
Exact algorithms for Intervalizing Colored

Graphs

Hans L. Bodlaender

Johan M. M. van Rooij

Technical Report UU-CS-2010-024

October 2010

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl



ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht

The Netherlands



Exact algorithms for Intervalizing Colored Graphs

Hans L. Bodlaender and Johan M. M. van Rooij

Department of Information and Computing Sciences

Utrecht University, P.O. Box 80.089, 35089TB, the Netherlands

Abstract

In the Intervalizing Colored Graphs problem, one must decide for a given

graph G = (V,E) with a proper vertex coloring of G whether G is the subgraph of a

properly colored interval graph. For the case that the number of colors k is �xed, we

give an exact algorithm that uses O∗(2n/log1−ε(n)) time for all ε > 0. We also give an

O∗(2n) algorithm for the case that the number of colors k is not �xed.

1 Introduction

In this paper, we consider exact algorithms for the Intervalizing Colored Graphs

problem. This problem is de�ned in the following way. Given a graph G = (V, E) together
with a proper vertex coloring c : V → {1, . . . , k} of G (a coloring c is proper if for all edges
{v, w} ∈ E: c(v) 6= c(w)), one must decide if G is subgraph of a properly colored interval
graph, i.e., can we add edges, such that each edge is between vertices of di�erent colors and
the result is an interval graph? The problem has its original motivation in DNA physical
mapping [13]

This problem is NP-complete [13] (see also [16]), even when the number of colors k
equals 4 [5, 6], and in addition, inputs are restricted to caterpillar trees [1]. We denote
the version of the problem where the number of colors k is �xed by Intervalizing k-
Colored Graphs, and the version with a potentially unbounded number of colors by
Intervalizing Colored Graphs.

If the number of colors k = 2, the problem is trivially solvable in linear time. For three
colors, the problem is solvable in quadratic time with a complicated algorithm [7]; the case
for three colors and biconnected graphs is described in [6].

Our �rst algorithm deals with the case that the number of colors is a constant that is
at least four. We give an algorithm that solves this version exactly, using slightly less than
exponential time.

Most NP-hard problems that have subexponential algorithms deal with planar graphs
and generalizations of planar graphs, see e.g., [12, 14, 21]. Typically, the running time of
such algorithms is of the form O∗(2O(

√
n)). The result of our paper is a curious exception

to the general pattern, both as inputs are general graphs (but a positive answer implies
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bounded pathwidth of the input), and as the running time is `just subexponential': for
every ε > 0, the running time is O∗(2n/(log1−ε(n))).

Our algorithm for Intervalizing k-Colored Graphs can be viewed as a dynamic
programming algorithm in Held-Karp style [19], resembling algorithms for some graph
layout problems given e.g., in [10], with one additional improvement: an isomorphism step
for certain parts of the graph during the dynamic programming. Important concepts that
facilitate the presentation of our results are the notions of path decomposition and nice
path decomposition. Our O∗(2n) time algorithm for Intervalizing Colored Graphs is
a simple dynamic programming algorithm, also in Held-Karp style.

2 Preliminaries

In this section, we introduce some standard notations, and give a few preliminary results
on path decompositions.

The graphs in this paper are considered to be undirected and simple. If not stated
otherwise, the graphs we consider are labeled graphs, i.e., two isomorphic graphs with
di�erent labels are considered to be di�erent. We also considered unlabeled graphs: two
isomorphic unlabeled graphs are considered to be the same object. The number of vertices
of graph G = (V, E) is denoted by n.

For a graph G = (V, E) and a set of vertices W ⊆ V , we denote G[W ] as the subgraph
induced by W : G[W ] = (W, {{v, w} ∈ E | v, w ∈ W}).

De�nition 1 A graph G = (V, E) is an interval graph if we can associate to each vertex
v ∈ V an interval on the real line Iv = [`v, rv] such that, for all v, w ∈ V , v 6= w:
{v, w} ∈ E, if and only if, Iv ∩ Iw 6= ∅.

De�nition 2 A graph H = (V, F ) is an interval completion of a graph G = (V, E) if G
and H have the same vertex set, E ⊆ F , and H is an interval graph. More background
can be found in [15]; see also [18].

De�nition 3 A path decomposition of a graph G = (V, E) is a sequence of subsets of V
called bags, (X1, X2, . . . , Xr) such that:

•
⋃

1≤i≤r Xi = V

• for all {v, w} ∈ E: there is an i, v, w ∈ Xi

• for all i0, i1, i2: 1 ≤ i0 ≤ i1 ≤ i2 ≤ r: Xi1 ⊆ (Xi0 ∩Xi2)

De�nition 4 The width of a path decomposition (X1, X2, . . . , Xr) is max1≤i≤r |Xi| − 1.
The pathwidth of a graph G is the minimum width of a path decomposition of G.

De�nition 5 A path decomposition (X1, X2, . . . , Xr) is nice, if for all i, 1 ≤ i < r, one of
the following two cases holds:
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• There is a vertex v ∈ V with Xi+1 = Xi ∪ {v}. We call Xi+1 an introduce node.

• There is a vertex v ∈ V with Xi−1 = Xi − {v}. We call Xi+1 a forget node.

If |X1| = 1, we also call 1 an introduce node. The following proposition is well known.
We give the proof for later reference.

Proposition 6 (Folklore) Each graph G = (V, E) with pathwidth k has a nice path de-
composition of width k with 2n bags, with |X1| = 1, and Xr = ∅.

Proof: Suppose we have a path decomposition (X1, X2, . . . , Xr). We can turn it in a
nice path decomposition as follows. First, remove all bags that are empty. If for some i,
1 ≤ i < r, i + 1 is not an introduce or forget bag, then we insert some new bags between
i and i + 1: �rst forget nodes, one for each vertex in Xi − Xi+1, and then we have one
introduce node for each vertex in Xi+1 −Xi. Similarly, we add introduce nodes before X1

when |X1| 6= 1, and add forget nodes at the end of the procedure till Xr = ∅. We have one
introduce and one forget node per vertex, so we have 2n bags. ut

Proposition 7 There are at most (k+2k +1)2n−1 unlabeled graphs with pathwidth at most
k that are pairwise non isomorphic.

Proof: Consider a nice path decomposition of a graph with n vertices, with |X1| = 1, and
with 2n bags. For each of the bags Xi, i > 1, there are at most k + 2k + 1 possibilities:
we can have a forget node, where we have the choice which of the at most k + 1 vertices
in Xi we forget, or we can have an introduce node, where we have the choice to which of
the at most k vertices in Xi the introduced vertex has an edge, i.e., at most 2k choices
for an introduce node. If we have two graphs with two path decompositions that we can
construct while always making the same choices, then these graphs are isomorphic. ut

Proposition 8 Let G = (V, E) be a graph with proper vertex coloring c : V →
{1, 2, . . . , k}. The following are equivalent.

1. G has a properly colored interval completion.

2. G has a path decomposition (X1, X2, . . . , Xr) such that for all v, w ∈ V : if v 6= w
and there is an i with v, w ∈ Xi, then c(v) 6= c(w)

3. G has a nice path decomposition (X1, X2, . . . , X2|V |) of width at most k− 1 such that
for all v, w ∈ V : if v 6= w and there is an i with v, w ∈ Xi, then c(v) 6= c(w)
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This proposition is also well known. Given a (nice) path decomposition (X1, X2, . . . , Xr)
from Proposition 8 (ii) or (iii), one obtains the corresponding interval graph by making
each Xi a clique. The corresponding interval graph model is obtained by taking for a vertex
v the interval [minv∈Xi

i, maxv∈Xi
i]. As all colors in a bag Xi are di�erent, the width of

the path decompositions is bounded by k − 1.
Proposition 8 motivates the de�nition of a properly colored path decomposition:

(X1, . . . , Xr) is a properly colored path decomposition of G, if and only if it is a path
decomposition of G, and for all v, w ∈ V , if v 6= w and there is an i with v, w ∈ Xi, then
c(v) 6= c(w).

3 Partial path decompositions

In this section, we introduce a number of notions that will be used for our dynamic pro-
gramming algorithm in the next section.

De�nition 9 A partial path decomposition of a graph G = (V, E) is a sequence of subsets
of V (X1, X2, . . . , Xs) such that:

• (X1, X2, . . . , Xs) is a path decomposition of G[
⋃

1≤i≤s Xi]

• For each connected component of G[V − Xs] with vertex set W , either W ⊆⋃
1≤i≤s−1 Xi or W ∩

(⋃
1≤i≤s−1 Xi

)
= ∅.

The following proposition follows from well known facts about path and tree decompo-
sitions.

Proposition 10 Let (X1, X2, . . . , Xr) be a path decomposition of G. Then, for each s,
1 ≤ s ≤ r, (X1, X2, . . . , Xs) is a partial path decomposition of G.

Consider a partial path decomposition (X1, X2, . . . , Xr) and a vertex set X. Later,
X will typically be the set Xr for some partial path decomposition (X1, X2, . . . , Xr). A
component of X is a vertex set that forms a connected component of the graph G[V −Xr].

De�nition 11 Two components Y and Z of X are isomorphic components of X, if there
is a graph isomorphism f of G[Y ∪X] to G[Z ∪X] that preserves colors and is the identity
when restricted to X, i.e., f is a bijective function, such that:

1. for all v, w ∈ Y ∪X: {v, w} ∈ E ⇔ {f(v), f(w)} ∈ E

2. for all v ∈ Y ∪X: c(v) = c(f(v))

3. for all v ∈ X: f(v) = v.

De�nition 12 A component W of Xr is said to be a left component of the partial path
decomposition (X1, . . . , Xr), if W ⊆

⋃
1≤i≤r−1 Xi, and a right component of (X1, . . . , Xr),

if W ∩
(⋃

1≤i≤r−1 Xi

)
= ∅.
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The following proposition follows directly from the de�nitions and well known facts on
path decompositions.

Proposition 13 Let (X1, X2, . . . , Xr) be a partial path decomposition of G. Each compo-
nent of Xr is either a left or a right component of (X1, X2, . . . , Xr).

De�nition 14 A partial path decomposition (X1, X2, . . . , Xs) of G = (V, E) is properly
colored, if for all v, w ∈ V , if v 6= w and there exists an i with v, w ∈ Xi, then c(v) 6= c(w).

De�nition 15 A (partial) path decomposition (Y1, Y2, . . . , Yr) is an extension of a partial
path decomposition (X1, X2, . . . , Xs) if r ≤ s and for all i, 1 ≤ i ≤ r, Yi = Xi.

De�nition 16 We de�ne an equivalence relation on partial path decompositions as follows.
We say that the partial path decomposition (X1, X2, . . . , Xr) is equivalent to the partial path
decomposition (Y1, Y2, . . . , Ys), if the following two conditions hold:

1. Xr = Ys.

2. Suppose W1, W2, . . . ,Wq are the components of Xr. There is a bijective function
g : {1, . . . , q} → {1, . . . , q}, such that for all i, 1 ≤ i ≤ q: Wi is a left component of
(X1, X2, . . . , Xr), if and only if Wg(i) is a left component of (Y1, Y2, . . . , Ys) and Wi

and Wg(i) are isomorphic.

The main insight behind our dynamic programming algorithm is the following result.

Proposition 17 If (X1, X2, . . . , Xr) and (Y1, Y2, . . . , Ys) are equivalent colored partial path
decompositions, then (X1, X2, . . . , Xr) has an extension that is a properly colored path de-
composition of G, if and only if, (Y1, Y2, . . . , Ys) has an extension that is a properly colored
path decomposition of G.

Proof: Suppose (X1, X2, . . . , Xr, Z1, Z2, . . . , Zr′) is a properly colored path decomposition
of G that is an extension of (X1, X2, . . . , Xr). Let g be the bijective function as in the
de�nition of equivalence. Let fi be a color preserving graph isomorphism from G[Xr ∪Wi]
to G[Xr ∪Wg(i)] that is the identity on Xr, as implied by the de�nition of equivalence.

Let f : V → V be the function de�ned in the following way.

• for v ∈ Wi, 1 ≤ i ≤ r: f(v) = fi(v);

• for v ∈ Xr, f(v) = v.

Simple case analysis (no, one or both endpoints in Xr) shows that f is an automorphism
of G. De�ne for i, 1 ≤ i ≤ r′, Z ′

i = {f(v) | v ∈ Zi}.

Claim 18 (Y1, Y2, . . . , Ys, Z
′
1, Z

′
2, . . . , Z

′
r′) is a properly colored path decomposition.
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Proof: We �rst prove that (Y1, Y2, . . . , Ys, Z
′
1, Z

′
2, . . . , Z

′
r′) is a path decomposition. Clearly,(⋃

1≤i≤s Yi

)
∪

(⋃
1≤i≤r′ Z

′
i

)
= V .

Second, we show that every edge {v, w} ∈ E is contained in some bag of
(Y1, Y2, . . . , Ys, Z

′
1, Z

′
2, . . . , Z

′
r′). If v, w ∈ Ys, then we can take the bag Ys; so w.l.o.g.,

let v 6∈ Ys. If v belongs to a left component Wi, then there must be a bag Yj, 1 ≤ j ≤ s−1
that contains v and w as (Y1, Y2, . . . , Ys) is a partial path decomposition. If v belongs to
a right component Wi, then {f−1(v), f−1(w)} ∈ E. It is not hard to see that that the
bag in (X1, X2, . . . , Xr, Z1, Z2, . . . , Zr′) that contains both v and w must be one of the Zj,
1 ≤ j ≤ r′, and thus v, w ∈ Z ′

j.
Third, we show that every v ∈ V only occurs in a series of consecutive bags. For a

vertex v ∈ Ys = Xr, we note that there are 1 ≤ α ≤ s, 0 ≤ β ≤ r′, such that v belongs to
bags Yα, Yα+1, . . . , Ys, and v belongs to bags Z1, Z2, . . . , Zβ, and no other bags. As f(v) = v,
v also belongs to bags Z ′

1, Z
′
2, . . . , Z

′
β, and no later bags. So, for a vertex v ∈ Ys = Xr, we

are done.
If v ∈ Wg(i) where Wg(i) is a left component of (Y1, Y2, . . . , Ys). Then, f−1(v) ∈ Wi with

Wi a left component of (X1, X2, . . . , Xr). Thus, f−1(v) belongs to one or more consecutive
bags in (X1, X2, . . . , Xr−1), and, as f−1(v) does not belong to Xr, f−1(v) does not belong
to Z1, Z2, . . . , Zr′ because otherwise (X1, X2, . . . , Xr, Z1, Z2, . . . , Zr′) is not a path decom-
position. So, v belongs to one or more consecutive bags in (Y1, Y2, . . . , Ys−1) and no others.
And, if v ∈ Wg(i) where Wg(i) is a right component of (Y1, Y2, . . . , Ys), then the required
result follows from a similar analysis.

Finally, by assumption all vertices in a bag Yi have a di�erent color, and, as f is color
preserving, as all vertices in a bag Zi have a di�erent color, also all vertices in a bag Z ′

i

have a di�erent color. ut

So, (Y1, Y2, . . . , Ys) has an extension that is a properly colored path decomposition of G.
This shows one direction of implication of the proposition; the proof of the other direction
is identical. ut

De�nition 19 Assume some ordering on the vertices. The characteristic of a partial path
decomposition (X1, X2, . . . , Xr) is the following pair:

(Xr,
⋃

1≤i≤r−1

Xi −Xr),

where it is assumed that both vertex sets are given as an ordered list of vertices.

Two properly colored partial path decompositions with the same characteristic are triv-
ially equivalent, using the identity for g. We remark that one can obtain an O∗(2n) time
algorithm for Intervalizing k-Colored Graphs by tabulating all di�erent character-
istics of properly colored partial path decompositions; this is somewhat similar to the
Held-Karp algorithm for TSP [19]. The isomorphism check for components is the main
ingredient of our improvement upon this idea.

6



4 An Exact Algorithm for Intervalizing k-Colored

Graphs

In this section, we give the algorithm for Intervalizing k-Colored Graphs, building
upon the notions and preliminary results of the previous sections.

First, we note that a positive instance has a path decomposition in which each bag has
size at most k (all vertices in a bag have a di�erent color and there are k colors). Thus, as
a �rst step we use the linear time algorithm (for �xed k), that tests if the pathwidth of the
input graph is at most k − 1 from [4, 11]. If not, we are done, and can decide negatively.
Thus, we can assume that G has pathwidth at most k in the remainder. We consider k to
be a constant.

We introduce some further notions.

De�nition 20 We de�ne the progress of a partial path decomposition (X1, X2, . . . , Xr) to
be 2 · |

⋃
1≤i≤r Xi| − |Xr|. Note that when we extend a nice partial path decomposition with

one additional introduce or one additional forget node, then the progress always increases
by exactly one. Also note that for a partial path decomposition with characteristic (X, Z)
and progress α, we have that α = 2|Z| − |X|.

De�nition 21 The canonical characteristic of a properly colored partial path decompo-
sition is the lexicographically minimal characteristic over all characteristics of equivalent
properly colored partial path decompositions.

Proposition 22 Given a characteristic of a properly colored partial path decomposition,
we can compute in polynomial time its canonical characteristic.

Proof: The Graph Isomorphism problem is polynomial time solvable on graphs of
bounded treewidth, and thus also on graphs of bounded pathwidth [3]. It is straightforward
to modify the algorithm of [3] such that it also works on colored graphs while using the
same running time.

Given a characteristic (Xr, Z), we �rst compute (with depth �rst search) the connected
components of G[V − Xr], say W1, W2, . . . ,Wq. For each pair Wi, Wj, we can check in
polynomial time if they are isomorphic: use the isomorphism algorithm on colored graphs
of bounded pathwidth discussed above, and take a new, di�erent color for each vertex in
Xr. (Note the de�nition of isomorphism for components, as given in Section 3.)

Thus, we can partition the components in equivalence classes dictated by isomorphism.
We can sort each component lexicographically, and then each class lexicographically. Then,
for each class, we determine how many components from the class are a subset of Z (i.e., left
components). In the canonical characteristic, we take the same number of left components
from the class, but now take this number of lexicographically smallest elements. A simple
last sorting step gives the desired result. ut

We can now describe our algorithm.
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• Check if the pathwidth of G is at most k − 1. If not, answer no and terminate.

• Otherwise, for α = 1 · · · 2n, compute a table Tα of all canonical characteristics of
partial path decompositions of progress α.

• If T2n is empty, then answer no; otherwise, answer yes.

The output of the algorithm clearly is correct as a partial path decomposition is a path
decomposition, if and only if, its progress equals 2n.

We now describe how the tables Ti are computed. Computing T1 is simple: for all
v ∈ V , we have an entry in T1 of the form ({v}, ∅). Given a table Tα, 1 ≤ α < 2n, we
compute table Tα+1 as follows. Initialize Tα+1 as empty set. For each entry (X, Z) from
Tα, do the following:

• Compute the new characteristics that result when the next node in the partial path
decomposition is an introduce node: for each v ∈ V −Z such that there is no x ∈ X
with c(v) = c(x), compute the canonical characteristic of (X ∪ {v}, Z) and put it in
Tα+1.

• Compute the new characteristics that result when the next node in the partial path
decomposition is a forget node: for each x ∈ X such that there is no v ∈ Z − V with
{v, x} ∈ E, compute the canonical characteristic of (X − {v}, Z ∪ {v}).

Proposition 23 The procedure correctly computes table Tα+1.

Proof: Note that the characteristic of a partial path decomposition remains the same when
we apply the procedure of Proposition 6. So, we may assume that we compute the canonical
characteristics of the properly colored nice partial path decompositions (X1, X2, . . . , Xr)
with progress α+1. Of these, we consider two cases: the last node Xr can be an introduce
node or a forget node.

If Xr is an introduce node with Xr = Xr−1∪{v}, then (X1, X2, . . . , Xr−1) is a properly
colored partial path decomposition of progress α. If (X1, X2, . . . , Xr−1) has characteristic
(Xr−1, Z), then (X1, X2, . . . , Xr) has characteristic (Xr−1 ∪ {v}, Z). v must have a color
di�erent from the colors of vertices in Xr−1.

If Xr is a forget node with Xr = Xr−1−{v}, then again (X1, X2, . . . , Xr−1) is a properly
colored partial path decomposition of progress α. As v is forgotten, it cannot belong to bags
right of Xr, and thus all neighbors of v must belong to

⋃
1≤i≤r Xi. If (X1, X2, . . . , Xr−1) has

characteristic (Xr−1, Z), then the characteristic of (X1, X2, . . . , Xr) is (Xr−1−{v}, Z∪{v}).
ut

This completes the description of the algorithm. From our discussion, we see that the
algorithm indeed correctly decides if G has a properly colored interval completion.

We now will analyze the running time of the algorithm. We remark that our algorithm
uses polynomial time per entry in a table Ti. Thus, the running time of the algorithm
equals the product of a polynomial in n and the number of canonical characteristics of
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properly colored partial path decompositions. So, we need to establish an upper bound on
this number of canonical characteristics. First, we obtain an upper bound on the number
of nonisomorphic components of a set X.

Proposition 24 Let (X1, X2, . . . , Xr) be a properly colored partial path decomposition of
G. There are at most 23kl ·k` equivalence classes of the isomorphism relation on components
of G[V −Xr] that contain components with ` vertices.

Proof: Each equivalence class can be identi�ed by an uncolored unlabeled graph on `
vertices of pathwidth at most k − 1, a coloring with at most k colors of the vertices of the
graph, and the incidence relation between the vertices in the graph and the vertices in Xr.
This gives at most the following number of equivalence classes:

(k − 1 + 2k−1 + 1)2`−1 · k` · 2k` ≤ k` · 23kl

because the �rst gives at most (k − 1 + 2k−1 + 1)2`−1 possibilities by Proposition 7, the
second at most k` possibilities, and the last at most 2kl possibilities. ut

We �x some integer `, 1 ≤ ` ≤ n, which we will determine more precisely later.
First, for a given X ⊆ V , we derive an upper bound on the number of canonical

characteristics of the form (X, Z). Consider the equivalence classes of the isomorphism
relation on the components of G[V − X]. The characteristic is completely determined if
we know X, and for each of these classes how many left components it contains, i.e., how
many of the components are a subset of Z. In counting the number of possibilities, we
distinguish two cases:

• `Large' components of G[V −X], i.e., components that contain more than ` vertices.
For each, we have the possibility to be a left or a right component. As there are at
most n/` large components, this gives in total at most 2n/` possibilities for the large
components.

• `Small' components of G[V − X], i.e., components that contain at most ` vertices.
There are less than ` · 23kl · k` equivalence classes of the isomorphism relation that
contain small components, by Proposition 24(iii). As there are less than n compo-
nents, for each of these classes we have less than n possibilities for the canonical
characteristic (each possibility has a di�erent number of left components). So, we
have less than n`23kl·k`

possibilities for the small components.

This gives, for some �xed X, an upper bound of

2n/` · n`23kl·k`

characteristics of the form (X, Z). As we never consider sets X with more than k vertices,
we can multiply this number by (n + 1)k to obtain the following result.

Lemma 25 The size of the table Ti is bounded by (n + 1)k · 2n/` · n`23kl·k`
.
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It follows that the running time of our algorithm is bounded by

O∗(2n/` · n`23kl·k`

)

We will now choose the value of `: set ` = (log1−δ(n)). Then:

2n/` · n`23kl·k` ≤ 2n/ log1−δ(n) · 2log(n)·log1−δ(n)·23k log1−δ(n)·klog1−δ(n)

≤ 2n/ log1−δ(n)+log2(n)·23k log1−δ(n)·klog1−δ(n)

Note that for �xed k,

log2(n) · 23k log1−δ(n) · klog1−δ(n) = o

(
n

log1−δ(n)

)
(This can be seen as follows. The logarithm of the left term is Θ(log1−∆ n), for �xed k,
while log( n

log1−δn
) is Θ(log n).)

Thus, for �xed k and for every ε > 0, there is a δ > 0, and an n0 ∈ N such that for all
n ≥ n0:

2n/` · n`23kl·k` ≤ 2
n

log1−ε(n)

We have now shown that the size of the tables in our algorithm, and thus the running
time of our algorithm is, for every �xed k and every ε > 1, O∗(2

n
log1−εn ).

Theorem 26 For every �xed k ≥ 4, there is an algorithm for Intervalizing k-Colored

Graphs that runs in time O∗(2
n

log1−εn ) for every ε > 0.

We remark that there are inputs on which the algorithm uses Ω(2n/ log n) time: suppose
G has a vertex v that is a separator such that G[V − {v}] has Ω(n/ log n) non-isomorphic
components each of size blog nc.

5 An Algorithm for Intervalizing Colored Graphs with

an Arbitrary Number of Colors

In this section, we consider the case that the number of colors is not �xed. We give a
simple Held-Karp style dynamic programming algorithm for this problem.

De�nition 27 Suppose we are given a properly colored graph G = (V, E). For a given set
of vertices W ⊆ V , the border of W is the set of vertices in W with at least one neighbor
in V −W , i.e., we denote

B(W ) = {v ∈ W | ∃w ∈ V −W : {v, w} ∈ E}

De�nition 28 A set of vertices W ⊆ V is said to be �ne, if there exists a properly colored
path decomposition (X1, X2, . . . , Xs) of G[W ], such that B[W ] ⊆ Xs, i.e., the last bag
contains all vertices in the border of W .
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Lemma 29 For all W ⊆ V , W 6= ∅, W is �ne, if and only if, there exists a v ∈ W , such
that W − {v} is �ne and all vertices in B(W − {v}) ∪ {v} have a di�erent color.

Proof: Suppose W is �ne. Suppose (X1, X2, . . . , Xs) is a properly colored path decom-
position of G[W ] with B(W ) ⊆ Xs. If s = 1, the result follows directly (any vertex in
X1 can play the role of v). Suppose s > 1. If Xs ⊆ Xs−1, then (X1, . . . , Xs−1) is also a
properly colored path decomposition of G[W ] with B(W ) ⊆ Xs, and we look at this path
decomposition instead. Repeat the step till Xs 6⊆ Xs−1 or s = 1. So, we may suppose that
Xs 6⊆ Xs−1.

Take a vertex v ∈ Xs − Xs−1. Xs must contain each vertex w ∈ B(W − {v}), as for
each such w, either w ∈ B(W ) or {v, w} ∈ E. So all vertices in B(W − {v}) ∪ {v} ⊆ Xs

have a di�erent color. W − {v} is �ne, as (X1, X2, . . . , Xs−1, Xs − {v}) ful�lls the stated
condition.

For the other direction, suppose that W−{v} is �ne, and all vertices in B(W−{v})∪{v}
have a di�erent color. Let (Y1, Y2, . . . , Yr) be a properly colored path decomposition with
B(W − {v}) ⊆ Yr. A simple case analysis shows that (Y1, Y2, . . . , Yr, B(W − {v}∪{v}) is
a properly colored path decomposition of G[W ] with B(W ) ⊆ B(W − {v}) ∪ {v}. E.g.,
each neighbor in v that belongs to W − {v} belongs to B(W − {v}), and thus to the last
bag. ut

Lemma 29 directly implies the existence of a dynamic programming algorithm that uses
O∗(2n) time. For i = 0, 1, . . . , n, we compute the collection of �ne sets W with |W | = i;
call this collection F (i). For i = 0, we note that the empty set is �ne, i.e., F (0) = {∅}. If
i > 0, initialize F (i) as an empty collection. Then, perform the following step for each �ne
set Y ∈ F (i− 1):

• Compute the border of Y , B[Y ]. This can be done in linear time using depth �rst
search.

• If B[Y ] contains two vertices of the same color, we do not further process Y , otherwise
continue with the next step.

• For all vertices v ∈ V − Y ,

� Check if B[Y ] contains a vertex with the same color as v.

� If not, then Y ∪ {v} is a �ne set of size i. If F (i) does not yet contain Y ∪ {v},
then add Y ∪ {v} as a new element to F (i).

It is easy to see that the amount of work per �ne set of vertices is polynomial. Finally,
G has a properly colored interval completion, if and only if F (n) 6= ∅. Thus, we have

Theorem 30 The Intervalizing Colored Graphs problem can be solved in O∗(2n)
time.
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6 Conclusions

In this paper, we gave dynamic programming algorithms for the Intervalizing k-
Colored Graphs problem. Our algorithm for the case that the number of colors k
is �xed uses subexponential time of a somewhat unusual form, and thus, the result forms
a somewhat curious exception to the types of results that are usually obtained in the �eld.
The result is merely of theoretical interest, as values of n for which the algorithm can be
run in practice can be expected to be rather small, say below 100. Experiments with a
somewhat similar Held-Karp style algorithm for Treewidth [8, 9] suggest that our al-
gorithm can also be practical for small values of n; probably a good modi�cation would
be to run the isomorphism test only for very small components, and with a usual graph
isomorphism heuristic instead of the algorithm from [3].

A generalization of the Intervalizing k-Colored Graphs problem is the Interval
Graph Sandwich problem, in which we are given two graphs with G and H with the
same vertex set, and ask whether there exists an interval graph G′ that is a subgraph of
H and contains G as a subgraph. A well studied variant has the additional condition that
G′ has maximum clique size k. See e.g., [17, 20]. The ideas of our paper seem not to
give results better than an algorithm that uses Θ∗(2n) time for this problem however, still
assuming that k is �xed.

Other related problems are the version where we ask to �nd a properly colored proper
interval graph, which is polynomial for a �xed number of colors k [2], and the problem to
�nd a properly colored chordal graph, which is also polynomial for a �xed number of colors
[22].

An interesting open problem is whether it is possible to obtain faster exact algorithms
for Intervalizing k-Colored Graphs, e.g., is O∗(c

√
n) possible? Also, are faster algo-

rithms possible for the case without a bound on the number of colors?
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