is doing
poorly. One of the main reasons why the two tools present us with different patterns, is the way
they work. The underlying algorithms performing the subgroup discovery are quite different, this
is likely to be a reason for the mismatch between results.

Concluding Remarks All in all this small experiment suggests that both mining methods work
reasonably well. However, when a choice has to be made between one of the two tools, Safarii
comes out as the better one of the two. This is mainly because Safarii is generic, and it is thus
possible to incorporate more meta information or even tweak the meta information such that it has
the best representation. The drawback of Safarii over SEGS is that SEGS also calculates p-values,
thus giving information on the significance of patterns. On the other hand, subgroup discovery is
mainly used for descriptive purposes, for giving informative patterns, not significant ones. In the
case of gathering informative patterns, Safarii does a much better job, since it is not restricted by
rendering only significant patterns, but is able to render any pattern that is classified as interesting
by the quality measure used. However, it is probably best to have the best of both worlds: easily
adding and tweaking meta information for aggregation and the possibility of significance testing
per pattern.
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9 Conclusions and Future Work

The main objective of this thesis was to enhance the subgroup discovery algorithm in such a way
that it could deal with numeric and ordinal target types. Furthermore, the goal was to apply the
new features of subgroup discovery to biological data. More specifically, the goal was to perform
subgroup discovery on a ranking of genes.

For this thesis, the genes are ranked according to their differential expression considering neu-
roblastoma, a tumour found in children. Not only this, the ranking of genes has been aggregated
with several other knowledge domains to be able to capture existing and possibly new relations
considering the causality of neuroblastoma. The new domains used here are the GO/KEGG terms
and gene to gene interactions, which are domains that have been used earlier in automated searches
to interesting genetic patterns. Furthermore, gene locations and protein families have also been
used here, both have shown their added value in our experiments.

Several new quality measures were implemented and tested, and all measures performed well
on the task set to them: find interesting patterns regarding neuroblastoma. Not all measures
provided us with the same patterns. Regarding the specific characteristics of the quality mea-
sures, they returned patterns that fitted their characteristics and also fitted intuitions (wishes) on
subgroups that a user might have. For instance, some quality measures enable us to find fairly
large subgroups (the ϕmmad quality measure), whereas others return patterns for which the target
attribute distribution is very different from the population target attribute distribution (ϕz, ϕt).
Thus, not only is Safarii capable of performing subgroup discovery given numeric and ordinal
targets, the user also has the ability to choose what kind of patterns Safarii will return. Still,
the topic of subgroup discovery on numeric and ordinal targets is relatively new, and not much
research has been done. Thus, much work still has to be done on this topic.

The performed experiments show that the quality measures can return known patterns of
neuroblastoma, such as the importance of several genetic locations (chromosomes 1, 6, 17, X)
or chromosome regions (6p22.1, 17p11.2) or GO terms (cell cycle, DNA replication). This at
least validates that automated data mining can find interesting patterns. Due to this conclusion,
it seems logical that the found patterns with no background in the literature, are also highly
informative and thus can aid researchers in their research on neuroblastoma. One of the benefits
of using data mining as an aid, is that mining data itself can be performed at a relatively low cost.
Moreover, with data mining, cross references can be easily made using different meta information
sources. For the future, it would be highly interesting to add even more meta data to the current
data set, preferably data that can render patterns which are not easy to find without automated
mining.
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A Results Knowledge Domain Comparison

This appendix contains the results for the knowledge domain comparison. The results are catego-
rized as follows. First, the results of the Safarii event = 1 ranking are presented, where the top-25
patterns obtained with the novelty as the target are situated on the left, and the top-25 patterns
using the partial rank as the target are on the right. Secondly, the results for the IJS event = 1
ranking are shown, followed by the results for the Safarii stage = 4 ranking. For all rankings,
first the results of the aggregation with the GO/KEGG terms domain are shown, followed by the
results of the gene-to-gene domain and the PFAM domain, and concluded by the results of the
aggregation with the gene locations domain.
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B Results Quality Measure Performance

In this appendix, the results considering the quality measure performance can be found. The
results are organized as follows. First, the top-25 patterns of the aggregation with search depth
3 are presented. They are ordered by quality measures as follows: ϕavg, ϕmt, ϕz, ϕt, ϕχ2 , ϕroc,
ϕwmw and ϕmmad. If possible, the results using the novelty as the target are presented first,
followed by the results using the (partial) rank as the target. Of course, this is only possible for
the quality measures for regressional subgroup discovery. Next, the results generated with search
depth 4 are presented. When conditions are combined for a pattern, the combination is denoted
by ∧, which stands for AND. Furthermore, ‘norm. ϕx’ stands for the normalized evaluation values,
where the maximum evaluation value is set to 1, and all values get assigned a number between 0
and 1.
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C Tables of Distributions

This appendix contains several probability distributions, all of which can be used to compute the
level of significance α0. For all the distributions, the value of the statistic (z-score, t-score, χ2-
test) is required. Safarii can calculate these statistics, given the appropriate quality measures. In
Chapter 7, it is defined which distribution to use lookup the level of significance, given a quality
measure. How do these tables work? The statistic gives some value X, and the distributions
can tell which p-value belongs to this value such that: P (X < x) = p. The significance value
α0 can then be calculated as follows: α0 = 1 − p. Given hypothesis H0, which states that two
distributions, such as the subgroup distribution and the population distribution, are the same,
then H0 will be rejected if |X| > x, with significance level α0.
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C.1 Table of the Normal Distribution (Z-Values)

The table of the normal distribution gives the p-value given the z-value. To find the p-value,
split the z-value in two between the first and second decimal. The p-value can be found at the
intersection of the row of the first two digits and the column of the third (rounded) digit.

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
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C.2 Table of the t Distribution

If X has a t distribution with degrees of freedom df (depicted in the first column), then the table
gives the value of x, such that probability of X < x is p: P (X < x) = p.

df p=0.90 0.95 0.975 0.99 0.995 0.999 0.9995
1 3.078 6.314 12.71 31.82 63.66 318.3 637
2 1.886 2.920 4.303 6.965 9.925 22.330 31.6
3 1.638 2.353 3.182 4.541 5.841 10.210 12.92
4 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 1.383 1.833 2.262 2.821 3.250 4.297 4.781
10 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 1.319 1.714 2.069 2.500 2.807 3.485 3.768
24 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 1.316 1.708 2.060 2.485 2.787 3.450 3.725
26 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 1.310 1.697 2.042 2.457 2.750 3.385 3.646
32 1.309 1.694 2.037 2.449 2.738 3.365 3.622
34 1.307 1.691 2.032 2.441 2.728 3.348 3.601
36 1.306 1.688 2.028 2.434 2.719 3.333 3.582
38 1.304 1.686 2.024 2.429 2.712 3.319 3.566
40 1.303 1.684 2.021 2.423 2.704 3.307 3.551
42 1.302 1.682 2.018 2.418 2.698 3.296 3.538
44 1.301 1.680 2.015 2.414 2.692 3.286 3.526
46 1.300 1.679 2.013 2.410 2.687 3.277 3.515
48 1.299 1.677 2.011 2.407 2.682 3.269 3.505
50 1.299 1.676 2.009 2.403 2.678 3.261 3.496
55 1.297 1.673 2.004 2.396 2.668 3.245 3.476
60 1.296 1.671 2.000 2.390 2.660 3.232 3.460
65 1.295 1.669 1.997 2.385 2.654 3.220 3.447
70 1.294 1.667 1.994 2.381 2.648 3.211 3.435
80 1.292 1.664 1.990 2.374 2.639 3.195 3.416
100 1.290 1.660 1.984 2.364 2.626 3.174 3.390
120 1.289 1.658 1.980 2.358 2.617 3.160 3.373
150 1.287 1.655 1.976 2.351 2.609 3.145 3.357
200 1.286 1.653 1.972 2.345 2.601 3.131 3.340
∞ 1.282 1.645 1.960 2.326 2.576 3.090 3.291
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C.3 Table of the χ2 Distribution

If X has a χ2 distribution with degrees of freedom df (depicted in the first column), then the table
gives the value of x, such that probability of X < x is p: P (X < x) = p. For the use in this
thesis, the χ2 distribution always has df 1, thus, only the top row is needed. The rest of the table
is given for the sake of completeness.

df p=0.005 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990 0.995
1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750
6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589
10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188
11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801
16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997
21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796
23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559
25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928
26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336
30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672
40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766
50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490
60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952
70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215
80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321
90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299
100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.169
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[14] P. Flach and N. Lavrač. Rule induction. pages 229–267, 2003.

[15] E. Frank and M. Hall. A Simple Approach to Ordinal Classification, volume 2167/2001, pages
145–156. Springer Berlin/Heidelberg, 2001.

[16] J. Fürnkranz and P. A. Flach. Roc ’n’ rule learning: towards a better understanding of
covering algorithms. Mach. Learn., 58(1):39–77, 2005.
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