
Improving Software Product Management
Processes: a detailed view of the Product
Software Knowledge Infrastructure

K. Vlaanderen

I. van de Weerd

S. Brinkkemper

Technical Report UU-CS-2010-025

July 2010

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht

The Netherlands

MBI Master Thesis

Improving Software Product
Management Processes: a detailed view

of the Product Software Knowledge
Infrastructure

Author: Kevin Vlaanderen, BSc
E-mail: k.vlaanderen@cs.uu.nl

Student #: 0444367
Enrolled in: 2004

Period: September 2009 - April 2010
Supervision: Inge van de Weerd &

Sjaak Brinkkemper

Thesis number: INF/SCR-09-66

abstract Nowadays, a huge amount of software is being developed worldwide.
Mainly among SMEs (small-to-medium enterprises), there are a lot of
companies that focus on the development of product software. In order
to manage software products effectively, implementing software product
management processes in the organization is essential. Unfortunately,
hardly any schooling is available in the area of SPM. In this thesis, a
beginning will be made with the elaboration of a product software knowl-
edge infrastructure (PSKI) that should help companies improve their
product management process using method increments. The foundation
for this elaboration lies in data about the current state of SPM, gathered
from six product software companies. Also, two techniques will be elab-
orated that are a fundamental part of the PSKI. In addition to this, a
core aspect of the PSKI is elaborated in a proof-of-concept. Combined,
these deliverables form a strong basis for further research.

PUBLIC VERSION
June 17, 2010

Version Information

Version Date issued Remarks Author
0.1 October 5th 2009 Set-up Kevin Vlaanderen
0.8 May 6th 2010 First review-version Kevin Vlaanderen
0.8 May 10th 2010 Review by Inge van de Weerd Inge van de Weerd
0.9 May 21st 2010 Second review-version Kevin Vlaanderen
0.9 May 26th 2010 Review by Inge van de Weerd Inge van de Weerd
0.9 June 8th 2010 Review by Sjaak Brinkkemper Sjaak Brinkkemper
1.0 June 9th 2010 Final version Kevin Vlaanderen

2

Contents

1 Introduction 7
1.1 The Product Software industry . 7
1.2 Product Software Knowledge Infrastructure . 7
1.3 Contribution . 8

2 Research Method 9
2.1 Research Questions . 9
2.2 Research Approach . 10

2.2.1 Design Science . 10
2.2.2 Research Steps . 13
2.2.3 Deliverables . 13

3 Theoretical Background 15
3.1 Analysis Approach . 15
3.2 Software Product Management . 16

3.2.1 Product Software . 16
3.2.2 Software Product Management Reference Framework 16
3.2.3 Portfolio Management . 17
3.2.4 Product Roadmapping . 18
3.2.5 Requirements Management . 18
3.2.6 Release Planning . 19
3.2.7 Assessment . 19

3.3 Method Engineering . 20
3.3.1 Method Fragments . 20
3.3.2 Method Chunks . 21
3.3.3 Method Components . 21
3.3.4 Method Services . 22
3.3.5 OPF Method/Process Components . 22
3.3.6 Method Configuration . 22

4 Assessment using Process-Deliverable Diagrams 23
4.1 Combining PDD’s with the Capability Matrix and the Reference Framework for SPM 23
4.2 Performing Assessments . 25
4.3 Evaluation . 27

5 Case Studies 29
5.1 Case Study Approach . 29

5.1.1 Why case studies? . 30
5.1.2 Data Gathering . 30
5.1.3 Deliverables . 32

5.2 Results . 32
5.2.1 Overview Companies . 32
5.2.2 Current Situation . 32
5.2.3 Common Problems . 33

5.3 Example Case Study Report . 34
5.3.1 Capability Matrix . 35
5.3.2 Identified Issues . 36

3

CONTENTS

5.3.3 Proposed Improvements . 39

6 Product Software Knowledge Infrastructure 43
6.1 MaaS: Method Modification . 45

6.1.1 Analysis of Current Process & Situational Indicators 45
6.1.2 Analysis of Need . 47
6.1.3 Selection of Process Alternatives . 48
6.1.4 Embedding of Process Advice . 49
6.1.5 Administration . 51
6.1.6 Knowledge Base Improvement . 52

6.2 MaaS: Method Execution . 53

7 Method Fragment Storage 55
7.1 Process-Deliverable Diagrams in MetaEdit+ . 55

7.1.1 Objects . 55
7.1.2 Relationships . 57
7.1.3 Rules and constraints . 57

7.2 Method Increments . 58
7.3 XML generation with MERL . 59
7.4 Latex generation with MERL . 59

8 Method Increments: Proof of Concept 61
8.1 Platform . 61
8.2 Functionality . 63
8.3 Example . 63

9 Conclusions 67
9.1 Main Results . 67
9.2 Reflection and Discussion . 68
9.3 Further Research . 68

9.3.1 Method Engineering . 68
9.3.2 Assessment and Selection . 68
9.3.3 Implementation . 69
9.3.4 Templates . 69
9.3.5 Method as a Service . 69
9.3.6 Social Issues . 70

9.4 Acknowledgements . 70

References 71

A Activity Tables PSKI 79

B Concept Tables PSKI 83

4

List of Figures

1.1 Product Software Knowledge Infrastructure . 8

2.1 Information Systems Research Framework . 12
2.2 Planning of the steps related to this thesis . 14

3.1 Reference Framework for Software Product Management 17

4.1 Modeling the SPM process . 25
4.2 Adding capability-information to the PDD . 26
4.3 Translating the PDD into a capability matrix . 26

5.1 Generalized common problems in the SPM process 34
5.2 Process-Deliverable Diagram of CaseComp’s process at the portfolio level 36
5.3 Process-Deliverable Diagram of CaseComp’s process at the roadmap level 37
5.4 Process-Deliverable Diagram of CaseComp’s process at the requirements level . . . 38
5.5 Process-Deliverable Diagram of CaseComp’s process at the release level 39
5.6 Improvements for CaseComp’s Roadmapping process 40
5.7 Improvements for CaseComp’s Requirements Management process 42

6.1 Extended version of the PSKI . 44
6.2 Analysis of current situation . 46
6.3 Analysis of need . 47
6.4 Selection of process alternative(s) . 48
6.5 Embedding of process advice . 50
6.6 Template creation . 51
6.7 Administration . 51
6.8 Knowledge Base Improvement . 52
6.9 Current website . 53
6.10 PSKI using a Method as a Service approach . 54

7.1 ’Activity’ object-type visualizations in MetaEdit+ 56
7.2 ’Concept’ object-type visualizations in MetaEdit+ 56
7.3 Remaining object-types in MetaEdit+ . 56

8.1 Software architecture of the proof-of-concept . 62
8.2 Prototype . 63
8.3 Prototype . 64
8.4 Example: logging in to the application . 64
8.5 Example: the original document . 64
8.6 Example: updating the meta-model . 65
8.7 Example: the updated document . 65

5

List of Tables

2.1 Information Technology Research Framework . 11

3.1 Literature Framework . 16

5.3 Current SPM maturity of product software companies 33
5.4 Situational Factors CaseComp . 35
5.5 Software Product Management maturity at CaseComp 35
5.6 Product Management Tools . 41

6.1 Variations in the input of the PSKI . 45

7.1 Valid relationships within a PDD diagram . 57

A.1 Activity table for the phase ’Analysis of current situation’ 79
A.2 Activity table for the phase ’Analysis of need’ . 80
A.3 Activity table for the phase ’Selection of process alternatives’ 80
A.4 Activity table for the phase ’Embedding of process advice’ 81
A.5 Activity table for the sub-phase ’Template creation’ 81
A.6 Activity table for the phase ’Knowledge base improvement’ 82

B.1 Concept table for the phase ’Analysis of current situation’ 83
B.2 Concept table for the phase ’Analysis of need’ . 84
B.3 Concept table for the phase ’Selection of process alternatives’ 85
B.4 Concept table for the phase ’Embedding of process advice’ 86
B.5 Concept table for the sub-phase ’Template creation’ 87
B.6 Concept table for the phase ’Knowledge base improvement’ 87

6

Chapter 1

Introduction

1.1 The Product Software industry

Nowadays, a huge amount of software is being developed worldwide. A large share of software
producing companies began with the development of custom software commissioned by customers.
This way of working has evolved into the production of product software: products that are not
developed for one specific customer, but for an entire market (Xu & Brinkkemper, 2005). Mainly
among SMEs (small-to-medium enterprises), there are a lot of companies that focus on the develop-
ment of product software. The change of custom software to product software requires significant
adaptations in the management of business processes. Instead of dealing with one bidder and
one delivery date, companies now have to cope with multiple stakeholders, and different releases
and product configurations. In order to manage this effectively, implementing software product
management processes in the organization is essential. Software product management (SPM) is
”the process of managing requirements, defining releases, and defining products in a context where
many internal and external stakeholders are involved” (Weerd et al., 2006a; Gorchel, 2000).

Due to the complexity of software products, with a large variety of stakeholders, long lists of
requirements and a rapidly changing environment, SPM is a complex task. However, relatively
little scientific work has been performed in this area. An attempt to close this gap has been
provided by Weerd et al. (2006a) in the form of a reference framework for SPM. Their work aims
at providing a structure for the body of knowledge regarding SPM by identifying and defining the
key process areas as well as the internal and external stakeholders, and their relations.

The framework for software product management has been well received within both the aca-
demic and the corporate world. Since its publication, several activities related to the framework
have been organized, such as workgroups, a product management course, and a supporting website.

1.2 Product Software Knowledge Infrastructure

Unfortunately, hardly any schooling is available in the area of SPM. Product managers have often
evolved into that function after first performing a development- or project management function.
Because of this, a lot of product managers miss an essential piece of knowledge, required for
performing their function effectively. In order to support product managers in implementing the
correct software product management methods, we want to develop a knowledge infrastructure
that serves this need.

The current software product management website1 contains several kinds of information. First
of all, it has an interactive version of the reference framework. By clicking on SPM activities,
existing methods can be viewed. Examples of these are the prioritization of requirements according
to the technique by Wiegers (2009), or the definition of a product roadmap according to the
FastStart method Phaal et al. (2000). The website also contains several white papers, scientific
articles and weblinks.

1http://softwareproductmanagement.org

7

1.3. CONTRIBUTION

Figure 1.1: Product Software Knowledge Infrastructure (van De Weerd, Versendaal, & Brinkkem-
per, 2006)

The current website is a good start for spreading knowledge regarding software product man-
agement and for getting software product management at a higher level. However, in the current
solution, several key items are missing. In 2006, van De Weerd, Versendaal, & Brinkkemper (2006)
recognized that product software companies currently experience many performance failures in re-
spect to their SPM process. To support product software companies in optimizing these processes,
they developed a conceptual model of a product software knowledge infrastructure (PSKI). With
this infrastructure, product software companies can obtain a custom-made advice that helps them
to improve their processes. A schematic overview of the PSKI is illustrated in figure 1.1. The cur-
rent activities are ’analysis of need and situational indicators’, ’selection of process alternatives’,
’embedding of process advice’, and ’method administration’. All data is stored in a ’method base’.

Because of the complexity of the PSKI, its concepts and activities require further elaboration
before the PSKI can be fully developed. The parts that make up the PSKI need to be described
in more detail, exploring the scientific and industrial problems that need to be solved in the
near future. What are the problems and issues that product software companies are actually
experiencing? And how could a knowledge infrastructure solve such issues?

1.3 Contribution

In this thesis, a beginning will be made with the elaboration of the product software knowledge
infrastructure mentioned above. The foundation for this elaboration lies in data about the current
state of SPM, gathered from six product software companies. The processes and problems found
in these case enhance our understanding of the field, enabling the design of an effective solution.

Also, two techniques will be elaborated that are a fundamental part of the PSKI. First, an
alternative technique for performing assessments of the SPM process is proposed, combining SPM
capabilities with PDD’s. The resulting technique is then implemented in MetaEdit+. In addition
to this, the generation of document templates based on method increments is elaborated in a
proof-of-concept. Combined, these deliverables form a strong basis for further research.

8

Chapter 2

Research Method

The following sections will introduce the questions that drive this research, along with the under-
lying research approach. Section 2.1 describes the research questions that will be answered during
the remainder of this thesis. Section 2.2 gives an overview of the steps that will be taken in order
to answer these questions.

2.1 Research Questions

In order to evolve the PSKI from its current state to the envisioned state, many issues will need to
be investigated. This research will be performed during a four-year PhD-track. However, before
elaboration of the PSKI can begin, we need a better understanding of the possible contents of
such a system. This thesis will lay the foundation for further research on the elaboration of a
knowledge infrastructure that is capable of effectively helping product software companies improve
their product management processes.

In essence, the research starts as a continuation of the research by van De Weerd, Versendaal,
& Brinkkemper (2006). They tried to solve the problem of improving the product management
process at software companies by answering the following question:

How can product software companies improve the maturity of their product manage-
ment processes using concepts of method engineering and situational capability matu-
ration?

This resulted in the PSKI shown in figure 1.1. In this thesis, our understanding of such a
system will be further enhanced by elaborating on the contents of the envisioned PSKI. Therefore,
the main research question that is answered here is the following:

How can a knowledge infrastructure support and improve current SPM
processes?

Before this question can be answered, we need to look at the way in which product software
companies currently are performing product management. As a tool for this assessment, we first
propose a solution for combining the process-deliverable diagramming technique with the earlier
mentioned capability matrix. This step answers sub-question one:

1. How can process-deliverable diagrams be used for assessing the maturity of a software product
management process?

The resulting approach is then applied in six cases, in order to retrieve the answer to sub-
questions two and three:

2. How is SPM currently performed in industry?

3. What are the major problems within software product management processes?

9

2.2. RESEARCH APPROACH

Based on the answer to the second and third sub-question, we can zoom in on the PSKI and
further define its contents. The problems that are identified are used for elaborating each aspect
of the current PSKI model. The fourth sub-question is therefore:

4. What should a knowledge infrastructure in the domain of Software Product Management
look like?

Although the answer to sub-question four is already a more detailed view than shown in fig-
ure 1.1, it is still defined on a rather high level. For the actual implementation of the PSKI, each
aspect of the proposed solution will need to be elaborated. In this thesis, we will start doing this
by elaborating one of the core aspects of the system, method fragment storage. Thus, the fifth
sub-question is:

5. How can method fragments be modeled and stored effectively?

We conclude by demonstrating one of the keystone aspects of the envisioned system, method
increments. More specifically, we will demonstrate how method increments can be translated into
updated company documents, based on the new process. The research question that guides this is
the following:

6. How can templates be updated according to method increments?

The next chapter describes how these questions will be answered.

2.2 Research Approach

2.2.1 Design Science

As stated above, the aim of this scientific thesis is to establish a baseline for further research. The
research questions posed in the previous section imply that we are investigating ways in which
software product managers can be aided in their everyday practices. We are thus dealing with the
creation of something new, or at least the preparation for this creation. To speak in the terms
used by March & Smith (1995), we are designing an artifact that serves human purposes.

This classification originates from 1995, when IT started to attract significant scientific atten-
tion. It was recognized that the potential influence of IT was enormous, which could already be
seen in the position IT had taken in the contemporary organizational setting. The scientific interest
for IT was twofold; on the one hand, science tried to describe and explain phenomena related to
IT, and on the other hand there was the belief that science could improve IT practices, resulting
in prescriptive work.

Simon (1981) conceptualized this distinction with the terms ’natural sciences’ and ’design sci-
ences’, where the former deals with the explanation of how and why things are as they are, and the
latter deals with ’devising artifacts to attain goals’ (Simon, 1981, p. 133). Later, Tsichritzis (1997)
and Denning (1997) refined this definition in the context of IT-research by saying that the design-
science paradigm seeks to ’create innovations that define the ideas, practices, technical capabilities,
and products through which the analysis, design, implementation, and use of information systems
can be effectively and efficiently accomplished.

When applied to IT-research, it is important to recognize certain interactions between these
two types of research activity. Firstly, the phenomena caused by artifacts that are created through
design science can serve as targets for investigation using a natural science approach. Secondly, the
process of design can be aided by knowledge produced earlier through the application of natural
science research. Thirdly, a synergy exists between the need for explanation of design research
output on the one hand, and the verification or justification of natural science output (i.e. theories)
on the other. Both of these requirements can be fulfilled by the application of research activities
belonging to the alternative research type.

When viewed on a lower abstraction level, the two types of science consist of four basic activities.
Firstly, the art of natural sciences consists of theorization and justification. Theorization means
the explication of ’the characteristics of the artefact and its interactions with the environment that

10

CHAPTER 2. RESEARCH METHOD

result in the observed performance’ (March & Smith, 1995). Justification is then the gathering of
evidence to test the resulting theories. Secondly, the two main activities related to design science
are the building and evaluation of artifacts. Artifacts are built in order to perform a specific
task. By evaluation it is then determined whether the goals of the artifact have in fact been
accomplished (March & Smith, 1995).

In table 2.1, these four main activities are depicted on the horizontal axis. On the vertical
axis, you can see the four types of artifacts that design science produces: constructs, models,
methods and instantiations. According to (March & Smith, 1995), constructs or concepts form the
vocabulary of a domain, and a model is a set of propositions or statements expressing relationships
among constructs. Methods can be defined as ’an approach to perform a systems development
project, based on a specific way of thinking, consisting of directions and rules, structured in a
systematic way in development activities with corresponding development products’(Brinkkemper,
1996). Finally, an instantiation is the realization of an artifact in its environment (March & Smith,
1995).

Research Activities

Research
Outputs

Build Evaluate Theorize Justify
Constructs
Model
Method
Instantiation

Table 2.1: Information Technology Research Framework (redrawn from (March & Smith, 1995))

Based on this classification, the type of research that is performed in this work is design
science. The main activity is construction or building, with the main result of this activity being
an updated model for performing computer-aided method engineering in the domain of Software
Product Management. Furthermore, a method for performing assessments is created, and a proof-
of-concept (instantiation) is built.

To ensure a rigorous and relevant research approach, the work is performed and evaluated
according to the conceptual framework proposed by Hevner et al. (2004). The framework is shown
in figure 2.1.

The environment in which this research is positioned, is formed by product software organiza-
tions that try to improve their software product management processes, based on the capabilities of
the people that perform the role of product manager, and on the characteristics of the organization
as a whole.

When analyzing the knowledge base that is input for this research, the work in this thesis is
based on existing theories on SPM and method engineering. The work is strongly founded on the
software product management reference framework (Weerd et al., 2006a,b), and constructs created
in the domains of method-engineering and software product management. Also, the Process-
Deliverable Diagram (Weerd, 2005) is repeatedly used to convey research findings, and forms the
basis for one of the major artifacts of this work.

The environment and the knowledge base are the two origins of input for the research that is
performed in this work. During this work, several artifacts are created. Firstly, an assessment
method is created that allows the combination of modeling and analyzing a company’s SPM
process in one task. Secondly, the software product management processes of several companies
are modeled in the form of a set of PDDs. The results are assessed by experts from these
companies. Based on the results, a proposal is made for a computer-aided method engineering
(CAME) method in the domain of software product management. Finally, the thesis will describe
a solution for the storage of Process-Deliverable Diagrams and a proof-of-concept for
method increments.

Along with the framework in figure 2.1, Hevner et al. (2004) propose the following set of
guidelines:

11

2.2. RESEARCH APPROACH

Figure 2.1: Information Systems Research Framework (redrawn from (Hevner et al., 2004))

1. Design as an Artifact: Design-science research must product a viable artifact in the form of
a construct, a model, a method, or an instantiation.

2. Problem Relevance: The objective of design-science research is to develop technology-based
solutions to important and relevant business problems.

3. Design Evaluation: The utility, quality , and efficacy of a design artifact must be rigorously
demonstrated via well-executed evaluation methods.

4. Research Contributions: Effective design-science research must provide clear and verifiable
contributions in the areas of the design artifact, design foundations, and/or design method-
ologies.

5. Research Rigor: Design-science research relies upon the application of rigorous methods in
both the construction and evaluation of the design artifact.

6. Design as a Search Process: The search for an effective artifact requires utilizing available
means to reach desired ends while satisfying laws in the problem environment.

7. Communication of Research: Design-science research must be presented effectively both to
technology-oriented as well as management-oriented audiences.

As several artifacts will be produced during this research, guideline 1 is met. Although the
main product, the proposal for a computer-aided method-engineering method, is not a full-grown
information system, it shows the ideas, technical capabilities and products by which the system
can be effectively and efficiently accomplished (Tsichritzis, 1997; Denning, 1997). This also ensures
the implementation of guideline 4.

Guideline 2, problem relevance, is met by the modeling of several software product management
processes, as performed by a set of product software companies. Through these models, problematic
aspects in the process can be identified. The solution proposed in this work will be relevant, as it
is based on these problems.

Since the solution proposed in this work will be of a conceptual nature, no extensive evaluation
can yet be performed (guideline 3). However, the design will be evaluated according to the problems
found during the case-studies, to determine whether it solves all the problems that have been raised.

Guideline 4 is met by increasing our level of understanding regarding software product man-
agement methods, the problems that are being experienced, and how these can be solved using
method increments.

12

CHAPTER 2. RESEARCH METHOD

Research rigor (guideline 5) is obtained by appropriate usage of existing research work in the
field of software product management and method engineering. The solution will rely heavily
on existing, validated constructs. Furthermore, rigor is accomplished by performing the empirical
part of the work (case-studies) according to validated and well-known research methods (Yin, 2003;
Jansen & Brinkkemper, 2008).

Guideline 6 is met implicitly, as this work elaborates on an earlier proposal (Brinkkemper, 1996;
van De Weerd, Versendaal, & Brinkkemper, 2006).

To conclude, guideline 7 is met by the extraction of knowledge from this work, for publication
at both academic as well as professional forums.

2.2.2 Research Steps

Figure 2.2 shows an elaborate plan for the work performed in this thesis. As with any project,
the process started with the writing of a proposal, which included the planning and the research
approach described here. In the next step, related literature in the fields of software product
management, method engineering, domain-driven software development and component-based de-
velopment was analyzed, resulting in the part called ’Theoretical Background’ (chapter 3).

After these two sections, the actual research could be performed, as described by the four fol-
lowing activities. First of all, an approach was developed to assess product management processes
through employing process-deliverable diagrams (chapter 4). This work was accompanied by the
elaboration of an approach for storing method fragments, described in chapter 7. Case studies were
then performed using this approach, in order to gather valuable data from industry (chapter 5).
Based on the results from the literature study and the case studies, a more detailed vision of the
Product Software Knowledge Infrastructure was then proposed (chapter 6). Finally, part of this
model has been elaborated into a proof-of-concept prototype, focussing on method increments.
This is described in chapter 8. The thesis ends with a summary of the main results, and a proposal
for further research (chapter 9).

2.2.3 Deliverables

The research approach described above results in a set of deliverables:

Case study database. All data related to the case studies is stored in the case study database.
This database is the repository of all information input to and produced by the case study.
It contains the following deliverables per case:

Four process-deliverable diagrams. For each of the focus areas in the reference frame-
work for SPM, a PDD was drawn based on the findings at the case company. Also,
activity and concept tables were created based on the PDD’s.

Capability matrix. Based on the PDD’s, a capability matrix was generated for each case
company. This capability matrix formed the basis for the advice report.

Advice report. For each case, an advice report was written that describes the research
methods used, the major bottlenecks that were found, and a set of recommendations.

Assessment-technique for SPM processes. The process-deliverable diagramming technique
has been updated to incorporate the capabilities from the capability-matrix. This allows for
automatic assessment of a company’s SPM process based on process descriptions.

Detailed vision of the PSKI. Based on the findings of the case studies, a more updated view
of the PSKI has been created. It is described in the form of a set of PDDs, along with a
narrative description.

Method fragment storage technique. An implementation of PDDs in MetaEdit+ has been
developed. This technique can be used to create PDDs in a more user-friendly and efficient
manner. Also, it allows exporting to XML and latex.

Method increment proof-of-concept. To demonstrate the feasibility of combining method in-
crements and template generation using web-techniques, a proof-of-concept has been created.

13

2.2. RESEARCH APPROACH

Figure 2.2: Planning of the steps related to this thesis

14

Chapter 3

Theoretical Background

The following sections will summarize relevant academic work related to software product man-
agement and method engineering. Section 3.1 describes the approach that was taken during the
literature analysis. The remainder of the sections contain the results of this analysis per research
area.

3.1 Analysis Approach

A firm knowledge of the current situation of the various related research fields is required for proper
elaboration of the research questions. In this section, an overview is given of the state-of-art of
all related fields, insofar they are applicable to the scope of this thesis. To guide the literature
analysis, a classification scheme has been used that groups all related literature according to a
two-dimensional matrix. This matrix is shown in table 3.1. On the vertical axis, all related fields
are identified. On the horizontal axis, the literature is classified according to three categories;
theory, practice and overview.

The classification scheme has been used during the initial phase only, to keep the long list
of literature manageable. The numbers next to each code indicates the number of papers/books
that have been assigned that code. Nearly all of the mentioned works (excluding those marked as
’other’) have been read and used during the literature analysis. The remaining works have been
used in some other way in these thesis, i.e. as a general reference or for illustration purposes.

The category named ’theory’ contains theoretical discussions on the current state of affairs of a
specific topic. This type presents conceptual solutions for problems, that are novel or significantly
improve existing solutions.

The ’practice’-category consists of practical solutions to current research problems. This in-
cludes methods and techniques, validated through empirical means. This category also includes
industrial practice and experience papers.

The third category, ’review’, deals with abstractions from the current state-of-art and provides
insightful observations or fruitful analogies. This type of literature is considered to provide an
overview of the current state of art. It discusses a collection of academic material on a specific
topic.

For each of the combinations <category/type>, a shorthand code was assigned.
During the process of the literature review, a structured approach was followed by repeatedly

performing a set of steps. The first step for each possibly related paper was to read the abstract
(and in some cases the introduction) and to classify the paper based on this. The classification
consisted of one or more of the shorthand codes described above.

In the case of a theoretical paper, the most important statements within the text were high-
lighted. These points were transcribed and used during the writing of the section on related
literature. In the case of a practical paper, notes were made of the main positive and negative
aspects. Review papers were mainly used in the search for additional research material.

As a final step, the reference list of each related paper was scanned for additional articles and
papers. When found, these were noted and processed in the same way.

In the next sections, each of the mentioned research areas, except ’other’, will be elaborated.

15

3.2. SOFTWARE PRODUCT MANAGEMENT

Theory Practice Review

Software Product Management

—– General SPM-T (10) SPM-P (2) SPM-R (0)
—– Portfolio Management PM-T (7) PM-P (4) PM-R (1)
—– Product Roadmapping PR-T (3) PR-P (4) PR-R (1)
—– Requirements Engineering RE-T (22) RE-P (13) RE-R (0)
—– Release Planning RP-T (12) RP-P (6) RP-R (0)
—– Assessment A-T (4) A-P (2) A-R (0)

Method Engineering

—– General ME-T (21) ME-P (15) ME-R (1)
—– Meta-Modeling MM-T (6) MM-P (4) MM-R (0)
—– Method Fragment Selection MFS-T (0) MFS-P (1) MFS-R (0)
—– Method Fragment Assembly MFA-T (2) MFA-P (2) MFA-R (0)
—– Method Assessment MA-T (2) MA-P (2) M-R (0)

Other

—– General O-T (25) O-P (29) O-R (3)

Table 3.1: Literature Framework

3.2 Software Product Management

3.2.1 Product Software

Ever since the late 1960’s, many software development companies have made the shift from creating
customer-specific software to market-oriented standard software. During these years, many names
have been proposed for this type of software. Among these definitions are shrink-wrapped software,
(complex) Common-Of-The-Shelf software, packaged software and commercial software. For the
sake of clarity, this thesis will make use of the definition posed by Xu & Brinkkemper (2005), by
using the term ’software product’ in the sense of a ”packaged configuration of software components
or a software-based service, with auxiliary materials, which is released for and traded in a specific
market”.

3.2.2 Software Product Management Reference Framework

The reference framework mentioned earlier (and shown in figure 3.1) is subdivided into four focus
areas: portfolio management, product roadmapping, release planning and requirements manage-
ment. Portfolio management is the top-level and comprises decisions regarding the portfolio of
products and product families. Product roadmapping is the second process area. Processes that
fall within this category are the identification of themes and core assets, with the aim of devel-
oping and maintaining a roadmap for a certain product. Requirements management includes the
collection, identification and organization of requirements. Finally, release planning includes the
processes of prioritizing and selecting requirements for the new release, validating and launching
the release, and managing scope changes.

Positioned around the framework are nine stakeholders, of which six are internal and three are
external stakeholders. The definition of the stakeholders’ responsibilities is as follows (Weerd et
al., 2006a):

Company board (internal) is responsible for the definition and communication of strategy,
vision and mission to the rest of the company. Also, it has the managerial supervision of the
different departments, including product management.

Research&innovation (internal) has two core responsibilities, namely 1) doing research to new
opportunities for product innovations, and 2) finding new ways to incorporate improvements

16

CHAPTER 3. THEORETICAL BACKGROUND

Figure 3.1: Reference Framework for Software Product Management

or new features into the existing products.

Services (internal) includes consultants who are responsible for the implementation of the soft-
ware product at the customer organization.

Development (internal) has as main responsibility the execution of the release plan.

Support (internal) stands for the helpdesk to answer questions and for small defect repair unit.

Sales&marketing (internal) is the first contact with a potential customer.]

The market (external) is an abstract stakeholder, standing for potential customers, competi-
tors and analysts.

Partners (external) , including implementation partners, who implement the product at a cus-
tomer, development partners, with whom product components are developed, and distribu-
tion partners, selling the product.

Customers (external) often have new feature requests in the process of closing the deal or
during the usage of the product.

The next sections will describe the main areas within Software Product Management in more
detail.

3.2.3 Portfolio Management

Portfolio management is the top layer within the framework, and consists of activities that are
influenced strongly by the company board, the market and partner companies. Activities that are
identified in this layer are ’partnering&contracting’, ’market trend identification’, ’product lifecycle
management’ and ’product line identification’. Although this focus area has for a long time been
neglected in literature related to product software companies, the activities have recently received
significant scientific attention.

Product line identification entails the identification of sets of software-intensive systems sharing
a common, managed set of features that satisfy the specific needs of a particular market segment
or mission and that are developed from a common set of core assets in a prescribed way (Weerd

17

3.2. SOFTWARE PRODUCT MANAGEMENT

et al., 2006a; Clements & Northrop, 2001). The area has gained significant interest during the
last decade (Abramovici & Soeg, 2002; Ardis et al., 2000; Ebert & Smouts, 2003; Ebert, 2006). In
most cases, the benefits of software product lines are related to financial aspects, leading to much
attention to cost-based approaches (Khurum et al., 2008). Several tools and techniques have been
proposed to aid in product line identification (Yamazaki, 2009; Fricker & Stoiber, 2008). Many of
these methods are fairly similar on a high level, but show significant differences on a lower level.
Within product line management, the notions of variability and configuration management hold
an important position (Gurp et al., 2001; Jansen, 2007; Ali et al., 2009).

Product lifecycle management, or the management of product-related information and knowl-
edge within an enterprise throughout the entire product lifecycle (Weerd et al., 2006a; Abramovici
& Soeg, 2002), has been discussed in a number of books and articles during the last few years.
Examples include works on general product lifecycle management, as by Sääksvuori & Immonen
(2008) and Sudarsan et al. (2005), and works with a focus on software products, such as Grieves
(2005), Stark (2005) and Kiritsis et al. (2003).

The third activity identified as part of portfolio management, market trend identification,
deals with the extraction of valuable information about competitors and possibilities from the
market. The topic already gained wide attention many years ago, with the introduction of lead
user management (Hippel, 1986). More recently, attention has been paid to market cycles and
trends (Aguiar & Gopinath, 2007).

The final activity within portfolio management, partnering&contracting, has received a lot of
attention during recent years, mainly in the form of discussions of outsourcing. When talking about
outsourcing, trust is one of the major themes, and the subject of many research projects (Oza et
al., 2006; Babar et al., 2007; Nguyen et al., 2006; Siakas et al., 2006). More practical solutions
are described by for instance Carmel & Abbott (2006) and Damian (2007). For an overview of
outsourcing related literature, see the work by Gonzalez et al. (2006).

3.2.4 Product Roadmapping

Product roadmapping deals with the expectations, plans, themes and core assets of a software
product (Weerd et al., 2006a; Moon & Yeom, 2004). Activities within this area are ’theme iden-
tification’, ’core asset identification’ and ’roadmap construction’, of which the last activity results
in the main document; the roadmap. That it is considered an important planning tool can be
seen from the large amount of scientific material that has appeared on the topic. Recent examples
elaborate on collaboration during the roadmapping process (Jantunen & Smolander, 2006), per-
spectives on roadmapping (Kappel, 2001), and more practical approaches such as by Vähäniitty
et al. (2002) and Regnell, Svensson, & Olsson (2008).

The two supporting activities vary in the amount of debate around them. In the case of theme
identification, whose output is used for steering the roadmap creation and aiding in the planning
of releases and their contents, not much has been written in the software development domain. In
the business domain, some publications can be found. One example is the term ’enduring business
theme’ (Cline & Girou, 2000), although this is more a combination of themes and core-assets.

More work can be found on core asset identification, which refers to the complex components
that are shared by multiple products (Weerd et al., 2006a). These components need to be identified
and management, as they can play an important role during planning and optimization. In the
domain of product line engineering, core assets are a common concept. K. Lee et al. (2002); J. Lee
et al. (2004) described the role of core assets in feature-oriented modeling and engineering. The
most important use of core-assets, e.g. reuse, was described by Moon & Yeom (2004) and Tomer
et al. (2004).

3.2.5 Requirements Management

Without a doubt the area that has received the most attention in scientific and managerial literature
during the last few decades is the area of requirements management. Well before the advent of
product software or software in general, the gathering and management of customers’ demands
was recognized as an import factor for the success of a product, in which many risks were to be
found (Lawrence et al., 2001). Initial scientific research focused mainly on the management of

18

CHAPTER 3. THEORETICAL BACKGROUND

requirements in the context of software projects. However, Potts (1995) already recognized that
market-driven software companies are in need of a different requirements management approach.

Within the reference framework, the area of requirements management has been divided into
three main tasks: requirements gathering, related to the elicitation of requirements from stake-
holders, requirements identification, dealing with the rewriting and restructuring of requirements,
and requirements organization, which focuses on the grouping of requirements per product or core
asset (Weerd et al., 2006a).

Recently, many approaches have been developed to tackle this problem. Many of these took
into account the large amount of requirements that product software companies often have to deal
with (Regnell, Svensson, & Wnuk, 2008; Wnuk et al., 2009; Khurum et al., 2007). Also in this
light, Gorschek et al. (2007) have proposed an abstraction model to aid decision making when
dealing with many requirements.

Also, dealing with a steady increase in agile development practices has lead to some re-
evaluation of requirements management practices (Cooper, 2006). Two cases by Pichler et al.
(2006); Vlaanderen et al. (2009) show how product managers can actually deal with a large amount
of (big) requirements in an agile environment.

On a more abstract level, both understandability as well as quality have been discussed in recent
literature. Svahnberg et al. (2008); Dzamashvili-Fogelström & Gorschek (2007) have discussed
quality and understandability in relation to requirement definitions, while Gorschek & Davis (2008)
focused on the assessment of the requirements management process as a whole.

Also on a more strategic level can we find several works relating to requirements manage-
ment (Fricker, 2005). For instance, some work has been performed related to a goal-oriented
approach for requirements communication (Fricker et al., 2008) and negotiation (Fricker & Grun-
bacher, 2008; Fricker, 2007).

3.2.6 Release Planning

The final focus area within the reference framework is release planning. At the same time, this
is the most encompassing area, dealing with a wide variety of tasks, starting at requirements
prioritization and ending at launch preparation. In general, the area can be described with the
definition of software release management, or the process through which software is made available
to, and obtained by, its users (Weerd et al., 2006a; Hoek et al., 1997).

In total, six main activities are identified within the framework. ’Requirements prioritization’
deals with assigning priorities to requirements based on stakeholder input. During ’requirements
selection’, the requirements that will be implemented for the next release are picked, which is then
described during ’release definition’. After the ’release validation’, the release definition can be
handed over to development for implementation. During the process, changes are handled through
’scope change management’. Finally, ’launch preparation’ is related to all the tasks that need to
be performed before an actual release, such as stakeholder negotiation, training, etc.

Especially related to requirements prioritization, many techniques have been developed during
the years. Examples include the incorporation of stakeholder opinions (Ruhe & Saliu, 2005), the
analytical hierarchical process (Saaty, 1980) and linear programming (Akker et al., 2005). Other
approaches are described by Svensson et al. (2008); Fehlmann (2008); Svahnberg & Karasira (2009),
including an approach for re-prioritization by Racheva et al. (2008).

3.2.7 Assessment

As software development process evolved over the last few decades, several approaches have
emerged for assessing the competences of organizations in applying these processes. Examples
of this include the approach by Appel (2000) for architectural capability assessment. For one of
the sub-fields of SPM, requirements engineering, the Capability Maturity Model for software (Paul
et al., 1993) and its successor, the Capability Maturity Model Integration (CMMI Product Team,
2002), have been developed. More examples can be found in the article by Bekkers et al. (2010).

Though the role of product management is becoming increasingly important in product soft-
ware companies (Ebert, 2007). Nonetheless, until recently no such assessment method had been
developed for it. In the context of the Product Software Knowledge Infrastructure, with its aim

19

3.3. METHOD ENGINEERING

of product management maturation, Bekkers et al. (2010) have proposed an approach to fill this
gap. It combines multiple descriptions of an organization and its product management process
by performing an analysis of the organization’s situational factors (Bekkers et al., 2008) and its
product management capabilities. The results of the method are described as solution oriented
and realistic, allowing for incremental growth and requiring little effort to obtain.

An important part of the approach by Bekkers et al. (2010) is the capability matrix. This
matrix shows all the activities from the reference framework for SPM on the vertical axis, and all
the associated capability levels on the horizontal axis. Based on the current state of a company’s
process, its maturity level can be derived from the matrix. (Weerd et al., 2009)

3.3 Method Engineering

The term ’methodology engineering’ was introduced in 1992 by Kumar & Welke (1992), referring
to the engineering of information systems development methods, taking into account the unique-
ness of a project situation. In his work, Brinkkemper (1996) introduces the similar term ’method
engineering’, referring to ”the engineering discipline to design, construct and adapt methods, tech-
niques and tools for the development of information systems”. With the introduction of this term,
he also makes a clear distinction between a method and methodology, where a method is defined
as ”an approach to perform a systems development project, based on a specific way of think-
ing, consisting of directions and rules, structured in a systematic way in development activities
with corresponding development products” and a methodology refers to a system of methods in a
particular discipline.

To be able to better address the problem that ”there is no detailed information systems method-
ology which is the best in all situations” (Kumar & Welke, 1992), a special type of method en-
gineering has been introduced; situational method engineering. Harmsen et al. (1994) define a
situational method as ”an information systems development method tuned to the situation of the
project at hand”. One of the ways of transforming methods into situational methods is by the
use of route-maps, introduced by Slooten & Brinkkemper (1993). According to Slooten & Hodes
(1996); Aydin & Harmsen (2002), route maps can be used to tune methods into situational methods
by using different routes to represent different situations.

During the last several years, several modularization constructs have been proposed for situa-
tional method engineering. Although these constructs have many aspects in common, some essen-
tial differences exist. The six main constructs are ’method fragments’, ’method chunks’, ’method
components’, ’method services’, ’OPF fragments’ and ’FIPA fragments’. Extensive comparisons of
these constructs were performed by Cossentino et al. (2006), Agerfalk et al. (2007) and Deneckere
et al. (2008).

3.3.1 Method Fragments

Method fragments (Harmsen et al., 1994) are defined as ”... a description of an IS engineering
method, or any coherent part thereof”. Each method fragment can be classified on three orthogonal
dimensions: perspective, abstraction level, and layer of granularity. The method fragments consist
of a process part and a product part, with the addition of a link between these two parts.

For the modeling of method fragments, an approach is used based on the proposal of Saeki
(2003). The technique uses a combination of two UML diagrams (Weerd & Brinkkemper, 2008):

• On the left hand side, an adaptation of the UML activity diagram is used for meta-process
modeling. This diagram consists of activities and transitions. The activities can be un-
ordered, sequential, concurrent or conditional.

• On the right hand side an adaptation of the UML class diagram, a concept diagram, is used
for meta-data modeling. This diagram consists of concepts, generalizations, associations,
multiplicity and aggregations.

Within the process-deliverable diagram, the two models are integrated in a straightforward
way, by connecting every activity with its associated artifact through a dotted line.

20

CHAPTER 3. THEORETICAL BACKGROUND

PDD’s are used within this thesis to model the envisioned PSKI. Examples can thus be found
in chapter 1.2 (figures 6.2, 6.3, etc.).

Method fragments can stored in a method base, using the MEL method engineering lan-
guage (Brinkkemper et al., 2001). Once retrieved from the method base, they can be combined
following the assembly rules described by Brinkkemper et al. (1999).

More recently, work has been performed on allowing incremental method evolution (Weerd et
al., 2007). According to this work, method fragments can be used to describe and improve the
evolution of software product management methods, by allowing the insertion, modification and
deletion of method fragment components.

3.3.2 Method Chunks

The second main construct for method engineering is the method chunk (Ralyté & Rolland, 2001;
Ralyté et al., 2003). Method chunks are designed to contain a more comprehensive situational
description. Chunks consist of two parts: the method knowledge in the form of the method chunk
body and interface, and the meta-method knowledge in the form of the method chunk descriptor.
Method chunks are in essence process-driven, as they contain partial descriptions of the method
process model in the form of reusable guidelines.

A guideline can be either simple, tactical or strategic. This distinction exists to describe
different levels of formality, granularity, etc. Its interface describes the situation in which a chunk
can be applied. This is represented in the form of the input and the intention of the method
chunk. Related to this is the method chunk body, describing how this intention can be achieved.
It consists, similar to method fragments, of a process and a product part. However, in this case they
are described in the form of NATURE context trees (Jarke et al., 1999) or MAP graphs (Rolland
et al., 1999). MAP graphs describe a method fragment using intentions, and strategies to reach
these intentions.

Related to the guideline, but on a higher level, the descriptor provides information about the
context of the method chunks. In the descriptor are described such things as the id, the name, the
type, and the domain of the method chunk.

To guide the description of existing methods by method chunks, Ralyté & Rolland (2001) have
proposed an approach for method re-engineering. This has been extended with have introduced
a generic process model for situational method engineering (Ralyté et al., 2003). The proposal
contains three approaches:

• the assembly of method chunks, where components of existing methods are extracted and
placed in a method base

• the extension of an existing method, by applying extension patterns

• the generation of a method by abstraction/instantiation of a model/meta-model

These approaches should aid method engineers in the construction of new methods.

3.3.3 Method Components

The situationality described by method chunks is also to be found in method components (Wistrand
& Karlsson, 2004; Karlsson & Wistrand, 2006). However, even more than with method chunks,
method components are supposed to be independent, exchangeable and reusable. Apart from the
process and product description also found in the previous two constructs, method components
also define a notation. Furthermore, components heavily rely on a rationale, describing why and
when the component can and should be used.

This rationale, also described by Rossi et al. (2004); Agerfalk & Fitzgerald (2006), is formed
by goals that describe the reasons for which a method element exists. Attached to this are values
of the method creator.

21

3.3. METHOD ENGINEERING

3.3.4 Method Services

In 2007, Rolland (2007) suggested a move towards a more service-oriented approach for method
engineering. Such an idea was also posed by Guzélian & Cauvet (2007). The idea was elaborated
by Deneckere et al. (2008), who suggested method services, using a Service-Oriented Architecture
(SOA). Just as method chunks, method services are described by an intention, and a description
of how and why they should be used. Also, they contain a product- and process aspect.

The idea of the adapted SOA, renamed into Method Oriented Architecture, is that method
chunks are published, through a method provider, in a method registry. From there, they can be
used by method clients. Through the use of several standards, such as XML, WSDL and BPEL,
such an infrastructure should be created.

3.3.5 OPF Method/Process Components

A slightly more rigid approach is adopted with the OPEN Process Framework (Henderson-Sellers,
2002). Based on the OPEN process meta-model (Graham et al., 1997; Henderson-Sellers et al.,
1998), the process components used in the OPEN process framework contain a structure that is
fairly similar to the solutions we have seen earlier. Here, components consist of producers who
produce work products through work units. Components are organized by stages and documented
by languages. Also, guidelines are used to steer the execution/implementation of components.

3.3.6 Method Configuration

Another type of method engineering is method configuration, introduced and used by Karlsson
(2002) and Karlsson & Å gerfalk (2004). With method configuration, one method is chosen, which
is then adapted to the situation at hand.

More recently, research has been done to create a method engineering process for the construc-
tion of an implementation method for web-based CMS applications. van De Weerd, Brinkkemper,
et al. (2006) introduce an assembly-based situational method engineering approach for this pur-
pose. The approach consists of four steps: (a) identification of implementation situations, (b)
selection of candidate methods, (c) analysis and storage of relevant fragments in the method base,
and (d) assembly of the new method using route maps to obtain situationality. There steps have
in turn formed the basis for the conceptualization of the knowledge infrastructure for incremental
process improvement in SPM, as described in chapter 1.2.

22

Chapter 4

Assessment using
Process-Deliverable Diagrams

The process-deliverable diagram created by Weerd & Brinkkemper (2008), based on the work
by Saeki (2003), is a strong instrument for the description and communication of software devel-
opment processes. The two combined views, process and deliverable, provide an easy-to-use and
clear view of all the main parts of a process. We have seen very successful applications of it in
several projects. This includes the visual description of method increments by Weerd et al. (2007).

The positive experiences with applying PDD’s for describing product management processes
suggests that its use might be extended. Given the nature of the modeling technique, describing
both the process and its deliverables, it potentially matches very closely the capabilities as described
by Bekkers et al. (2010). By combining PDD’s with the capability matrix, one can create a modeling
technique that both captures a company’s SPM process and its maturity at the same time.

Such a solution would offer various advantages. For one, combining the two tasks saves a consid-
erable amount of time. Furthermore, it potentially enhances reliability, as the process description
and assessment are both based on the same data. Also, it forgoes the problem experienced with
performing assessments using the capability matrix, where product managers are prone to answer
’yes’ to questions that, according to the accompanying rules, should be registered as ’no’.

In the next chapter, the approach for combining PDD’s and the capability matrix is described
in further detail.

4.1 Combining PDD’s with the Capability Matrix and the
Reference Framework for SPM

In order to combine the reference framework for SPM and the capability matrix with the PDD
modeling technique, we need a way to attach semantic information to the activities and deliverables
in the diagrams. In order to do so, we need a clear understanding of what each construct in the
PDD means. For deliverables, this is very clear, as differences in abstraction level are clearly
indicated using generalizations and compositions. However, with activities, this distinction is not
so clear.

In most cases, the differences between simple and complex activities are used to indicate differ-
ences in granularity level. Simple activities indicate an activity at the lowest level of granularity
within the scope of the diagram. Complex activities are of a higher level, with their sub-activities
again indicating low-level activities. Complex activities can in most cases be interpreted as ’phases’.

In this set-up, the use of complex activities is basically a grouping mechanism for somewhat
related tasks, as there are no rules governing the naming or application of complex activities. A
good motivator for this way of working has always been the enhanced readability of the diagrams.
However, as we are now aiming towards more complex and comprehensive applications, readability
might no longer be the chief motivation.

In fact, a more structured approach is more in its place here. The basis for finding such

23

4.1. COMBINING PDD’S WITH THE CAPABILITY MATRIX AND THE REFERENCE
FRAMEWORK FOR SPM

a structured approach was the proposition that the PDD should be context- or domain-aware.
This means that existing domain knowledge should be used during the construction of process-
deliverable diagrams. In the domain of software product management, this domain-knowledge is
readily available in the form of the reference framework for SPM (section 3.2.2) and the capability
matrix (section 3.2.7). These artifacts provide structure in the form of focus areas, processes and
capabilities.

There are of course several ways of applying this structure, ranging from the use of guidelines
based on the knowledge contained in the reference framework and capability matrix, to a restrictive,
structured approach. The three most important alternatives are the following (all three differ
mainly in their approach to process modeling):

A The modeling of activities is not bound to strong rules. Small (simple) activities can be
bundled in complex activities, to enhance the readability of the diagram. This grouping has
no semantic consequences.

Advantages :

• The user has a lot of freedom.

• The solution is straightforward and thus easy to implement.

• The solution does not differ from the current approach.

Disadvantages :

• Activities do not contain semantic information regarding the processes and capa-
bilities.

• The approach is prone to errors and inconsistencies.

• The solution is difficult to employ for computational purposes.

B Main activities are used to model processes from the reference framework. Smaller activities
can be freely placed within those processes. Every main activity has an attribute ’process’.
Activities that do not implement an SPM process are modeled top-level as simple activities.

Advantages :

• Semantic information regarding implemented processes is available.

• Increased structure makes it easier to read the diagrams.

• The solution is more suitable for computational purposes.

Disadvantages :

• No semantic information regarding implemented capabilities is available.

• The user is somewhat restricted in his/her freedom.

• The notation is somewhat complicated if the process is indicated in the diagram.

C Activities are used to model implemented capabilities. In some cases, an activity can contain
sub-activities, but this should often not be necessary. Most activities have in principle a set
of ’process/capability’-combinations that they implement.

Advantages :

• Semantic information regarding both the implemented processes as well as their
respective capabilities is available.

• The solution is highly suitable for computational purposes.

Disadvantages :

• The user is even more restricted during modeling than with solution B; furthermore,
he/she has to decide for every activity which process/capabilities it implements.

• The notation is somewhat complicated when both the implemented processes as
well as the capabilities are shown in the diagram.

24

CHAPTER 4. ASSESSMENT USING PROCESS-DELIVERABLE DIAGRAMS

All three options produce almost identical diagrams. However, there are some significant visual
implications. In the second case, we obtain diagrams fairly similar to the old situation (situation A),
but with a more structured approach towards the use of complex activities. Therefore, readability
is maintained and even enhanced by the structure introduced.

On the other hand, the notation is somewhat complicated by the display of the process at-
tribute. Also, freedom is somewhat restricted by the added structure. In addition, the biggest
disadvantage is the fact that this approach does not fully utilize the structure provided by the
reference framework and capability matrix.

This issue is solved by the third approach. Information regarding maturity levels is added to
the model, making it semantically much more informative. A second implication is that the use
of complex activities is diminished significantly. Only capabilities that are achieved by performing
multiple other activities should be displayed as a complex activity. In practice, this does not
happen often.

Reducing the use of complex activities makes the diagram less complex but also less structured
and therefore perhaps less readable. This issue is enhanced by the fact that both processes as well
as capabilities now need to be displayed.

Given above arguments and counter-arguments, option C is more suited due to the goal that
we are currently pursuing. The increased semantics make this the best choice. Also, the diagrams
in the advice reports (see also chapter 5) show that readability is not impaired significantly.

To indicate the processes and capabilities that an activity implements, a set of two arguments is
added to each activity; a process and the associated capability that is implemented by the activity.
Although displaying this information in the diagram is not entirely necessary since we are dealing
with meta-meta-information, the communicative power of the PDD is enhanced when append with
an indicator. To maintain readability, the indicator is not shown in its full form. Instead, it is
shown in the form [process-acronym]:[capability][- ...].

4.2 Performing Assessments

Currently, the assessment of a product management process using the situational assessment
method (Bekkers et al., 2010) takes a very direct approach. During one or more interviews,
experts are asked wich of the capabilities are being performed in their company. This is done by
going through the list of capabilities, describing each of them and asking if the expert thinks that
it fits the current SPM process.

Figure 4.1: Modeling the SPM process

This approach is very to the point. It follows a simple process that makes it very efficient.
However, with this approach, one can not always be sure whether the expert gives a view of the
process that is too optimistic. By already providing the capabilities in advance, experts might be
prone to answer ’yes’ too early, when the process does in fact not yet satisfy all the requirements
of a capability.

25

4.2. PERFORMING ASSESSMENTS

With the addition of information regarding the implemented capabilities to the PDD, we can
perform assessments using a different approach. By modeling a company’s SPM process first, then
deciding which activities implement which capabilities and then deriving the capability matrix
from it, we circumvent for a large part the possibility that experts give a too optimistic reply. The
expert should only be aware of the processes that are described in the reference framework, so that
he can adapt his story to them, but not of the capabilities. The reference framework should also
be used by the interviewer to actively steer the interview.

Figure 4.2: Adding capability-information to the PDD

The assessment process starts with the description of the company’s SPM process. The cap-
turing of the required data can be performed in various manners, but a semi-structured interview
has worked well during the elaboration of this thesis. Other possibilities include document-analysis
if process-descriptions are available at the company or a structured interview. However, with the
last option it might be difficult to capture workflows, exceptions and ad-hoc processes. The first
stage of the assessment process should result in one or more PDD’s (see figure 4.1 for an example),
describing all the relevant aspects of the SPM process. No capability-information is yet modeled.

Figure 4.3: Translating the PDD into a capability matrix

During the second step, the interviewer or analyst compares the process description with the
list of capabilities. Based on the descriptions of the capabilities, he/she determines which activities
implement which capabilities. These capabilities are then modeled into the PDD’s as described
above. Figure 4.2 shows the addition of capabilities to the example above.

Once all relevant capabilities have been modeled, the company’s maturity matrix can be derived
from the PDD(s). This is done by marking all capabilities that are implemented by one or more
activities or deliverables in the PDD(s). See figure 4.3 for an example of this process, based on the
example above.

26

CHAPTER 4. ASSESSMENT USING PROCESS-DELIVERABLE DIAGRAMS

4.3 Evaluation

The approach for assessment of SPM processes described above is very similar to the original
approach, proposed by Bekkers et al. (2010). Both approaches rely heavily on the reference frame-
work for SPM and the capability matrix that was derived from it. Also, the resulting areas-of-
improvement matrix is the same.

However, there are a few significant differences between the two approaches. The approach
taken by Bekkers et al. (2010) can be defined as a one-tier approach. By going through the list
of capabilities, product managers identify all the activities that have been implemented in their
company’s SPM process.

The approach described above is a two-tier approach. Firstly, the company’s process is modelled
without any reference to the capabilities. An expert then analyzes the process description, assigning
capabilities to certain method fragments. The company’s current capability profile can then be
derived from the models.

Both approaches have their own advantages and disadvantages. In the original approach, there
is no need for modelling the entire SPM process. The required information can be obtained directly
by asking the right questions or by filling in a questionnaire. As descriptions are available for each
capability, the expert (either the interviewer or the product manager) can easily decide whether
capabilities have been implemented or not.

On the other hand, there is a risk of obtaining false data when using this approach. We have
seen in the past that companies have a tendency to be rather liberal when assessing their own
process or product (take as an example the requirements management tools survey by INCOSE1).
This results in unreliable data.

When using the approach proposed in this thesis, product managers are initially not made
familiar with the list of capabilities. The process descriptions that are obtained are based entirely
on the description given by experts, and documents. This allows an unbiased expert to analyze
the process and identify the capabilities that have been implemented, resulting in a more objective
overview.

However, although modeling and assessment can be performed at the same time, this approach
does require some extra work, as the entire process needs to be modeled. Also, when modeling a
company’s process, it is often hard to get a correct picture of the entire process. Many activities
are often performed concurrently, making it hard to identify the building blocks of the process.

Ultimately, the two approaches are only a variety of the same idea. Due to their own advantages
and disadvantages, they are suitable for different situations. The original approach is mainly
suitable for situations in which companies want a quick solution for improving their current process.
The approach described in this thesis is more suitable for situations in which complex method
engineering needs to be applied, as a complete process description is needed then. In those cases,
combining the modeling activity and the assessment activity can save time.

1http://www.incose.org/ProductsPubs/Products/rmsurvey.aspx

27

4.3. EVALUATION

28

Chapter 5

Case Studies

This chapter describes the case studies that were performed during this project. These case-
studies were performed in order to answer the second and third research question that were posed
in chapter 2.1:

• How is SPM currently performed in industry?

• What are the major problems within software product management processes?

Section 5.1 describes the case study protocol that was employed. The results from the case studies
are summarized in section 5.2. The individual cases are not included in this thesis.

5.1 Case Study Approach

The approach followed during the case studies is heavily based on the work by Yin (2003) and
Jansen & Brinkkemper (2008). Since the state of art regarding method engineering in the domain of
software product management is still not very advanced, case studies form a good way of exploring
the current way of working, and the issues pertaining to it. We assume that we can identify and
investigate pre-existing regularities (and irregularities) using constructs provided among others
by Xu & Brinkkemper (2005) and Weerd et al. (2006a). By not restricting us to a single case, we
hope to find more interesting results. Most of all, it allows us to find similarities and differences
between the cases.

The approach followed for this multiple-case study follows the method described by Jansen
& Brinkkemper (2008) to a large extent. According to them, a valid and reliable multiple-case
study consists of four phases: case study invitation, case study initialization, case study research
execution and finalization. Each phase consists of several activities.

During the case study invitation phase, a case study proposal was written and sent to several
companies within the Dutch network for product software companies (ICT-Office1). After a posi-
tive response from a company, the initiation phase would commence. The first activity during this
phase was the determination of a Project Champion. In most cases this was one of the product
managers, as this was explicitly asked for in the proposal. It was made clear to the Project Cham-
pions what would be the scope of the case study, and what kinds of people and resources would
be required. In most cases, the main interview would be performed with the Project Champion.

The execution phase consisted of two interviews and a document study. Due to time constraints,
the scope of the latter was restricted to important templates and deliverables within the product
management process, thereby excluding a detailed scrutiny of lower-level documents. The results
from the interviews and document study were translated into case study reports, which will be
described below. The report was then reviewed by the interviewee, to make sure that all the data
were correctly interpreted. Each case study was ended by finalizing the case study report, adding
it to the case study database, and sending it to the company.

1http://www.ictoffice.nl/

29

5.1. CASE STUDY APPROACH

5.1.1 Why case studies?

Case studies were chosen because the research deals with questions regarding a contemporary
event, over which the researcher has little or no control and in which the borders between the
phenomenon of interest and its context are not clear. Also no strong theoretical base exists for the
phenomenon of interest (Yin, 2003; Eisenhardt, 1989; Benbasat et al., 1987).

5.1.2 Data Gathering

The selection of cases has been based on availability. All case companies (except the Swiss com-
pany) participate in a joint innovation project, performed at Utrecht University under the super-
vision of dr. Inge van de Weerd and prof. dr. Sjaak Brinkkemper. Data collection was done per
case by interviewing and studying documentation.

Introduction The interview session began with a short introduction of the interviewer(s). Some
details were shared regarding background and current position. The interviewee was then
given the opportunity to introduce him/herself.

Case Study Objective After the introduction, the case study objective was outlined. The in-
terviewers explained the context and the goals of the interview.

Context This was followed by an introduction of the related research framework. The four layers
of the reference framework (figure 3.1) were briefly discussed. Also, the processes and the
stakeholders were briefly introduced.

Context The next step was the explanation of the capability attributes. Some details were given
on the meaning of the attributes: name, weight, goal, activity, dependencies and references.

Context After this, the capability matrix was explained. The interviewer(s) explained what the
focus areas/processes are, and what the relation is between the levels and the capabilities.

Data Gathering Once all these items were explained, the second part of the interview could
start. Together with the interviewee, the interviewer(s) selected one or more of the layers
from the reference framework for further discussion. The interviewer(s) then performed the
following process for each of these layers:

1. For each of the activities in the layer, the following tasks were performed:

(a) For each of the capabilities, the interviewee checked if they are correct and if they
are in the right order. [RQX]

(b) Check whether the interviewee misses any capabilities (and if so, where they should
be positioned). [RQX]

(c) Ask the following questions (when applicable; elaborate when needed): [RQ2]

• Is the activity performed?

• If so, is the activity supported by tools/templates?

• If so, is the activity documented?

• If so, are you satisfied with the current solution?

2. Ask if there are any activities missing in the capability matrix, that are performed in
the company. For each of these activities, perform step 6.iii. [RQ2]

Listing 5.1: Interview structure during the first round

Per case, one or two product management experts were interviewed. These experts were re-
quired to have extensive knowledge of the product management process within their company.
The interviewees were asked about the activities and deliverables within the product management

30

CHAPTER 5. CASE STUDIES

process. Furthermore, they had to be able to express their ideas on positive and negative aspects
of the current product management process.

Introduction If the interviewee was a different person than during the first interview, the inter-
view session began with a short introduction of the interviewer. Some details were shared
regarding background and current position. The interviewee was then given the opportunity
to introduce him/herself.

Case Study Objective After the introduction, the case study objective was repeated. The in-
terviewer briefly explained the context and the goals of the interview.

Context This was followed by a brief recapitulation of the related research framework. Those
aspects that were not clear to the interviewee anymore were repeated. This also applies to
the capabilty matrix.

Data Gathering: Process&Deliverables Once all the items were explained, the second part
of the interview could start. Guided by the capability matrix/reference framework, the
interviewee and interviewer started drawing the activities and deliverables in each layer.
Activities and deliverables were appended to the diagram until the interviewee deemed it
correct. When the interviewee elaborated beyond the current topic, notes were made on
another sheet. These were then used during the elaboration of that topic. [RQ2]

Data Gathering: Process If, during the drawing process, it became clear that an anomaly
existed in the company’s process (such as the absence of a formalized process or a small
amount of attention paid to it), the interviewee was asked to give his/her view on the subject.
The goal was to obtain information regarding difficulties as experienced by the interviewee.
[RQ3]

Data Gathering: Deliverables After all drawings were completed, the interviewee was asked
specifically about the deliverables that are used within the product management process.
Notes were made of these deliverables, and the interviewee was asked for examples of these
templates. These will be used during the creation of advice reports, and during the elabora-
tion of [RQ5].

Listing 5.2: Interview structure during the second round

Each interview took approximately two hours. During the first interview, the structure that is
denoted in table 5.1 was followed. For each step, an indication is provided stating which research
question it is related to. The two sub-questions for this research will be denoted as [RQ2] and
[RQ3]. The first interview also handled an additional research question, aimed at validating the
capability matrix. As this question is not part of this thesis, this question will be denoted as
[RQX].

Due to the relatively unstructured approach of the first round, these interviews did not generate
sufficient information for the rest of this study. Therefore, a second round was held. During these
interviews, a more structured approach was followed. Guided by the capabilities in the capability
matrix, the interviewer and interviewee drew the product management process in a combined
effort. The result was a set of draft PDD’s, appended with notes, that allowed a more detailed
description of the company’s process. The structure followed during the second round is described
in table 5.2. The indications of the related research questions remain the same as above.

The documents that were studied varied per case, but included in most cases requirements
templates, release definitions, roadmaps and tool screenshots.

All data collected was included in a case study database. The case study database consists
of case study notes, interview recordings, case study reports/advice reports, filled-in capability
matrices and situational factors.

Whom to interview and what documents to study was decided upon in mutual agreement
between the researcher and the contact person of the organization being studied.

31

5.2. RESULTS

5.1.3 Deliverables

All data related to the case studies is stored in the case study database. This database is the
repository of all information input to and produced by the case study. It contains the following
categories: digital organization material (digital folder 1), digital research material (digital folder
2), paper organization material (binder 1) and paper research material (binder 2). The deliverables
of each case study are the following:

Four process-deliverable diagrams. For each of the focus areas in the reference framework for
SPM, a PDD was drawn based on the findings at the case company.

Capability matrix. Based on the process-deliverable diagrams, a capability matrix was gener-
ated for each case company. This capability matrix formed the basis for the advice report.

Advice report. For each case explored, an advice report has been written that describes the
methods used, the major bottlenecks that were found, and a set of recommendations.

Results will only be published after explicit approval by the organization.
The case study report is expected to be of value to the organization as it provides insight in

what works and what does not work within the context of Software Product Management.

5.2 Results

5.2.1 Case Study Companies

A total of six companies participated in this study. All of these are located in the Netherlands. Due
to confidentiality issues, the names of the participating companies are not shown in this document.

5.2.2 Current Situation

Based on the results of the case studies, we are able to create an overview of the current state
of SPM in small to medium Dutch software companies. In order to do so, we combine the six
maturity matrices of the Dutch cases into one overview matrix.

Only the Dutch cases have been taken into account for this overview, for two reasons. The
first reason is that combining Dutch cases with a Swiss case would would skew the overview, as
the Dutch and Swiss markets might not be the same. Secondly, the Swiss case was not performed
entirely. Only a subset of the focus areas have been elaborated. Taking this partial data into
consideration would thus also give a distorted image.

Table 5.3 shows the overview of the current state of SPM. The gradient gets darker as more
companies have implemented each capability. A white shade means that none of the companies has
reached that maturity level. Dark gray means that all six companies have reached that maturity
level.

Several observations can be made regarding the overview. First of all, overall maturity is
fairly low. While most companies have implemented the activities related to the lowest maturity
levels, this gets drastically lower when we move on towards the higher levels. After the basic
implementation, most companies seize to improve the process by putting more advanced processes
in place.

There is however a minor difference between the average maturity level regarding release plan-
ning, compared to the other focus areas. Especially in the case of requirements prioritization,
release definition and launch preparation, higher maturity levels are obtained. In the other areas,
requirements gathering & identification and roadmap construction also reach considerably higher
scores. This is not a surprise, as these are the most essential activities in the field of product
management.

Automation is still a fairly neglected point in most companies. Activities related to this,
such as automation of requirements gathering (RG:C), automatic connection of similar require-
ments (RI:E), automation of release definition (RD:E) and automated notification of scope changes
(SCM:B) all have a very low score. Automation is in most cases a step that is only taken once the
process is sufficiently mature. However, in the case of product management, big advantages could

32

CHAPTER 5. CASE STUDIES

Focus Area Maturity Levels

Title Code 0 1 2 3 4 5 6 7 8 9 10 11 12

Requirements Management

Requirements Gathering RG A B C D E F

Requirements Identification RG A B C D E

Requirements Organizing RG A B C

Release Planning

Requirements Prioritization RG A B C D E

Requirements Selection RG A B C D

Release Definition RG A B C D E

Release Validation RG A B C D

Launch Preparation RG A B C D E F

Scope Change Management RG A B C D

Product Roadmapping

Theme Identification RG A B

Core Asset Identification RG A B C

Roadmap Construction RG A B C D E F

Portfolio Management

Market Trend Identification RG A B C D

Product Lifecycle Management RG A B C

Product Line Identification RG A B

Table 5.3: Current SPM maturity of product software companies

be obtained by early implementation of advanced information systems for automating tasks such as
requirements gathering/organizing, requirements prioritization and release definition. Especially
when the rate of incoming requirements is high.

Interesting is the fact that none of the case companies have any formal or academic methods
and techniques in place. Especially in the case of requirements identification, requirements pri-
oritization and roadmapping, ample technique is described in literature. Nonetheless, the barrier
for using such techniques is often too high. During the interviews, the major reasons that were
given for this phenomenon were the lack of access to such literature and the complexity of many
methods.

5.2.3 Common Problems

Based on the results of the case studies, an advice report has been written for each of the companies.
In this report, the major bottlenecks were identified. The bottlenecks were mainly discovered by
searching for gaps in the capability matrix. Based on the bottlenecks, advice was given on how
to improve the product management process. Again, this advice was based on the steps that are
proposed in the capability matrix.

Both the bottlenecks as well as the advice differed in size. Some related only to a small portion
of the process, while others implied the addition of an entirely new process. The bottlenecks that
were identified included examples such as:

• an informal approach to portfolio management and/or roadmapping;

• a lack of internal communication;

• decentralized requirements storage; and

• the lack of a prioritization technique.

Most of the problems, or variations of them, were shared among several companies. The
problems or bottlenecks that were discovered by looking at the maturity matrix can be generalized
into five types of problems that were common for all cases.

The first problem can be described as informality, as many of the processes were performed
ad-hoc, without any structured approach. In some cases, it was hard to decide whether a certain

33

5.3. EXAMPLE CASE STUDY REPORT

capability was implemented or not. However, the rules that describe the capability matrix state
that processes must be formalized internally. As most processes were not documented/described,
this can be seen as a very common problem.

The second problem is labeled process absence. This indicates the lack of an entire process
such as portfolio management or product roadmapping. It often means that a company has not
yet found it important to pay attention to this aspect.

Figure 5.1: Generalized common problems in the SPM process

The third problem that was identified is incompleteness, which can be witnessed in three
variations. Essentially, this problem describes processes in which a company does perform some of
the capabilities, but activities are missing. These missing activities can be found at three positions
in the maturity matrix.

Firstly, a company can perform activities related to some capabilities without performing those
at the lowest level. In some cases, this might not be an issue. However, in most cases, such a
situation does not make sense.

The gap can also exist in the middle of a process, i.e. activities related to the lowest and highest
capabilities are performed, but some steps are skipped. Especially in the case of processes such as
requirements prioritization or release definition, it might be better to complete the processes by
also performing the missing activities. For example, involving the partners while not involving the
internal stakeholders will probably lead to discontent among the employees.

Finally, gaps can be found at the higher capability levels. This essentially means that a company
does not perform all activities up to the desired maturity level.

5.3 Example Case Study Report

The company that is used in this example (from here on: CaseComp) has a long history with a lot
of experience in their market sector. Its network is therefore extensive. Also, a large customer base
within a full market results from it. However, the industry is showing change. One of the effects
that can be seen is a decrease in the amount of customer companies, but an increase in their size.
This happens as more and more companies are combined in larger organizations.

This is a change that has to be reflected in the actions of CaseComp. Currently, this is not yet
entirely the case. The long lifetime of the company has resulted in a large portfolio of products,
developed in an old-fashioned way, governed by habits and outdated processes. This situation is
enforced by a large, senior workforce.

Furthermore, rigorous change is made difficult by the big influence of legislation and industry
standards, and a strong company policy. On the other hand, the market does not require huge
innovations, shown by the small amount of incoming requests each year. Many customers’ main
requirement is that the software works as simple as possible, allowing them to facilitate the huge
administrative work that they need to deal with.

Table 5.4 shows a list of situational factors for CaseComp. In 2008, Bekkers et al. (2008)
determined this list that can be used to describe a company or business unit. These factors are
the main factors influencing the selection of software product management method fragments.

34

CHAPTER 5. CASE STUDIES

Development Philosophy Waterfall Size of business unit
team (FTE)

+-100

Customer loyalty High Customer satisfaction (1-
10)

N/A

Customer variability (%) 3% Number of customers 15.000
Type of customers Small, medium and large

companies

Number of localizations 1 Market growth Decreasing, but the size
of companies is increasing

Market size 15.000 Customers Release frequency Every 35 days
Sector [Hidden] Standard dominance High
Variability of feature re-
quests

Low

Defects per year Many Development platform
maturity

Ever changing

New requirements per
year

20-80 Number of products

Product age Between 1 and 12 years Product lifetime Max. 4 years
Product size (KLOC) Product tolerance Medium

Company policy High Customer involvement Low
Legislation Medium Partner involvement N/A

Table 5.4: Situational Factors CaseComp

5.3.1 Capability Matrix

For measuring the maturity of CaseComp regarding software product management, we employ a
capability matrix developed for this purpose by Bekkers et al. (2010). The matrix shows all the
capabilities as defined in the reference framework for SPM (figure 3.1) on the vertical axis. On
the horizontal axis, between two and six maturity levels are depicted for each capability. There
maturity levels are indicated by a letter ranging from A to F, where A is the lowest level and F the
highest. The maturity levels are placed according to their relative importance. By marking the
implemented capabilities and their respective maturity level, one can find a company’s current state
regarding spm. Table 5.5 provides an overview of the maturity of the SPM process at CaseComp.

Focus Area Maturity Levels
Title Code 0 1 2 3 4 5 6 7 8 9 10 11 12
Requirements Management
Requirements Gathering RG A B C D E F
Requirements Identification RI A B C D E
Requirements Organizing RO A B C
Release Planning
Requirements Prioritization RP A B C D E
Requirements Selection RS A B C D
Release Definition RD A B C D E
Release Validation RV A B C D
Launch Preparation LP A B C D E F
Scope Change Management SCM A B C D
Product Roadmapping
Theme Identification TI A B
Core Asset Identification CAI A B C
Roadmap Construction RC A B C D E F
Portfolio Management
Market Trend Identification MTI A B C D
Product Lifecycle Management PLM A B C
Product Line Identification PLI A B

Table 5.5: Software Product Management maturity at CaseComp

35

5.3. EXAMPLE CASE STUDY REPORT

5.3.2 Identified Issues

Due to its relatively long lifetime, large amount of partners, and wide variety of products, CaseC-
omp has a decent amount of experience with the problems of portfolio management and product
roadmapping. However, this experience does not show in the capability matrix shown in the pre-
vious section. This lack of maturity results from the relative ad-hoc approach that CaseComp
uses in tackling these problems. Figure 5.2 shows a visualization of the portfolio management at
CaseComp, in the form of a Process Deliverable Diagram. The diagram shows in one combined
view all the activities that CaseComp performs in relation to portfolio management. The diagram
maps directly to the capability matrix.

Figure 5.2: Process-Deliverable Diagram of CaseComp’s process at the portfolio level

Although the product portfolio consists of a considerable amount of products, there are hardly
any structural activities related to the management of it. A lot of ad-hoc discussion takes place at
the top of the company, currently resulting in a restructuring of the portfolio. However, recurring
decisions based on solid figures seem absent. Most of the portfolio management related activities
that take place on a regular basis are related to (distribution-) partner management, which is only
loosely related to product management.

A Informal approach portfolio management
Therefore, one of the first problems one can identify is the relative simplicity of each of the focus
areas. Neither of these areas is elaborated thoroughly, as far as a formal process description is
able to show. Although it can be a great advantage to keep the communication lines short and
to refrain from forcing too many rules and protocols on employees, a lack of process descriptions
brings considerable risk. Especially on a high level such as that of the product portfolio, loosing
knowledge when a person is removed from the process can cause problems.

36

CHAPTER 5. CASE STUDIES

Figure 5.3: Process-Deliverable Diagram of CaseComp’s process at the roadmap level

The roadmapping process at CaseComp (shown in figure 5.3) seems fairly advanced, including
theme identification and the creation of a long-term roadmap for all of the active sectors. However,
some of the same issues as before happen here as well. In this case, it can be seen that the task
of roadmap construction is performed at a decent maturity level. However, two activities related
to the lower maturity levels, internal consultation and customer variant roadmapping, are not
performed.

B Lack of internal communication about the roadmap
Although internal consultation and customer variant roadmapping are not required for the
following activities, it displays a gap in the SPM process. In this particular case, these activities
are in fact an important step in the creation of a complete, detailed roadmap, instead of being
an irrelevant addition. Internal participation is an important means to raise both the quality
as well as the acceptance of the roadmap.

Furthermore, theme identification is depicted in the PDD, but the CM shows a maturity level
of 0. We are dealing here with a gap in the documentation of the process. To prevent knowledge
loss, it would be better to define protocols for these activities.

C Missing core assets
The third, and probably major, problem is the lack of core-asset identification, which could

37

5.3. EXAMPLE CASE STUDY REPORT

Figure 5.4: Process-Deliverable Diagram of CaseComp’s process at the requirements level

prove very useful given the amount of applications in the portfolio. This problem is indicated
by a low alignment within this focus area. The use of core assets allows great savings when
parts of the applications are shared, such as user management, security and database-drivers.
Knowledge about the existence of such components is therefore very important.

Compared to the roadmapping process, the process related to managing requirements seems
fairly bleak. First of all, we see a big gap in the maturity for requirements gathering. Once
gathered, requirements are hardly analyzed or elaborated, based on the official processes. Only
some attention is being paid to organizing the items based on themes, but at a very low, informal
level. The same goes for prioritization, where no pre-defined technique is applied for estimating
importance.

D Decentralized requirements storage
Gathered requirements are stored per project in a document located in a Sharepoint-folder.
Although Sharepoint is a mature environment which is very usable for the sharing of documents
throughout the company, it is not the ideal solution for storing requirements. The platform is
not specialized in storing such data, making it hard to apply structure. Through centralized
storage in an environment that has been designed for doing so, this process can be improved
significantly.

E Unstructured requirements analysis
The structure of the documents on the Sharepoint-server is not pre-defined, and can thus vary
per project. This approach is not very structure, which could lead to disruptions in the process.

38

CHAPTER 5. CASE STUDIES

The final area discussed here is release planning. At CaseComp, all activities on the release-
level concern only the post-release period. As can be seen in the matrix, maturity there is very
low, with the exception of two activities fulfilling high levels. The fact that some advanced features
re in place while the more basic ones are not might suggest a problem.

Figure 5.5: Process-Deliverable Diagram of CaseComp’s process at the release level

Regarding release planning, a lot can be gained by predefining the contents of the next release(s),
based on objective numbers. This also improves clarity both for internal as well as for external
stakeholders. Instead of developing according to the prioritized (full) backlog, more detailed plans
could be made.

5.3.3 Proposed Improvements

Not all of the problems described in the previous section are of equal importance. All of them
were derived in the same way, by analyzing the capability matrix and the process-deliverable
diagrams, and they were described without taking into account the impact of the issue. In this
section, solutions will be proposed for those problems that both seem important as well as have
the potential to be improved with relatively little effort.

A Formalization portfolio management
The problem of incomplete of non-existing process description is generally easy to solve. The
portfolio management process at CaseComp is not yet very complex. This means that this is
the perfect moment to start the formalization of this process. The impact is low, while the
advantages for the future are significant. The process description that is given in figure 5.2 can
be used as a basis for further elaboration of this process.

39

5.3. EXAMPLE CASE STUDY REPORT

B Improved roadmap communication
Secondly, the gap in the roadmapping process should be filled in order to lift the roadmap
construction process to a higher level. This means that two improvements need to be made.
The capability matrix suggests that the first improvement is to more actively involve internal
stakeholders during the creation of the roadmap. As this is a generally good thing to do, I suggest
to introduce a presentation of the roadmap every 6 months. This presentation should be open
to all internal stakeholders, such as support, development and sales. Feedback obtained during
this presentation should be actively incorporated in the roadmap. Such an approach increases
both the creative input as well as the internal acceptance of the company’s direction.

Figure 5.6: Improvements for CaseComp’s Roadmapping process

In addition to this, it might be a good idea to open up communication channels towards the
customers. As the majority of the customer-base is not technologically savvy, some effort is
required to obtain their input. This is already done through visits of CaseComp consultants,
and this could be appended by the publication of a brief overview of CaseComp’s plans within
the near view. This means the creation of a trimmed down customer variant of the roadmap,
in which only the most important changes are shown.

Both improvements to the roadmapping process are shown in figure 5.6.

C Introduction core-asset identification
A lot can be improved by gaining a better insight into the components that are used by multiple
products in your portfolio. Through the implementation of a better requirements management
solution and increased traceability, it is easy to gain a better view of the requirements that
apply to multiple products.

It is important that a clear overview is created and maintained of all the components that
are or can be used by multiple products. This overview needs to be available in a central
location, preferable in the same system that is used for requirements management. For every
component, a clear description needs to be given. Also, every component needs to be linked to
all related requirements. By making the list clear and up-to-date, both product managers as
well as developers can safe time by preventing doing the same work twice.

D Introduction requirements management tool
Companies that do not store all requirements in a central location run great risks. These risks
relate both to the product management as well as to the development process. Examples of
negative effects are low traceability, less transparency and an ineffective development process.
As requirements management forms the core of the product management and development
process, it is important to handle the requirements in the right way. In this light, a lot can be
gained by the introduction of a requirements management tool at CaseComp.

40

CHAPTER 5. CASE STUDIES

P
a
r
t
n
e
r
in

g
&

c
o
n
t
r
a
c
t
in

g

M
a
r
k
e
t

t
r
e
n
d

id
e
n
t
if
ic

a
t
io

n

P
r
o
d
u
c
t

li
fe

c
y
c
le

m
a
n
a
g
e
m

e
n
t

P
r
o
d
u
c
t

li
n
e

id
e
n
t
if
ic

a
t
io

n

T
h
e
m

e
id

e
n
t
if
ic

a
t
io

n

C
o
r
e

a
s
s
e
t

id
e
n
t
if
ic

a
t
io

n

R
o
a
d
m

a
p

c
o
n
s
t
r
u
c
t
io

n

R
e
q
u
ir
e
m

e
n
t
s

g
a
t
h
e
r
in

g

R
e
q
u
ir
e
m

e
n
t
s

id
e
n
t
if
ic

a
t
io

n

R
e
q
u
ir
e
m

e
n
t
s

o
r
g
a
n
iz

in
g

R
e
q
u
ir
e
m

e
n
t
s

p
r
io

r
it
iz

a
t
io

n

R
e
q
u
ir
e
m

e
n
t
s

s
e
le

c
t
io

n

R
e
le

a
s
e

d
e
fi
n
it
io

n

R
e
le

a
s
e

v
a
li
d
a
t
io

n

S
c
o
p
e

c
h
a
n
g
e

m
a
n
a
g
e
m

e
n
t

L
a
u
n
c
h

p
r
e
p
a
r
a
t
io

n

P
la

t
fo

r
m

Accept Ideas (Accept Software) X X X X X Web

Accept Portfolio (Accept Software) X X X Web

Accept Requirements (Accept Soft-
ware)

X X X X X Web

Primavera Portfolio Management
(Oracle)

X Desktop

Agile Product Lifecycle Manage-
ment (Oracle)

X Desktop

DOORS (IBM Rational) X X X X Desktop/Web

Focalpoint (IBM Rational) X X X X X X Web

RequisitePro (IBM Rational) X X X Web

Featureplan (Ryma Technology So-
lutions)

X X X X X X X X Web

IdeaScope (Ryma Technology Solu-
tions)

X X X X X X Web

Jira (Atlassian) X X X X Web

ChangePoint IT Portfolio Manage-
ment (Compuware)

X X X Desktop

CaliberRM (IBM) X X X X X Desktop

Optimal Trace (Micro Focus) X X X Desktop

OSRMT (Open Source) X X X X Desktop

Portfolio Manager Software Suite
(UMT)

X X Desktop

RaQuest (Sparx Systems) X X Desktop

VeryBestChoice Light (Expert Deci-
sions)

X X X Web

ReleasePlanner (Expert Decisions) X X X X X X Web

ReqSimile (n/a) X Desktop

Rational RequisitePro (IBM) X X X Web

Accompa (Accompa) X X X Web

Table 5.6: Product Management Tools

Currently, many tools are available. Table 5.6 shows the most important and well-known of these
tools, along with the SPM-areas that they support. The focus areas of these product vary from
idea-development and bug-tracking to portfolio management and product roadmapping. For
CaseComp, the biggest advantage can be gained in requirements management. This means that
the tools IBM Doors, Accept Requirements, Jira and Accompa are good candidates. Currently,
many companies choose for Jira, as it is flexible at a relatively low cost (starting at 1200$
for 25 users). Accompa also offers flexible, web-base software, but the price-tag is a little bit
steeper (199$ per month for five users; after that, an additional 29$ per month per user). In
principle, the two packages cover the same areas. Accompa wins in the area of user-friendliness,
while Jira offers more flexibility and expansion-possibilities. Jira’s options for expansion include
collaboration-tools, code-reviewing, and traceability at source-level.

E Distinction product vs. market requirements
To create more clarity in the requirements engineering process, it is good to maintain a dis-
tinction between product- and market requirements. Market requirements in this sense are the
wishes and improvements as expressed by the external stakeholders such as customers. They are
written down as-is, with some additional information such as issuer, initial priority, date, etc.
Product requirements are the result of further analysis of market requirements by a requirements
engineer or a product manager. Market requirements are turned into product requirements by
combining similar ones, indicating dependencies, rewriting descriptions, assigning priorities, etc.

Whereas market requirements might not always be written down in the same form, product
requirements should be, in order to improve efficiency. For each product requirement, the same
pieces of information should be available. Also, a link should be maintained between market
requirements and the product requirements that are based on them. This link can be used to
maintain traceability, and thus to be able to, for instance, notify stakeholders of the status of a
requirement.

Introducing the distinction between market- and product requirements implies a few changes
to the process, mainly on the deliverable side. First of all, two separate databases should be
maintained; one for the market requirements and one for the product requirements. Also, a

41

5.3. EXAMPLE CASE STUDY REPORT

Figure 5.7: Improvements for CaseComp’s Requirements Management process

link should be added between the two. Furthermore, some additions to the process-side need
to be made. Incoming requirements are no longer initially stored as a ’REQUIREMENT’, but
as a ’MARKET REQUIREMENT’. Once stored, market requirements need to be processed
and rewritten. To start with, I suggest to add two activities: ’combine similar requirements’,
and ’rewrite into product requirements’. The result of these two activities is a set of product
requirements of similar form.

The improvements at the requirements level are shown in figure 5.7.

42

Chapter 6

Product Software Knowledge
Infrastructure

The idea of a knowledge infrastructure for software product management originates from the fact
that the function is still not clearly defined. The area is in need of structuring, so that its processes
and products can be improved and optimized. A knowledge infrastructure would aid in making
available the resources that are now difficult or impossible to access. These resources can be
methods, techniques, tools and templates.

By using new web-technologies, a wide range of possibilities becomes available for improving
the visibility and transparency of all aspects of software product management. By visualizing
products, milestones, requirements and stakeholders in new ways, the efficiency and effectiveness of
product managers might be significantly improved. This is especially true when we evolve the PSKI
towards Method-as-a-Service. With the addition of maturity levels, templates and visualizations
to the original PSKI, and the formalization of method storage, selection and combination, this is a
logical next step. Through this, a large portion of the burden that is related to the use of certain
Software Product Management methods can be taken away.

The Method-as-a-Service (MaaS) concept comprehends two intertwined parts. The first part
consists of the method modification. The main problems in regard to this are linked to process
modification, deliverable administration, method fragment storage and method fragment selection.
The second part of MaaS is related to the execution of methods. A full implementation of MaaS
includes the ability to generate templates, visualize data and ’perform’ the method online. This
includes executing all steps within the process and storing all resulting data online.

van De Weerd, Versendaal, & Brinkkemper (2006) and Brinkkemper (1996) already identified
four main activities that are necessary to create a computer-aided method engineering tool. These
activities are ’analysis of need’, ’selection of alternatives’, ’embedding of process advice’, and
’method administration’. The first of these activities has already been elaborated by Bekkers et
al. (2010), and will therefore only be discussed briefly, for the sake of completeness. The other
activities will be discussed in more detail.

The solution proposed in this thesis is an extension and elaboration of the original proposal.
This means that the original activities are given more detail, and that several aspects are added
to the model. This should result in a firm basis for further research, and the actual gradual
implementation of the knowledge infrastructure. The new model of the PSKI (figure 6.1) is very
similar to the original model. However, it contains two extra activities, several added relations and
more detail. The parts that have been added or heavily updated are depicted as red.

Originally, the first phase within the PSKI proposal was ’analysis of need & situational in-
dicators’, including an assessment of a company both in a general manner employing situational
indicators, as well as focused on the SPM process by using capabilities. During the last few years,
these concepts have been expanded and elaborated. Bekkers et al. (2008) suggested that the gen-
eral assessment of a company’s SPM business function can be performed by filling in a list of
situational factors. The assessment of the company’s SPM process can be performed by filling in
a capability matrix 3.2.7. Based on the results of these two assessments, process advice can then
be given to the company.

43

Figure 6.1: Extended version of the PSKI

Due to the advances since the initial publication of the PSKI, it no longer seems appropriate
to place both analysis of the current situation as well as analysis of the need in one phase. The
complexity of these activities calls for a separation into a phase focusing on the current situation,
and a phase focusing on the future situation. Therefore, the name of the first phase should be
changed to ’analysis of current situation’.

As several expert have commented during the case studies, the motivation to rely on an auto-
mated approach for the generation of a new product management process is low. By taking out
the human factor, one also removes all trust that comes with dealing with experts. Although a
tool can form a very good basis for process improvement, it should always be appended with a
human factor. In the new design of the PSKI, this is done by incorporating a phase for knowledge
base improvement. This step ensures valid data and relevant advices based on regular user input.

44

CHAPTER 6. PRODUCT SOFTWARE KNOWLEDGE INFRASTRUCTURE

6.1 MaaS: Method Modification

6.1.1 Analysis of Current Process & Situational Indicators

The first phase is more complex than was initially proposed. As the demand on method engineering
can vary per case, we need to incorporate a certain amount of flexibility into the process. First
of all, we can identify two types of situations regarding the motivation for employing method
engineering:

The need for improvement of a specific area In many cases, method improvements can bet-
ter be performed in an evolutionary way rather than in an revolutionary way. By doing so,
you reduce risk and increase the chance of success. This also means that it is often not
required to analyze the entire product management process. Instead, only a subset of the
areas is looked at, and only for those areas improvements are provided.

The need for improvement of the entire SPM process For companies that do require a ma-
jor improvement of their product management process, this should be a possibility in the
PSKI. In those cases, the set of areas that is analyzed should be extended to incorporate
the entire spectrum of product management related activities, as described in the reference
framework for SPM 3.1. This group also contains (new) companies that wish to obtain ad-
vice for the product management process without having a process in place yet, or with a
process that is to be abandoned altogether. Although the latter will only very rarely happen,
it should be taken into account during the creation of the PSKI.

Secondly, data from the interviews suggests that there is a variety of wishes regarding the
amount of effort that companies are willing to put in in order to obtain process improvement
advice. We can distinguish two manners in which companies are willing to provide information
regarding their current product management process:

Table 6.1: Variations in the input of the PSKI

Full process information In the optimal case, companies are willing to provide complete in-
formation regarding their current process, deliverables, and situational factors. This means
that their entire process needs to be captured in a way suitable for further elaboration. Also,
the situational factors need to be captured in some way, either through a questionnaire of
by means of an interview. With all data available, the process improvement advice that can
be obtained is the most effective. However, capturing the entire process requires significant
work from an expert who is able to employ an appropriate modeling technique.

45

6.1. MAAS: METHOD MODIFICATION

Figure 6.2: Analysis of current situation

Only situational factors and maturity information In many cases, capturing full process in-
formation requires too much effort. Therefore, it should be possible to provide a process
improvement advice based solely on the situational factors and maturity information. This
option implies that the advice does not contain any information on how to implement the
advice, but only what should be implemented.

These four variations can be depicted in a two dimensional table (table 6.1), with the extend
of the affected process on one axis, and the amount of information provided on the other. In any
case, information regarding the situational context of the company should be obtained. A very
efficient way of doing this is by conducting a questionnaire with a list of all the relevant situational
factors, as described by Bekkers et al. (2010). To enhance reliability of the data, the questionnaire
could be replaced by an interview.

To gather the remaining information, there are two options, depending on the quadrant of
table 6.1. If and when a company is willing to provide full information regarding (part of) their
product management process, the process should be modeled by an expert, either internal or
external. The resulting model should contain detailed information regarding both the process as
well as the deliverables. Therefore, process-deliverable diagrams are a very suitable technique for
this purpose. Section 7 will explain how PDD’s can be created in an efficient way. Section 4
shows how the PDD modeling technique can also be used to capture the current maturity level of
a company’s product management process.

46

CHAPTER 6. PRODUCT SOFTWARE KNOWLEDGE INFRASTRUCTURE

In the case that a company chooses not to provide full information regarding (part of) their
product management process, a questionnaire can again be used Bekkers et al. (2010). To enhance
reliability of the data, this questionnaire could also be replaced by an interview.

6.1.2 Analysis of Need

The second part of the original first phase in the PSKI is now placed in the new phase ’analysis
of need’. This phase takes the situational factors and the list of implemented capabilities from the
first phase as input, after which it determines how the current process could be improved. This
phase has already been described by Bekkers et al. (2010) in the form of the calculation process of
the situational assessment method, but it will be summarized here for the sake of completeness.

The phase consists of three activities; construction of the current capability profile, calculation
of the optimal capability profile and the calculation of an ’areas of improvement’ matrix. The first
of these three consists of translating the results from the initial maturity assessment into a form
usable for further calculation.

Figure 6.3: Analysis of need

The second activity is somewhat more complex. The optimal capability profile is determined
by a set of situational factor effects. Several situational indicators have an associated effect. For
example, having only one product in the product portfolio could have as effect that the process
’product line identification’ is not needed. By applying all applicable situational factors effects, an
optimal capability profile is obtained that is customized for the current company.

The current capability profile and the optimal capability profile are then combined into an areas
of improvement matrix. This is again a capability matrix, with both previous matrices integrated
into it. Between the two matrices, a gap can exist, which can be called the delta. This delta
indicates the capabilities that need to be implemented, in order to arrive at the optimal maturity
level.

What is important in the context of this phase is the fact that product managers can vary in
the rigidity that they demand from the method engineering process. Some wish only a partial
improvement for a specific area, while others wish to improve their process to the maximum
maturity level suggested for them. As stated before, evolutionary improvement is in many cases
more prone to success than revolutionary change. This implies that it should be possible to provide
improvements in the form of a roadmap when the process is changed rigorously.

The result of this phase is thus an areas of improvement matrix. This matrix describes either
the entire SPM process, or a subset of it. In both cases, the delta equals a set of capabilities that

47

6.1. MAAS: METHOD MODIFICATION

need to be implemented, in order to improve the maturity of the company’s SPM process and thus
hopefully its efficiency and effectiveness. This set forms the basis for the next phase in the process
of method improvement.

6.1.3 Selection of Process Alternatives

For the next phase, each missing capability has to be connected to a method fragment that im-
plements the capability. To facilitate this process, it is best if each method fragment implements
only one or a few capabilities. Although this poses a restriction during the creation of method
fragments, this is justifiable since it simplifies the remainder of the process drastically. However,
method fragments that implement more capabilities, such as complete prioritization techniques,
are acceptable.

Figure 6.4: Selection of process alternative(s)

The capabilities that a method fragment implements can be used as an attribute during the
initial selection of method fragment candidates. As will be described later on, both process frag-
ments as well as deliverable fragments can implement capabilities. For this reason, capability is
an effective first classifier of a method fragment in the method base.

For further classification, we can reuse the situational factors described by Bekkers et al. (2008).
Since many fragments will be applicable in any situation, it does not make sense to describe each
fragment by all factors. This would also pose a problem when the list was changed. Therefore,
situational factors should only be used to indicate restrictions on the use of the fragment. This is
similar to the situational factor effects as described by Bekkers et al. (2010). However, as the rules
apply in this case only to one specific fragment, the effect does not have to be specified explicitly,
as this will always be ’disallow’. The combined set of rules for a specific fragment forms its second
classifier, situation.

48

CHAPTER 6. PRODUCT SOFTWARE KNOWLEDGE INFRASTRUCTURE

A third classifier of method fragments is their rating. Through the feedback of users, method
fragments should be rated on several aspects, such as effectiveness, complexity, etc. Method
fragments with a very low rating can in most cases be ignored, while in other cases, method
fragments with a high rating are selected over similar method fragments with a low rating.

Although processes, capabilities and situational factors form a very solid ground for method
fragment selection, we need to take into account the fact that we are dealing with processes in
which humans are evolved. This means that the resulting process needs to fit with the preferences
of the people involved in it. These people needs to be able to express these preferences during
the selection of alternative method fragments. The results from the interviews have indicated
that product managers are not always willing to accept suggestions made to them by a machine.
Therefore, the process should allow for differences in the amount of freedom that is provided.
While it is generally a good idea to suggest one specific method fragment per capability, product
managers should be at liberty to select another. This ’freedom-of-choice’ has serious consequences
for the system to be designed. In order to make the freedom given to product managers useful, we
need to provide them with a sufficient amount of information for them to base their decision on.

The first source of information for this is of course the method fragment itself. Since every
method fragment can be displayed in the form of a very readable PDD, product managers can use
this diagram to form an initial mental image of its implications. This is possible since all related
activities and deliverables are readily available in the method fragment. However, in addition to
this, we also identified a need for more sources in the form of experience (reports). Experience
from people in similar situations is highly valued, and would thus be a valuable addition to the
process.

Based on all of the sources of information combined, product managers or process owners should
be able to make a valid and well-argued choice regarding the method fragments that should be
selected, and thus regarding the changes that should be made to the existing process.

6.1.4 Embedding of Process Advice

After a solution has been selected, the process of embedding or implementing the process advice
varies depending on the amount of information that a company has given. The possibilities are
limited when only maturity information is known, in contrast with the field of opportunities when
full process information is given.

In any case, the initial part of the process can be the same for both situations, as this regards
the elaboration of the chosen solution into steps. Steps are needed since solutions will in many
cases be too large for implementation in one iteration. An evolutionary approach has more chance
of success as it will likely yield a higher acceptance due to smaller, incremental changes.

The splitting of solutions into steps is subject to several conditions. Solutions cannot be split
into steps randomly. The major reason for this is the fact that we need to take dependencies into
consideration. If a companies wants to increase the maturity level of its requirements gathering
process from A to C, it does not make sense to implement automation before centralized registra-
tion. Instead, the first step should be to implement the activity related to level B, followed by an
iteration in which level C is implemented.

In most cases, several capabilities can be implemented at the same time. However, to make
iterations or steps more successful, it is probably wise to make sure that each step has some sort
of goal, or a theme. This ensures a set of changes that is coherent. This way, the change-process
seems less chaotic to the employee. This is important, as he or she will be the one performing the
new process.

After the roadmap has been presented to the user and has been accepted, the implementation
of it can start. In case that only maturity information is available, this process is fairly straightfor-
ward, as little support can be given. The changes that have been proposed need to be implemented
in the company manually. In order to guide this, process descriptions and templates related to the
advice are provided.

If full process information is available, then this process is considerably more complex. This
part encompasses the most complex asset of method engineering, namely the assembly of method
fragments. For each step, the method fragments it contains needs to be merged with the existing
process. As this is a difficult task, it is probably best to do this fragment by fragment.

49

6.1. MAAS: METHOD MODIFICATION

Figure 6.5: Embedding of process advice

A problem with this segmented approach, however, is the risk that some parts of the process
get changed multiple times. This is unwanted, as this can lead to confusion among the people that
need to perform the process. Therefore, already during the creation of the roadmap, the system
should make sure that no such situations occur. This is also another argument for the statement
that method fragments should be kept as small as possible. By preventing the usage of complex
method fragments, the chance of overlap is made smaller, thereby increasing the chance of success
of any algorithm that is charged with creating a coherent roadmap.

After the assembly of all the method fragments within a step into the original process, the
changes can actually be performed within the company. To facilitate the change, the system can
generate and/or update templates based on the original process and the new process. This activity
is partially demonstrated in chapter 8, and consists of two steps (see figure 6.6).

If the companies original product management related documents, such as backlogs and roadmaps,
are available to the system, than they can be updated to reflect the new deliverables within the
process. During this step, original data should be maintained while new columns, sections, for-
mulas, etc. are added to the documents. For any deliverables that are not available to the PSKI,
templates can be generated base on the generated process description. As the PSKI might not
always be aware of the type of document that is referenced by a deliverable, this needs to be
specified manually in some cases. The generated templates should be directly usable within the
new process.

50

CHAPTER 6. PRODUCT SOFTWARE KNOWLEDGE INFRASTRUCTURE

Figure 6.6: Template creation

6.1.5 Administration

The first requirement for a system such as the PSKI is that a repository exists which is filled with
representations of these resources. This repository will be called the method base or knowledge
base. The concept is derived from the field of method engineering. Several proposals have been
done for the way in which the resource-representations can be stored in the database, including
method fragments and method chunks. In this study we will adopt the former.

Figure 6.7: Administration

Up until now, method fragments were described in the form of process-deliverable diagrams.
These diagrams describe the relationship between the process on the one hand and the products on

51

6.1. MAAS: METHOD MODIFICATION

the other. These diagrams were always oriented towards humans. However, they were not stored
in a machine-readable, interchangeable and standardized way. To make these diagrams usable in
the PSKI, the manner in which PDD’s are captured needs to be adjusted. A good solution for this
purpose is MetaEdit+, a meta-modeling tool which can be used for both capturing meta-meta-
models as well as the resulting meta-models. See chapter 7 for an elaboration of this technique.

By using MetaEdit+ as a tool for capturing PDD’s, method fragment administration is now
largely moved out of the PSKI design, except for the importing of the model. Assignment of the
classification values can be done within MetaEdit+. On a more abstract level, the method base
contains rules that govern the selection and assembly of method fragments, situational factors,
capability descriptions and situational factors effects. As these data will change over time, it must
be possible to govern them.

6.1.6 Knowledge Base Improvement

The system must support ways for inputting user-generated content such as reviews and advices.
This is an essential part of the system, and users must be motivated to do so. This implies that,
apart from the method fragments themselves, the method base should be filled with experiences
as well. These experiences can be stored in several ways:

Figure 6.8: Knowledge Base Improvement

Data corrections This applies especially to the situational factors describing the applicability of
method fragments. By gathering user data, this applicability can be further refined or even
corrected. This has the potential to improve the reliability of the method base, and therefore
of the method engineering approach, drastically.

Reviews Data corrections do not solve the problem of freedom required by product managers.
For this, a more direct solution is required. One proposed solution is the possibility of writing
reviews for certain method fragments. Such reviews can include more subtle remarks that
are otherwise not expressible. These remarks can include ’soft’ issues, interoperability with
other fragments, and performance issues in certain situations.

Recommendations The concept of reviews can be extended further by adopting a recommender-
system as seen in many online stores. By taking the situational factors and maturity levels

52

CHAPTER 6. PRODUCT SOFTWARE KNOWLEDGE INFRASTRUCTURE

into account, the system can make suggestions based on choices by similar companies.

To ensure the quality of user-submitted data, and to prevent ’data corrections’ from occurring
erroneously, rigorous checks need to be implemented. For reviews and recommendations, this
can be done by the administrators of the system, or by its users. Nowadays, many websites
and communities exist that are self-maintaining, i.e. the users of the system check the content
themselves. When content is not appropriate or erroneous, it is flagged, after which it can be
checked by the administrators. This reduces the burden of the administrators, and gives users an
increased feeling of control. Censorship is not performed by the administrators, but by the users
themselves.

For data corrections, an even more automated approach can be taken. Especially for small
changes such as spelling errors and incorrect relationships between constructs, users should be
able to submit these themselves. When a sufficient amount of users give the same feedback, it
can be assumed that the correction is valid. The system can then automatically alter the method
fragment according to it. For changes to descriptions or more complex changes, administrators
will still need to analyze the feedback before changes are committed to the database.

6.2 MaaS: Method Execution

The PSKI does not adhere to the Method-as-a-Service philosophy unless it allows users to perform
the method entirely online. This means that, instead of using various local software tools, all steps
are performed online. The method modification aspect is essential for improving the effectiveness
of SPM processes, but the method execution aspect ultimately allows major improvements in the
efficiency of these processes, by taking away a large share of the burden of maintaining a complex
IT infrastructure.

In the light of applying the Method-as-a-Service concept to the PSKI, we can already see
the current website as a first version of this. As figure 6.9 demonstrates, it already contains a
basic solution to the problems of method improvement and execution, by providing literature and
method fragments on the one hand, and templates on the other.

Figure 6.9: Current website

However, the website is only a static knowledge provider. In essence, it is a first approach to
the method base that will form the core of the PSKI. On top of this, the method modification
layer should be placed, as described in the previous chapter. Once all that functionality exists,
the system can be extended with the method execution layer. This implies an integration of the
functionality to describe a process, assess the process, adapt the process, and then perform the
process (see figure 6.10).

53

6.2. MAAS: METHOD EXECUTION

In order to be able to do so, method fragments need to be correctly translated into an interface
that offers the right set of tools for product managers and requirements engineers to perform their
tasks. The creation and usage of templates is a core aspect of this. As is described in chapter 8, it
is feasible to directly adapt existing online documents and templates based on method increments.
Such online documents can for instance be placed on the cloud documents solution by Google,
Google Docs. As this environment is accessible through an API, it can be integrated into any
other system, such as the PSKI.

In addition to the translation of deliverables into documents and the management of these
documents, the activities need to be correctly translated. Aspects that need to be taken into
consideration here are the correct translation of access rights based on roles, the distinction between
automated tasks and user input, the type of interface that is required for a certain set of activities,
and the order of the activities, i.e. sequential, simultaneous, or a mix of both.

Currently, these aspects are not all derivable from the PDD’s. To solve this, either stricter rules
should be applied during the creation of PDD’s, or additional models should be created for defining
interface, access rights and business process. The former is not a good solution, as this would make
the creation of PDD’s too complex. The latter is similar compared to model-driven development
solutions such as OO-Method (Pastor et al., 1997) and the web-based variant OOWS (Pastor et
al., 2003). This would require the addition of several steps to the process for creating the required
models, undermining an important aspect of the PSKI, namely the fact that it should be simple.

Figure 6.10: PSKI using a Method as a Service approach

To forgo this problem, an alternative solution could be developed, based on pattern recognition.
The idea behind this is that certain patterns will exist in the PDD’s of SPM processes that can be
directly related to correct solutions for the interface. For instance, activities that are performed
simultaneously should be connected to a tabbed interface, with a tab for each activity. Activities
that are performed linearly can always be displayed as steps, allowing to go back an forward.

Such a solution would require no extra effort of the user. However, the possibilities of recognizing
patterns are limited and it is very prone to modeling errors. Therefore, a user should always be
able to alter the interface for a given process. Alternative interface elements should be provided
for this by the system. The same holds for the generation of documents based on deliverables. As
it is not always possible to derive the required file-type for a deliverable, the user should have the
option to change this manually.

To capture all the requirements of the translation from method description to interface, a meta-
model should be defined describing all possible translations for every construct and pattern. This
falls however outside the scope of this thesis.

54

Chapter 7

Method Fragment Storage

The process-deliverable diagram created by Weerd & Brinkkemper (2008), based on the work
by Saeki (2003), is a strong instrument for the description and communication of software devel-
opment processes. The two combined views, process and deliverable, provide an easy-to-use and
clear view of all the main parts of a process. We have seen very successful applications of it in
several projects. This includes the visual description of method increments by Weerd et al. (2007).

During the design of the modeling-technique, the focus has been placed mainly on the visual
aspect of the diagram, i.e. its effectiveness in communicating the most important aspects of
processes. This has resulted in a diagramming-technique that is both powerful in communicating
complex processes as well as simple in its use. However, a high usability for visualization purposes
does not necessarily mean high usability when using the diagram for other purposes.

When applied to the computational domain, a modeling technique has different requirements.
For one, readability is replaced in favor of completeness. Also, complexity is no longer a problem.
Instead, structure becomes an essential requirement. This means that we should distinguish be-
tween these two purposes when working with process-deliverable diagrams. In the best case, the
diagramming-technique will retain all of its usability aspects while becoming effective for compu-
tational purposes.

7.1 Process-Deliverable Diagrams in MetaEdit+

One of the biggest advantages of a domain-specific language is that it allows for creating valid
diagrams through an easy to use interface. This increases the modeler’s efficiency and inhibits
errors later in the process.

7.1.1 Objects

In order to maintain all of the expressiveness of the original Process-Deliverable Diagrams in Visio,
we need eight object types. This is a reduction compared to the original diagram, resulting from
MetaEdit+’s context awareness.

One of the most important objects types in the meta-model is the activity. Originally, four
types of activities existed: standard activities, open activities, sub activities and closed activities.
These four types served only the purpose of visual distinction, and did not differ much in semantics.
In the MetaEdit+ implementation, this amount of types is therefore reduced to one object type,
adjusting its visualization based on the context. This is done by using MetaEdit+’s Reporting
Language (MERL).

The visualization has not changed significantly. Figure 7.1 shows the four states of an activity.

The second main object-type in the meta-model is the concept. Similar to the activity-type,
the original PDD-implementation counted three separate concept types: standard concept, open
concept and closed concept. Again, these three types only differed in their visualization, and
not in their semantics. Therefore, they have been consolidated into one object-type, changing its
visualization based on the context. The three states are shown in figure 7.2.

55

7.1. PROCESS-DELIVERABLE DIAGRAMS IN METAEDIT+

(a) Standard activity (b) Open activity

(c) Sub activity within open activ-
ity

(d) Closed activity

Figure 7.1: ’Activity’ object-type visualizations in MetaEdit+

(a) Standard
concept

(b) Open activ-
ity

(c) Closed activ-
ity

Figure 7.2: ’Concept’ object-type visualizations in MetaEdit+

Again, the visualizations have not changed significantly. However, the deliverables now show
a maximum of three properties. If more properties are added to a concept, it will show only two
properties and a row called ’[X] more...’.

The divider that was used to indicate a section of unordered activities in the original imple-
mentation of the PDD has been replaced by a group object-type. This allows unordered activities
to be displayed outside an open activity as well. A group is indicated by a white box with black
border (figure 7.3(a)). All activities within a group can be executed in random order.

(a) Group (b) Fork (c)
Start

(d) Decision (e) Join (f)
Stop

Figure 7.3: Remaining object-types in MetaEdit+

The remaining object-types do not differ from their original implementations. For the sake
of completeness, they are shown here as well: start (7.3(c)), stop (7.3(f)), decision (7.3(d)),
fork (7.3(b)) and join (7.3(e)).

56

CHAPTER 7. METHOD FRAGMENT STORAGE

7.1.2 Relationships

The relationships defined in the original meta-model of the PDD have not been changed. Their
implementation in MetaEdit+ is similar to that of the Visio-implementation. This means that
the relationships available within MetaEdit+ are transition, for indicating the flow from one
activity to the next, generalization, for expressing a relationship between a general and a specific
concept, association, for defining a structural relationship between concepts, aggregation, for
representing the relation between a complex concept and its parts, and result, for connecting the
process-side with the deliverable-side. The only addition has been the choice relationship, which
is a subtype of ’transition’ and is used for indicating different conditional paths after a decision.

7.1.3 Rules and constraints

For ensuring the creation of valid diagrams, MetaEdit+ allows the definition of bindings. These
bindings define what relations are possible within the diagrams. For the PDD-diagram, the fol-
lowing bindings were defined:

Relationship Start (role) End (role)
Aggregation 1 concept (Whole) 1..N concepts (Part)
Association 1 concept 1 concept
Choice 1 decision (From) 1 activity (To)

1 decision (To)
1 fork (To)
1 join (To)

1 group (To)
1 stop (To)

Control flow

1 activity (From)
1 decision (From)
1 group (From)
1 join (From)

1 stop (To)

1 activity (From)
1 group (From)
1 join (From)

1 activity (To)
1 decision (To)

1 fork (To)
1 join (To)

1 group (To)
1 fork (From) 1 activity (To)

1 decision (To)
1 fork (To)

1 group (To)
1 start (From) 1 activity (To)

1 decision (To)
1 fork (To)

1 group (To)
Generalization 1 concept (Superclass) 1..N concepts

(Specialization)
Result 1..N activities (Result

from)
1..N concepts (Result

in)

Table 7.1: Valid relationships within a PDD diagram

In addition to these valid relationships, MetaEdit+ allows the definition of constraints for
connectivity, occurrence, ports and uniqueness. To complete the definition of the PDD meta-
model in MetaEdit+, the following rules were defined:

• An activity may be in at most 1 from role

• A join may be in at most 1 from role

57

7.2. METHOD INCREMENTS

• A group may be in at most 1 from role

• Start may be in at most 1 Control flow relationship

Combined with the bindings above, these constraints ensure valid diagrams. However, it must
be noted that the rules are not very strict. Given the meta-model of process-deliverable diagrams,
constraints should be added that restrict the amount of incoming and/or outgoing flows for the
’activities’, ’decisions’, ’forks’, ’groups’ and ’stops’ to 1. However, this would make the solution
considerably less usable, as more complex solutions would be needed to prevent such situations.

For example, disallowing more than 1 control flow to a ’stop’ construct would require adding a
’join’ construct to the diagram, even though a ’fork’ might not have been used to created multiple
paths (this happens when using decisions). Such a ’join’ would complicate the diagram and make
it less readable.

7.2 Method Increments

The method increments that were mentioned before need to be modeled in MetaEdit+ as well.
What is needed is a solution in which new versions of diagrams can be created based on previous
versions, and in which changes in version N+1 are visually indicated.

MetaEdit+ does not support version control out of the box. Therefore, manual adjustments
must be made to the implementation of PDD’s. In order to allow for the modeling of increments in
MetaEdit+, a ’version’ attribute should be added to each activity, deliverable and property. This
attribute is a construct consisting of two sub-attributes. The first one is the version in which the
fragment was adapted. The second argument is the action, indicating whether the element was
added, removed or changed.

Initially, each element has a default version attribute, with the values ’added’ in version ’1’.
These are the values that are most common, as the majority of constructs are generally created in
version 1. After the initial diagram has been created, the evolution of the diagram can be described
through increments. To create an increment, the user creates a shallow copy of the current model
(version N), and uses this as a basis for all manipulations for version N+1.

In order to add a construct to a diagram, one does so in the usual way, after which the new
constructs’ ’version’-attribute is set to ’added’ in version ’[N+1]’. This approach is very similar to
the normal approach of adding constructs.

For deletion of a construct, a somewhat different approach is required. In this case, the un-
wanted construct should not be deleted from the construct altogether, but instead be marked with
a ’version’-attribute indicating ’removed’ in ’[N+1]’.

To avoid cluttering of the diagram, constructs that were set to ’removed’ in version [N+1]
should be deleted altogether in increment [N+2]. This does not pose a problem, as the construct
is no longer of interest. Because the construct is still present in earlier versions of the diagram, it
still persists in the database. Therefore, no historical data is lost.

For replacing a construct with another one, one should follow the previous tasks in the order of
’delete’ and ’add’. The user has the choice to either place the new construct next to the old one,
increasing the amount of information the increment displays, or replace it with another construct
by using the appropriate function in MetaEdit+.

Based on the version-attributes, constructs can be given an appropriate color. Constructs that
have been marked as ’added’ in diagram version ’[N+1]’ should not be shown in version ’[N]’ and
lower, shown with a green color in version ’[N+1]’, and shown normally in versions above ’[N+1]’.

Constructs that have been marked as ’removed’ in diagram version ’[N+1]’ should be shown
normally in versions ’[N]’ and lower, and shown with a red color in version ’[N+1]’. In versions
’[N+2]’ and higher, the construct should be removed altogether.

As MetaEdit+ does not support version control out-of-the-box, a lot of manual work is needed
in order to implement the notion of method increments. Especially in the case of removing or
replacing a construct, the steps that are needed can be a bit obscure.

Another serious shortcoming is the fact that it is not quite possible to add the same functionality
to relationships, as their appearance can not easily be changed according to parameters. Especially
when adding new relationships between existing constructs, this can be a problem.

58

CHAPTER 7. METHOD FRAGMENT STORAGE

Unfortunately, these problems are not easy to solve in MetaEdit+. Nonetheless, the solution
described here provides for a fully specialized tool that is in general easy to use, and that provides
some very important features that are not available in Microsoft Visio.

7.3 XML generation with MERL

The current technique for storing process-deliverable diagrams is a very unsatisfying one, as it is
in Microsoft’s proprietary Visio-format. This format is closed, making it very hard to share meta-
model data between several applications. Although it is possible to export diagrams to XML, the
code that is generated is too complex, making it a hardly useful solution.

Also, Visio does not allow for the description of a diagram, i.e. a meta-meta-model. Therefore,
the diagrams do not contain any semantic information, making sharing the data useless, even if
the file-format were open.

When looking for a storage format that is more open, making it interchangeable and readable
at the same time, XML is an obvious choice. ”XML offers a medium that is platform, network and
technology neutral, independent of underlying programming languages, and readable by machines
as well as humans.” (Bakker & Jain, 2002)

With the selection of XML as the new storage format for process-deliverable diagrams, the
next question relates to the way of creating XML documents from a PDD. When using MetaEdit+
for the creation of the diagrams, there are two options available; either diagrams are exported
directly to XML by using MetaEdit+’s built-in XML exporting feature, or diagrams are exported
’manually’ by employing the MERL processing language.

Obviously, the first alternative is the easiest approach, requiring no additional work upfront.
However, MetaEdit+’s data-format is very restrictive when viewed from the point of view of our
PDD implementation. The structure of the documents MetaEdit+ produces follows the GOPRR-
model (Graph, Object, Port, Role, Relationship). Although this is an approach very suitable for
describing such models, it forgoes one specific feature that is used by our implementation, which is
the usage of representational data for determining the relationship between complex activities and
their contents, and group indicators and their contents. As this data is not directly represented
in the native XML format, it would be very hard to correctly reconstruct the original model in
another tool. This seriously impacts the usability of the format, making it the less favorite choice.

Instead, there is the option to use MERL, or the MetaEdit R* Language, for converting dia-
grams into any format required. Although the language in itself is not very powerful, some tricks
will make any conversion to a textual format possible. This gives us the liberty, and requirement,
to determine a custom data-model that is more applicable to the domain.

On the other hand, it is not possible to import custom XML-files into MetaEdit+ unless they
are in the GOPRR format. To circumvent this problem, an XSLT-stylesheet could be written
to convert the custom XML-documents back to the native format. In order to ensure correct
representation, this would however require the inclusion of MetaEdit+’s own coordinate system.

To allow XML-exporting, a generator had to be defined using the MERL language. The code
for this generator consists of 160 lines of code.

7.4 Latex generation with MERL

The possibility to export PDD’s to XML will be very useful for the creation of the PSKI. However,
PDD still serve a communicational role as well. For this reason, it is very useful to be able to
export PDD’s to other formats. Activity tables, concept tables and maturity matrices can be
derived directly from the model. Using MERL, they can then be exported to other formats such
as HTML or latex.

As this thesis and all case study reports have been written in latex, it was a logical choice to
allow exporting to this format. Therefore, generators have been written that allow exportation of
the activity & concept tables of a PDD, and the generation of a filled-in capability matrix based
on all PDD’s of a company’s product management process. The code for these generators consist
of 235 lines of code.

59

7.4. LATEX GENERATION WITH MERL

60

Chapter 8

Method Increments: Proof of
Concept

The solution proposed in this thesis relies heavily on techniques and notions from the method
engineering field. Some of these techniques, such as employing process-deliverable diagrams for
meta-modeling purposes, have been described and practiced extensively. Also, for method assembly
several approaches are available, as described in chapter 3.3. Others, however, are still relatively
un-elaborated.

The notion that the solution proposed here relies on the most is that of method increments.
Weerd et al. (2007) already described the main concepts that are used when creating method
increments, but the technique has not been put into practice yet. Therefore, the final chapter of
this thesis will describe the creation of a proof-of-concept for method increments.

The proof-of-concept (PoC) focuses on the use of method increments for template generation.
As described earlier, changes made to a process through the PSKI should be facilitated and sup-
ported as much as possible, to ensure the success of the evolution. One technique for doing so
is providing automated templates based on the deliverables of a process. In the case of minor
changes, changes made to a template can be incorporated in the original company documents,
preserving any data already existing.

8.1 Platform

For the creation of the PoC, several technical choices needed to be made. Although it is at this point
unclear whether the current implementation will form the basis for the further implementation of
the PSKI, it is important that choices regarding the platform and the architecture are made
carefully, so as to obtain a reliable solution.

The platform on which the PoC is implemented is Google AppEngine1. AppEngine provides
a complete development stack for building and hosting web applications. The platform can be
used free-of-charge, and no additional web-server is needed, since all applications are hosted in the
Google-’cloud’. This makes it a very pragmatic solution for this project. Also, through several
available API’s, applications can get access to documents hosted in the cloud.

Applications hosted on AppEngine can be implemented in one of two languages; Java2 and
Python3. Making a choice for one these two is rather trivial, and very much dependent on the
preferences of the programmer. Still, both languages have a distinct set of advantages. Some very
strong features of Java are that it is object-oriented, it has automated memory allocation and
garbage collection, it is platform-independent (not really relevant in this case), and it is robust,
due to static typing and strong error-handling.

However, because java-code needs to be compiled into machine-readable byte-code, development
can become a rather tedious process. Especially during the development of a proof-of-concept, it

1http://code.google.com/appengine/
2http://java.sun.com
3http://www.python.org

61

8.1. PLATFORM

is important to be able to quickly implement and test new features. The compilation step stands
in the way of this. This also applies to the robustness of the language. Although much of Java’s
architecture are very interesting on the long run, they can slow down initial development.

Python, on the other hand, has the advantage that it is a very easy language, making it
possible to rapidly create feature-rich applications. Also, there is no need for compilation as it
is an interpreted language, much like PHP or JavaScript. The language itself is rather concise,
making it possible to express a lot of information using small amounts of code. Combined with
dynamic typing, this gives a boost to productivity. However, it is important to keep in mind
that the advantages that the language has in the beginning might become problematic once the
codebase starts growing.

Figure 8.1: Software architecture of the proof-of-concept

Based on these arguments, Python has been selected for the implementation of the PoC. The
IDE used during development is Eclipse4 with the PyDev plug-in5, enabling code-coloring, syntax-
checking and code-completion. The user interface is written in HTML with JavaScript for struc-
turing, and CSS for styling. Figure 8.1 visualizes the software architecture of the PoC.

4http://www.eclipse.org
5http://www.pydev.org

62

CHAPTER 8. METHOD INCREMENTS: PROOF OF CONCEPT

8.2 Functionality

As said, the functionality of the PoC is limited, and restricted to showing the possibilities of
generating templates based on method increments. When a user enters the website, he/she (from
now on, ’he’ will be used) is shown a landing page with information about the project. In the
top-right, the user gets the option to log in to the system. Only users with a valid Google-account
can currently log in.

Once the user is logged in, he is presented a menu where he can select ’method increment’. This
will guide him to a page showing a list of all the spreadsheets in the database (the ’database’ is in
this case the set of Google documents in a Google-account created specifically for this application).
The items in this list can be expanded to show the worksheets per spreadsheet. Once the user
clicks on a worksheet, he is directed to another page.

On this page, he is presented with a deliverable-description, based on the columns in the
worksheet. He can then adapt this deliverable to his wishes, by adding, removing and renaming
items. Once the user submits his changes, the system calculates the differences between the two
deliverables. Based on the delta, the worksheet is adapted, preserving any existing data. The
spreadsheet can then be downloaded, after which the process ends.

8.3 Example

To further describe the proof-of-concept, we will walk through an example step-by-step. The
example that will be used is the transition from prioritization based on the MoSCoW technique to
prioritization using the Wiegers matrix.

Both of these techniques have been around quite a while, and are well-known and widely used
within industry. The MoSCoW technique is one of the core techniques of the DSDM software
development method (Stapleton, 1999), but it was proposed a few years earlier by Clegg & Barker
(1994). It encompasses a very straightforward approach to requirements prioritization, by using a
four-term classification, with the four capitals in MoSCoW standing for ’must have’, ’should have’,
’could have’ and ’won’t have’. The meta-model for the MoSCoW technique is shown in figure 8.2.

Figure 8.2: Prototype

The Wiegers prioritization technique is a bit more advanced, and takes into consideration
multiple perspectives. Although the technique can be made simpler or more complex at will, the
most common factors are relative cost, relative benefit, relative risk and relative penalty. Based
on these factors, a priority score can be calculated. The meta-model for the Wiegers prioritization
technique is shown in figure 8.3. It is depicted as an increment based on figure 8.2, with the green
borders indicating added or changed constructs and the red borders indicating removed constructs.

63

8.3. EXAMPLE

Figure 8.3: Prototype

In this example, we are going to transform a spreadsheet used for MoSCoW-based prioritiza-
tion into a spreadsheet for Wiegers-based prioritization. For this, we first need to log in to the
application. This is done using the standard Google-interface (figure 8.4).

Figure 8.4: Example: logging in to the application

When we have entered the application, we are presented a list of available documents. We
select the document that contains the spreadsheet for prioritization using the MoSCoW-technique.
Figure 8.5 shows an excerpt of the document.

Figure 8.5: Example: the original document

64

CHAPTER 8. METHOD INCREMENTS: PROOF OF CONCEPT

Based on the deliverable ’requirement’, shown in figure 8.3, we then need to alter the deliverable
shown in the application. This can be done using the provided buttons for adding, removing,
renaming and moving attributes. Figure 8.6 shows how this looks in the application.

Figure 8.6: Example: updating the meta-model

Based on the changes we have made in the application interface, the original document is
updated accordingly. This means that the columns now represent the new set of attributes, main-
taining any original data. Figure 8.7 shows an excerpt of the resulting document.

Figure 8.7: Example: the updated document

The proof-of-concept shown above is not complete. Its functionality is limited to changing
templates based on changes made to the meta-model. It does not allow the manipulation of data,
format, or formulas. However, for the sake of this thesis, it suffices in showing the possibilities of
employing web-techniques for manipulating templates automatically.

65

8.3. EXAMPLE

66

Chapter 9

Conclusions

9.1 Main Results

The software industry is showing a major shift, from project-driven software development to
market-driven product development. With this change, the range of influences, issues and benefits
change tremendously. The newly emerging field of software product management is seeing a steady
flow of new techniques and methods that are required to deal with this new situation, developed
both by academia as well as practitioners. To support this field, we propose the creation of a
knowledge infrastructure for software product management. In this thesis, we have made a first
move towards this goal.

First of all, we have shown how process-deliverable can be used to perform assessments of the
SPM processes by combining them with domain knowledge extracted from the reference framework
for SPM and the SPM capability matrix (research question 1).

Additionaly, we have demonstrated how these PDD’s, or the method fragments they represent,
can be modelled and stored effectively using MetaEdit+. This solution is essential for the creation
of a usable method-base, and very useful during the assessment phase (research question 5).

To the question on the current state of software productmanagement, we have attempted to
give an overview of the currently implemented processes by performing case studies at six different
small-to-medium Dutch productsoftware companies (research question 2). The result shows that
most product management activities are generally performed at a rather low level, leaving a lot of
room for improvement.

From the results of the case studies, we extracted some of the most common problems (re-
search question 3). These problems have been generalized from several specific occurrences at each
company, and include a lack of formal processes, missing activities and sub-optimal maturity levels.

The identified problems have provided inspiration for the elaboration of a detailed proposal for
the product software knowledge infrastructure (research question 4). In a set of process-deliverable
diagrams, the entire workflow is described. By providing a method-base with a large variety of
methods and techniques, in combination with experience reports from other professionals, we
hope that such a system will increase the maturity of product software companies, allowing the
development of products with higher quality and more revenue.

Another important concept that is part of the proposed knowledge infrastructure is the method
increment. In this thesis, we have tried to demonstrate how templates can be updated according
to method increments (research question 6). For this purpose, a proof-of-concept has been created
that demonstrates a basic operationalization of method increments in combination with template
creation, in the form of a web application based on the Google platform.

The above answers to the research questions posed at the beginning of this thesis form a first
step towards the realization of an effective solution for improving the function of software product
management.

67

9.2. REFLECTION AND DISCUSSION

9.2 Reflection and Discussion

Although several important issues have been elaborated in this thesis, the product software knowl-
edge infrastructure that we envision is far from being operational. The complexity of such a system
was already known, and this thesis only strengthens the idea that we are dealing with an advanced
concept requiring a lot of research effort.

By zooming in on the earlier developed vision of the PSKI, we have gained a better under-
standing of the requirements. However, at this point, the system remains fairly conceptual. From
this point onwards, each of the areas of the PSKI needs to be addressed in detail, putting to-
gether the puzzle piece by piece. Expertise in several areas will be needed for this, as each part
of the PSKI has very specific challenges, ranging from linguistic analysis for method assembly and
data-optimization for the method base.

An important factor that can never be left out during the elaboration is the fact that the
purpose of the PSKI is the improvement of SPM processes. As a consequence, we are always
dealing with people that bring habits, experiences, and opinions. This should not be overlooked.
Doing so would result in a system that is too rigid, forcing people into ways of working that they
will not accept, thereby foregoing the purpose of the system.

However, if it is done right, than the PSKI has great potential value. We believe that this
solution can increase the maturity of the software industry significantly by providing requirements
managers, product managers, CTO’s and the like with the right tools to optimize their SPM
process. In turn, product quality will rise and costs will fall.

Unfortunately, the detailed PSKI that is presented in this thesis has not been fully validated yet.
As no concrete system exists yet, doing so would have involved asking potential users to imagine
themselves using such a system. This is a tremendous effort, especially due to the complexity of
it, and would likely not have resulted in a valid response. However, as development continues, the
user should not be forgotten. Instead, at several points in time, his opinion should be asked and
corrections should be made according to it.

Ultimately, the largest challenge that we face is of an academic nature. By developing the PSKI,
we state that processes can be modeled, altered, expanded and downsized as if they were puzzles.
Both the computational as well as the social aspect of this statement will prove very challenging.
In this thesis, these topics have hardly been touched upon. However, they will become very clear
once work on the specific parts will begin, and it is important to balance both of them.

9.3 Further Research

The results described in this thesis form a strong basis for the creation of a useful product software
knowledge infrastructure. However, many issues need to be solved before we have reached this
state.

9.3.1 Method Engineering

One of the major questions that needs to be answered is how, on a conceptual level, method
fragments can be trimmed down, extended, adapted or replaced. Also, we will have to determine
how the deliverables that are related to the process can be adapted. Whenever a process changes
in some way, the deliverables that are related to it will change as well.

Solutions are beginning to appear, but none of them are sufficiently advanced for the purpose
of the PSKI. Therefor, we need to determine how methods can change, what are the most common
increments, and how method fragments can be analyzed automatically in order to determine the
way in which they can be combined.

Specific research questions on this topic include how method fragments can be divided into
small, molecular pieces, and how similar activities and deliverables can be identified.

9.3.2 Assessment and Selection

One of the main advantages of the envisioned PSKI is the situational factor. Companies should be
able to obtain a customized product management method based on the specifics of their situation.

68

CHAPTER 9. CONCLUSIONS

Therefor, another major issue in relation to the PSKI will be the selection of appropriate method
fragments based on situational factors.

Even before any method engineering takes place, we need to be able to determine the exact
need of a company. Research regarding the assessment is already taking place, with very promising
results. With the resulting process need in hand, we then face the problem of matching this need
to method fragments that will fill this need. To make this matching possible, selection criteria
will need to be devised. Ideas that have been proposed in this thesis are capabilities, situational
indicators and ratings. However, a structure approach is needed, and more selection criteria might
need to be devised.

The selection and combination of method fragments will for a large share fall within the domain
of linguistics. In order to determine similarities between method fragments, which can then be
used to determine compatibility, linguistic analysis will most likely be the most effective means
next to meta-information.

9.3.3 Implementation

The above issues are related to method fragments and their deliverables on a conceptual level.
However, to be able to use these concepts in a PSKI, we will need to understand what is the
best way to store the method fragments. This issue is for a large part solved by the technique for
storing and creating PDD’s that is proposed in this thesis. Nonetheless, we need to keep looking for
alternative approaches, as the current solution is not perfect. Preferably, a platform-independent
solution is found.

Additionally, choices need to be made regarding the platform on which the PSKI will be im-
plemented. Obviously, this is hardly a scientific dilemma. However, for the success of the PSKI,
it is important to make the right decisions, based on a rigorous analysis of the context, the users,
and their wishes.

9.3.4 Templates

A major improvement of the PSKI over the current software product management website is the
addition of directly usable templates, dynamically generated based on the situational method of a
company. Generation of such templates saves companies a significant amount of time and facilitates
the adoption of a new or adjusted product management method. In this thesis, a first proof-of-
concept has been created, which demonstrates that such functionality is feasible using modern
web-techniques.

A next step is the elaboration of this proof-of-concept into a solution that is able to evolve or
create templates based on actual method increments. Also, as the range of tools that are used
within companies is very wide, more types of templates need to be adaptable. This includes not
only spreadsheets and text-documents, but also tools such as JIRA and Sharepoint. Research is
needed to determine to what extent this is possible.

9.3.5 Method as a Service

Also, by using new web-technologies, a wide range of possibilities becomes available for improving
the visibility and transparency of all aspects of software product management. By visualizing
products, milestones, requirements and stakeholders in new ways, the efficiency and effectiveness of
product managers might be significantly improved. This is especially true when we evolve the PSKI
towards Method-as-a-Service. With the addition of maturity levels, templates and visualizations
to the original PSKI, and the formalization of method storage, selection and combination, this is a
logical next step. Through this, a large portion of the burden that is related to the use of certain
Software Product Management methods can be taken away.

There are still a lot of unknown factors in this respect. For example, the relation between
method fragments and ´services´ will need to be investigated. One can think of automatic trans-
lation of method fragments into appropriate interfaces. For instance, recurring patterns on the
activity-side might be translatable to well-known interface elements such as tabs, wizards, etc. On
the deliverable side, specific patterns might indicate spreadsheets, matrices, etc.

69

9.4. ACKNOWLEDGEMENTS

9.3.6 Social Issues

To conclude, more research is needed on the social aspect of the PSKI. As the system deals with
processes that are performed by people, it raises questions regarding the acceptance of changes to
these processes, the maximum amount of changes that can be introduced at once, etcetera.

Investigating all the items above will take the product software knowledge infrastructure out
of the conceptual domain, and make it a tool that helps product software companies in creating a
solid, mature product management process.

9.4 Acknowledgements

I would like to thank Jolita Ralité for her hospitality during my stay in Geneva, Switzerland. My
stay at the University of Geneva has been very fruitful, for which my appreciations.

Also, I thank my supervisors, Inge van de Weerd and Sjaak Brinkkemper, for their guidance
and comments, always to the point and very supportive.

The final line has no dot
Dots indicate endings

I´ll put a name there instead
Jiska de Ligt

70

References

Abramovici, M., & Soeg, O. C. (2002). Status and Development Trends of Product Lifecycle
Management Systems. Germany: Ruhr-University of Bochum.

Agerfalk, P. J., Brinkkemper, S., Gonzalez-Perez, C., Henderson-Sellers, B., Karlsson, F., Kelly,
S., et al. (2007). Situational Method Engineering: Fundamentals and Experiences. In (pp.
359–368). Springer Boston.

Agerfalk, P. J., & Fitzgerald, B. (2006). Advanced Topics in Database Research Vol. 5. In K. Siau
(Ed.), (pp. 63–78). Idea Group.

Aguiar, M., & Gopinath, G. (2007). Emerging Market Business Cycles: The Cycle Is the Trend.
Journal of Political Economy , 115 (1), 69–102.

Akker, M. van den, Brinkkemper, S., Diepen, G. van, & Versendaal, J. (2005). Flexible Release
Planning Using Integer Linear Programming. In Proceedings of the 11th international workshop
on requirements engineering for software quality (refsq’05).

Ali, R., Yu, Y., Chitchyan, R., Nhlabatsi, A., & Giorgini, P. (2009). Towards a Unified Framework
for Contextual Variability in Requirements. In Proceedings of the 3rd international workshop on
software product management.

Appel, W. (2000). Architecture Capability Assessment. Enterprise Planning and Architecture
Strategies, 4 (7).

Ardis, M., Daley, N., Hoffman, D. M., Siy, H., & Weiss, D. (2000). Software Poduct Lines: a Case
Study. Software Practice and Experience, 30 (7), 825–847.

Aydin, M., & Harmsen, F. (2002). Making a method work for a project situation in the context
of CMM. Product focused software process improvement , 158–171.

Babar, M. A., Verner, J. M., & Nguyen, P. T. (2007). Establishing and maintaining trust in software
outsourcing relationships: An empirical investigation. Journal of Systems and Software, 80 (9),
1438–1449.

Bakker, J. L., & Jain, R. (2002). Next generation service creation using XML scripting languages.
In Ieee international conference on communications (Vol. 4, pp. 2001–2007).

Bekkers, W., Spruit, M., Weerd, I. van de, Vliet, R. van, & Mahieu, A. (2010). A Situational
Assessment Method for Software Product Management. In Proceedings of ecis2010 (accepted).

Bekkers, W., Weerd, I. van de, Brinkkemper, S., & Mahieu, A. (2008). The Influence of Situational
Factors in Software Product Management: An Empirical Study. In Iwspm ’08: Proceedings of the
2008 second international workshop on software product management (pp. 41–48). Washington,
DC, USA: IEEE Computer Society.

Benbasat, I., Goldstein, D. K., & Mead, M. (1987). The Case Research Strategy in Studies of
Information Systems. MIS Quarterly , 11 (3), 369–386.

Brinkkemper, S. (1996). Method engineering: engineering of information systems development
methods and tools. Information and Software Technology , 38 (4), 275–280.

71

REFERENCES

Brinkkemper, S., Saeki, M., & Harmsen, F. (1999). Meta-modelling based assembly techniques for
situational method engineering. Information Systems, 24 (3), 209–228.

Brinkkemper, S., Saeki, M., & Harmsen, F. (2001). A Method Engineering Language for the
Description of Systems Development Methods. In Caise ’01: Proceedings of the 13th interna-
tional conference on advanced information systems engineering (pp. 473–476). London, UK:
Springer-Verlag.

Carmel, E., & Abbott, P. (2006). Configurations of global software development: offshore ver-
sus nearshore. In Gsd ’06: Proceedings of the 2006 international workshop on global software
development for the practitioner (pp. 3–7). New York, NY, USA: ACM.

Clegg, D., & Barker, R. (1994). Case Method Fast-Track: A Rad Approach. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc.

Clements, P., & Northrop, L. (2001). Software Product Lines: Patterns and Practice. Reading,
MA: Addison Wesley.

Cline, M., & Girou, M. (2000). Enduring business themes. Commun. ACM , 43 (5), 101–106.

CMMI Product Team. (2002). Capability Maturity Model Integration (Tech. Rep. No. CMU/SEI-
2002-TR-012). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University.

Cooper, K. M. L. (2006). Can Agility be Introduced into Requirements Engineering for COTS
Component Based Development? In Iwspm ’06: Proceedings of the international workshop on
software product management (pp. 35–37). Washington, DC, USA: IEEE Computer Society.

Cossentino, M., Gaglio, S., Henderson-Sellers, B., & Seidita, V. (2006). A metamodelling-based
approach for method fragment comparison. In Proceedings of the 11th international workshop
on exploring modeling methods in systems analysis and design (emmsad06).

Damian, D. (2007). Stakeholders in global requirements engineering: Lessons learned from practice.
IEEE software, 24 (2), 21–27.

Deneckere, R., Iacovelli, A., Kornyshova, E., & Souveyet, C. (2008). From Method Fragments to
Method Services. In Proceedings of emmsad’08.

Denning, P. J. (1997). A New Social Contract for Research. Communications of the ACM , 40 (2),
9–30.

Dzamashvili-Fogelström, N., & Gorschek, T. (2007). Test-case Driven versus Checklist-based
Inspections of Software Requirements - An Experimental Evaluation. In Wer (pp. 116–126).

Ebert, C. (2006). Understanding the Product Life Cycle: Four Key Requirements Engineering
Techniques. IEEE Software, 23 (3), 19–25.

Ebert, C. (2007). The Impacts of Software Product Management. Journal of Systems and Software,
6 (80), 850–861.

Ebert, C., & Smouts, M. (2003). Tricks and Traps of Initiating a Product Line Concept in Existing
Products. In Proceedings of the international conference on software engineering.

Eisenhardt, K. M. (1989). Building Theories from Case Study Research. The Academy of Man-
agement Review , 14 (4), 532–550.

Fehlmann, T. M. (2008). New Lanchester Theory for Requirements Prioritization. In Iwspm ’08:
Proceedings of the 2008 second international workshop on software product management (pp.
35–40). Washington, DC, USA: IEEE Computer Society.

Fricker, S. (2005). Methodological Support for Engineering Strategic Requirements for Commercial
Products using Goals (Doctoral Symposium). In Proceedings of the ieee international conference
on requirements engineering (re’05). Paris, France.

72

REFERENCES

Fricker, S. (2007). Explaining Stakeholder Negotiation Using Social Goal Networks. In Proceedings
of the international conference on requirements engineering (pp. 387–388).

Fricker, S., Gorschek, T., & Glinz, M. (2008). Goal-Oriented Requirements Communication in New
Product Development. In Iwspm ’08: Proceedings of the 2008 second international workshop on
software product management (pp. 27–34). Washington, DC, USA: IEEE Computer Society.

Fricker, S., & Grunbacher, P. (2008). Negotiation Constellations - Method Selection Framework
for Requirements Negotiation. In Proceedings of refsq08 (pp. 37–51).

Fricker, S., & Stoiber, R. (2008). Relating Product Line Context to Requirements Engineering
Processes Using Design Rationale. In Produktlinien im kontext: Technologie, prozesse, business
und organisation (pik2008) (pp. 240–251).

Gonzalez, R., Gasco, J., & Llopis, J. (2006). Information systems outsourcing: A literature
analysis. Information & Management , 43 (7), 821–834.

Gorchel, L. (2000). The Product Managers Handbook: The Complete Product Management Re-
source (2nd edition). NTC Business Books.

Gorschek, T., & Davis, A. M. (2008). Requirements engineering: In search of the dependent
variables. Information {&} Software Technology , 50 (1-2), 67–75.

Gorschek, T., Svahnberg, M., Borg, A., Loconsole, A., Börstler, J., Sandahl, K., et al. (2007). A
controlled empirical evaluation of a requirements abstraction model. Information {&} Software
Technology , 49 (7), 790–805.

Graham, I., Henderson-Sellers, B., & Younessi, H. (1997). The OPEN process specification. New
York, NY, USA: ACM Press/Addison-Wesley Publishing Co.

Grieves, M. (2005). Product Lifecycle Management: Driving the Next Generation of Lean Thinking.
McGraw-Hill.

Gurp, J. van, Bosch, J., & Svahnberg, M. (2001). On the Notion of Variability in Software Product
Lines. In Proceedings of the working ieee/ifip conference on software architecture (p. 45). Los
Alamitos, CA, USA: IEEE Computer Society.

Guzélian, G., & Cauvet, C. (2007). SO2M: Towards a Service-Oriented Approach for Method
Engineering. In Proceedings of the international conference ike’07.

Harmsen, F., Brinkkemper, S., & Oei, J. L. H. (1994). Situational method engineering for in-
formational system project approaches. In Proceedings of the ifip wg8.1 working conference on
methods and associated tools for the information systems life cycle (pp. 169–194). New York,
NY, USA: Elsevier Science Inc.

Henderson-Sellers, B. (2002). Process Metamodelling and Process Construction: Examples Using
the OPEN Process Framework (OPF). Annals of Software Engineering , 14 , 341–362.

Henderson-Sellers, B., Simons, A., & Younessi, H. (1998). The OPEN toolbox of techniques. New
York, NY, USA: ACM Press/Addison-Wesley Publishing Co.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information Systems
Research. Management Information Systems Quarterly , 28 (1).

Hippel, E. von. (1986). Lead Users: A Source of Novel Product Concepts. Management Science,
32 (7), 791–805.

Hoek, A. van der, Hall, R. S., Heimbigner, D., & Wolf, A. L. (1997). Software release management.
SIGSOFT Softw. Eng. Notes, 22 (6), 159–175.

Jansen, S. (2007). Customer Configuration Updating in a Software Supply Network. Unpublished
doctoral dissertation, Utrecht University.

73

REFERENCES

Jansen, S., & Brinkkemper, S. (2008). Information Systems Research Methods, Epistemology, and
Applications. In A. Cater-Steel & L. Al-Hakim (Eds.), (pp. 120–139). Idea Group Inc.

Jantunen, S., & Smolander, K. (2006). Challenges of Knowledge and Collaboration in Roadmap-
ping. In Iwspm ’06: Proceedings of the international workshop on software product management
(pp. 19–26). Washington, DC, USA: IEEE Computer Society.

Jarke, M., Rolland, C., Sutcliffe, A., & Dömges, R. (1999). The nature of requirements Engineering.
Shaker.

Kappel, T. (2001). Perspectives on Roadmaps: How Organisations Talk about the Future. IEEE
Engineering Management Review , 29 (3), 36–48.

Karlsson, F. (2002). Bridging the gap between method for method configuration and situational
method engineering. Promote IT, Skvde, Sweden.

Karlsson, F., & Å gerfalk, P. J. (2004). Method configuration: adapting to situational character-
istics while creating reusable assets. Information and Software Technology , 46 (9), 619–633.

Karlsson, F., & Wistrand, K. (2006). Combining method engineering with activity theory: theo-
retical grounding of the method component concept. European Journal of Information Systems,
15 (1), 82–90.

Khurum, M., Aslam, K., & Gorschek, T. (2007). A Method for Early Requirements Triage and Se-
lection Utilizing Product Strategies. In Proceedings of the 14th asia-pacific software engineering
conference (pp. 97–104).

Khurum, M., Gorschek, T., & Pettersson, K. (2008). Systematic Review of Solutions Proposed for
Product Line Economics. In Proceedings of mespul09 (pp. 277–284).

Kiritsis, D., Bufardi, A., & Xirouchakis, P. (2003). Research issues on product lifecycle management
and information tracking using smart embedded systems. Advanced Engineering Informatics,
17 (3-4), 189–202.

Kumar, K., & Welke, R. J. (1992). Methodology Engineering R: a proposal for situation-specific
methodology construction. In Challenges and strategies for research in systems development
(p. 269).

Lawrence, B., Wiegers, K., & Ebert, C. (2001). The Top Risks of Requirements Engineering.
IEEE Software, 18 (6), 62–63.

Lee, J., Kang, K. C., & Kim, S. (2004). A Feature-Based Approach to Product Line Production
Planning. In R. L. Nord (Ed.), Proceedings of the software product lines conference (pp. 137–140).
Berlin / Heidelberg: Springer.

Lee, K., Kang, K. C., & Lee, J. (2002). Concepts and Guidelines of Feature Modeling for Product
Line Software Engineering. In C. Gacek (Ed.), Proceedings of the internation conference on
software reuse (pp. 62–77). Berlin / Heidelberg: Springer.

March, S. T., & Smith, G. F. (1995). Design and natural science research on information technology
(Invited Paper). Decision Support Systems (Special issue on WITS ’92), 15 (4), 251–266.

Moon, M., & Yeom, K. (2004). An Approach to Develop Requirement as a Core Asset in Product
Line. In Lecture notes in computer science, no. 3107 (pp. 23–34).

Nguyen, P. T., Babar, M. A., & Verner, J. M. (2006). Critical factors in establishing and maintain-
ing trust in software outsourcing relationships. In Icse ’06: Proceedings of the 28th international
conference on software engineering (pp. 624–627). New York, NY, USA: ACM.

Oza, N. V., Hall, T., Rainer, A., & Grey, S. (2006). Trust in software outsourcing relationships:
An empirical investigation of Indian software companies. Information and Software Technology ,
48 (5), 345–354.

74

REFERENCES

Pastor, O., Fons, J., & Pelechano, V. (2003). OOWS: A method to develop web applications
from web-oriented conceptual models. In Proceedings of iwwost’03. Oviedo: Luis Olsina, Oscar
Pastor, Gustavo Rossi, Daniel Schwabe.

Pastor, O., Insfrán, E., Merseguer, J., Romero, J., & Pelechano, V. (1997). OO-METHOD: An OO
Software Production Environment Combining Conventional and Formal Methods. In Proceedings
of caise’97 (Vol. 1250, pp. 145–159). Barcelona: Springer-Verlag.

Paul, M. C., Curtis, B., Chrissis, M. B., & Weber, C. V. (1993). Capability Maturity Model
for Software (Tech. Rep. Nos. SEI/CMU-93-TR-24, ADA263403). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University.

Phaal, R., Farrukh, C. J. P., & Probert, D. R. (2000). Fast-start technology roadmapping. In
Management of technology, the key to prosperity in the third millennium. proceedings of the iamot
9th international conference (pp. 275–284). Pergamon.

Pichler, M., Rumetshofer, H., & Wahler, W. (2006). Agile Requirements Engineering for a So-
cial Insurance for Occupational Risks Organization: A Case Study. In 14th ieee international
requirements engineering conference.

Potts, C. (1995). Invented Requirements and Imagined Customers: Requirements Engineering for
Off-the-Shelf Software. In Proceedings of the second ieee international symposium on require-
ments engineering.

Racheva, Z., Daneva, M., & Buglione, L. (2008). Supporting the Dynamic Reprioritization of
Requirements in Agile Development of Software Products. In Iwspm ’08: Proceedings of the
2008 second international workshop on software product management (pp. 49–58). Washington,
DC, USA: IEEE Computer Society.

Ralyté, J., Deneckère, R., & Roll, C. (2003). Towards a generic model for situational method
engineering. In Proceedings of the international conference on advanced information systems
engineering 2003, lncs 2681 (pp. 95–110). Springer-Verlag.

Ralyté, J., & Rolland, C. (2001). An Approach for Method Reengineering. In Proceedings of the
20th international conference on conceptual modeling.

Regnell, B., Svensson, R. B., & Olsson, T. (2008). Supporting Roadmapping of Quality Re-
quirements. In Ieee software (Vol. 25, pp. 42–47). Los Alamitos, CA, USA: IEEE Computer
Society.

Regnell, B., Svensson, R. B., & Wnuk, K. (2008). Can We Beat the Complexity of Very Large-
Scale Requirements Engineering? In Refsq ’08: Proceedings of the 14th international conference
on requirements engineering (pp. 123–128). Berlin, Heidelberg: Springer-Verlag.

Rolland, C. (2007). Method Engineering : Achievements,Trends & Challenges. In Keynote
presentations of me’07.

Rolland, C., Prakash, N., & Benjamen, A. (1999). A multi-model view of process modelling.
Requirements Engineering , 4 (4), 169–187.

Rossi, M., Ramesh, B., Lyytinen, K., & Tolvanen, J.-P. (2004). Managing Evolutionary Method
Engineering by Method Rationale. Journal of the Association for Information Systems, 5 (9),
356–391.

Ruhe, G., & Saliu, M. O. (2005). The Art and Science of Software Release Planning. IEEE
Software, 22 (6), 47–53.

Sääksvuori, A., & Immonen, A. (2008). Product Lifecycle Management (3rd ed.). Springer.

Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw-Hill.

75

REFERENCES

Saeki, M. (2003). Embedding metrics into information systems development methods: An applica-
tion of method engineering technique. In Advanced information systems engineering (p. 1031).

Siakas, K., Maoutsidis, D., & Siakas, E. (2006). Trust facilitating good software outsourcing
relationships. Software Process Improvement , 4257 , 171–182.

Simon, H. A. (1981). The Sciences of the Artificial (2nd ed.). Cambridge, MA: MIT Press.

Slooten, K., & Brinkkemper, S. (1993). A method engineering approach to information systems
development. Information System Development Process, 1993 , 167–186.

Slooten, K., & Hodes, B. (1996). Characterizing IS development projects. In Method engineering:
Principles of method construction and tool support, proceedings of the ifip tc8, wg8. 7/8.2 working
conference on method engineering.

Stapleton, J. (1999). DSDM: Dynamic Systems Development Method. In Tools ’99: Proceedings of
the technology of object-oriented languages and systems (p. 406). Washington, DC, USA: IEEE
Computer Society.

Stark, J. (2005). Product lifecycle management: 21st century paradigm for product realisation.
Birkhäuser.

Sudarsan, R., Fenves, S. J., Sriram, R. D., & Wang, F. (2005). A product information modeling
framework for product lifecycle management. Computer-Aided Design, 37 (13), 1399–1411.

Svahnberg, M., Gorschek, T., Eriksson, M., Borg, A., Sandahl, K., Börster, J., et al. (2008).
Perspectives on Requirements Understandability – For Whom Does the Teacher’s Bell Toll? In
Requirements engineering education and training (Vol. 0, pp. 22–29). Los Alamitos, CA, USA:
IEEE Computer Society.

Svahnberg, M., & Karasira, A. (2009). A Study on the Importance of Order in Requirements Pri-
oritisation. In Proceedings of the 3rd international workshop on software product management.

Svensson, R. B., Olsson, T., & Regnell, B. (2008). Introducing Support for Release Planning
of Quality Requirements — An Industrial Evaluation of the QUPER Model. In Iwspm ’08:
Proceedings of the 2008 second international workshop on software product management (pp.
18–26). Washington, DC, USA: IEEE Computer Society.

Tomer, A., Goldin, L., Kuflik, T., Kimchi, E., & Schach, S. R. (2004). Evaluating Software Reuse
Alternatives: A Model and Its Application to an Industrial Case Study. IEEE Transactions on
Software Engineering , 30 , 601–612.

Tsichritzis, D. (1997). Beyond Calculation: The Next Fifty Years of Computing. In (pp. 259–265).
Copernicus.

Vähäniitty, J., Lassenius, C., & Rautiainen, K. (2002). An Approach to Product Roadmapping
in Small Software Product Businesses. In Conference notes of quality connection - 7th european
conference on software quality (ecsq2002).

van De Weerd, I., Brinkkemper, S., Souer, J., & Versendaal, J. (2006). A situational implementa-
tion method for web-based content management system-applications: method engineering and
validation in practice. Software Process: Improvement and Practice, 11 (5), 521–538.

van De Weerd, I., Versendaal, J., & Brinkkemper, S. (2006). A Product Software Knowledge
Infrastructure for Situational Capability Maturation: Vision and Case Studies in Product Man-
agement. In Proceedings of the 12th working conference on requirements engineering: Foundation
for software quality (refsq’06).

Vlaanderen, K., Brinkkemper, S., Jansen, S., & Jaspers, E. (2009). The Agile Requirements
Refinery: Applying SCRUM Principles to Software Product Management. In Proceedings of the
3rd international workshop on software product management.

76

REFERENCES

Weerd, I. van de. (2005). A Design Method for CMS-based Web Applications (Tech. Rep. No.
UU-CS-2005-043). Institute of Computing and Information Sciences, Utrecht University.

Weerd, I. van de, Bekkers, W., & Brinkkemper, S. (2009). Developing a Maturity Matrix for
Software Product Management (Tech. Rep. No. UU-CS-2009-015). Utrecht University.

Weerd, I. van de, & Brinkkemper, S. (2008). Handbook of Research on Modern Systems Analysis
and Design Technologies and Applications. In M. R. Syed & S. N. Syed (Eds.), (pp. 38–58).
Hershey: Idea Group Publishing.

Weerd, I. van de, Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., & Bijlsma, L. (2006a). On
the Creation of a Reference Framework for Software Product Management: Validation and
Tool Support. In Iwspm ’06: Proceedings of the international workshop on software product
management (pp. 3–12). Washington, DC, USA: IEEE Computer Society.

Weerd, I. van de, Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., & Bijlsma, L. (2006b).
Towards a Reference Framework for Software Product Management. In 14th ieee international
requirements engineering conference.

Weerd, I. van de, Brinkkemper, S., & Versendaal, J. (2007). Concepts for Incremental Method
Evolution: Empirical Exploration and Validation in Requirements Management. In Proceedings
of the 19th international conference on advanced information systems engineering.

Wiegers, K. (2009). First things first. Software Development , 7 (9), 48–53.

Wistrand, K., & Karlsson, F. (2004). Method Components – Rationale Revealed. In Proceedings
of the international conference on advanced information systems engineering.

Wnuk, K., Regnell, B., & Schrewelius, C. (2009). Architecting and Coordinating Thousands of
Requirements – An Industrial Case Study. In Proceedings of refsq’09: Requirements engineering
foundation for software quality (pp. 118–123).

Xu, L., & Brinkkemper, S. (2005). Concepts of Product Software: Paving the Road for Urgently
Needed Research. In Proceedings of the first international workshop on philosophical foundations
of information systems engineering.

Yamazaki, S. (2009). Software Product Line Engineering with Personas. In Proceedings of the 3rd
international workshop on software product management.

Yin, R. K. (2003). Case Study Research - Design and Methods. SAGE Publications.

77

REFERENCES

78

Appendix A

Activity Tables PSKI

Activity Sub-Activity Description

Decide on focus Before the process of method improvement can start,
the company needs to decide on the area(s) that will
be focussed on. It can decide to analyze the entire
SPM process, or only a part of it.

Generate questionnaire Based on the areas decided on before, a list of rele-
vant questions can be generated, to be asked during
the next activities.

Model process If the company decides to provide full process-
information, the process and its deliverables need
to be modelled in the form of a process-deliverable
diagram.

Perform interview situational factors If a company decides it needs help during the method
improvement process, an expert could perform parts
of the process. For gathering the initial information,
an interview is an effective instrument.

Perform interview spm maturity The second interview is optional. It can be skipped
if the company decides to provide full process infor-
mation in the form of a PDD.

Perform questionnaire situational factors In case the company wants to perform self-
assessment, one or two questionnaires will be need to
be filled in. The first one of these regards situational
factors, and should not be optional.

Perform questionnaire spm maturity The second questionnaire is optional. It can be
skipped if the company decides to provide full pro-
cess information in the form of a PDD. However, in
the case of self-assessment, creating a PDD might
be too complex, in which case it is easier to fill in a
questionnaire regarding spm maturity.

Table A.1: Activity table for the phase ’Analysis of current situation’

79

Activity Sub-Activity Description

Determine delta Once the two maturity profiles have been created,
they can be combined into a new matrix, showing
the differences between them and thus the areas that
can be improved.

Determine optimal maturity Based on the situational factors and the related situ-
ational factor effects, the system can calculate what
the optimal maturity is for the selected areas.

Determine current maturity Based on the provided maturity information, a com-
pany’s maturity profile can be calculated.

Table A.2: Activity table for the phase ’Analysis of need’

Activity Sub-Activity Description

Combine method fragments Combine the selected METHOD FRAGMENTS into
SOLUTIONS that implement many to all of the re-
quired capabilities

Select method fragments Select all METHOD FRAGMENTS that implement
one or more of the required capabilities

Select solution Based on all the information received, the user
should the SOLUTION that best suits the need of
his company. This SOLUTION will then be used
during the rest of the process.

Verify compatibility Determine whether the selected METHOD FRAG-
MENTS can be combined. This includes check-
ing for compatible deliverables, non-competing pro-
cesses, etc.

Determine effectiveness Calculate the percentage of MISSING CAPABILI-
TIES that is implemented by this SOLUTION.

Determine impact Calculate the amount of changes that needs to be
made to the current process when using this SOLU-
TION

Present solutions Display (a subset of) the SOLUTIONS, so that the
user can browse and evaluate them. This can be
appended with recommendations; SOLUTIONS or
METHOD FRAGMENTS that have been rated high
by company’s with similar SITUATIONAL PRO-
FILES.

Present reviews Users should have direct access to the REVIEWS
associated to METHOD FRAGMENTS, to be able
to form a clear image of each FRAGMENT’s positive
and negative aspects.

Table A.3: Activity table for the phase ’Selection of process alternatives’

80

APPENDIX A. ACTIVITY TABLES PSKI

Activity Sub-Activity Description

Create roadmap of improvement steps The IMPLEMENTATION STEPS need to be layed
out on a ROADMAP, describing the order of the
STEPS, how much time is needed for each (approx-
imately), and the maturity level after each STEP.

Implement step
Integrate method frag-
ment

If the user has provided the system with full process
information, than it should be possible to integrate
each METHOD FRAGMENT into the current PRO-
CESS. As all the METHOD FRAGMENTS in a SO-
LUTION come from different sources, it is probably
best to do this integration step-by-step. The result is
a METHOD INCREMENT, showing the differences
between the old process and the new, proposed pro-
cess.

Present detailed step
description

Once all the METHOD FRAGMENTS in a STEP
have been integrated, the resulting process can be
shown to the user. It can then be evaluated, and
perhaps changed when needed.

Perform step Once the user accepts the proposed METHOD IN-
CREMENT, it needs to be implemented in the com-
pany. This is a complex task, out of the scope of the
PSKI.

Perform step Based on the received information, the user can per-
form the STEP. This will be harder, however, than
when full process information is available, as the user
now needs to manually adapt the current SPM PRO-
CESS at the company.

Present basic step description If the user has only given maturity information, than
no method integration can be performed. Instead,
the METHOD FRAGMENTS that are related to a
STEP can be shown, to provide the user with the
necessary information.

Present roadmap The created ROADMAP is presented to the user,
who can evaluate it, and change it when needed.

Split selected solution into steps The proposed SOLUTION should be split into
smaller IMPLEMENTATION STEPS, as evolution-
ary improvements have more chance of success than
revolutionary change.

Table A.4: Activity table for the phase ’Embedding of process advice’

Activity Sub-Activity Description

Generate templates For DOCUMENTS that are not available to the
PSKI, TEMPLATES can be generated based on
the proposed METHOD FRAGMENTS. These can
then be used by the company to create new DOCU-
MENTS, or to update old ones.

Update documents If the DOCUMENTS that are used during the SPM
PROCESS are accessible to the PSKI, than their
structure can be changed according to the proposed
changes to the process. In this way, the old data is
maintained, while the DOCUMENTS are ready to
be used in the new PROCESS.

Table A.5: Activity table for the sub-phase ’Template creation’

81

Activity Sub-Activity Description

Alter method fragment Based on the submitted CORRECTION, the associ-
ated METHOD FRAGMENT is altered. A history
of these changes should be kept.

Rate method fragment Each METHOD FRAGMENT can be given a rat-
ing, based on the experiences of the USER with this
FRAGMENT.

Review correction The CORRECTION is reviewed by an expert. If
too many CORRECTIONS are being made, then
the review process can be limited to those COR-
RECTIONS that have been submitted by multiple
users.

Review submission REVIEWS should always be check by someone, to
make sure that no unwanted text is published. How-
ever, no censorship should be applied.

Select type of input Users should always be able to give feedback re-
garding METHOD FRAGMENTS or SOLUTIONS
that they have implemented (or tried to implement).
They have several options for giving this feedback;
corrections, reviews and ratings.

Submit correction If the expert deems the correction of good quality,
than he submits it as final.

Suggest correction The user first suggests a correction to a METHOD
FRAGMENT.

Write review The user writes some text regarding the complex-
ity, applicability, effictiveness, etc. of the METHOD
FRAGMENT of SOLUTIO that he implemented (or
tried to implement).

Table A.6: Activity table for the phase ’Knowledge base improvement’

82

Appendix B

Concept Tables PSKI

Concept Description

CAPABILITY One of the activities identified by Weerd et al. (2009).
Properties:

• process
• maturity level

IMPLEMENTED CAPABILITY One of the activities identified by Weerd et al. (2009) that has been
implemented at the company.

PDD For the modelling of method fragments, an approach is used based on
the proposal of Saeki (2003). The technique uses a combination of a
UML activity diagram and a UML class diagram (Weerd & Brinkkem-
per, 2008).
Properties:

• processes
• deliverables
• capabilities

PROCESS AREA Group of activities in the REFERENCE FRAMEWORK FOR SPM
that belong to one level in the hierarchy of SPM artifacts (Weerd et
al., 2006a).

QUESTION An expression of inquiry.

QUESTIONNAIRE A form containing a set of QUESTIONS.

REFERENCE FRAMEWORK
FOR SPM

Framework in which the key process areas, stakeholders and their
relations are modeled (Weerd et al., 2006a).

SELECTED AREA A focus area of the reference framework for SPM that has been deemed
important for the company.

SITUATIONAL FACTOR Any factor relevant for product development and product ser-
vices (Weerd et al., 2006a).
Properties:

• description
• values

Table B.1: Concept table for the phase ’Analysis of current situation’

83

Concept Description

AREAS OF IMPROVEMENT
MATRIX

A CAPABILITY MATRIX indicating the status of each CAPABIL-
ITY, the different statuses being: ’implemented’, ’missing’, ’N/A’,
and ’extra’ (Bekkers et al., 2010).
Properties:

• current maturity levels
• processes
• optimal maturity levels
• delta

CAPABILITY One of the activities identified by Weerd et al. (2009).
Properties:

• process
• maturity level

CAPABILITY MATRIX A matrix providing an overview of all the CAPABILITIES that need
to be implemented to reach a full-grown maturity. The matrix con-
sists of columns and rows, which represent the two dimensions of the
maturity model (Bekkers et al., 2010).

CURRENT CAPABILITY PRO-
FILE

A CAPABILITY MATRIX based on the IMPLEMENTED CAPA-
BILITIES (Bekkers et al., 2010).
Properties:

• processes
• current maturity levels

IMPLEMENTED CAPABILITY One of the activities identified by Weerd et al. (2009) that has been
implemented at the company.

OPTIMAL CAPABILITY PRO-
FILE

A custom CAPABILITY MATRIX tailored to the situational context
of the organization (Bekkers et al., 2010).
Properties:

• processes
• optimal maturity levels

SITUATIONAL FACTOR Any factor relevant for product development and product ser-
vices (Weerd et al., 2006a).
Properties:

• description
• values

SITUATIONAL FACTOR EF-
FECT

A method to model product manager’s knowledge. It reflects what
should be done under certain circumstances (a specific SF value, or
range of values) Bekkers et al. (2010).
Properties:

• condition
• effect

Table B.2: Concept table for the phase ’Analysis of need’

84

APPENDIX B. CONCEPT TABLES PSKI

Concept Description

AREAS OF IMPROVEMENT
MATRIX

A CAPABILITY MATRIX indicating the status of each CAPABIL-
ITY, the different statuses being: ’implemented’, ’missing’, ’N/A’,
and ’extra’ (Bekkers et al., 2010).
Properties:

• current maturity levels
• processes
• optimal maturity levels
• delta

DELTA Set of CAPABILITIES that have been marked as ’missing’ in the
AREAS OF IMPROVEMENT MATRIX.

METHOD BASE The central database that stores all the information required for
the PSKI. It stores METHOD FRAGMENTS, ASSEMBLY RULES,
SITUATIONAL FACTORS, CAPABILITY MATURITIES, SITUA-
TIONAL FACTORS EFFECTS and USER FEEDBACK.

METHOD FRAGMENT A description of an IS engineering method, or any coherent part
thereof (Harmsen et al., 1994).
Properties:

• rating
• situational context
• capabilities
• pdd

MISSING CAPABILITY One of the activities identified by Weerd et al. (2009) that has been
identified as ’missing’ by the AREAS OF IMPROVEMENT MA-
TRIX.
Properties:

• process
• maturity level

REVIEW Feedback from a user regarding his experience with the quality, ap-
plicability, complexity, etc. of a METHOD FRAGMENT. The SIT-
UATIONAL CONTEXT is also provided, to indicate the situation in
which the experience was obtained.
Properties:

• situational context
• text

SELECTED SOLUTION SOLUTION that has been chosen by the user as most suited to his
situation.

Table B.3: Concept table for the phase ’Selection of process alternatives’

85

Concept Description

ASSEMBLY RULE These govern both the combintation of METHOD FRAGMENTS
from different sources, as well as the internal structure of methods.
They are derived from experiences and existing methods (van De
Weerd, Versendaal, & Brinkkemper, 2006).
Properties:

• condition
• effect

DELTA Set of CAPABILITIES that have been marked as ’missing’ in the
AREAS OF IMPROVEMENT MATRIX.

IMPROVEMENT ROADMAP SOLUTIONS should be split into IMPROVEMENT STEPS, which
are layed out on an IMPROVEMENT ROADMAP. This helps man-
agers keep the change process managable.

IMPROVEMENT STEP By dividing SOLUTIONS into STEPS, implementation becomes man-
agable. Each STEP should serve a goal, to make implementation more
successfull. Also, a complexity rating should be calculated, so as to
give managers an indication of the amount of effort required.
Properties:

• complexity
• goal
• description

METHOD BASE The central database that stores all the information required for
the PSKI. It stores METHOD FRAGMENTS, ASSEMBLY RULES,
SITUATIONAL FACTORS, CAPABILITY MATURITIES, SITUA-
TIONAL FACTORS EFFECTS and USER FEEDBACK.

METHOD FRAGMENT A description of an IS engineering method, or any coherent part
thereof (Harmsen et al., 1994).
Properties:

• rating
• situational context
• capabilities
• pdd

METHOD INCREMENT A collection of METHOD FRAGMENTS that have been intro-
duced in the method during the method adaptations between ti and
ti−1 (Weerd et al., 2007).

MISSING CAPABILITY One of the activities identified by Weerd et al. (2009) that has been
identified as ’missing’ by the AREAS OF IMPROVEMENT MA-
TRIX.
Properties:

• process
• maturity level

PDD For the modelling of method fragments, an approach is used based on
the proposal of Saeki (2003). The technique uses a combination of a
UML activity diagram and a UML class diagram (Weerd & Brinkkem-
per, 2008).
Properties:

• processes
• deliverables
• capabilities

SELECTED SOLUTION SOLUTION that has been chosen by the user as most suited to his
situation.

SPM PROCESS The collection of activities that are performed within a company re-
lated to software product management.

Table B.4: Concept table for the phase ’Embedding of process advice’

86

APPENDIX B. CONCEPT TABLES PSKI

Concept Description

DOCUMENT Many DOCUMENTS are used during the SPM PROCESS, including
roadmaps, requirements definition, conceptual solutions, etc.
Properties:

• columns
• sections
• data

IMPROVEMENT STEP By dividing SOLUTIONS into STEPS, implementation becomes man-
agable. Each STEP should serve a goal, to make implementation more
successfull. Also, a complexity rating should be calculated, so as to
give managers an indication of the amount of effort required.
Properties:

• complexity
• goal
• description

METHOD FRAGMENT A description of an IS engineering method, or any coherent part
thereof (Harmsen et al., 1994).
Properties:

• rating
• situational context
• capabilities
• pdd

TEMPLATE DOCUMENTS can be abstracted into TEMPLATES, describing the
structure of a DOCUMENT, i.e. which columns or sections it con-
tains.
Properties:

• columns
• sections

Table B.5: Concept table for the sub-phase ’Template creation’

Concept Description

CORRECTION Any type of suggestion for change, issued by users. This includes
correction of the data-model, corrections of the process, updates of
the descriptions, etc.

METHOD FRAGMENT A description of an IS engineering method, or any coherent part
thereof (Harmsen et al., 1994).
Properties:

• rating
• situational context
• capabilities
• pdd

REVIEW Feedback from a user regarding his experience with the quality, ap-
plicability, complexity, etc. of a METHOD FRAGMENT. The SIT-
UATIONAL CONTEXT is also provided, to indicate the situation in
which the experience was obtained.
Properties:

• situational context
• text

SOLUTION A combination of METHOD FRAGMENTS that combinedly imple-
ment (a subset of) the missing CAPABILITIES as identified by the
AREAS OF IMPROVEMENT MATRIX. Two scores are calculated,
effectiveness and impact, to indicate the quality of a solution.
Properties:

• effectiveness
• impact

Table B.6: Concept table for the phase ’Knowledge base improvement’

87

