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Abstract

For several applications, it is important to be able to compute the treewidth of a
given graph and to find tree decompositions of small width reasonably fast.

Good lower bounds on the treewidth of a graph can, amongst others, help to speed
up branch and bound algorithms that compute the treewidth of a graph exactly. A
high lower bound for a specific graph instance can tell that a dynamic programming
approach for solving a problem is infeasible for this instance.

This paper gives an overview of several recent methods that give lower bounds
on the treewidth of graphs.

1 Introduction

For many applications, there is the wish to be able to compute the treewidth of a given
graph efficiently, and to find a tree decomposition of the graph with optimal or close to
optimal width. While some theoretical results appear to be not useful in a practical setting
(e.g., see the experimental evaluation by Rohrig [31] of the linear time fixed parameter
algorithm of [5]), there are several algorithms that are fast, not hard to implement, and give
reasonably good results for graphs derived from real life applications. In this short series
of papers (see [12,13]), we discuss such practical algorithms for computing the treewidth.

In this second paper in the series, we focus on algorithms that compute lower bounds
on the treewidth of the input graphs. There are several reasons, why it is desirable to have
good lower bounds on the treewidth of the input graph:

e A lower bound heuristic can be used as a subroutine in a branch and bound algorithm:
high lower bounds can tell that certain branches can be cut of in the search. See for
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instance the work of Gogate and Dechter [20] or the recent work of Cole Smith et
al. [18] on branchwidth.

e Suppose we want to solve a combinatorial problem on a graph GG. Further suppose it
is known that for fixed k, there is an efficient, e.g., linear time dynamic programming
algorithm that solves this problem on graphs given with a tree decomposition of
width at most k. If we have a high lower bound on the treewidth of GG, then this tells
us that using this dynamic programming algorithm will use much time, and hence is
not a feasible approach.

e Lower bounds give indications of the quality of treewidth upper bounds and upper
bound algorithms.

e Better lower bounds can make preprocessing more effective. There are preprocessing
rules that apply only when a large enough lower bound on the treewidth of the graph
is known.

The first paper in this series [12] discusses upper bound heuristics: algorithms that
yield tree decompositions whose width is not necessarily optimal, but often comes close
to the optimal width. A third paper that focuses on exact algorithms and preprocessing
methods is planned [13].

This paper is structured as follows. In Section 2, we give a few necessary definitions. In
Section 3, we give a number of elementary lower bound methods for the treewidth, based
on the degree of vertices, and one bound based on both the average degree and the girth.
While the bounds obtained by these methods usually are rather small, they can often be
improved considerably by considering the bounds over induced subgraphs (as discussed
in Section 4) or minors / contractions (see Section 5) of the input graph. Slower but
usually better than the elementary bounds is a lower bound based on Maximum Cardinality
Search (Section 7). This bound can also be combined with taking induced subgraphs and
minors/contractions. A technique that can be used in combination of each of these methods
is one, introduced by Clautiaux et al. [17]; in this technique we use another lower bound
algorithm on a graph obtained by adding certain edges to the input graph. In Section 8, the
technique is explained, and a slower but more powerful variant that combines the technique
with another level of taking contractions is discussed. Two rather different lower bound
techniques are discussed in Section 9 and 6. In Section 9, a different characterisation of
the notion of treewidth in terms of brambles is used to obtain treewidth lower bounds.
Section 6 discusses a lower bound based on the second smallest eigenvalue of the Laplacian
matrix of the graph. A performance analysis of a selection of the lower bounds is reported
in Section 11. The paper is completed with some miscellaneous ideas for lower bound
methods (Section 10) and some conclusions (Section 12).



2 Preliminaries

Throughout this graph, G = (V, E) denotes a simple undirected graph. n = |V| denotes
the number of vertices of G, and m = |E| denotes the number of edges of G. We assume
that the reader is familiar with standard graph notions like degree, path, cycle, clique,
planarity. For a graph G = (V, E) and vertex set W C V' the subgraph of G induced by
W is denoted G[W] = (W, {{v,w} € E| v,w e W}).

The degree of a vertex v € V in a graph G = (V, E) is denoted by dg(v), or, when G
is clear from the context, by d(v).

The operation of contracting an edge {v,w} € E in a graph G = (V, F) builds the graph,
obtained from G by taking a new vertex x that is adjacent to all neighbours of v and of
w, and removing v, w, and its incident edges. A graph H is said to be a contraction of G,
if H can be obtained from G by applying zero or more contractions of edges. (See [41,42]
for more details on the notion of contraction.) H is a minor of G if H is the contraction
of a subgraph of GG, i.e., H can be obtained from G by zero or more vertex deletions, edge
deletions, and/or edge contractions.

We say that a collection of paths from v to w in a graph G = (V, E) are vertex disjoint,
if there is no vertex in V' — {v, w} that belongs to more than one of the paths.

The notions of treewidth and tree decomposition were introduced by Robertson and
Seymour [30] in their work on graph minors. Similar notions were invented earlier, e.g.,
the notion of partial k-tree, see e.g., [2]. For an overview of related notions, see [6].

Definition 1 A tree decomposition of a graph G = (V, E) is a pair {X; | i € I[},T =
(I, F)), with {X; | i € I} a family of subsets of V and T a tree, such that

o Ui, Xi =V,
e for all {v,w} € E, there is an i € I with v,w € X;, and
o forallveV, theset I, ={i €l |ve X} forms a connected subtree of T

The width of tree decomposition ({X; | i € I},T = (I, F)) is max;er | X;|—1. The treewidth
of a graph G, tw(QG), is the minimum width among all tree decompositions of G.

The third condition of tree decomposition can be replaced by the following equivalent
condition:

For all 19,101,172 € I: if 4; is on the path from 19 t0 79 In T, then Xio ﬂXZQ - Xil‘

The following simple lemma shows that we always can find a tree decomposition that is in
a certain sense ‘minimal’.

Lemma 2 Let G = (V, E) be a graph of treewidth at most k. Then G has a tree decompo-
sition ({X; | i€ I},T = (I, F)) of width at most k such that for all (i,5) € F: X; € X;



Proof: When we have a tree decomposition of G' with two adjacent bags i, j with X; C
X, then we can contract the edge (i,7) in T replace the bags for ¢ and j by one bag
containing X; and make this adjacent to all neighbours of 7 and of j. This gives again a
tree decomposition of G with the same width.

Repeating the operation gives the required tree decomposition. O

The following well known fact shows that we can restrict ourselves to algorithms on con-
nected graphs. For a proof, see e.g., [6].

Lemma 3 The trecwidth of a graph equals the maximum treewidth over its connected com-
ponents.

3 Degree Based Bounds

In this section, we give three elementary lower bounds, based upon the degrees of vertices
in the graph, and a fourth one of which we omit the proof. The first two are based upon
folklore results on treewidth; the third is due to Ramachandramurthi [27,28]. A fourth
bound by Sunil Chandran and Subramanian [38] uses both the average degree of vertices
and the girth. We give the proof for the first three bounds.

3.1 Smallest Degrees

Definition 4 (i). The minimum degree of a vertex in G = (V, E) is denoted 6(G) =
mingey d(v).

(ii). The second smallest degree of a wvertex in G = (V,E) is denoted §(G) =
min{d(v) | v € VAJw eV :d(w) <d(v)}.

The third lower bound, due to Ramachandramurthi [27,28] is, when G = (V, E) is a clique,
the number of vertices minus 1; and when G is not a clique, the minimum over all pairs of
non-adjacent vertices v, w, of the maximum of the degree of v and w.

Definition 5 Let G = (V, E) be a graph. We define yr(G) to be the value

V-1 if G is a clique
min, ywev {v,wygr Max{d(v),d(w)} otherwise

r(G) = {
Lemma 6 (i). Let G = (V, E) be a graph of treewidth at most k. Then G has a vertex

of degree at most k.

(ii). Let G = (V, E) be a graph of treewidth at most k that contains at least two vertices.
Then G contains at least two vertices of degree at most k.

(i11). Let G = (V, E) be a graph of treewidth at most k that is not a clique. Then G contains
at least two vertices v, w of degree at most k such that v and w are not adjacent.
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Proof: Take a tree decomposition ({X; | i € I},T = (I, F)) as implied by Lemma 2. If
there is only one bag, the lemma clearly holds, as there are at most k + 1 vertices in G,
so we can take respectively an arbitrary, two arbitrary, and two arbitrary non-adjacent
vertices.

Suppose T has at least two bags. Take a bag i that is a leaf of 7', and let j be its
neighbour. Take a vertex v € X; — X, — it is implied by Lemma 2 that such a v exists. v
cannot belong to any other bag except X;, otherwise it would belong to X by the definition
of tree decomposition. So, all neighbours of v must belong to X;, and hence v has degree
at most | X;| — 1 < k. This proves (i).

T has at least two leaves. Take a leaf ¢/ # i, with neighbour 5/ in 7', and take v’ €
Xy — Xy As above, v’ only belongs to X;; and has degree at most k. As there is no bag
that contains both v and w, {v,w} is not an edge in G; this proves (ii) and (iii). O

Parts (i) and (ii) of Lemma 6 are not necessary for the proof of the next lemma. They can
be used to give direct proofs that §(G) and d9(G) are lower bounds for the treewidth.

Lemma 7 (Ramachandramurthi [26-28]) For each graph G = (V, E), the treewidth
of G is at least Yr(G) > 62(G) > 6(G).

Proof: If G is a clique, then the treewidth of G equals |V| —1 = yg(G). Suppose G is not
a clique. Let the treewidth of G be k. By Lemma 6, there are two non-adjacent vertices
v, w € V with degree at most k; hence k < vr(G).

Yr(G) > 05(G) > §(G) follows easily from the definitions. O

It is trivial that computing §(G) and d2(G) can be done in linear time for a given graph G.
It is also possible to compute y(G) in linear time; two different algorithms can be found
in [26] and in [23,41].

3.2 Average Degree and Girth

Sunil Chandran and Subramanian [38] found a non-trivial lower bound on the treewidth
that is based both on the average degree of the vertices, and on the girth. The girth of a
graph G = (V, E) is the minimum length of a cycle in G.

Theorem 8 (Sunil Chandran and Subramanian [38]) Let G = (V,E) be a graph.
Suppose the girth of G is g, and the average degree of vertices in G is 6. Then the treewidth

of G is at least
) 1
2 = (5 — 1)e1/2)] _
max(h-‘ ’4e(g+1)(6 1) 2).

Note that in the formula above, e denotes the base of the natural logarithm, 2.71828 .. ..

As the degeneracy of a graph is at least half its average degree, in particular, the second

term is interesting. The girth of a graph can be computed in polynomial time using

shortest paths techniques. Most of the graphs that were used in our experiments contain

a cycle of length three, i.e., have girth 3. In such a case, the bound given by Theorem 8 is
51 d—1 5

max([5], 9 — 2) = [5], which is smaller than the degeneracy of G, i.e., in all the cases

that a graph has girth 3, the bound of Theorem 8 is inferior to the degeneracy.
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4 Taking Subgraphs

4.1 Degree Based Bounds and Subgraphs

One or two small degree vertices in a graph G can already cause that the value of §(G),
92(G), or vr(G) is small. For getting a larger lower bound, it possibly would have been
better if there were not such vertices at all. Thus, what we can do is deleting vertices with
small degree, and looking to lower bounds on thus obtained induced subgraphs. Simple
but essential is the following well-known observation.

Lemma 9 Let G = (V, E) be a graph, and W C V' be a set of vertices. The treewidth of
G[W] is at most the treewidth of G.

Proof: Suppose ({X; | i€ I},T = (I,F)) is a tree decomposition of G of width k. Now,
one easily verifies that ({Y; | i € I},T = (I, F)) with for all i € I, Y; = X; N W is a tree
decomposition of G[W] of width at most k. 0

Corollary 10 Let H be a subgraph of G. Then the treewidth of H is at most the treewidth
of G.

Proof: Note that if E' C E, then each tree decomposition of a graph G = (V, E) is also a
tree decomposition of G’ = (V, E’). Now use Lemma 9. O

Combining the bounds 0(G), d2(G), and yg(G) with taking subgraphs gives three new
treewidth lower bounds.

Definition 11 (i). The degeneracy of a graph G = (V, E), denoted 0 D(G), is the mazi-
mum of §(H) over all subgraphs H of G.

(ii). The do-degeneracy of a graph G = (V,E) with |V| > 2, denoted 6oD(G), is the

mazximum. of d3(H) over all subgraphs H of G with at least two vertices

(#ii). The yg-degeneracy of a graph G = (V,E) with |V| > 2 denoted 65D (G), is the
mazximum of yr(H) over all subgraphs H of G with at least two vertices.

If we combine Lemma 7 with Corollary 10, we obtain directly the following result.

Lemma 12 For each graph G = (V, E), the treewidth of G is at least yr D(G) > 62 D(G) >
5D(G).

There is an easy and well known method to compute the degeneracy of a graph: continu-
ously remove a vertex of smallest degree of the graph, and return the largest degree thus
seen. See Algorithm 1. We term the algorithm MMD (Maximum Minimum Degree).

The following result is ‘folklore’.

Lemma 13 MMD(G) as in Algorithm 1 computes the degeneracy of G.



Algorithm 1 MMD(Graph G)

H=G

maxmin = 0

while H has at least two vertices do
Select a vertex v from H that has minimum degree in H.
maxmin = max( maxmin, dy(v) ).
Remove v and its incident edges from H.

end while

return maxmin

Proof: The output of the algorithm is at most the degeneracy: when maxmin is set to a
value k, then H, which is a subgraph of G, has only vertices of degree at least k. The output
is at least the degeneracy: suppose G' = (V', E’) is a subgraph of G with minimum degree
dD(G). Suppose v € V' is the first vertex in V' that is removed. Then, at the moment v’
is removed, all vertices in H have a degree which is at least dy(v') > de/(v') > 0D(G), so
maxmin will be at least dD(G) after this step. O

It is possible to compute doD(G) for a given graph G = (V, E) in O(nm) time, as was
shown by Koster, Wolle, and Bodlaender in [23], see also [41]. The idea of the algorithm
is that for each vertex v € V', we look at the case where we assume will be the minimum
degree vertex in a subgraph H of G with d2(H) = 0,D(G). We now repeatedly remove
from GG a vertex w whose degree is minimum among all vertices except v, and return the
largest degree of a vertex at its time of removal. The largest bound over all choices of v
indeed equals 02 D(G).

Algorithm 2 Delta2D(Graph G)

d2D =0
for all vertices v € V do
H=GG

while H has at least two vertices do
Select a vertex w # v from H that has minimum degree in H amongst all vertex
except v.
maxmin = max(maxmin, dg(v)).
Remove v and its incident edges from H.
end while
end for
return maxmin

Lemma 14 (Koster, Wolle, and Bodlaender [23,41]) Delta2D(G) from Algorithm 2
computes 0o D(G) and has an implementation that uses O(nm) time.



In [23], it has been shown that it is NP-complete to decide, for given graph G = (V, E') and
given k, if the vg-degeneracy of GG is at least k. Several relations between the parameters
and related results can also be found in [23,41].

4.2 Subgraphs with Approximation or Exact Algorithms

If a graph G is planar, the branchwidth of G' can be computed exactly in polynomial
time [34], see also [21]. As treewidth and branchwidth differ at most a multiplicative
factor of %, this gives an approximation of and hence also a lower bound for the treewidth
of G. If G is not planar, but ‘close to planar’, we could first find a maximal planar subgraph
H of G, and then compute the branchwidth and a lower bound for the treewidth of H.
This is also a lower bound for the treewidth of G. For an overview paper on branchwidth,
see [22].

Instead of looking for a maximal planar subgraph, we can also look for a subgraph H
of G with another property that allows to compute the treewidth exactly or with a good
approximation algorithm; such an approach probably is only useful in specific contexts
(e.g., if we know that G is formed by adding a few edges to a permutation graph — we
can compute the treewidth exactly for permutation graphs [10]).

5 Taking Minors

In the previous section, we looked at the improvement of lower bounds by taking subgraphs.
However, much stronger lower bounds often can be obtained by using contractions. The
following result is well known.

Lemma 15 Let H = (W, F) be a minor of G = (V, E). Then the treewidth of H is at
most the treewidth of G.

Proof: As shown in Lemma 9 and Corollary 10, deleting vertices and edges cannot increase
the treewidth. Contracting an edge also cannot increase the treewidth: Suppose ({X; | i €
I}, T = (I,F)) is a tree decomposition of G = (V, E) of width k. Suppose we contract
edge {v,w} to vertex x. We can build a tree decomposition of the new graph by replacing

each occurrence of v or w in a bag by =z, ie., set X/ = X; if X; N {v,w} = 0, and
X! =X, —{v,w}U{a}if X;N{v,w} # 0. The width of the tree decomposition ({X/ | i €
I}, T = (I, F)) is at most k. The lemma now follows. O

Thus, given a treewidth lower bound, we can build a new treewidth lower bound by looking
at the maximum of this bound over all minors.

Definition 16 (i). The contraction degeneracy of a graph G = (V, E), denoted §C(G),
is the mazimum of §(H) over all minors H of G.

(i1). The do-contraction degeneracy of a graph G = (V, E) with |V| > 2, denoted 62C(G),
is the mazimum of 62(H) over all minors H of G with at least two vertices
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(#i). The yr-contraction degeneracy of a graph G = (V, E) with |V| > 2 denoted 62C(G),
is the mazimum of yr(H) over all minors H of G with at least two vertices.

Combining Lemma 7 and Lemma 15 directly gives the following result.

Lemma 17 For each graph G = (V, E), the treewidth of G is at least yrC(G) > 0,C(G) >
IC(G).

Unfortunately, each of the parameters 0C', 62C', and yzC is NP-hard to compute [16,23].
We can however use heuristics for these parameters. A simple heuristic for computing
the contraction degeneracy can be seen as a variant of the MMD algorithm, and is hence
termed MMD+. See Algorithm 3.

Algorithm 3 MMD+(Graph G)

H=G

maxmin = 0

while H has at least two vertices do
Select a vertex v from H that has minimum degree in H.
maxmin = max( maxmin, dy(v) ).
Select a neighbour w of v. {A specific strateqy can be used here.}
Contract the edge {v,w} in H.

end while

return maxmin

Note that the difference between the MMD and the MMD+ algorithm is that MMD
deletes a vertex, while MMD+ contracts the vertex to a neighbour.

Lemma 18 The MMD+ algorithm of Algorithm 3 outputs a value that is a lower bound on
the contraction degeneracy of the input graph G, and hence a lower bound on the treewidth

of G.

Proof: The lemma follows directly by observing that at each step we have that H is a
contraction (hence a minor) of G. O

The MMD+ treewidth lower bound was proposed independently by Bodlaender, Koster,
and Wolle in [16], and by Gogate and Dechter in [20]. Bodlaender, Koster, and Wolle [16]
consider three different heuristic strategies to select the neighbour w to which the minimum
degree vertex v is contracted.

e The min-dstrategy selects a neighbour of minimum degree. The strategy is motivated
by the wish to increase the degree of small degree vertices as fast as possible.

e The max-d strategy selects a neighbour of maximum degree. In this way, we create
some neighbours of very large degree.



e The least-c strategy selects the neighbour w of v such that v and w have a minimum
of common neighbours. For each common neighbour x of v and w, contracting {v, w}
let the two edges {v,z} and {w, z} become the same edge. The strategy hence tries
to contract an edge such that as few as possible edges disappear from the graph.

The resulting heuristics are called MMD+(min-d), MMD+(max-d), and MMD-(least-c).
An experimental study of these reveals that the max-d strategy is inferior to the other two,
and that the least-c strategy is usually the best of these.

In [16,41], for each of these heuristics, examples are given where the heuristics perform
bad: the contraction degeneracy and treewidth of the graphs in the examples are of size
©(y/n), while the heuristics can give a lower bound value of three. See [15,16,23,41,43]
for more results on the contraction degeneracy and the related notions.

Contraction with Exact Algorithms Gives Lower Bounds In [8], it is observed
that taking minors can be combined with an exact algorithm for treewidth to obtain good
lower bounds. Suppose we have an algorithm A, that computes the treewidth of a given
graph exactly, in worst case exponential time. Suppose also that we have a graph G, for
which running A on G is infeasible (as the algorithm uses too much time or memory). Now,
we obtain a minor H of (G, by contracting edges of GG, e.g., with the least-c strategy, till H
is small enough to make it feasible to run A on H. Thus, we compute the exact treewidth
of H, and obtain a lower bound on the treewidth of G. In [8], this approach is used with
an exact dynamic programming algorithm for treewidth, but of course, the approach can
also be used when we have another exact treewidth algorithm, e.g., one that uses branch
and bound.

6 A Spectral Lower Bound

Sunil Chandran and Subramanian [37] have given a lower bound on the treewidth based
on the second smallest eigenvalue of the Laplacian matrix of the graph.

Suppose we have a graph G = (V, E). Number the vertices of G: vy, vy, ..., v,. The
adjacency matrix A of G is the n by n matrix with A;; = 1 if {v;,v;} € E, and A;; = 0 if
{vi,v;} & E. Take the n by n diagonal matrix D with D;; the degree of v; in G for all 1,
1 <i<n; D;; =0 whenever ¢ # j. The Laplacian matriz of G is the matrix L = D — A.
Le., for all 7,5 € {1,...,n}, we have

d(v;) ifi=j
Lij=4¢0 if i # j and {v;,v;} ¢ £
-1 ifi#jand {v;,v;} € E

Theorem 19 (Sunil Chandran and Subramanian [37]) Let G = (V, E) and let p be
the second smallest eigenvalue of the Laplacian matriz of G. Let A be the maximum degree
of a vertex in G. Then the treewidth of G is at least

ﬁfn (Aﬁzu)J .
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As p can be computed in polynomial time, the result gives a polynomial time computable
lower bound for treewidth. In the experiments that we conducted, the second smallest
eigenvalue of the Laplacian matrix was in most cases in the interval [0, 1]. In such a case,
the bound provided by Theorem 19 is at most 2, and thus of very little use. In other cases,
the lower bound can be of good use, e.g., Sunil Chandran and Subramanian [37] use their
result to show good lower bounds for the treewidth of hypercubes and Hamming graphs.

7 Maximum Cardinality Search

The Maximum Cardinality Search algorithm was introduced by Tarjan and Yannakakis [39]
for recognising chordal (or triangulated) graphs. It is also sometimes used as an upper
bound heuristic for treewidth; see e.g., the discussion of it in [12]. Surprisingly, it can also
be used as a lower bound mechanism for treewidth, as was shown by Lucena [25].

Maximum Cardinality Search is a method to visit all vertices of a graph in some order.
The algorithm works as follows. Initially, no vertex of the graph is visited. We now
repeatedly visit an unvisited vertex, until all vertices are visited, following the maximum
cardinality rule: each step, we must choose one of the unvisited vertices that has the largest
number of visited neighbours. Note that a graph (with more than one vertex) has more
than one ordering that can be generated by the Maximum Cardinality Search algorithm:
we can start at any vertex, and when there are more unvisited vertices that are adjacent
to the maximum number of visited vertices, the algorithm may choose any of these. The
Maximum Cardinality Search algorithm thus generates an ordering of the vertices of the
graph (bijection V' :— {1,--- |V|}). Let an MCS-ordering of G = (V, E) be an ordering
of the vertices that can be generated by the MCS algorithm.

Lucena has shown that any MCS-ordering yields us a lower bound on the treewidth of
G. For the proof of the following result, we refer to [24,25].

Theorem 20 (Lucena [24,25]) Suppose the Mazimum Cardinality Search algorithm on
graph G = (V, E) visits a vertex v € V that is, at the time of its visit, adjacent to k visited
vertices. Then the treewidth of G is at least k.

The theorem can be restated as follows:

Theorem 21 (Lucena [24,25]) For any graph G = (V, E) and MCS-ordering © of G,
the treewidth of G s at least

MCSLB(G,7) = Iglea‘,;d{{w,v} €L | mw)<m(v)}

Note that MCSLB(G, ) is the maximum over all vertices v € V' of the number of visited
neighbours of v at the time v is visited. As treewidth lower bound heuristic, we can thus
generate an MCS-ordering 7 and compute the value MCSLB(G,w). In [11], different
tie-breaking rules were tried out for selecting the next vertex in the MCS-ordering (when
more vertices have the same number of visited neighbours), but the results appear to be
inconclusive.
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Unfortunately, it is NP-hard to select from all MCS-orderings one that gives the largest
MCSLB treewidth lower bound.

Theorem 22 (Bodlaender and Koster [11]) For each fized k > 7, it is NP-complete
to decide for a given graph G = (V, E), whether there exists an MCS-ordering = of G with
MCSLB(G,n) > k.

Combining MCSLB with contraction Similar to the degree based lower bounds from
Section 3, we can combine the lower bound based on Maximum Cardinality Search with
taking subgraphs, or (preferably) with contractions. The MCSLB+ heuristic works as
follows: while G has at least one edge, we compute an MCS-ordering of GG, and then
contract an edge in GG, and repeat. The largest bound found is the yielded treewidth lower
bound. The combination of MCSLB with contraction was first proposed by Lucena [24];
experiments were reported in [24] and [16].

Finding a contraction or minor H of G and an MCS-ordering 7m of H such that
MCSLB(H, ) is as large as possible is NP-hard [16]. Using graph minor theory, one
can show that the fixed parameter variant of this problem is tractable [16], but due to
its non-constructive nature and huge constants hidden in the O-notation, this is only of
theoretical interest.

8 Using Improved Graphs

A technique that has proved itself to be very powerful is the use of improved graphs, as
introduced by Clautiaux et al. [17]. We start with a technical but important lemma.

Lemma 23 (See [7,17]) Let G = (V, E) be a graph of treewidth at most k. Let v and w
be two non-adjacent vertices in G. Suppose there are at least k + 1 vertex disjoint paths
from v to w. Then the graph obtained by adding {v,w} to G, G' = (V, E U {v,w}) has
treewidth at most k.

Lemma 23 generalises the following lemma, where we only look to common neighbours.

Lemma 24 (Bodlaender [5]) Let G = (V, E) be a graph of treewidth at most k. Let v
and w be two non-adjacent vertices in G. Suppose there are at least k + 1 vertices that are
adjacent to v and tow. Then the graph obtained by adding {v,w} to G, G' = (V, EU{v,w})
has treewidth at most k.

Consider the following procedure, given a graph G = (V, E) and an integer k. While there
are non-adjacent vertices v and w that have at least £ + 1 common neighbours in GG, add
the edge {v,w} to G. Repeat this step till no such pair exists. Call the resulting graph
the (k + 1)-neighbour improved graph.

Similarly, the (k + 1)-path improved graph of G is the graph obtained by repeatedly
adding edges {v, w} between non-adjacent vertices v and w that have at least k+ 1 vertex
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disjoint paths between them. One can test in O(k(|V| + |E|) time if a given pair has at
least k + 1 vertex disjoint paths by using network flow techniques, see e.g., [32, Chapter 9]
or [1].

From Lemmas 23 and 24 and induction, we obtain the following result.

Theorem 25 Let G, be the (k + 1)-neighbour improved graph of graph G = (V, E), and
let G, be the (k + 1)-path improved graph of G. Then the treewidth of G is at most k, if
and only if the treewidth of Gy, is at most k, if and only if the treewidth of G is at most
k.

Based upon Theorem 25, Clautiaux et al. [17] give the LBN and LBP algorithm. This
algorithm uses another treewidth lower bound algorithm (called in the pseudo-code in
Algorithm 4 algorithm X) as a subroutine. In the original description by Clautiaux et
al. [17], the degeneracy (MMD) is used, but one can actually use any treewidth lower
bound algorithm at the place of X. For instance, using MMD+ instead of MMD will
usually give much better lower bounds, while the extra cost in time is mainly due to the
fact that more iterations will be done because of a better bound.

Algorithm 4 LBN(X) (Graph G)
low = X(G)
repeat
H = the (low+1)-neighbour improved graph of G
lowH = X(H)
changed = false
if lowH > low then
low = low+1
changed = true
end if
until not(changed)
return low

In Algorithm 4, we see how the LBN methods works. Using different lower bound algo-
rithms at the place of X, we obtain e.g., the LBN(MMD), LBN(MMD+), or LBN(MCSLB)
algorithm. In each iteration of the algorithm, we compute a lower bound on the treewidth
of the (low+1)-neighbour improved graph H. If the treewidth of H is larger than low, then,
by Theorem 25, the treewidth of G is larger than low, and thus we increase the known
lower bound for the treewidth of G (variable low) by one.

The LBP method is almost identical. The only difference is that we compute the
(low+1)-path improved graph instead of the (low+1)-neighbour improved graph. This
often gives better lower bounds, but at the cost of additional running time. Correctness of
the LBP method follows in the same way as for the LBN method.

Theorem 26 (Clautiaux et al. [17]) If X is an algorithm that given a graph G, finds
a lower bound on the treewidth of G, then LBN(X) and LBP(X) also are algorithms, that,
when given a graph G, find a lower bound on the treewidth of G.
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Bodlaender, Koster, and Wolle [16] invented a new heuristic in which the LBN and LBP
methods are combined with contraction by alternating improvement steps with contrac-
tions. Algorithm 5 gives the pseudo-code for the LBN+ method; the LBP+ method is
again similar but uses path improved graphs instead of neighbour improved graphs.

Algorithm 5 LBN+(X) (Graph G)
low = X(G)
repeat
changed = false
H = the (low+1)-neighbour improved graph of G
while (X(H) < low) and H has at least one edge do
Take a vertex v of minimum degree in H
Take a neighbour u of v according to least-c strategy
Contract the edge {u,v} in H
H = the (low+1)-neighbour improved graph of H
end while
if X(H) > low then
changed = true
low = low+1
end if
until not(changed)
return low

Again, we can combine the LBN+ and LBP+ heuristics with any other lower bound
heuristic for treewidth; in this way, we can build the LBN+(MD), LBP+(MMD+),
LBP+(MCSLB), etc. The LBN+ and LBP+ methods start with computing a lower bound
low for the treewidth of G. A graph H is taken that is the the (low+1)-neighbour or
(low+1)-path improved graph of G. Then, alternately, a contraction of an edge is done,
and H is set to the (low+1)-improved graph of the graph obtained by this contraction.
This is done until H has no edges, or when we find that the lower bound on the treewidth
of the graph H at hand, found by heuristic X, is larger than our current lower bound low.
In the latter case, we increase low by one, and repeat again the entire process but now
with the higher value of low.

Correctness of the procedure relies on the following lemma.

Lemma 27 Let G = (V, E) be a graph. Let X be an algorithm, that given a graph G, gives
a lower bound on the treewidth of G. At each point during the execution of LBN+(X)(G)
or LBP+(X)(G), we have that

(i). The treewidth of G is at least low.

(7). If low equals the treewidth of G, then the treewidth of H is at most low or changed =
true.
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Proof: We show that the properties hold invariantly during the running of the algorithm.
Clearly, this holds after we have set low = X(G), and set H to the (low+1)-neighbour (or
path) improved graph of G' (see Theorem 25).

Contracting an edge in H does not affect the first invariant; the treewidth of H cannot
increase by it, so it keeps the second invariant true.

Setting H to its (low+1)-neighbour (or path) improved graph does again not affect the
first invariant. The second invariant keeps to be true. Suppose the treewidth of G' equals
low. Then, by assumption, the treewidth of H before the improvement operation is at
most low, and by Theorem 25, the treewidth of H after the improvement operation is at
most low.

Now, consider a step where the test X(H > low yields true. If X(H > low, then the
treewidth of H is larger than low, and hence, by the second invariant, the treewidth of GG
does not equal low; by the first invariant, the treewidth of G must be at least low +1, so
indeed we can safely increase low by one. Thus, the first invariant stays true, while the
second invariant becomes trivially true as changed is set to true. a

One can also consider more complicated schemes, where first, a fast algorithm is used
to get the first lower bounds (e.g., LBN(MMD+)), then a slower algorithm is used
(LBN+(MMD+)), and then even slower algorithms are used (e.g., LBP+(MMD+), and
then LBP+(MCSLB)), each continuing with the best bound obtained by the previous
algorithms.

9 Brambles

Many of the algorithms of the previous sections exploit in some way or another the density
of the graphs — graphs with many edges give good lower bounds (as they, or subgraphs
or minors of them have large degree vertices), and with improvement, we try to add more
edges to the graphs. For some types of graphs, these algorithms appear to perform usually
poorly. A typical example are the planar graphs. For instance, as each planar graph has a
vertex of degree at most five, the contraction degeneracy of a planar graph is at most five.
In this section, we discuss a different technique, that is targeted at graphs that are planar,
or close to planar.

This technique was introduced by Bodlaender, Grigoriev, and Koster in [9]. It appears
to do quite badly on several dense graphs, but gives often excellent results on planar
graphs, and graphs related to planar graphs. The bramble heuristic from [9] is based upon
an alternative characterisation of treewidth in terms of the maximum order of a bramble of
the graph, by Seymour and Thomas [33]. We use the terminology introduced by Reed [29].

Definition 28 Let G = (V, E) be a graph. Two subsets of V' are said to touch if they have
a vertex in common or E contains an edge between them. Let us call a set B of mutually
touching connected vertex sets a bramble. A subset of V' is said to cover B if it meets every
element of B. The least number of vertices covering a bramble is its order.
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The heuristic is based upon the following theorem by Seymour and Thomas [33]. A shorter
proof of this result was given by Bellenbaum and Diestel [4].

Theorem 29 (Seymour and Thomas [33]) Let k be a non-negative integer, and G be
a graph. The treewidth of G is at least k if and only if G contains a bramble of order
strictly greater than k.

A nice example is a bramble for the r by r grid: take the collection of all sets of vertices that
consist of one row and one column (crosses). This set of r? crosses is a bramble of order 7.
A small variant gives a bramble of order r + 1, and thus a lower bound that matches the
exact treewidth of the grid. See e.g., Figure 1. A heuristic of Bodlaender, Grigoriev, and
Koster [9] finds a kind of generalisation of this type of brambles for arbitrary graphs.

fl
ﬁt S

C

J

v

Figure 1: A 5 by 5 grid with a cross. A bramble of order 5 could consist of all 25 possible
Crosses

In the first step of the algorithm, we find a number of layers: disjoint sets of vertices,
each inducing a connected subgraph of G. An arbitrary vertex is chosen as the only vertices
in layer L. Then, repeatedly, given layer L;, we first put in layer L;,; all vertices that are
adjacent to a vertex in layer L; but do not belong to one of the first ¢ levels, i.e., do not
belong to U;:1 L;. Then, we try to add vertices to layer L; to make it induce a connected
subgraph of GG; e.g., we add to L; the vertices on shortest paths between the different
connected components of G[L;]. If we made L; connected, we proceed with building the
next level; otherwise, all vertices in L; and not in a level are added to level L;_;. This is
continued until all vertices belong to a level. We have now partitioned V' into layers Ly,
..., L, for some r, such that each G[L;] is connected.

Consider some «a, 3,0 < a < 3 <r. Let G, 3 be the graph, obtained by contracting
layers Ly U --- U L, to a single vertex v’ and contracting layers Lg U --- U L, to a single
vertex v”. G, g is a minor of G, so a lower bound on the treewidth of G, s is a lower bound
on the treewidth of GG. Using network flow techniques, we now find a maximum number of
vertex disjoint paths from v’ to v” in G, g. (See e.g., [1] for how this can be done efficiently
in polynomial time.) Let P, ..., P. be these paths without the endpoints v’ and v".

Now, for each layer L;, o < i < 3, and each path P;, 1 < j < ¢, we take the set L; U P;.
As each layer is connected, each path intersects each layer, and a path is clearly connected,
this set is connected. The bramble consists of all (5 — a — 1)c combinations of layer and
path, and one extra set consisting of vertex v’ only. One can verify that this is indeed a
bramble, and its order equals min(c + 1, 8 — «). So, the treewidth of G, 3 and hence of G
is at least min(c+ 1, 8 — «).
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We can now try out all relevant pairs «, (, and then finding the number of vertex
disjoint paths from v" to v” and computing the corresponding treewidth lower bound as
above, and finally taking the best bound obtained by the different combinations of o and (3
gives a lower bound for the treewidth. This process can be repeated with different choices
for the start vertex vg. We refer to [9] for more details. We also refer to [9] for a second
heuristic, specially for planar graphs, that uses a variation of the principle.

10 Miscellaneous Techniques

10.1 As a Byproduct of Preprocessing

Several preprocessing algorithms yield as a byproduct a lower bound on the treewidth of
the graph. For instance, there is a set of reduction rules with the property that for each
graph G of treewidth at most three, there is a rule in the set that can rewrite G to an
equivalent smaller instance [3,14]. Thus, if we have a graph G, we can either rewrite it to
the empty graph with these rules (and know the treewidth exactly), or we know that the
treewidth of G is at least three. See for a further discussion [14] or [13].

10.2 Turning Exact Algorithms into Lower Bound Heuristics

The following simple technique can be used to turn exact algorithms for treewidth (or for
many other problems) into lower bound heuristics. Many of the exact algorithms work
with a known upper bound for the problem, and then find the best solution given this
upper bound. Now, if we give instead of a real upper bound a conjectured lower bound
«, the algorithm will find no solution at all, and we can conclude that the treewidth of
the graph at hand is at least a. This technique can be used for example with a branch
and bound algorithm (like the algorithm by Gogate and Dechter [20]) or with a dynamic
programming algorithm. Recent work [8] has shown that this can help in several cases to
get a better lower bound; some results have been reported in TreewidthLIB [40]. We plan
to review exact algorithms for treewidth in [13].

10.3 Expansion Properties

Sunil Chandran and Subramanian [38] give another lower bound on the treewidth based
upon an expansion property.

The open neighbourhood of a set of vertices W C V in a graph G = (V, E) is denoted
NW)={zeV]|zgWAITweW :{wuz} € E}. Foragraph G = (V,E) and integer
s, 1 < s <mn, we define Npin(G, s) to be the minimum of | N ()| over all sets of vertices
WcCv, ;< |W|<s.

Theorem 30 (Sunil Chandran and Subramanian [38]) For any graph G = (V, E)
and integer s, 1 < s < n, the treewidth of G is at least Ny (G, s) — 1.
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The result can be used as a lower bound heuristic by fixing some value s, and then com-
puting Nmin(G,s) — 1. If s is a fixed integer, then this can be done in polynomial time.
The most promising case may be taking s = 3. For larger values of s, probably the formula
cannot be computed with sufficient efficiency.

11 Performance Analysis

In this section we complement the discussion so far with a comptutational study. All
presented results have been carried out on a Linux machine with 2.83 GHz Intel Core2
Quad CPU Q9550 and 8 GB RAM. The algorithms that have been evaluated have been
implemented in C++ with use of the Boost Graph Library [36].

In most of the articles on treewidth lower bounds, computational results have been pre-
sented on selected instances from applications like probabilistic networks, vertex coloring,
and frequency assignment. One of the drawbacks of such an approach is that for many
graphs the optimal width is unknown, and thus only relative conclusions can be drawn.
For this reason, we have have adapted in the first paper of this series [12] the approach
of Shoikhet and Geiger [35] to test the algorithms on randomly generated partial-k-trees.
In [12] we have tested the algorithms for all combinations of n € {100, 200,500, 1000},
k € {10,20}, and p € {30,40,50}, where n is the number vertices, k the parameter of the
partial-k-tree, and p the percentage of edges missing to be a k-tree. Where these graphs
result in a good performance analysis of the upper bounds algorithms, they turn out to be
of no value for a comparison of lower bound algorithms: the MMD+ algorithms provides
a lower bound equal to k£ in all cases. Since k is an upper bound at the same time, no
further improvements can be expected and the added value of algorithms like MCSLB or
LBN+(MMD+) cannot be derived.

To arrive at a valuable performance analysis for selected lower bounds, we have adapted
all three parameters. In this section, we present results for n = 1000, £ = 50, and
p € {70,80,90}. Hence, 70%, 80%, or even 90% of the edges in a partial-50-tree of 1000
vertices have been deleted at random (i.e., the graphs contain 14618, 9745, or 4873 edges,
respectively). For each case, we randomly generated 50 instances. The idea behind this
setting is as follows. For all instances, k& = 50 turned out to be the optimal width. For
lower values of k or less missing edges, the lower bounds cannot be discriminated (even for
p = 60 the MMD+ alggorithm generates the optimal width in all 50 cases). In case even
more edges are deleted from the k-tree (e.g., p = 95), the optimal width drops below 50
several times and thus the results are more difficult to compare. Finally, for graphs with
less vertices, the computation times of the faster algorithms are too small to be comparable.

For our computational comparison we selected the following algorithms: MMD, MC-
SLB, LBN(MMD), MMD+ (with least-c strategy), MCSLB+, and LBN+(MMD+). Other
obvious choices like LBP-+(MMD+) have been left out as the added value for these algo-
rithms cannot be shown with this computational study (see below). This does not mean
that these algorithms do not have an added value for other (particular) graphs.

The detailed results are provided in Appendix A. Figure 2 summarizes the results by
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Figure 2: Histograms for selected lower bound algorithms

the means of histograms. Only the values reported at least once by one of the algorithms
are presented on the x-axis. The y-axis shows the frequency this value is reported by a
specific algorithm. The sum of the occcurences equals 50 for each algorithm.

From the results of algorithm LBN+(MMD+) we can conclude that the optimal width
equals k = 50 for all instances. For p = 70 and p = 80, the same conclusion can be drawn
by the results of the MMD+ or MCSLB+ algorithm, but these algorithms perform worse
for p =90 (with MCSLB+ slightly better than MMD+).

Figure 2 further shows that the quality of MMD and MCSLB decreases substantially
when p increases. LBN(MMD) decreases most dramatically: for p = 70 it returns either
50 or 49, whereas for p = 90 it is only marginally better than MCSLB, reporting 10, 11,
or 12.

In general, the contraction methods significantly outperform the algorithms without
contraction. Where the performance of the algorithms without contraction decreases with
increasing p, the contraction methods still perform very well.

The computation times in Appendix A show that MMD and MMD+ are incredible
fast, even for these large instances. Both MCSLB and MCSLB+ run faster as the graph
becomes more sparse. The same effect can be observed for LBN(MMD), but this can be
explained by the smaller difference between MMD and LBN(MMD), hence less runs of

19



instance queen8_8 queenl2_12 tsp225

algorithm Ib  cpu b cpu b cpu
MMD 21 0.00 33 0.00 4 0.00
MCSLB 21 0.02 33 0.13 5 014
LBN(MMD) 21 0.00 33 0.02 4 0.00
LBP(MMD) 23 0.60 37 26.31 8 173.76
MMD+ 25 0.01 43 0.02 5 0.00
LBN(MMD+) 25 0.01 43 0.05 5 0.01
LBP(MMD+) 25 0.01 43 0.05 8 20.01
MCSLB+ 25 0.19 44 1.98 5 0.75
LBN+(MMD) 26 0.14 43 2.25 5 0.13
LBN+(MMD+) 26 0.05 43 0.27 5 0.09
LBP+(MMD) 28 1.62 55 90.26 8 79.17
LBP+(MMD+) 28 0.61 55  50.02 8 20.07
bramble 2 0.01 2 0.03 10 1.73
planarbramble - - - - 9 0.06

Table 1: Lower bounds and computation times for selected graphs

the subalgorithm are undertaken. Similarly LBN+(MMD+) is substantially faster than
MCSLB+ due to the good initial lower bound (roughly 3 seconds are needed for each run
of the subalgorithm).

To show the added value of two further types of lower bounds, the path improvement
and the bramble algorithm, we conclude this section with results for an extensive set of
lower bounds for three particular graphs: queen8.8, queenl12_12; and tsp225. The first
two graphs origin from the DIMACS graph coloring challenge [19] and are examples of the
n-queens puzzle, wheras the last one is a Delauney triangulation of a traveling salesman
problem and has been used before by Hicks [21] to compute branchwidth. This latter graph
is planar. Table 1 shows lower bounds and computation times for a variety of algorithms.
From these results we can conclude that the more time consuming LBP algorithms indeed
provide better lower bounds for the coloring graphs. Further, in the case of planar graphs,
the bramble algorithms (a general version and a dedicated version for planar graphs ex-
ploiting an embedding in the plane) should be considered as they are likely to outperform
all other considered algorithms in such cases (and are rather fast).

12 Conclusions

In this paper, we reviewed a number of algorithmic techniques to obtain lower bounds
for the treewidth of graphs. For many graphs, taken from real-life applications, these
techniques give good bounds, which in several cases match or come close to the best
known upper bounds or exact treewidth of the graphs.

For many applications, good choices for lower bound heuristics are the LBN+(MMD+)
and LBP+(MMD+) heuristics. The LBN+(MMD+) heuristic often is fast and gives good
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lower bounds; the LBP4+(MMD+) heuristic is slower but gives usually still better lower
bounds. For very large graphs, or when the heuristic is called frequently, e.g., as a sub-
routine of a branch and bound algorithm, then the LBN+(MMD+) and even more so the
LBP+(MMD+) are probably too slow. A good choice then can be the MMD+ heuristic.
Here, we see that the least-c strategy (contracting to the neighbour that has the smallest
number of common neighbours) is usually the best choice as contraction strategy.

In some cases, these degree based methods fail heavily, e.g., when the input graphs are
planar. In such cases, other methods, like computing the branchwidth exactly with the
ratcatcher algorithm [21,34] or using brambles can be tried.

There are several interesting questions for further research on treewidth lower bounds.
For many of the heuristics, it probably is true that there are variants of the heuristics that
give lower bounds of about equal quality, but that are also much faster. An example of this
may be the LBP4+(MMD+) heuristic. Suppose that after a few rounds of the algorithm,
we have a lower bound for the treewidth of the original graph of k. Now, when we work
with a graph whose MMD+ bound is much smaller than £k, we might want to do a few
contractions before we again compute an MMD+-bound. Also, in some cases we may want
to skip a step that makes the improved graph in order to save some time — hopefully
in such a way, that this does not affect the resulting lower bound. So, experimenting
which combinations of techniques described in our overview paper give best combinations
of quality of lower bounds and used time is worthwhile and interesting.

As in many cases, there are still large gaps between lower and upper bounds, having
new and still better lower bound methods remains a good aim for research.

In this second paper of a series of overview papers on practical algorithms that compute
or approximate the treewidth of graphs, we have seen several lower bound algorithms that
in many cases work quite well. In the first paper in this series, we considered upper bound
heuristics [12]; a third paper discussing exact algorithms and preprocessing methods is
planned [13].
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A Computational Results

MMD MCSLB LBN(MMD) MMD+ MCSLB+ LBN+(MMD+)
graph Tb cpu Tb cpu b cpu Tb cpu Tb cpu Tb cpu
70-01 19 0.00 20 6.32 49 35.69 50 0.14 50 147.00 50 7.34
70-02 19 0.00 20 6.46 49 39.87 50 0.14 50 144.32 50 7.42
70-03 18 0.00 20 6.45 49 48.62 50 0.13 50 145.25 50 7.14
70-04 18 0.00 20 6.45 50 62.16 50 0.14 50 144.36 50 7.49
70-05 19 0.01 22 6.46 50 33.25 50 0.13 50 141.81 50 7.27
70-06 19 0.01 21 6.41 50 37.10 50 0.13 50 142.28 50 7.38
70-07 19 0.00 22 6.45 50 36.59 50 0.14 50 147.09 50 7.23
70-08 19 0.00 21 6.53 50 36.76 50 0.13 50 142.82 50 7.38
70-09 19 0.01 21 6.49 50 37.51 50 0.13 50 143.21 50 7.23
70-10 19 0.00 21 6.42 49 35.81 50 0.13 50 142.73 50 7.22
70-11 19 0.01 21 6.60 50 33.69 50 0.13 50 141.78 50 7.39
70-12 19 0.00 21 6.39 50 38.86 50 0.14 50 142.71 50 7.27
70-13 19 0.00 20 6.45 50 37.99 50 0.14 50 143.35 50 7.43
70-14 19 0.01 21 6.48 50 37.76 50 0.13 50 144.36 50 7.25
70-15 18 0.00 20 6.54 49 58.32 50 0.14 50 143.20 50 7.29
70-16 19 0.00 21 6.45 50 35.23 50 0.13 50 142.41 50 7.25
70-17 18 0.00 20 6.47 49 54.39 50 0.14 50 147.18 50 7.45
70-18 19 0.01 21 6.45 50 36.41 50 0.13 50 146.35 50 7.23
70-19 19 0.00 21 6.67 49 34.38 50 0.13 50 143.93 50 7.27
70-20 19 0.01 21 6.46 49 36.24 50 0.13 50 143.27 50 7.31
70-21 19 0.01 21 6.46 50 34.95 50 0.13 50 145.91 50 7.33
70-22 19 0.01 21 6.48 50 35.75 50 0.13 50 142.61 50 7.33
70-23 19 0.00 21 6.51 49 34.75 50 0.14 50 141.42 50 7.23
70-24 19 0.01 20 6.60 50 36.64 50 0.13 50 142.29 50 7.36
70-25 19 0.01 21 6.48 50 39.35 50 0.13 50 141.78 50 7.28
70-26 19 0.00 21 6.54 50 35.36 50 0.13 50 141.25 50 7.41
70-27 19 0.00 21 6.43 49 32.81 50 0.14 50 145.25 50 7.31
70-28 19 0.00 20 6.47 49 33.00 50 0.14 50 139.07 50 7.28
70-29 19 0.00 20 6.41 50 36.84 50 0.13 50 144.70 50 7.32
70-30 19 0.01 20 6.43 50 35.13 50 0.13 50 146.63 50 7.38
70-31 19 0.00 21 6.40 50 34.44 50 0.14 50 140.88 50 7.27
70-32 19 0.00 20 6.45 50 35.02 50 0.13 50 145.15 50 7.22
70-33 19 0.00 21 6.37 49 36.28 50 0.14 50 140.58 50 7.15
70-34 19 0.01 21 6.48 50 34.78 50 0.13 50 140.23 50 7.31
70-35 19 0.00 21 6.45 50 36.85 50 0.13 50 146.91 50 7.39
70-36 19 0.00 21 6.47 50 36.98 50 0.13 50 144.22 50 7.31
70-37 19 0.01 21 6.45 50 33.45 50 0.13 50 143.24 50 7.21
70-38 19 0.00 21 6.46 50 37.87 50 0.13 50 142.43 50 7.31
70-39 19 0.00 22 6.44 50 39.38 50 0.14 50 141.66 50 7.32
70-40 19 0.00 20 6.43 49 36.04 50 0.13 50 152.76 50 7.27
70-41 18 0.00 21 6.43 49 58.77 50 0.14 50 143.03 50 7.34
70-42 19 0.00 20 6.45 50 37.25 50 0.13 50 142.01 50 7.41
70-43 19 0.00 20 6.44 49 36.03 50 0.13 50 140.75 50 7.34
70-44 18 0.01 21 6.56 49 54.21 50 0.13 50 143.34 50 7.43
70-45 19 0.01 21 6.50 50 36.41 50 0.13 50 143.41 50 7.32
70-46 19 0.01 21 6.61 49 33.86 50 0.13 50 143.12 50 7.22
70-47 19 0.00 21 6.49 50 34.64 50 0.14 50 145.43 50 7.34
70-48 19 0.00 20 6.44 50 32.19 50 0.14 50 143.06 50 7.40
70-49 19 0.00 21 6.48 50 38.90 50 0.13 50 142.60 50 7.47
70-50 19 0.01 21 6.49 49 38.71 50 0.13 50 145.13 50 7.32
avg. 18.9 0.00 20.7 6.47 49.6 38.47 50 0.13 50 143.61 50 7.32

Table 2: Results for n = 1000, k = 50, p = 70. CPU times are in seconds.
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MMD MCSLB LBN(MMD) MMD+ MCSLB+ LBN+(MMD+)
graph Tb cpu Tb cpu b cpu Tb cpu Tb cpu Tb cpu
80-01 13 0.00 15 5.24 36 23.19 50 0.09 50 96.26 50 5.52
80-02 13 0.00 15 5.19 35 20.50 50 0.09 50 97.36 50 5.37
80-03 13 0.01 16 5.19 36 21.06 50 0.08 50 99.03 50 6.00
80-04 14 0.01 16 5.22 35 14.41 50 0.08 50 103.20 50 5.42
80-05 13 0.01 15 5.20 35 22.39 50 0.08 50 97.42 50 5.55
80-06 13 0.01 15 5.22 35 23.02 50 0.08 50 96.11 50 5.47
80-07 13 0.01 15 5.20 35 26.64 50 0.08 50 97.21 50 5.34
80-08 13 0.00 15 5.38 35 22.79 50 0.09 50 98.40 50 5.56
80-09 14 0.00 16 5.23 36 15.38 50 0.08 50 97.42 50 5.49
80-10 13 0.00 15 5.23 35 24.71 50 0.08 50 96.80 50 5.50
80-11 13 0.00 15 5.32 35 22.66 50 0.09 50 98.18 50 5.41
80-12 13 0.00 15 5.19 36 28.44 50 0.08 50 99.43 50 5.46
80-13 14 0.00 16 5.13 37 14.60 50 0.08 50 95.71 50 5.41
80-14 14 0.00 16 5.15 35 14.61 50 0.09 50 97.52 50 5.39
80-15 13 0.01 16 5.20 37 23.51 50 0.08 50 97.97 50 5.41
80-16 14 0.01 15 5.64 36 15.67 50 0.08 50 98.12 50 5.34
80-17 13 0.01 15 5.30 34 24.62 50 0.08 50 97.38 50 5.43
80-18 13 0.00 15 5.21 36 23.46 50 0.09 50 99.05 50 5.39
80-19 14 0.01 15 5.21 35 12.55 50 0.08 50 95.48 50 5.39
80-20 13 0.00 17 5.23 35 26.05 50 0.08 50 96.78 50 5.38
80-21 14 0.01 15 5.29 36 14.73 50 0.08 50 98.73 50 5.42
80-22 13 0.00 15 5.23 36 27.61 50 0.09 50 97.18 50 5.56
80-23 14 0.01 16 5.16 36 15.05 50 0.08 50 97.60 50 5.48
80-24 13 0.00 15 5.26 35 25.73 50 0.08 50 95.46 50 5.41
80-25 13 0.00 15 5.21 36 27.18 50 0.09 50 99.97 50 5.44
80-26 14 0.01 15 5.30 35 14.23 50 0.08 50 97.88 50 5.40
80-27 13 0.00 15 5.17 36 25.37 50 0.09 50 96.56 50 5.46
80-28 14 0.01 16 5.16 35 14.75 50 0.08 50 98.28 50 5.41
80-29 14 0.00 15 5.21 37 15.19 50 0.08 50 98.08 50 5.42
80-30 14 0.01 15 5.17 36 15.91 50 0.08 50 99.18 50 5.44
80-31 13 0.00 15 5.22 35 26.25 50 0.09 50 96.49 50 5.42
80-32 13 0.00 15 5.15 36 27.26 50 0.09 50 98.65 50 5.44
80-33 13 0.00 16 5.25 36 25.03 50 0.09 50 97.14 50 5.44
80-34 13 0.01 16 5.26 36 24.75 50 0.08 50 100.11 50 5.37
80-35 14 0.00 16 5.28 36 13.92 50 0.08 50 108.39 50 5.51
80-36 13 0.01 15 5.16 36 24.43 50 0.08 50 100.52 50 5.46
80-37 13 0.00 16 5.24 35 26.24 50 0.08 50 96.72 50 5.37
80-38 13 0.01 16 5.18 36 20.87 50 0.07 50 99.34 50 5.42
80-39 13 0.01 15 5.18 36 23.35 50 0.08 50 104.23 50 5.38
80-40 13 0.00 15 5.21 35 22.49 50 0.09 50 96.71 50 5.33
80-41 14 0.00 15 5.18 35 14.31 50 0.09 50 98.48 50 5.43
80-42 13 0.00 15 5.24 35 20.74 50 0.09 50 98.44 50 5.54
80-43 14 0.00 15 5.51 36 13.92 50 0.08 50 97.90 50 5.41
80-44 13 0.00 15 5.26 36 22.10 50 0.09 50 96.39 50 5.40
80-45 13 0.00 15 5.16 36 23.42 50 0.09 50 96.67 50 5.42
80-46 13 0.00 15 5.15 35 24.56 50 0.08 50 97.69 50 5.46
80-47 13 0.00 16 5.13 36 22.90 50 0.08 50 96.61 50 5.46
80-48 14 0.00 16 5.16 36 14.17 50 0.08 50 98.87 50 5.39
80-49 13 0.00 16 5.19 36 23.42 50 0.09 50 96.85 50 5.45
80-50 13 0.00 15 5.22 36 27.01 50 0.08 50 96.51 50 5.43
avg. 13.3 0.00 15.4 5.23 35.6 21.14 50 0.08 50 98.13 50 5.44

Table 3: Results for n = 1000, k = 50, p = 80. CPU times are in seconds.
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MMD MCSLB LBN(MMD) MMD+ MCSLB+ LBN+(MMD+)

graph b cpu Tb cpu Tb cpu b cpu b cpu Tb cpu
90-01 8 0.00 10 3.76 12 2.34 49 0.04 49 46.98 50 6.48
90-02 7 0.01 9 3.74 11 9.09 49 0.04 50 46.60 50 6.43
90-03 8 0.01 10 3.81 11 2.90 49 0.04 50 47.91 50 6.20
90-04 8 0.01 9 3.73 11 2.64 49 0.04 50 47.38 50 6.78
90-05 8 0.00 10 3.72 11 2.60 49 0.04 49 46.83 50 6.28
90-06 8 0.00 10 3.79 11 2.41 49 0.03 49 47.53 50 6.52
90-07 8 0.01 9 3.71 11 2.83 49 0.04 50 47.51 50 6.39
90-08 8 0.00 10 3.74 10 2.98 49 0.04 49 49.72 50 6.43
90-09 8 0.01 9 3.77 11 2.28 48 0.04 48 47.29 50 9.28
90-10 8 0.01 10 3.72 11 2.75 49 0.04 50 47.14 50 6.35
90-11 8 0.01 10 3.69 12 2.96 48 0.04 49 47.56 50 9.27
90-12 8 0.00 9 3.75 11 2.69 49 0.03 50 47.22 50 6.26
90-13 8 0.00 10 3.74 11 2.27 49 0.04 49 47.09 50 6.19
90-14 8 0.00 10 3.76 11 2.82 49 0.04 49 47.55 50 6.42
90-15 8 0.01 9 3.66 11 3.39 50 0.03 50 46.89 50 3.21
90-16 8 0.01 9 3.72 12 2.82 49 0.04 49 47.60 50 6.48
90-17 8 0.00 10 3.68 11 2.63 50 0.04 49 46.89 50 3.19
90-18 8 0.01 9 3.70 11 1.99 49 0.04 50 47.79 50 6.37
90-19 8 0.01 9 3.73 11 2.35 49 0.04 49 46.71 50 6.45
90-20 8 0.00 9 3.68 12 2.64 50 0.04 50 47.10 50 3.27
90-21 8 0.01 9 3.84 11 2.54 49 0.04 48 47.93 50 6.40
90-22 8 0.00 10 3.75 11 3.05 49 0.04 49 47.64 50 6.38
90-23 8 0.01 10 3.77 11 1.92 49 0.03 50 47.47 50 6.34
90-24 8 0.01 10 3.68 11 3.26 49 0.04 49 48.28 50 6.30
90-25 8 0.01 10 3.71 11 2.37 49 0.03 49 48.07 50 6.24
90-26 8 0.01 9 3.76 11 2.64 49 0.04 49 50.53 50 6.33
90-27 8 0.01 9 3.73 11 2.61 49 0.04 49 48.03 50 6.52
90-28 8 0.00 9 3.65 11 2.68 49 0.04 49 46.33 50 6.41
90-29 8 0.01 10 3.70 11 2.64 49 0.03 49 47.03 50 6.44
90-30 8 0.00 9 3.70 11 2.83 50 0.04 50 46.76 50 3.28
90-31 8 0.00 9 3.76 11 2.36 48 0.04 50 47.32 50 9.53
90-32 8 0.01 9 3.76 11 2.32 50 0.04 49 47.11 50 3.24
90-33 8 0.01 11 3.76 11 2.68 50 0.04 49 47.33 50 3.27
90-34 8 0.00 10 3.70 11 2.22 49 0.04 50 46.77 50 6.30
90-35 8 0.00 9 3.70 11 3.05 49 0.04 49 47.03 50 6.37
90-36 8 0.00 9 3.66 12 2.81 49 0.04 49 46.55 50 6.33
90-37 8 0.00 9 3.85 11 2.53 49 0.04 50 47.54 50 6.42
90-38 8 0.00 10 3.73 12 3.27 49 0.04 50 46.31 50 6.22
90-39 8 0.00 9 3.76 11 2.50 49 0.04 49 47.34 50 6.40
90-40 8 0.01 9 3.80 11 1.82 49 0.04 49 52.49 50 6.44
90-41 8 0.00 9 3.71 11 2.19 49 0.04 49 46.98 50 6.25
90-42 8 0.01 9 3.77 12 2.49 49 0.04 50 47.22 50 6.35
90-43 8 0.01 11 3.74 11 3.31 49 0.04 50 47.17 50 6.34
90-44 8 0.00 11 3.68 11 3.14 49 0.04 49 46.61 50 6.28
90-45 8 0.01 9 3.73 11 2.98 50 0.03 50 47.38 50 3.32
90-46 8 0.01 11 3.76 11 2.34 49 0.04 49 46.75 50 6.51
90-47 8 0.01 10 3.75 11 3.18 49 0.03 49 46.77 50 6.44
90-48 8 0.00 9 3.77 11 2.41 49 0.04 50 47.41 50 6.46
90-49 8 0.00 10 3.80 11 2.74 49 0.04 49 46.98 50 6.34
90-50 8 0.00 9 3.71 11 2.53 49 0.04 50 46.81 50 6.33
avg. 7.98 0.01 9.54 3.74 11.1 2.78 49.1 0.04 49.4 47.42 50 6.12

Table 4: Results for n = 1000, k = 50, p = 90. CPU times are in seconds.
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