
Path Planning for Groups using Column Generation

Marjan van den Akker

Roland Gerearts

Han Hoogeveen

Corien Prins

Technical Report UU-CS-2010-019

June 2010

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl



ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands



Path Planning for Groups
using Column Generation

Marjan van den Akker, Roland Geraerts, Han Hoogeveen, and Corien Prins

Institute of Information and Computing Sciences, Utrecht University
3508 TA Utrecht, the Netherlands

{marjan,roland,slam}@cs.uu.nl; C.R.Prins@students.uu.nl

Abstract. In computer games, one or more groups of units need to move
from one location to another as quickly as possible. If there is only one
group, then it can be solved efficiently as a dynamic flow problem. If there
are several groups with different origins and destinations, then the prob-
lem becomes NP-hard. In current games, these problems are solved by
using greedy ad hoc rules, leading to long traversal times or congestions
and deadlocks near narrow passages. We present an efficient heuristic
solution that is based on Integer Linear Programming techniques.

1 Introduction

Path planning is one of the fundamental artificial intelligence-related problems in
games. The path planning problem can be defined as finding a collision-free path,
traversed by a unit, between a start and goal position in an environment with
obstacles. Traditionally, this problem and its variants were studied in the field
of robotics. We refer the reader to the books of Choset et al. [4], Latombe [16],
and LaValle [17] for an extensive overview.

The variant we study is the problem of finding paths for one or more groups
of units, such as soldiers or tanks in a real-time strategy game, all traversing in
the same (static) environment. Each group has its own start and goal position
(or area), and each unit will traverse its own path. The objective is to find the
paths that minimize the average arrival times of all units.

Current solutions from the robotics field can be powerful but are in general
too slow for handling the massive number of units traversing in the ever growing
environments in real-time, leading to stalls of the game. Solutions from the
games field are usually fast but greedy and ad hoc, leading to long traversal
times or congestions and deadlocks near narrow passages, in particular when
two groups meet while moving in opposite directions. Obviously, such solutions
have a negative impact on the gameplay.

One of the first solutions for simulating (single) group behavior was intro-
duced by Reynolds in 1987 [22]. His influential boids model, comprising simple
local behaviors such as separation, cohesion and alignment, yielded flocking be-
havior of the units. While this model resulted in natural behavior for a flock of
birds or school of fish moving in an open environment, they could get stuck in



2

cluttered areas. Bayazit and his colleagues [2] improved this model by adding
global navigation in the form of a roadmap representing the environment’s free
space. While the units did not get stuck anymore, they could break up, losing
their coherence. By following a point that moves along a backbone path cen-
tered in a two-dimensional corridor, coherence was guaranteed by the method
proposed by Kamphuis and Overmars [14]. In their method, the level of coher-
ence was controlled by two parameters, namely the corridor width and the group
area.

When multiple units are involved, possible interference between them com-
plicates the problem, and, hence, some form of coordination may be required to
solve the global problem. From the robotics field, two classes of methods have
been proposed. Centralized methods such as references [23,24] compute the paths
for all units simultaneously. These methods can find optimal solutions at the cost
of being computationally demanding, usually making them unsuitable for sat-
isfying the real-time constraints in games. Decoupled methods compute a path
for each unit independently and try to coordinate the resulting motions [20,26].
These methods are often much quicker than centralized methods but the result-
ing paths can be far from optimal. Also hybrid methods such as references [11,18]
have been proposed. A variant to solving the problem is called prioritized mo-
tion planning [3, 9, 19, 28]. According to some prioritization scheme, paths are
planned sequentially which reduces the problem to planning the motions for a
single unit. It is however not clear how good these schemes are.

Our main contribution is that we propose an efficient solution for the path
planning problem with groups. This solution translates the problem into a dy-
namic multi-commodity flow problem on a graph that represents the environ-
ment and uses column generation to identify promising paths in this graph.
Our solution can be used to handle difficult situations which typically occur
near bottlenecks (e.g. narrow passages) in the environment. The solution is effi-
cient because it provides a global distribution of the paths while local behaviors,
such as locally avoiding collisions with other units, can be handled by an ex-
ternal method which can be plugged into the path planning system. Such a
method can be any local collision avoidance model such as the Predictive model
of Karamouzas et al. [15] or the Reciprocal Velocity Obstacles of van den Berg et
al. [27]. In addition, when characters follow the same homotopic path, Kamphuis’
method [14] can be used to introduce coherence if desired.

Our paper is organized as follows. In Section 2, we show that path planning
for one group can be solved to optimality as a dynamic flow problem. Comput-
ing the distribution of paths for multiple groups is more difficult (i.e. NP-hard).
We propose a heuristic solution that solves the corresponding dynamic multi-
commodity flow problem in Section 3. We conduct experiments on some hard
problems in Section 4 and conclude in Section 5 that they can be solved effi-
ciently.



3

2 Path planning for one group

In this section, we discuss the problem of finding an optimal set of paths for one
group of units, who all want to move from their origin p to their destination s.
We assume that all units in the group are equal. Hence, we do not have to specify
a path for each separate unit; our solution simply consists of a set of paths, and
each path in our solution can be assigned to each unit. The goal is to maximize
the number of units that have reached q for each time t; using this approach,
we automatically minimize both the average arrival time and the time by which
all units have reached the destination. We assume here that the environment in
which the units move is static.

To solve the problem, we first construct a directed graph that resembles the
free space in the environment. There are several ways to create such a graph.
One possibility is to use tiles, as is done in earlier games, but this is considered
to lead to unnatural paths. A better alternative is to use a waypoint graph [21]
in combination with a navigation mesh [10]. No matter how the graph has been
constructed, we determine for each arc in the graph the traversal time as the
time it takes to traverse the arc. We further determine its capacity as the number
of units that can traverse the arc while walking next to each other. For instance
in [10], the capacity can be computed by the minimum clearance along the arc
divided by the width of a character. We choose the time unit as the time a unit
has to wait until it can leave after the previous one. For each arc (i, j), we know
its traversal time l(i, j) and its capacity cij . Since the environment is assumed
to be static, these data do not change over time. The path planning problem
can then be modeled as a dynamic flow problem for which we have to determine
a flow from the origin, which is called the source, to the destination, which is
called the sink. Since we want as many units as possible that have arrived at the
destination at each time, we are looking for a so-called earliest arrival flow.

The above problem can be solved by a classic algorithm due to Ford and
Fulkerson [8], with a small adaptation due to Wilkinson [29]. The algorithm by
Ford and Fulkerson computes a dynamic flow in an iterative version: given an
optimal dynamic flow for the problem with T − 1 periods, an optimal dynamic
flow for the T -period problem is constructed. Even though we do not have a
deadline T but a number of units that have to go to the destination, we can use
this algorithm by increasing the deadline each time by one time unit until all
units have arrived.

The algorithm of Ford and Fulkerson [8] resembles the residual-graph algo-
rithm due to Ford and Fulkerson [6] for the static maximum flow problem in
which time plays no role, or equivalently, all traversal times are zero. The notion
of time is included by assigning a time-parameter to each vertex that indicates
the ‘current time’ of the vertex; flow can be sent through an arc if the difference
between the time-parameters of the vertices are equal to the traversal time of the
arc. When an optimal solution to the T -period problem has been constructed,
the algorithm by Ford and Fulkerson [8] splits it up in a set of chain-flows, which
can be interpreted as a set of compatible paths in the graph. The flow (units in
our case) are then sent through the graph following the chain-flows, where the



4

last unit leaves the origin such that it arrives at the destination exactly at time
T . Although the decomposition in chain flows yields an optimal solution for the
T -period problem, this solution does not need to be optimal when it is cut off
at time t, even though the algorithm by Ford and Fulkerson [8] did find it as an
intermediate product. Wilkinson [29] described a way to store the intermediate
information of the algorithm to find an earliest arrival flow.

3 Path planning for multiple groups

In this section, we consider the path planning problem for multiple groups of
units. For each group, we are given the origin, the destination, and the size of the
group. Initially, we assume that each unit is available at time zero, and that there
are no deadlines for arrival; we later will show how to deal with units that must
leave the origin after time zero and/or must have arrived at their destination at
a given deadline. The goal is to minimize the average arrival time of all units.
Just like in the previous section, we assume that the graph that we use to model
the problem is static. We further assume that the graph is directed.

Since there are different groups with different origins and/or destinations, we
do not have a dynamic flow problem anymore, but a dynamic multi-commodity
flow problem, which is known to beNP-hard in the strong sense, since the special
case in which all traversal times are zero, the so-called static multi-commodity
flow problem, is NP-hard in the strong sense for the case of integral flows [5].
Obviously, one attempt to solve the overall problem is to solve the path planning
problem for each group separately using the algorithm of Section 2. If these
solutions are compatible, then we have found an optimal solution for the overall
problem, but we may expect the combined solution to be infeasible.

We want to present a heuristic for the problem that is based on techniques
from (integer) linear programming. We refer the reader to reference [30] for a
description of this theory. The basic idea is that we formulate the problem as an
integer linear program (ILP), but we restrict the set of variables by eliminating
variables that are unlikely to get a positive value anyway. In this way, we make
the problem tractable, without loosing too much on quality.

Instead of using variables that indicate for each arc at each time the number of
units of group k that traverse this arc (an arc formulation), we use a formulation
that is based on paths for each origin-destination pair. A path is described by the
arcs that it uses and the times at which it enters these arcs. Here we require that
the difference in the entering times of two consecutive arcs (i, j) and (j, k) on
the path is no less than the traversal time l(i, j) of the arc (i, j); if this difference
is larger than l(i, j), then this implies that there is a waiting time at j. Initially,
we assume that there is infinite waiting capacity at all vertices. The advantage
of using a formulation based on path-usage instead of arc-usage is twofold. First
of all, we do not have to model the ‘inflow = outflow’ constraints anymore for
each arc, time, and group. Second, we can easily reduce the number of variables
by ignoring paths that are unlikely to be used in a good solution.



5

Suppose that we know all ‘possibly useful’ paths for each origin-destination
pair. We can now model our path planning problem as an integer linear pro-
gramming problem as follows. First, we introduce two sets of binary parameters
to characterize each path s ∈ S, where S is the set containing all paths. The
first one, which we denote by dks, indicates whether path s does connect ori-
gin/destination pair k (then dks gets value 1), or does not (in which case dks
has value 0). The second set, which we denote by bats, keeps track of the time
t at which arc a is entered by s: it gets value 1 if path s enters arc a at time t,
and it gets value 0, otherwise. Note that these are parameters, which are fixed
in advance, when the path s gets constructed. Mathematically, these parameters
are defined by

dks =

{
1 if path s connects origin/destination pair k
0 otherwise

bats =

{
1 if path s enters arc a ∈ A at time t
0 otherwise.

As decision variables we use xs for each path s ∈ S, which will denote the number
of units that follow path s. We use cs to denote the cost of path s, which is
equal to the arrival time of path s at its destination. We formulate constraints
to enforce that the desired number yk of units arrive at their destination for
each origin/destination pair k and to enforce that the capacity constraints are
obeyed. We define K as the number of origin/destination pairs, and we denote
the capacity of arc a ∈ A by ua. We use T to denote the time-horizon; if this has
not been defined, then we simply choose that is large enough to be sure that all
units will have arrived by time T . Since the environment is constant over time,
the capacity ua is independent of t. This leads to the following integer linear
program (ILP):

min
∑

s∈S csxs
subject to∑

s∈S dksxs = yk ∀k = 1, . . . ,K∑
s∈S batsxs ≤ ua ∀a ∈ A; t = 0, . . . , T

xs ≥ 0 and integral ∀s ∈ S.

Obviously, we do not know the entire set S of paths, and enumerating it would
last forever. Since the overwhelming majority of the paths will not be used
anyway, we will make a selection of the paths that we consider ‘possibly useful’,
and we will solve the ILP for this small subset. We determine these paths by
considering the LP-relaxation of the problem, which is obtained by removing the
integrality constraints: the last constraint simply becomes xs ≥ 0 for all s ∈ S.
The intuition behind taking the relaxation is that we use it as a guide towards
useful paths, since the problems are so close together that a path which will be
‘possibly useful’ for the one will also be ‘possibly useful’ for the other. The LP-
relaxation can be solved quickly because there is a clear way to add paths only



6

that improve the solution. We solve the LP-relaxation through the technique of
column generation, which was first described by Ford and Fulkerson [7] for the
multi-commodity flow problem and by Gilmore and Gomory [12] for the cutting
stock problem.

3.1 Column generation

The basic idea of column generation is to solve the linear programming problem
for a restricted set of variables and then add variables that may improve the
solution value, until these cannot be found anymore. It does not matter which
initial set of variables gets selected, as long as it constitutes a feasible solution.
For the path planning problem, it is easy to find such a set. We can for example
start with the paths that are discovered for solving the single group path planning
problem. Then, we let the groups move in turn, that is, group k+ 1 has to wait
until all units in group k have arrived at their destination.

Given the solution of the LP for a restricted set of variables, we check if the
current solution can be improved, and if this the case, which paths we should add.
It is well-known from the theory of column generation, in case of a minimization
problem, that the addition of a variable will only improve the solution if its
reduced cost is negative; if all variables have non-negative reduced cost, then we
have found an optimal solution for the entire problem. In our case, the reduced
cost of a path s, characterized by the parameters dks (k = 1, . . . ,K) and bats
(a ∈ A; t = 0, . . . , T ) has reduced cost equal to

cs −
K∑

k=1

λkdks −
∑
a∈A

T∑
t=0

πatbats,

where λk (k = 1, . . . ,K) and πat (a ∈ A; t = 0, . . . , T ) are the shadow prices
for the corresponding constraints; these values follow from the solution to the
current LP. The reduced cost takes the ‘combinability’ of the path s into account
with respect to the current solution.

Since we are testing whether there exists a feasible path with negative reduced
cost, we compute the path with minimum reduced cost. If this results in a non-
negative reduced cost, then we have solved the LP-relaxation to optimality; if
the outcome value is negative, then we can add the corresponding variable to
the LP and iterate. The problem of minimizing the reduced cost is called the
pricing problem.

We break up the pricing problem into K sub-problems: we determine the
path with minimum reduced cost for each origin/destination pair separately.
Suppose that we consider the problem for the lth origin/destination pair; we
denote the origin and destination by p and q, respectively. Since we have dls = 1
and dks = 0 for all k 6= l, the term

∑K
k=1 λkdks reduces to λl, and we ignore this

constant from now on. The resulting objective is then to minimize the adjusted
path length cs−

∑
a∈A

∑T
t=0 πatbats. We will solve this as a shortest path problem

in a directed acyclic graph.



7

We construct the following graph, which is called the time expanded graph.
The basis is the original graph, but we add a time index to each vertex: hence,
vertex i in the original graph corresponds to the vertices i(t), with t = 0, . . . , T .
Similarly the arc (i, j) with traversal time l(i, j) results in a series of arcs con-
necting i(t) to j(t+ l(i, j)). We further add waiting arcs (i(t), i(t+ 1)) for each
i and t. The length of the arc is chosen such that it corresponds to its contri-
bution to the reduced cost. As cs is equal to the arrival time of the path s in
the destination, this term contributes a cost l(i, j) to each arc (i(t), j(t+ l(i, j)))

and cost 1 to each waiting arc. With respect to the term −
∑

a∈A
∑T

t=0 πatbats,
suppose that arc a corresponds to the arc (i, j). Then bats, with a = (i, j), is
equal to 1 if the path uses the arc (i(t), j(t + l(i, j))) and zero otherwise; and
therefore, this term contributes −πat to the length of the arc (i(t), j(t+ l(i, j))),
given that a = (i, j).

Summarizing, we put the length of the arc (i(t), j(t+l(i, j))) equal to l(i, j)−
πat, where a = (i, j); the waiting arcs (i(t), i(t + 1)) simply get length 1. The
path that we are looking for is the shortest one from p(0) to one of the vertices
q(t) with t ∈ {0, . . . , T}. We use the A∗ algorithm [13] to solve this problem.

Theorem 1. The shortest path in the time expanded graph corresponds to the
feasible path with minimum reduced cost for the kth origin/destination pair and
vice versa. ut

We compute the reduced cost by subtracting λl. If this path has negative reduced
cost, then we add it to the LP. Since we know the shortest paths from p(0) to
each vertex q(t), we do not have to restrict ourselves to adding only the path
with minimum reduced cost, if there are more paths with negative reduced cost.
If in all K sub-problems the shortest paths have non-negative reduced cost, then
the LP has been solved to optimality.

When we have solved the LP to optimality, then we have found a large number
of paths that at least were interesting enough to be generated during the column
generation phase; therefore, all these paths are included in the ILP. Even though
these path constitute a solution to the LP, there is no guarantee that they will
enable a feasible solution to the ILP. Therefore, we add some additional paths
as well. These paths are constructed in the following way. First, we round down
all decision variables, which will lead to an integral solution that satisfies the
capacity constraints, but in which not all units will arrive at their destination (if
all units make it to their destinations, then we have found an optimal solution).
For the remaining units, we construct additional paths using Cooperative A* by
Silver [25]. These paths are added to the ILP, which is then solved to optimality
by the ILP-solver cplex [1].

3.2 Extensions

We have shown above how we can solve the basic problem. In this subsection,
we will present some extensions.



8

Time constraints on the departure and arrival. It is possible to specify
an earliest departure and/or latest possible arrival time for each group of units.
These can easily be incorporated in the paths by restricting the time expanded
graph. The only possible drawback is, if we put these limits too tight, that
we may make the problem infeasible. Since the problem of deciding whether
there is a feasible solution is NP-complete, we apply a computational trick. We
replace the yk in the constraint that yk units have to move from the origin to the
destination by yk +Qk, where Qk is an artificial variable measuring the number
of units of group k that did not reach their destination. We now add a term∑K

k=1 wkQk to the objective function, where wk is a large penalty weight, which
makes it very unattractive for the units to not reach their target.

Changes in the environment. A change in the environment may lead to a
change in the capacity of an arc (for example that it drops to zero if the arc gets
closed) or to a change in the traversal time in a certain period. If we know the
changes beforehand, then these are easily incorporated in our model. A change
in the capacity can be modeled by making the capacity of arc a time dependent;
the right-hand side of the capacity constraint becomes then uat instead of ua. A
change in the traversal times can be modeled by changing the arcs in the graph
that we use to solve the pricing problem.

Undirected edges in the graph. An undirected arc can be traversed both
ways, which makes it much harder to model the capacity constraint. If for ex-
ample the traversal time is l and we want to send x units through the edge at
time t, then this is possible only if the number of units that start(ed) to traverse
the edge from the other side at times t − l + 1, t − l + 2, . . . , t + l − 1 does not
exceed the remaining capacity. To avoid having to add this enormous number of
constraints, we split such an edge e in two arcs e1 and e2 that have a constant
capacity over time. We do not fix the capacity distribution beforehand, but we
make it time-independent by putting the capacities equal to ue1 and ue2 , which
are two non-negative decision variables satisfying that ue1 + ue2 is equal to the
capacity of the edge. We can modify this time-independent capacity distribution
a little by making ue1 or ue2 equal to zero until the first time it can be reached
from any origin that is part of an origin/destination pair which is likely to use
this arc.

4 Experiments

In this section, we will describe the experiments we have conducted. In partic-
ular, we investigated the efficiency of our solution on three difficult problems.
The solution from Section 3 was implemented in C++ using the ilog cplex
Concert Technology library version 11.100 for solving the LPs and ILPs [1]. All
the experiments were run on a pc (CentOS linux 5.5 with linux kernel 2.6.18)
with an Intel Core 2 Duo cpu (3 ghz) with 2 gb memory. Only one core was
used.



9

Each experiment was deterministic and was run a small number of times
to obtain an accurate measurement of the average integral running times (in
ms). These times include the initialization of the algorithm (such as the data
structures, cplex, heuristics, building the initial LP), the column generation,
the solving of the LP and ILP, path finding, and making an integer solution.

One group

Fig. 1(a) shows the problem where one group moved from node 0 to node 6.
The experiment was carried out for a single group with 100 through 500 units.
Because it may be inefficient to let all units use the shortest path (e.g. when the
capacity of the shortest path is low), it may be better to let a few units take an
alternative path. Indeed, as is shown in Fig. 1(b), the group (with 100 units) was
split to minimize the average arrival times. The algorithm took 10ms for 100
units, 40ms for 200 units, 100ms for 300 units and 250ms for 400 units. Even
with 500 units the algorithm took less than half a second. In a game situation,
the units should already start moving when the algorithm is executed to avoid
stalls.

(a) Test environment (b) Output algorithm

Fig. 1. (a) The environment used for testing the division of units among the arcs. The
(large) red numbers show the node numbering and the black numbers show the arc
numbering. For every arc we give the length l and capacity c. (b) The output of the
algorithm for 100 units at timestep 16. The pink squares symbolically represent the
units, and the width of a square is proportional to the number of units.

Two groups moving in opposite directions

In the following case, as is displayed in Fig. 2(a), two groups moved in opposite
directions while switching their positions. One group started at node 0 and the
other one at node 3. Since the arcs had limited capacities, the units had to share
some arcs. There were two different homotopic paths between these two nodes,



10

and both paths could be used by only 5 units per timestep. On the left side we
placed 10 units and on the right side we had 50 units. Computing the solution
took only 10ms. Also other combinations were tested, e.g. 20 versus 50 units
(20ms), 20 versus 100 units (40ms), 40 versus 100 units (70ms), and 40 versus
200 units (230ms). The latter case is visualized in Fig. 2(b). Here, most units
from the right side used the lower path, and some units from the right side used
the upper path. All the units from the left side used the upper path. Again,
these running times were sufficiently low for real-time usage.

(a) Test environment (b) Output algorithm

Fig. 2. (a) The environment and graph used for testing two groups moving in opposite
directions, i.e. one group starts at node 0 and the other one starts at node 3. (b) The
output of the algorithm for 40 versus 200 units at timestep 3.

Four groups with many units moving in a big graph

We created a large graph whose structure was a raster with arcs between the
raster points. The length of these arcs was set to 3 with capacity 20. We refer
the reader to Fig. 3 for an illustration of this graph. In every corner we placed
100 units that needed to move to their diagonally opposite corners. Computing
their paths took 510ms. We also tested the algorithm with 1000 units placed at
each corner (where the capacities were scaled with the same proportion), which
took 480ms. The results clearly illustrated the scaling power of the algorithm
as it did not slow down when both the number of units and the capacities were
scaled proportionally.

5 Conclusion

We have presented a centralized method based on techniques from ILP for path
planning problems involving multiple groups. The crux is that the LP-relaxation
can be solved quickly by using column generation. The solution to the LP-
relaxation can be used as a basis to construct a heuristic solution. We have
described a method to find a good approximation by solving a restricted ILP. If
the instance is so big that solving the ILP would require too much time, then



11

(a) Timestep 0 (b) Timestep 9

Fig. 3. The test environment is a raster. The output of the algorithm is displayed at
timestep 0 and 9.

we can still use the solution to the LP-relaxation to find a solution by clever
rounding. The units can then already start moving according to this solution
while a good solution for the remaining units is determined in the meantime.

In future work, we will integrate a local collision-avoidance model, such as
proposed in references [15, 27], to test whether our solution leads to visually
pleasing motions. We think that our solution enhances the gameplay in difficult
situations involving one or multiple groups.

Acknowledgments

This work was partially supported by the itea2 Metaverse1 (www.metaverse1.org)
Project.

References

1. CPLEX 11.0. User’s manual. Technical report, ILOG SA, Gentilly, France, 2008.
2. O. Bayazit, J.-M. Lien, and N. Amato. Better group behaviors in complex envi-

ronments using global roadmaps. In Artificial Life, pages 362–370, 2002.
3. M. Bennewitz, W. Burgard, and S. Thrun. Priority schemes for decoupled path

planning techniques for teams of mobile robots. Robotics and Autonomous System,
41:89–99, 2002.

4. H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, and
S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations.
MIT Press, first edition, 2005.

5. S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicom-
modity flow problems. SIAM Journal of Computation, 5:691–703, 1976.

6. L. Ford Jr. and D. Fulkerson. Maximal flow through a network. Canadian Journal
of Mathematics, 8:399–404, 1956.

7. L. Ford Jr. and D. Fulkerson. Constructing maximal dynamic flows from static
flows. Operations Research, 6:419–433, 1958.

8. L. Ford Jr. and D. Fulkerson. A suggested computation for maximal multi-
commodity network flows. Management Science, 5:97–101, 1958.



12

9. T. Fraichard. Trajectory planning in a dynamic workspace: A ‘state-time’ ap-
proach. Advanced Robotics, 13:75–94, 1999.

10. R. Geraerts. Planning short paths with clearance using explicit corridors. In IEEE
International Conference on Robotics and Automation, pages 1997–2004, 2010.

11. R. Ghrist, J. O’Kane, and S. LaValle. Pareto optimal coordination on roadmaps.
In International Workshop on the Algorithmic Foundations of Robotics, pages 171–
186, 2004.

12. P. Gilmore and R. Gomory. A linear programming approach to the cutting-stock
problem. Operations Research, 9:849–859, 1961.

13. P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,
4:100–107, 1968.

14. A. Kamphuis and M. Overmars. Finding paths for coherent groups using clearance.
In Eurographics/ACM SIGGRAPH Symposium on Computer Animation, pages
19–28, 2004.

15. I. Karamouzas, P. Heil, P. van Beek, and M. Overmars. A predictive collision
avoidance model for pedestrian simulation. In Motion in Games, volume 5884 of
Lecture Notes in Computer Science, pages 41–52. Springer, 2009.

16. J.-C. Latombe. Robot Motion Planning. Kluwer, 1991.
17. S. LaValle. Planning Algorithms. Cambridge University Press, 2006.
18. S. LaValle and S. Hutchinson. Optimal motion planning for multiple robots having

independent goals. Transaction on Robotics and Automation, 14:912–925, 1998.
19. Y. Li. Real-time motion planning of multiple agents and formations in virtual

environments. PhD thesis, Simon Fraser University, 2008.
20. J. Peng and S. Akella. Coordinating multiple robots with kinodynamic constraints

along specified paths. International Journal of Robotics Research, 24:295–310,
2005.

21. S. Rabin. AI Game Programming Wisdom 2. Charles River Media Inc.
22. C. Reynolds. Flocks, herds, and schools: A distributed behavioral model. Computer

Graphics, 21:25–34, 1987.
23. G. Sánchez and J.-C. Latombe. Using a PRM planner to compare centralized and

decoupled planning for multi-robot systems. In IEEE International Conference on
Robotics and Automation, pages 2112–2119, 2002.

24. J. Schwartz and M. Sharir. On the piano movers’ problem: III. Coordinating the
motion of several independent bodies: The special case of circular bodies moving
amidst polygonal obstacles. International Journal of Robotics Research, 2:46–75,
1983.

25. D. Silver. Cooperative pathfinding. In Artificial Intelligence for Interactive Digital
Entertainment, pages 117–122, 2005.

26. T. Siméon, S. Leroy, and J.-P. Laumond. Path coordination for multiple mobile
robots: A resolution complete algorithm. IEEE Transactions on Robotics and
Automation, 18:42–49, 2002.

27. J. van den Berg, M. Lin, and D. Manocha. Reciprocal velocity obstacles for real-
time multi-agent navigation. In IEEE International Conference on Robotics and
Automation, pages 1928–1935, 2008.

28. J. van den Berg and M. Overmars. Prioritized motion planning for multiple robots.
In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2217–2222, 2005.

29. W. Wilkinson. An algorithm for universal maximal dynamic flows in a network.
Operations Research, 19:1602–1612, 1971.

30. L. Wolsey. Integer Programming. Wiley, New York.


