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Abstract
Tools for computer languages need position information: compilers
for providing better error messages, structure editors for mapping
between structural and textual views, and debuggers for navigating
through a term, for instance. Manually adding position information
to an abstract syntax tree is tedious and requires pervasive changes:
the original tree becomes verbose and every function operating on
it needs to be adapted.

In this paper, we describe how to automatically extend datatypes
with position information using datatype-generic programming
techniques. Furthermore, we show examples of how to use this
position information: parsers that automatically construct trees an-
notated with positions, catamorphisms that deal with failure by
reporting error locations, and zippers that efficiently navigate an-
notated trees. The generic programming technique we describe is
applicable to a wide range of domains.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Functional Programming

General Terms Languages

1. Introduction
Most computer applications deal with some form of structured data.
When this data needs to be manipulated by a user, it is often pre-
sented unstructured (in textual form), as this provides a convenient
and flexible way of editing data. Internally, the application has to
maintain a relation between the structural and the textual view. Typ-
ically, syntax trees are annotated with position information at every
node, relating it to a location in the textual view. For example, con-
sider an abstract syntax tree (AST) to represent simple arithmetic
expressions over integers:

data ExprBare = Num Int
| Add ExprBare ExprBare
| Sub ExprBare ExprBare
| Mul ExprBare ExprBare
| Div ExprBare ExprBare

To add position information to our expressions we could add an
additional argument to each constructor indicating the position.
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Alternatively, we can change every recursive occurrence to contain
this information:

type ExprPos = (Bounds,ExprPos′)
data ExprPos′ = Num Int

| Add ExprPos ExprPos
| Sub ExprPos ExprPos
| Mul ExprPos ExprPos
| Div ExprPos ExprPos

This change, albeit mechanical, is not trivial, since we cannot reuse
ExprBare in our definition of ExprPos. This means functions oper-
ating on expressions will need to be adapted. Parsers, for example,
have to request the location information from the parse state and
inject it into the model whenever a new node is constructed, dis-
tracting from the actual parsing process and requiring the distinc-
tion between annotated and unannotated expressions. Consumers
of the new expressions need to be adapted as well, either to explic-
itly ignore the position if it is not needed or to use it in the results.

Implementing these changes is not difficult, but it is definitely
a lot of work. It is somewhat like a design pattern: a solution to a
common problem that is usually not expressed as a code library or
framework, but rather as a series of descriptive steps. Our goal is
to turn this design pattern into a library, and minimize the overall
effort required from the programmer, in and for the functional
programming language Haskell (Peyton Jones et al. 2003).

As an example of using our library, here is an application of a
consumer of expressions:

> compileExpr exprEval "1 + 2/0 + 3 + 4/0"

Errors:

* 4- 7: division by zero

* 14-17: division by zero

Function compileExpr parses an expression, and evaluates the re-
sulting parse tree using the algebra exprEval defined below. It fails
on division by zero, automatically prefixing errors with the location
of their occurrence in the source text.

exprEval expr = case expr of
Num n → Right n
Add x y→ Right (x+ y)
Sub x y→ Right (x− y)
Mul x y→ Right (x∗ y)
Div x y | y≡ 0 → Left "division by zero"

| otherwise→ Right (x ‘div‘ y)

This example, together with all the library code, is available in the
Annotations package on Hackage1.

This paper makes the following contributions:

1 http://hackage.haskell.org/package/Annotations-0.1
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• Using the open recursion style for defining datatypes, we show
how to automatically insert position information in regular al-
gebraic datatypes (Section 3).

• We show how consumers of datatypes expressed as catamor-
phisms can be made to work automatically with both the bare
datatypes and the derived annotated datatypes (Section 4). Fur-
thermore, we introduce a new kind of catamorphism that makes
the possibility of failure explicit, allowing automatic extrac-
tion of the relevant position information in case of failure (Sec-
tion 5).

• We redefine parser combinators so that they automatically build
recursively annotated trees (Section 6).

• We solve several common editor use cases, such as mapping
from text selection to structural selection and back, and fixing
invalid selections (Section 7).

• The solutions are presented again using the multirec generic
programming library and compared to the previous solutions
(Section 8).

After presenting our library, we discuss related work in Sec-
tion 9, point directions for future research in Section 10, and con-
clude.

2. Representing textual selections
Text selections play an important role throughout this paper. In
order to represent text selections, we first need to represent a single
position within a text. There are two representations of text position
that are used often: offset from the start of the text and line-column
numbers. Both are useful in different circumstances. Code editors
usually present the programmer with line and column numbers,
because code tends to be line-oriented. However, behind the scenes
programs usually work with offsets, especially if they need to do
computations on these offsets. Only when presenting the position
information to the user are the offsets converted to line-column
numbers. Offsets are easier to work with because they do not
depend on the exact characters in the input and can be expressed
as a single number instead of two.

We choose offsets to represent text positions, as these are easier
to work with. A text selection is then a tuple of two offsets. We call
the type of text selections a Range:

type Range = (Int, Int)

Offsets can be thought of as positions between two characters
(starting at zero). For any text of length n, there are n + 1 valid
offsets, namely those in the closed interval [0 . .n ]. For ranges
(left,right) we always maintain the invariant that 0 6 left and
left 6 right. We define some utility functions to work with offsets
and ranges:

posInRange :: Int→ Range→ Bool
posInRange pos (left,right) = left 6 pos ∧ pos 6 right
rangeInRange ::Range→ Range→ Bool
rangeInRange (left,right) range = left ‘posInRange‘ range

∧ right ‘posInRange‘ range

Function posInRange tells whether a range contains a certain po-
sition. Ranges are closed intervals: positions may coincide with
a range’s end points. Function rangeInRange inner outer tells
whether inner is a subrange of outer. Again, end points may coin-
cide.

To be able to map between text selections and tree selections,
we need to remember what each subtree’s position in the input
was. To translate from tree selection to text selection it is sufficient
to store a Range with every node. However, if we store a single

Figure 1. Illustration of inner and outer ranges.

range for each node, when translating a text selection back to a tree
selection the user needs to select the exact range for the selection to
be recognized. It is often the case that a structure is surrounded by
some whitespace in the source text; it seems only fair to allow the
user to select some of this whitespace in addition to the structure
itself. For that reason, we store not two but four offsets for each
subtree: the point where the whitespace before the structure starts,
the point where the whitespace ends and the text starts, the point
where the whitespace after the structure starts, and the point where
this whitespace ends. Figure 1 shows these four offsets in the
node representing the literal 45 in a sample expression. Using this
information, we can be more flexible and accept any text selection
that starts between the first two offsets and ends between the last
two offsets.

We store the combination of these four offsets in the datatype
Bounds:

data Bounds = Bounds {leftMargin ::Range
, rightMargin ::Range}

innerRange ::Bounds→ Range
innerRange (Bounds ( , left) (right, )) = (left,right)
outerRange ::Bounds→ Range
outerRange (Bounds (left, ) ( ,right)) = (left,right)

The bounds store the left and right margin. We could store the
inner and outer range just as well, in which case leftMargin and
rightMargin would have been the projection functions rather than
innerRange and outerRange. However, since the same margin is
often shared between multiple nodes in the tree, it is more memory-
efficient to store the margins than the inner and outer ranges. For
example: the subtree for 45∗67 shares its left margin with the node
for 45 and its right margin with the node for 67.

We define a function rangeInBounds that checks whether a
range is a valid selection for a node that has the specified bounds.
The left endpoint should be in the left margin, and the right end-
point should be in the right margin:

rangeInBounds ::Range→ Bounds→ Bool
rangeInBounds (l,r) b = l ‘posInRange‘ leftMargin b

∧ r ‘posInRange‘ rightMargin b

When using and constructing annotated parse trees we rely on
some laws for ranges and bounds that we maintain as invariants.
These laws are:

1. A node’s inner range is always enclosed by that node’s outer
range, i.e. for every node’s bounds we have that

innerRange bounds ‘rangeInRange‘ outerRange bounds

2. Children appear in the same order in the source text as in the
syntax tree, and their inner ranges do not overlap. For each
pair of adjacent siblings, we have that their respective bounds



bounds1 and bounds2 adhere to fst (rightMargin bounds1) 6
snd (leftMargin bounds2).

3. A node’s bounds always enclose that node’s children’s bounds.
In other words, for every child c of a parent p we have that

innerRange boundsc ‘rangeInRange‘ innerRange boundsp

3. Annotated base functors
In Section 1 we have defined ExprPos to add position information
to our expressions. This approach is unsatisfactory because we do
not reuse the original datatype. In fact, ExprBare and ExprPos′ share
the same structure: only the types of their recursive positions are
different. We can increase reuse by abstracting over the parts that
differ. In this case, we add a type argument to the datatype, to
be filled-in later when we know whether we want a bounded or
unbounded expression:

data ExprF r = Num Int
| Add r r
| Sub r r
| Mul r r
| Div r r

A datatype which abstracts over its recursive positions in this fash-
ion is also said to be in open recursion form (see, for example,
Swierstra (2008)). The ExprF version of the expression datatype is
often called the base functor.

We can now redefine ExprBare in terms of ExprF. The type argu-
ment of ExprF determines the shape of its children. To reconstruct
the original expression type, we want the children to be expressions
as well. Therefore we need to give ExprF itself as type argument to
ExprF. This leads to the following recursive definition of ExprBare:

newtype ExprBare = ExprBare (ExprF ExprBare)

The repeated expansion of ExprBare leads to the infinite type
ExprF (ExprF (ExprF . . .)), indicating that the obtained tree is of
ExprF-shape at every level.

ExprPos can be expressed in terms of ExprF in a similar way.
To insert the position information at every level, we wish to obtain
the infinite type (Bounds,ExprF (Bounds,ExprF . . .)). Again, we
obtain this with a recursive datatype definition:

newtype ExprPos = ExprPos (Bounds,(ExprF ExprPos))

The fact that types such as ExprBare and ExprPos use themselves
as arguments to functors in their own definitions is made explicit by
expressing them in terms of the well-known datatype Fix:

newtype Fix f = In {out :: f (Fix f) }
newtype ExprBare = ExprBare {runExpr ::Fix ExprF}
To define ExprPos in terms of Fix we introduce a new datatype

for adding position information at every level, somewhat like a
tuple type that is lifted on its second argument:

data Ann x f a = Ann x (f a)
instance Functor f⇒ Functor (Ann x f) where

fmap f (Ann x t) = Ann x (fmap f t)
newtype ExprPos = ExprPos (Fix (Ann Bounds ExprF))

We will use these last definitions of ExprBare and ExprPos
throughout the rest of the paper. Furthermore, we introduce two
type synonyms that will prove useful:

type AnnFix x f = Fix (Ann x f)
type AnnFix1 x f = f (AnnFix x f)

The first is a recursive tree of shape f at every level, fully annotated
with x’s; the second has fully annotated children but still lacks

an annotation at the top level. It can be made fully annotated by
providing the top-level annotation:

mkAnnFix ::x→ AnnFix1 x f→ AnnFix x f
mkAnnFix x = In◦Ann x

We have increased reuse by providing a few components we can
stack and compose as necessary. This allows for generic functions;
a nice example is the following function that generically removes
annotations from trees. The only thing we require of the functors
passed to AnnFix is that they implement the Functor type class:

unannotate ::Functor f⇒ AnnFix x f→ Fix f
unannotate (In (Ann tree)) = In (fmap unannotate tree)

We omit the instance Functor ExprF because it is trivial. Note that
the encoding used in this section only works for regular datatypes.
In particular, families of (possibly mutually) recursive datatypes
cannot be expressed in this way. In Section 8 we discuss how we
use the multirec generic programming library to support more
datatypes.

4. Catamorphisms over fixpoints
Now that we have added fields for storing position information to
our expression datatype, we adapt the producers and consumers to
the new expression type. We start with consumers, focusing on the
particular case of catamorphisms. Before analyzing catamorphisms
in the presence of position information, we review the basic concept
(Malcolm 1990).

To understand the concept of a catamorphism, it is instructive to
look at the widely known foldr over lists:

foldr :: (a→ b→ b)→ b→ [a ]→ b

Function foldr replaces the two list constructors, (:) and [ ], recur-
sively by programmer-supplied functions (the first two arguments
to foldr). These two functions together are referred to as the alge-
bra for the list catamorphism. For example, foldr (⊕) e turns the
list x : y : z : [ ] into x⊕ (y⊕ (z⊕ e)).

Similar functions are defined for any other algebraic datatype.
For the ExprBare datatype, for example, we define a function
cataExpr that takes five arguments, one for each constructor. The
function recursively traverses an input expression, applying the
appropriate functions to the fields of the constructors. Instead of
passing the five arguments separately to the function, we group
them together in a special datatype capturing expression algebras:

data ExprAlg a = ExprAlg {cataNum :: Int → a
, cataAdd ::a→ a→ a
, cataSub ::a→ a→ a
, cataMul ::a→ a→ a
, cataDiv ::a→ a→ a}

The catamorphism for expressions becomes:

cataExpr ::ExprAlg a→ ExprBare→ a
cataExpr alg = f where

f (In expr) = case expr of
Num n → cataNum alg n
Add x y→ cataAdd alg (f x) (f y)
Sub x y→ cataSub alg (f x) (f y)
Mul x y→ cataMul alg (f x) (f y)
Div x y→ cataDiv alg (f x) (f y)

Again, ExprAlg’s definition is reminiscent of ExprBare’s definition:
every constructor of ExprBare has a corresponding constructor in
ExprAlg, and each constructor in ExprAlg has fields that directly
correspond to those of ExprBare’s constructor. It turns out we have
yet another use for ExprF: the types ExprAlg a and ExprF a→ a



are isomorphic. We can show this using basic algebra rules if we
view the types as polynomials. Datatypes become sums (one term
per constructor) of products (one factor per constructor field) and
functions a→ b become exponentials ba:

ExprF(a) = Int+a2 +a2 +a2 +a2

ExprAlg(a) = aInt ∗ (aa)a ∗ (aa)a ∗ (aa)a ∗ (aa)a

= aInt ∗aa2
∗aa2

∗aa2
∗aa2

= aInt+a2+a2+a2+a2

= aExprF(a)

We see that ExprAlg a and ExprF a→ a are isomorphic. We can
now use this new type in the definition of cataExpr:

cataExpr :: (ExprF a→ a)→ ExprBare→ a
cataExpr f (In expr) = f (fmap (cataExpr f ) expr)

This definition is significantly shorter than the previous one. This
is mostly because we no longer need to pattern match on ExprF’s
constructors, as this is hidden in the function argument and the
call to fmap. In fact, there is nothing in cataExpr that is specific
to ExprF anymore. Therefore, its signature above is too specific.
Writing the body in pointfree style, the new function becomes:

type Algebra f a = f a→ a

cata ::Functor f⇒ Algebra f a→ Fix f→ a
cata f = f ◦ fmap (cata f )◦out

The open recursion style for datatypes allows for datatype-generic
programming: having abstracted from the recursive positions, we
can express recursion schemes like cata once and for all.

As an added bonus, writing algebras in this form results in
very elegant code. For example, evaluating expressions to integers
(without taking division by zero into account) is implemented as
follows:

exprEval ::Algebra ExprF Int
exprEval expr = case expr of

Num n → n
Add x y→ x+ y
Sub x y→ x− y
Mul x y→ x∗ y
Div x y→ x ‘div‘ y

Because cata takes care of the recursive positions, the algebra may
assume that the fields already contain the results of the evaluation.
We test our evaluation function:

> cata exprEval (runExpr (1+2∗3))
6

5. Error algebras
The catamorphisms above do not take the possibility of failure into
account, nor do they use position information. In this section, we
show how to make use of position information to provide better er-
ror messages for algebras supporting failure. We change our eval-
uation algebra to return an Either (Bounds,String) Int, encoding
failure as a Left with the position of the error and an informative
message, and success with a Right value. Furthermore, instead of
working on ExprF, we have the algebra accept Ann Bounds ExprF
(which is a Functor because ExprF is a Functor) so that we have
position information available. The new algebra looks as follows:

exprEval′ ::Algebra (Ann Bounds ExprF)
(Either (Bounds,String) Int)

exprEval′ (Ann z expr) = case expr of
Num n → Right n
Add x y→ do x′← x;y′← y;return (x′+ y′)
Sub x y→ do x′← x;y′← y;return (x′− y′)
Mul x y→ do x′← x;y′← y;return (x′ ∗ y′)
Div x y→

do x′← x;y′← y;
if y′ ≡ 0 then Left (z,"division by zero")

else Right (x′ ‘div‘ y′)

Unfortunately, this algebra has to be written in monadic style to
propagate the errors. Also, the algebra has to pattern match on the
Ann constructor to use or discard the position information.

We can improve on this by making the possibility of failure
explicit in the algebra type. We introduce a new type of algebra,
called an error algebra:

type ErrorAlgebra f e a = f a→ Either e a

The major difference between an ErrorAlgebra f e a and an
Algebra f (Either e a) is that an ErrorAlgebra has an f a on the
left-hand side of the function arrow instead of an f (Either e a). In
this way, it assumes that when the catamorphism is applied to the
children it is successful and produces a’s instead of error values.
This means that it is no longer necessary to use monadic style in
the algebras:

exprEval ::ErrorAlgebra ExprF String Int
exprEval expr = case expr of

Num n → Right n
Add x y→ Right (x+ y)
Sub x y→ Right (x− y)
Mul x y→ Right (x∗ y)
Div x y | y≡ 0 → Left "division by zero"

| otherwise→ Right (x ‘div‘ y)

Whenever a node in the tree produces an error, it no longer fulfills
its parent’s assumption that it produces an a. The catamorphism
function will therefore have to propagate the error upwards to the
root of the tree.

There are situations where several children simultaneously pro-
duce errors. Rather than arbitrarily picking one of the errors, we
mappend them together, introducing a Monoid constraint on the
error type e. We cannot yet give error algebras to our generic cata
function, since it expects normal algebras. Also, the applicative
computations have not simply disappeared: they need to be applied
outside the algebra.

McBride and Paterson (2008) show how to generically cap-
ture applicative computations over functors using the type class
Traversable:

class (Functor t,Foldable t)⇒ Traversable t where
traverse ::Applicative f⇒ (a→ f b)→ t a→ f (t b)

To be Traversable, functors need to be Foldable, and the traverse
operation only works over Applicative functors. We will introduce
the Foldable class in Section 7. The Applicative class represents
functors which support a form of application:

class Functor f⇒ Applicative f where
pure ::a→ f a

(~) :: f (a→ b)→ f a→ f b

The instance of Traversable for ExprF, for example, is as follows:

instance Traversable ExprF where
traverse f expr = case expr of

Num n → pure (Num n)
Add x y→ Add <$> f x~ f y



Sub x y→ Sub <$> f x~ f y
Mul x y→Mul <$> f x~ f y
Div x y→ Div <$> f x~ f y

By capturing ExprF’s traversal in a generic function, it can be
reused in different circumstances, including our error algebras. By
adding a Traversable constraint to our functors, we can convert
any error algebra into a normal one, collecting errors as we go and
producing an algebra we can supply to cata:

cascade :: (Traversable f,Monoid e)
⇒ ErrorAlgebra f e a→ Algebra f (Except e a)

cascade alg expr = case sequenceA expr of
Failed xs→ Failed xs
OK tree′ → case alg tree′ of

Left xs → Failed xs
Right res→ OK res

The Except datatype we use above is also described by McBride
and Paterson. It is similar to Either, but it is designed to be used
only in an applicative way so that sequencing two errors results
in the combination of those errors (using mappend). The monadic
Either, on the other hand, discards any errors other than the first.
In this way, Except provides the collecting behavior we described
before:

data Except e a = Failed e | OK a

instance Monoid e⇒ Applicative (Except e) where
pure = OK
OK f ~OK x = OK (f x)
OK ~Failed e = Failed e
Failed e ~OK = Failed e
Failed e1 ~Failed e2 = Failed (e1 ‘mappend‘ e2)

Although we now have convenient algebras with error function-
ality, we do not yet make use of potential annotations. To do some-
thing useful with the annotations, we need a new catamorphism
function, that works on AnnFixs instead of normal Fixs. If this new
function takes error algebras as input, we can automatically cou-
ple potential errors with the annotations at the positions at which
the errors arise, regaining all the functionality that exprEval′ above
has:

errorCata ::Traversable f⇒ ErrorAlgebra f e a
→ AnnFix x f→ Except [(e,x)] a

errorCata alg (In (Ann x expr)) =
case traverse (errorCata alg) expr of

Failed xs → Failed xs
OK expr′→ case alg expr′ of

Left x′→ Failed [(x′,x)]
Right v → OK v

Position information is now automatically coupled to the errors and
can be shown to the user for improved error messages.

6. Parsing annotated values
Now that we have adapted consumers for annotated datatypes, we
describe how to adapt producers so that annotations are automati-
cally filled-in.

There are many kinds of producers, but we will focus on parsers.
There are several parsing libraries in Haskell, but, for our purposes,
it does not matter much which one we pick. We will use Parsec
(Leijen and Meijer 2001) in our description.

In this section we add position information directly as an anno-
tation. A more general approach would be to first adapt the parser
to annotate each node with its corresponding literal source code,
and subsequently traverse the annotated tree to construct position

information from the code. The changes required to adapt a parser
to annotate with source code are similar to those for adding position
information.

6.1 A parser for ExprBare

To properly compare the parsers for annotated and unannotated
datatypes, we first show a standard parser for ExprBare. Our ex-
pression producer consists of two phases: the lexer converting char-
acters to expression tokens, and the actual parser converting these
tokens to expression trees. Our token type is:

data ExprToken = TNum Int
| TPlus | TMinus | TStar | TSlash
| TPOpen | TPClose | TSpace String

isSpace (TSpace ) = True
isSpace = False
isNum (TNum ) = True
isNum = False

The lexer producing these constructors is unimportant, so we
omit it. We focus on the parser instead:

pToken = satisfy◦ (≡)
pExpr = chainl1 pTerm ( Add <$ pToken TPlus

<|>Sub <$ pToken TMinus)
pTerm = chainl1 pFactor ( Mul <$ pToken TStar

<|>Div <$ pToken TSlash)
pFactor = pNum

<|>pToken TPOpen?>pExpr <?pToken TPClose
pNum = (λ (TNum n)→ Num n)<$> satisfy isNum

There is nothing surprising in this code: we show it only for com-
parative purposes.

6.2 Keeping track of position
Now that we have seen the parser for ExprBare, we build one for
ExprPos and compare the two. The new parser uses the construc-
tors of ExprF (which, in this paper, have the same names as the
constructors of ExprBare), but insert position information at every
level.

To properly annotate the constructed values, the parser needs
to keep track of the current position in the input. Parsec provides
support for this in the form of line-column information, but our
datatype Bounds requires to keep track of ranges of whitespace.
Therefore, it makes sense to use a range as our position informa-
tion. Parsec lets us maintain a user state: in ParsecT s u m a, the
type variables stand for stream type, user state, underlying monad
and result type, respectively. We set u to Range, as this is the state
we want to keep track of.

We couple each token with its Bounds. Computing the proper
bounds for each token needs to be done before discarding the
whitespace tokens from the lexer’s output. We combine discarding
these tokens and computing the bounds in a single operation:

collapse ::Symbol s⇒ (s→ Bool)→ [s]→ [(s,Bounds)]
collapse isSpace ts = collapse′ (0,symbolSize ls) isSpace r

where (ls,r) = span isSpace ts

collapse′ ::Symbol s
⇒ Range→ (s→ Bool)→ [s]→ [(s,Bounds)]

collapse′ [ ] = [ ]
collapse′ left isSpace (t : ts) = new : collapse′ right isSpace r

where ( , leftInner) = left
rightInner = leftInner + symbolSize t
rightOuter = rightInner + symbolSize rights
right = (rightInner,rightOuter)



(rights,r) = span isSpace ts
new = (t,Bounds left right)

Most of the work is done in collapse′. Its first argument is the
current offset in the stream (the left margin of the bounds of the next
token). The right margins, which become the left margins in the
recursive call, are computed from symbol sizes using the Symbol
type class (which we explain below). Function collapse (the one
exposed to the user) does not need an offset because it assumes it is
at the start of the input. Apart from the input stream, its only other
argument is a predicate that tells which symbols are to be discarded
(isSpace).

Rather than building collapse specifically for ExprTokens, we
determine what properties of tokens we need and capture these in a
type class:

class Symbol s where
unparse :: s→ String

symbolSize :: s→ Int
symbolSize = length◦unparse

The first function, unparse, converts a symbol back to a String,
exactly the way it was encountered during parsing. The second
function, symbolSize, is used for computing the length of a symbol
when printed.

In the definition of collapse, symbolSize is called on both single
symbols and lists of symbols. This is possible because we provide
an instance for lists:

instance Symbol s⇒ Symbol [s] where
unparse = concatMap unparse
symbolSize = sum◦map symbolSize

The new parser will have Range values as user state and will
consume tokens coupled with their position information. This is
reflected in a type synonym for our parser type:

type P s = ParsecT [(s,Bounds)] Range

Every time a new token is consumed, the state needs to be
updated. We can hide this in the new satisfy, which we define using
a primitive parser tokenPrim:

tokenPrim :: Stream s m t
⇒ (t→ String)
→ (SourcePos→ t→ s→ SourcePos)
→ (t→Maybe a)→ ParsecT s u m a

The first argument is a pretty-printing function for the symbol
types; we can use unparse from our Symbol class here. The second
argument tells how to update the source position; we will use our
position information for this. The third argument is the predicate
passed to satisfy telling which token is expected. Our implementa-
tion of satisfy becomes:

satisfy :: (Monad m,Symbol s)⇒ (s→ Bool)→ P s m s
satisfy ok =

do let pos ( ,bounds) =
newPos "" 0 (fst (rightMargin bounds)+1)

match x@(tok, ) | ok tok = Just x
| otherwise = Nothing

(tok,nBounds)← tokenPrim (unparse◦ fst) pos match
setState (rightMargin nBounds)
return tok

We use Parsec’s newPos to create a position based on our margins.
Getting the current position in the stream is now simply getting

the current user state:

getPos ::Monad m⇒ P s m Range
getPos = getState

6.3 Building recursively annotated values
Now that we maintain obtain position information in the parser
state, we construct ExprPos values. We start with the base case:
number literals. In ExprF, the constructor for number literals has
type:

Num :: Int→ ExprF r

This constructor, when applied to a number, has a type that matches
the type of AnnFix1 Bounds ExprF. We just need to wrap the
Bounds around it using mkAnnFix. We ask for the left margin
before parsing the literal token, and the right margin afterwards:

type ExprParser = P ExprToken Identity

pNum ::ExprParser (AnnFix Bounds ExprF)
pNum = unit $ (λ (TNum n)→ Num n)<$> satisfy isNum
unit ::Monad m⇒ P s m (AnnFix1 Bounds f)

→ P s m (AnnFix Bounds f)
unit p = do left← getPos

x ← p
mkBounded left x

mkBounded ::Monad m⇒ Range→ AnnFix1 Bounds f
→ P s m (AnnFix Bounds f)

mkBounded left x =
do right← getPos

return (mkAnnFix (Bounds left right) x)

We define pNum using a number of auxiliary functions which are
useful for the other parsers as well. We introduce a type synonym
ExprParser for our expression parser: it consumes ExprTokens and
uses an underlying Identity monad. The implementation of pNum
is equal to that of the unannotated parser except for the call to
unit. Function unit takes a parser that yields a value annotated
everywhere except at the top level, and turns it into a parser that
yields a fully annotated value, by wrapping the current position
information around it. This is a useful combinator for parsers that
produce simple nodes (such as number literals).

For parsers that do not produce simple nodes, it is often the case
that the call to retrieve the right margin is followed by a call to
mkAnnFix. This is reflected in function mkBounded, which, when
given the left margin, sets the right margin as the current position,
building an AnnFix.

In the parser for ExprBare, the branches of the expression trees
were built using chainl1. For annotated expressions, we need to
adapt chainl1 so that it takes into account annotated and unanno-
tated expressions:

chainl1 ::Monad m
⇒ P s m (AnnFix Bounds f)
→ P s m ( AnnFix Bounds f→ AnnFix Bounds f

→ AnnFix1 Bounds f)
→ P s m (AnnFix Bounds f)

In our chainl1, the first argument is again the parser for the
operands, and the second is the parser for the binary operator.
Let us consider our expression operator Add :: r → r → ExprF r.
If we give annotated children to Add, we get an AnnFix1, which
is reflected in chainl1’s type. It is chainl1’s task to insert the right
position information.

chainl1 px pf = do left← getPos
px>>= rest left

where rest left = fix $ λ loop x→ option x $



do f ← pf
y← px
mkBounded left (f x y)>>= loop

We can now define the parser for ExprPos. Using our redefined
parser combinators, nothing in the parser for ExprBare needs to
change (apart from pNum). The code is syntactically identical to
the previous implementation:

pExpr ::ExprParser (AnnFix Bounds ExprF)
pExpr = chainl1 pTerm ( Add <$ pToken TPlus

<|>Sub <$ pToken TMinus)
pTerm ::ExprParser (AnnFix Bounds ExprF)
pTerm = chainl1 pFactor ( Mul <$ pToken TStar

<|>Div <$ pToken TSlash)
pFactor ::ExprParser (AnnFix Bounds ExprF)
pFactor = pNum

<|>pToken TOpen?>pExpr <?pToken TClose

We have shown a small example, and left out numerous other parser
combinators. However, all of these can be adapted to position-
saving variants. In our library we provide also chainr1, for example.

7. Exploring annotated trees
Given an annotated subtree of type AnnFix x f, we can find the
corresponding text selection simply by extracting the Bounds value
in the Ann constructor. To convert in the other direction, we search
the tree for a node whose bounds match the text selection. In this
section we will introduce functions for that purpose.

7.1 Representing structural tree selections
There are various choices for the result of an operation from a text
selection to a tree. The result could be just the selected subtree, but
then the context of that subtree is lost. A subsequent edit operation
will require the entire tree as input again. One way to solve this is
to return a path from the root to the subtree instead. Such a path
can be modeled as a list of child indices [Int]. This gives enough
context, but it is poorly typed: a path can apply to any tree, and
there is no guarantee that a path is valid for a given tree.

The traditional, functional way for representing structural navi-
gation is the zipper (Huet 1997). A zipper datatype is derived from
another datatype: its definition depends on the shape of the original
datatype. McBride (2001) shows how to automatically derive the
zipper for any regular datatype.

A value of a zipper type represents a particular node in a tree
together with the rest of the tree. The selected node is called the
zipper’s focus, whereas the rest of the tree is called the context. A
zipper enables navigation in the tree, stepping from one node to its
sibling, child or parent in O(1) time. The zipper also allows the
current focus to be updated in O(1) time.

So far, we have been generic over the particular shape functor
f, albeit under some class constraints to have access to certain
functions. It is hard to encode a zipper in such a setting because we
cannot automatically derive the zipper datatype. For this section,
we will use a simplified zipper-like structure for navigation on
a tree, but we will not have O(1) time updates for the focus. In
Section 8.5 we present a more general solution using a real zipper.
For now, our zipper data structure is:

data Zipper a = Zipper {zFocus ::a
, zUp ::Maybe (Zipper a)
, zLeft ::Maybe (Zipper a)
, zRight ::Maybe (Zipper a)
, zDown ::Maybe (Zipper a)}

This datatype can be used for tree selections of any tree, not just
those expressed in open recursion style. However, we will only
construct and use zipper values of type Functor f⇒ Zipper (Fix f).
Despite lacking constant-time updates, this Zipper is still usable as
a representation of structural selections. To build a zipper value, we
will need the fold function from the Foldable class:

class Foldable t where
fold :: (Monoid m)⇒ t m→m
. . .

This function says that every Foldable can be seen as a container
of elements, and these elements can be visited and combined using
mappend and mempty. If the list monoid [a ] is chosen, the result is
a list with all the elements in the container. This is exactly what the
standard function toList ::Foldable t⇒ t a→ [a ] does.

For our fixpoint functors, f’s elements are its children, and
therefore we can use toList to obtain the functor’s children. We use
toList in our definition of enter:

enter ::Foldable f⇒ Fix f→ Zipper (Fix f)
enter f = fromJust (enter′ Nothing Nothing [f ])
enter′ :: Foldable f

⇒Maybe (Zipper (Fix f))→Maybe (Zipper (Fix f))
→ [Fix f ]→Maybe (Zipper (Fix f))

enter′ [ ] = Nothing
enter′ up left (focus@(In f ) : fs) = here where

here = Just (Zipper focus up left right down)
right = enter′ up here fs
down = enter′ here Nothing (toList f )

The helper function enter′ is given more context: its first argument
is the parent (if there is one) of the node that will be produced,
and its second argument is its left sibling (if it exists). The third
argument is the list of the resulting node’s right siblings, still to be
processed. In the where clause we build the current focus and the
recursive values, ensuring optimal sharing.

Once the zipper structure is created, it can be navigated using
the record selectors zDown, zUp, zLeft and zRight. From anywhere
in the zipper, we can recover the original tree by traversing up as
far as possible and then requesting the focus:

leave ::Zipper a→ a
leave z = maybe (zFocus z) leave (zUp z)

Navigating down always selects the first child. A useful helper
function is navigating down into the nth child. Like all other traver-
sal functions, it might fail, so its result is wrapped in a Maybe:

child :: Int→ Zipper a→Maybe (Zipper a)
child 0 = zDown
child n = child (n−1)>=> zRight

Since Maybe is a Monad, navigation functions like child and those
of the Zipper constructor can be easily composed using the Kleisli
arrow composition operator (>=>) :: Monad m⇒ (a→ m b)→
(b→m c)→ (a→m c).

We will now see how we use this zipper to traverse annotated
trees.

7.2 Annotation-guided exploring
We define functions from textual selections to a zipper. A naive
implementation would visit the entire tree, starting at the root, and
then searching recursively down and to the right until a node with
matching bounds is found. But the laws outlined in Section 2 give
us more information, allowing us to prune some entire subtrees:

• If the left offset of the query range is strictly lower than the
current node’s inner right offset, we do not have to look at the



node’s right siblings, since law 2 states that children appear in
order and their inner ranges do not overlap.

• If the query range is not contained within the current node’s
outer range, we do not have to consider the node’s children
anymore, by law 3.

Generalizing these choices for arbitrary annotations x, we can
encode the choices using a function of type x → ExploreHints,
where ExploreHints is defined as follows:

data ExploreHints = ExploreHints {matchHere ::Bool
, exploreDown ::Bool
, exploreRight ::Bool}

Although uncommon, a parse tree may be constructed in such a
way that a parent and its single child have the exact same bounds.
For this reason, we return the full list of matching tree selections.
Our complete exploration function follows:

explore ::Foldable f⇒ (x→ ExploreHints)→ AnnFix x f
→ [Zipper (AnnFix x f)]

explore hints = explore′ hints◦ enter

explore′ ::Foldable f⇒ (x→ ExploreHints)
→ Zipper (AnnFix x f)→ [Zipper (AnnFix x f)]

explore′ hints root =
[z | (dirOk,zs)← dirs,dirOk (hints x),z← zs] where

In (Ann x ) = zFocus root
dirs =

[(matchHere, [root ])
,(exploreDown,exploreMore (zDown root))
,(exploreRight, exploreMore (zRight root))]

exploreMore = maybe [ ] (explore′ hints)

The actual work is delegated to explore′ which takes a zipper as
input. It is easier to work on zippers because they allow abstraction
over the navigation of the tree. The do-block is written in the list
monad, exploring the tree recursively in three relevant directions:
first the current node, then down, and finally to the right, but only
if the hints allow so.

Now we can express our positional conversion function in terms
of explore:

selectByRange ::Foldable f⇒ Range→ AnnFix Bounds f
→Maybe (Zipper (AnnFix Bounds f))

selectByRange range@(left, ) =
listToMaybe◦ reverse◦ explore hints where

hints bs@(Bounds (ir, )) = ExploreHints {
matchHere = range ‘rangeInBounds‘ bs

,exploreDown = range ‘rangeInRange‘ outerRange bs
,exploreRight = left > ir}

explore returns the topmost matching node, so selectRange reverses
the returned list and wraps the first result in a Just.

Other conversion functions are possible, such as selecting a sin-
gle position instead of a range. We provide those in the accompa-
nying library.

7.3 Repairing and navigating text selections
The last two use cases we will see are the repair of invalid text
selections and navigation based on text selections.

We can distinguish between invalid and valid text selections: a
text selection is valid with respect to a parse tree if it corresponds to
a structural selection in this parse tree. However, invalid selections
are not useless: we can make a good estimate as to what piece
of text the user intended to select, based on the erroneous text
selection and the list of all the text selections that would have been
valid. We do this in function repairBy:

repairBy :: (Foldable f,Ord d)⇒ (Range→ Range→ d)
→ AnnFix Bounds f→ Range→ Bounds

repairBy cost tree range =
head (sortOn (cost range◦ innerRange) (validBounds tree))

sortOn ::Ord b⇒ (a→ b)→ [a ]→ [a ]
sortOn = sortBy◦ comparing
validBounds ::Foldable f⇒ AnnFix Bounds f→ [Bounds]
validBounds (In (Ann b f )) =

b : concatMap validBounds (toList f )

Function repairBy takes a tree and a text selection. It asks for all the
selections that would have been valid using validBounds and sorts
them according to some cost function, to which the inner bounds
are given. For this we use sortOn, which sorts a list based on a
property of all elements in the list. The first element of the resulting,
sorted list is returned. Using head here is safe because the list is
guaranteed to contain at least one element: the bounds of the root
of the tree.

One possible cost function is distRange, which takes the sum of
the absolute differences of two ranges’ endpoints. Function repair
is repairBy specialized to this particular cost function:

repair ::Foldable f⇒ AnnFix Bounds f→ Range→ Bounds
repair = repairBy distRange
distRange ::Range→ Range→ Int
distRange (l1,r1) (l2,r2) = abs (l1− l2)+abs (r1− r2)

Finally we tackle the issue of navigation based on text selec-
tions. Suppose a user selects a piece of text that corresponds pre-
cisely to a structural selection. Now the user wants the selection to
expand to the direct parent of the selected node, for instance.

We can accomplish this by translating the text selection to a
zipper, moving up in the zipper and then translating back to text
selection. We can capture these actions using our zipper argu-
ments. All four selectors of the Zipper constructor have the type
Zipper a→Maybe (Zipper a). From this type we can see that the
type of the composition of two movements, e.g. zDown>=>zRight,
is also Zipper a→Maybe (Zipper a).

The index of the zipper is always polymorphic in such func-
tions. We can express this by encoding movements in a newtype:

newtype Nav = Nav {nav ::∀a.Zipper a→Maybe (Zipper a)}

which is used in a function for navigation based on text selections
as follows:

moveSelection ::Foldable f⇒ AnnFix Bounds f
→ Nav→ Range→Maybe Bounds

moveSelection tree (Nav nav) range =
(rootAnn◦ zFocus)<$> (selectByRange range tree>>=nav)

rootAnn ::AnnFix x f→ x
rootAnn (In (Ann x )) = x

We choose to return Maybe Range rather than Maybe Bounds, as
Bounds contains strictly more information.

Summing up. Using datatypes in open recursion style has a num-
ber of benefits. By building the datatypes we require from smaller
building blocks (ExprF, Ann, Fix), we have gained a generic
scheme for expressing morphisms, including catamorphisms and
error catamorphisms. By adding certain constraints to our trees,
such as Traversable, we can convert between normal algebras and
error algebras. We can also generically discard annotations and
use both normal algebras and error algebras on both normal and
annotated trees.

In terms of producers, the parser we built originally for ExprBare
only needed minimal changes to work with the new annotated



expressions, since most of the work is hidden in the combinators.
We can also generically express structural exploration functions
using a zipper. For trees annotated with position information, this
means we are able to convert between text selections and structural
selections, as well as fix invalid selections.

8. Annotations in multirec

One of the disadvantages of the approach taken so far is that we
have to adapt our original ExprBare datatype to open recursion
style. Our original intention, however, was to develop a solution
for adding position information with as few changes as possible
to existing code. Additionally, we are now restricted to working
with single, regular datatypes. In particular, recursive families of
datatypes, common for expressing large ASTs, are out of our reach.

Swierstra (2008) shows how to take the fixpoint of multiple
datatypes using coproducts (lifted sums). However, in his solution
there is freedom in which datatype to pick at every recursive po-
sition. We do not want this freedom, because we want to specify
which exact datatype to recurse into. In this section we will see
how to use the multirec library for generic programming (Ro-
driguez Yakushev et al. 2009) to solve this problem. We omit many
of the details due to space constraints: the reader is referred to
Van Steenbergen (2010) for a detailed description.

So far we have used arithmetic expressions as our running ex-
ample. To exploit multirec’s capabilities of working with families
of datatypes, we will modify the example to use an extra datatype:

data Expr = Add Expr Expr
| Mul Expr Expr
| Tup Expr Expr
| Num Int
| Typed Expr Type

data Type = IntT
| TupT Type Type

We have replaced the constructors for division and subtraction with
two other constructors: one for creating tuples of expressions and
one for typed expressions. The latter uses a separate type Type to
describe types of expressions.

8.1 Pattern functors
The multirec library for generic programming in Haskell sup-
ports generic programming over systems of (possibly mutually
recursive) datatypes. It uses embedding-projection pairs between
user-defined datatypes and their functorial views (which are simi-
lar to the open recursion style datatypes). Because multirec uses
higher-order fixpoints in the functorial views, we get higher-order
functorial views of datatypes, which allow us to express recursion
into other datatypes. Embedding-projection pairs are encapsulated
in a type class:2

class Fam φ where
from :: ix→ PF φ I∗ ix
to ::PF φ I∗ ix→ ix

The function from translates from values of the original datatype
to the generic representation, while to does the inverse. There are
many technical details of multirec that we cannot explain due to
space constraints. We will only highlight a few important concepts.
The argument to the Fam class is a type representing the family of
datatypes. Function from takes a value of type ix (which belongs to
the family) and returns its representation as a pattern functor.

2 Throughout our explanation, we elide explicit witness terms in multirec
(of type φ ix) for simplicity. Details about these can be found in the original
paper (Rodriguez Yakushev et al. 2009), and in our implementation.

The pattern functor is an encoding of a datatype using a sum-of-
products structure and abstracting over what occurs at the recursive
positions. It is implemented as a type family (Schrijvers et al.
2008):

type family PF φ :: (?→ ?)→ ?→ ?

Given a type representing a family of datatypes, PF returns the
associated representation type. The second argument to PF, of kind
?→ ?, controls what happens at the recursive occurrences. This is a
crucial argument, as it allows us to specify the shape of the children
of a value. The last argument specifies which particular type of the
family φ we are focusing on.

Because the pattern functor abstracts over the recursive posi-
tions, we can use a higher-order fixpoint to encode the recursion
for families of datatypes:

newtype HFix f ix = HIn {hout :: f (HFix f) ix}
Since we are using fixpoints again, we can insert annotations

at every level. We can now build the multirec version of AnnFix
and AnnFix1:

type AnnFix x φ = HFix (K x :∗: PF φ)
type AnnFix1 x φ = PF φ (AnnFix x φ)

The types K and :∗: are part of multirec’s representation types:
in AnnFix we couple the pattern functor with a constant type x (the
type of annotations). Generally, we instantiate x to Bounds.

8.2 Pattern functors are traversable
After translating a value to its pattern functor, we still need to be
able to traverse and change it. For that we use multirec’s hmapA:

hmapA ::Applicative a
⇒ (∀xi.r xi→ a (r xi))→ f r ix→ a (f r ix)

The first argument is the action that is applied to every child.
Since we do not know in advance the type of the recursive position,
this function is polymorphic on its index. The type guarantees that
it works for all indices and that the action does not change the
index of a specific child. This function is implemented on each
of the basic representation types of multirec, which means that
all pattern functors (which are built using the representation types
only) are traversable with hmapA.

8.3 Error catamorphisms in MultiRec
The next step is to translate the error catamorphisms we discussed
in Section 5 to use pattern functors. It is reasonably easy to express
an algebra in terms of pattern functors in the same way as was
done with the base functors. However, now we need to take into
account the higher-order recursion parameter and the extra index
of the pattern functor:

type ErrorAlgPF f e a = ∀ix. f (K∗ a) ix→ Either e a

Here we use K∗ a for the recursive occurrences, which says that
the children should always contain a value of type a, regardless of
their index (K∗ is the type-level equivalent of const). The universal
quantification says that it does not matter what the index of the
ingoing value is: the result is always Either e a.

With this algebra type we can write the multirec version of
errorCata:

errorCata :: ErrorAlgPF f e r→ HFix (K x :∗: f) ix
→ Except [(e,x)] r

errorCata alg (HIn (K k :∗: f )) =
case hmapA (λg→ K∗<$> errorCata alg g) f of

Failed xs → Failed xs
OK expr′→ case alg expr′ of



Left x′ → Failed [(x′,k)]
Right v→ OK v

This implementation is very similar to that of the earlier errorCata.
However, writing an algebra for this catamorphism is not as easy as
before, since the algebra cannot use the constructors of the original
datatype. Instead, it has to pattern match on the representation
types, which are far more verbose and make the algebra less clear.

This problem is not specific to our error algebras and already
occurs in normal algebras. Rodriguez Yakushev et al. (2009) solve
the problem by automatically translating the pattern functor to
a convenient algebra type (using a type family). We adapt this
strategy also for our error catamorphisms by defining a type family:

type family ErrorAlg
(f :: (?→ ?)→ ?→ ?) -- pattern functor
(e ::?) -- error type
(a ::?) -- result type

::? -- resulting algebra type

This type is instantiated to each of the representation types, and an
associated function mkErrorAlg converts regular error algebras to
convenient error algebras. We do not show the details of ErrorAlg;
instead, we show an example algebra that infers the type of expres-
sions of our language of tuples:

inferType :: ErrorAlg PFExpr String Type
:&: ErrorAlg PFType String Type

inferType = (compare True "+" & compare True "*" & tup
& const (Right IntT) & compare False "::")

& (Right IntT & tup) where
compare b op ty1 ty2
| ty1 ≡ ty2 = Right ty1
| otherwise =

let text = if b
then "lhs and rhs should "++

"have equal type"

else "lhs is of type rhs"

in Left ("in lhs"++op++"rhs, "++ text)
tup ty1 ty2 = Right (TupT ty1 ty2)

This algebra says that the operands of + and ∗ must have equal
types. It also checks whether explicit type signatures using :: match
the types of the expressions on the left-hand sides. The use of the
combinators :&: and & helps to make the algebra more similar to
the structure of the original datatype.

To test this algebra, we use a function readExpr :: String →
AnnFix Bounds Tuples Expr:

> let expr1 = readExpr "(1, (2,3))"

> errorCata (mkErrorAlg inferType) expr1
OK (TyTup TyInt (TyTup TyInt TyInt))

> let expr2 = readExpr "(1 :: (Int,Int), 2+(3,4))"

> errorCata (mkErrorAlg inferType) expr2
Failed

[ ( "in x::t, x should have type t"

, Bounds { leftMargin = (1,1)

, rightMargin = (16,16) } )

, ( "in x+y, x and y should have equal type"

, Bounds { leftMargin = (17,18)

, rightMargin = (28,28) } ) ]

8.4 Constructing recursively annotated trees
In Section 8.1 we have translated the AnnFix and AnnFix1 type
synonyms from Section 3 to use multirec concepts. Function
mkAnnFix can be translated in a similar fashion:

data FixZipper φ f ix

enter ::Zipper φ f⇒ HFix f ix→ FixZipper φ f ix
leave ::Zipper φ f⇒ FixZipper φ f ix→ HFix f ix

type Nav = ∀φ f ix.Zipper φ f⇒ FixZipper φ f ix
→Maybe (FixZipper φ f ix)

up,down, left,right ::Nav

on :: (∀xi.HFix f xi→ a)→ FixZipper φ f ix→ a

Figure 2. Interface of the generic zipper.

mkAnnFix ::x→ AnnFix1 x s ix→ AnnFix x s ix
mkAnnFix x = HIn◦ (K x :∗:)

Previously, we produced AnnFix1s by supplying fully anno-
tated AnnFixs to a constructor of ExprF. However, producing an
AnnFix1 in multirec is not as easy: we cannot supply anno-
tated children to the constructors of the original datatypes Expr
and Type because they only accept unannotated values. Instead,
to produce an AnnFix1 we have to use the pattern functor ver-
sions of the constructors. For example, given two annotated expres-
sions of type AnnFix Bounds Tuples Expr, we can construct their
sum using constructor Add’s pattern functor constructor λx y→
L◦Tag◦R◦L$ I x :∗: I y :∗: U. These constructor functions are long
and tedious, and should not be exposed to the user of the library.

One possible solution would be to generate smart constructors
with convenient names. Van Noort et al. (2008) present a solution
that could potentially be adapted to our situation. The approach we
take, however, makes use of the fact that the parsers we work with
construct trees in post-order form: first the children are parsed and
constructed (including position information), then the node itself.
For example: to parse the expression 2 + 3, first 2 is parsed, then
3, and then the sum is constructed. Ommitting the details about
position for simplicity, this parser operates as follows:

do n2← yield (Bounds . . .) (Num 2)
n3← yield (Bounds . . .) (Num 3)
n5← yield (Bounds . . .) (Add n2 n3)
return n5

Here, yield is taking concrete datatypes constructors, such as Add,
which are built using other concrete datatypes (returned by yield).
However, the position information cannot be stored in these con-
structors. What yield does is to check the number of children of
its last argument. If there are no children, like for Num, the con-
structed value (using the generic representation constructors) is put
on a stack. If the constructor expects children, like Add, the correct
number of elements is popped from the stack and used to replace
the current children of the term. Thus, in the example above, sup-
plying Add ⊥⊥ to yield would have the same effect.

In case there are not enough children in the stack, or they have
the wrong type, a runtime error is returned. This solution is not
ideal, because it cannot be applied to all types or parsers. Addi-
tionally, mistakes made in the parser are harder to find. However, it
allows us to use the original constructors of the datatype.

8.5 Annotation-guided exploration
In contrast with the annotation-guided exploration of Section 3, pat-
tern functors give us enough information to define genuine zippers,
as described by Rodriguez Yakushev et al. (2009). However, since
our annotations change the structure of the representation, we can-
not use the standard zipper. Instead, we slightly generalize the zip-
per to behave adequately on annotated representations. We present
only the interface of our zipper, not its implementation.



An overview of the interface of the generic zipper is given in
Figure 2. The names of the arguments of FixZipper are consistent
with what we have seen before: φ is the type representing the family
of types, f is the pattern functor over which the zipper is computed
and ix is the top-level index. Function enter takes a fixpoint and
returns a zipper over that fixpoint, with the focus at the tree’s root.
Function leave leaves the zipper structure by navigating to the top
and returning the tree. The navigation functions up, down, left,
and right all have the same type, which, as before, is called Nav.
Navigation steps can be composed using >=>. Finally, on takes a
function and applies it to the current focus.

If we instantiate a FixZipper with K x :∗: PF φ for f, it holds
selections of recursively annotated trees:

type AnnZipper φ x = FixZipper φ (K x :∗: PF φ)

Given a zipper over an annotated tree, we can extract the anno-
tation of the current focus using on:

focusAnn ::AnnZipper φ x ix→ x
focusAnn = on (λ (HIn (K x :∗: ))→ x)

Function explore plays a central role in Section 7. Most other
functions are expressed in terms of explore. Its counterpart in
multirec is very similar:

explore ::Zipper φ (PF φ)⇒ (x→ ExploreHints)
→ (AnnFix x φ) ix→ [AnnZipper φ x ix ]

explore hints = explore′ hints◦ enter

explore′ ::Zipper φ (PF φ)⇒ (x→ ExploreHints)
→ AnnZipper φ x ix→ [AnnZipper φ x ix ]

explore′ hints root =
[z | (dirOk,zs)← dirs,dirOk (hints x),z← zs] where

x = focusAnn root
dirs = [(matchHere, [root ])

,(exploreDown,exploreMore (down root))
,(exploreRight, exploreMore (right root))]

exploreMore = maybe [ ] (explore′ hints)

The type of function explore is slightly more complicated, but
its behavior remains the same. The annotation is extracted using
focusAnn, rather than by means of pattern matching.

The other generic zipper functions in multirec, including
selectByRange and repairBy, are also very similar to their coun-
terparts in Section 7.

9. Related work
9.1 GroteTrap

A library related to the one we present is GroteTrap (Leeuwestein
and Steenbergen 2008). Its purpose is to provide an easy way
to define expression languages and get functions for converting
between text selections and structural selections for free.

As an example, we show how we could express the language of
ExprBare of Section 1 in GroteTrap:

exprLanguage ::Language ExprBare
exprLanguage = language
{number = Num
, operators = [Assoc Add 1 "+",Assoc Sub 1 "-"

,Assoc Mul 2 "*",Assoc Div 2 "/"]}

The language definition ties the constructors to lexical constructs,
providing enough information for the generation of a parser. Since
the available constructs are limited to numbers, variables and unary
and binary operators, parsed expressions can be stored in a univer-
sal datatype with one constructor for each type of construct. Cou-

String

ParseTree

ParseTreeZipper

ParseTree

parse

select update

print

Figure 3. The refactoring cycle.

pling this with position information allows for conversion between
textual and structural selections.

Although GroteTrap works well for small expression lan-
guages, any grammar that requires more than just identifiers, num-
bers, and unary and binary operators is very hard if not impossible
to define. The library we present makes the selection conversion
functions automatically available for any context-free grammar
that can be represented by a datatype that multirec can deal with.

9.2 Proxima

Proxima (Schrage 2004) is a generic framework for creating struc-
ture editors. Programmers have full control over the presenta-
tion of datatype values, and presentation level edit operations are
mapped back to the data model. Proxima provides tools for defin-
ing parsers, ASTs, and evaluation using attribute grammars. It also
supports selections in both textual and structural views. However,
since it uses a universal datatype to represent all datatypes, the
problem only has to be solved for this datatype. In contrast, our
solution is datatype-generic.

9.3 Annotating trees post factum
Kiselyov and Shan (2008) present a lightweight annotation system
which does not require any changes to the original datatypes. An-
notations are encoded as a map from paths to annotations. Paths
are lists of integers, which index a position on a term. Unlike in
our approach, the type of the annotations does not guarantee that
every subterm has an annotation, and that there are no annotations
for invalid subterms (i.e. it is easy to provide an incomplete map or
to have paths which do not correspond to a subterm).

9.4 Other uses for generic annotations
Visser and Löh (2010) present a similar generic framework for ex-
tending datatypes (written in open recursion style) with annota-
tions. However, they use annotations to simplify constructing per-
sistent data structures, focusing on annotating each node with a
pointer to its location on the disk.

10. Future work
10.1 Dealing with tree updates
Figure 3 depicts the refactoring cycle: in an Integrated Develop-
ment Environment (IDE), a programmer selects a source code frag-
ment and performs a refactoring action. To support this, the IDE
maps the text selection to a structural selection in the syntax tree,
something we have discussed in detail in the previous chapters.
Then the selection is processed so that the refactoring is carried



out, changing the tree in the process. Perhaps part of the code is
deleted or moved to a new position, or new code is created.

Dealing with changes to the tree is an interesting problem that
we have not addressed yet. In particular, we have to make sure that
the text positions stored in the annotated tree stay correct after an
edit. A possible solution is to not store position information but the
exact source code responsible for each subtree. From this, position
information can be inferred.

Doing this would introduce a whole new set of questions: can
we generically add source code to trees? Do we need to create a
derived datatype for this? How can we efficiently compute position
information from the source code?

10.2 Contexts in algebras
To use annotated trees, our approach requires that a programmer ex-
presses data-consuming functions as algebras for catamorphisms.
Most consumers can be expressed in terms of an algebra, because
the result type of an algebra is allowed to be a function of type c→
r, where c can be any context information necessary to compute the
result. A well-known example for which we have to add a context is
the evaluation of arithmetic expressions with variables. The result
type of the algebra is something like Environment→ Int. When
evaluating a variable, the variable is looked up in the environment
to retrieve its value. In the evaluation of a binding, a key-value pair
is added to the environment.

Result types that use a context do not work well in combination
with error algebras: our type ErrorAlgebra f e (c→ a) is equivalent
to f (c→ a)→ Either e (c→ a). This is not very convenient: the
algebra has to decide whether to throw an error without being able
to inspect the context. Imagine this in the scenario above: when
encountering a variable node, we would like to throw an error if the
variable is unbound in the environment. However, we cannot do so
because no environment is available. A more convenient algebra
type would be f (c → a) → c → Either e a, where the context
is moved out of the Either constructor, and thus available when
deciding to return a Left or a Right. It would be interesting to see if
errorCata can be changed to work with such algebras.

11. Conclusion
We have shown how to generically add position information to
recursive datatypes, along with how to adapt producers and con-
sumers so that the position information is constructed or con-
sumed automatically. Our solution is based on the fixpoint view of
datatypes. By expressing a recursive type as a fixpoint, it is possible
to insert position information at every recursive position.

We have implemented this solution in two ways: one using
datatypes in open recursion style (Section 3), and the other using
the multirec library for generic programming (Section 8). These
implementations are the first steps towards solving the task of
adding position information to software tools using a library instead
of a design pattern.
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