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Abstract

In 1987, Simonson conjectured that everyk-outerplanar graph of the maximum degreed
has spanning tree congestion at mostk ·d [Math. Syst. Theory 20 (1987) 235–252]. We show
that his conjecture is true and the bound is tight for outerplanar graphs andk-outerplanar
graphs of maximum degree 4. We give a precise characterization of the spanning tree con-
gestion of outerplanar graphs, and thus show that the spanning tree congestion of outerplanar
graphs can be determined in linear time.

1 Introduction

In this paper, we settle a conjecture posed by Simonson [17] in 1987. His conjecture claims that
everyk-outerplanar graphG has spanning tree congestion at mostk · ∆(G), where∆(G) is the
maximum degree ofG. We prove that Simonson’s conjecture is true. Moreover, we establish
tightness of the bound, by giving outerplanar graphs andk-outerplanar graphs of maximum de-
gree 4 whose spanning tree congestion equalskd. We also show that the spanning tree congestion
of outerplanar graphs can be determined in linear time.

The parameter of spanning tree congestion is defined as follows. LetG be a graph andT a
spanning tree ofG. Thedetour for an edge{u, v} ∈ E(G) is the uniqueu–v path inT . We define
the congestion of e ∈ E(T ), denoted bycngG,T (e), as the number of edges inG whose detours
containe. Thecongestion of G in T , denoted bycngG(T ), is the maximum congestion over all
edges inT . Thespanning tree congestion of G, denoted bystc(G), is the minimum congestion
over all spanning trees ofG.

Spanning tree congestion was formally defined by Ostrovskii[14] in 2004. Prior to Ostro-
vskii [14], Simonson [17] studied the parameter for outerplanar graphs as a variation of cutwidth.
He showed that every outerplanar graphG has spanning tree congestion at most∆(G) + 1. He
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also showed that there exists some outerplanar graphG such thatstc(G) = ∆(G). Ostrovskii [15]
investigated the parameter for planar graphs, and presented some lower and upper bounds on
the parameter. Recently, Otachi, Bodlaender, and van Leeuwen have shown that the problem of
determining the spanning tree congestion is NP-hard even for planar graphs [16]. The parameter
has been studied intensively [17, 14, 4, 8, 10, 11, 13, 15, 16,9, 12].

2 Preliminaries

Let G be a connected graph. ForS ⊆ V(G), we denote byG[S ] the subgraph induced byS . For
an edgee ∈ E(G), we denote byG − e the graph obtained fromG by the deletion ofe. Similarly,
for a vertexv ∈ V(G), we denote byG − v the graph obtained fromG by the deletion ofv. The
neighborhood ofv in G is denoted byNG(v). The distance betweenu andv in G, denoted by
distG(u, v), is the length of a shortestu–v path inG.

An embedding of a graph into the surface isplanar if it has no edge crossing. A graph is
planar if it has a planar embedding. A planar graph with a certain planar embedding is called a
plane graph. A planar embedding of a graph is 1-outerplanar, if all vertices lie on the exterior
face. Fork ≥ 2, a planar embedding of a graph isk-outerplanar, if the embedding obtained from
the original embedding by removing all vertices on the exterior face is a (k − 1)-outerplanar em-
bedding. A plane graph with ak-outerplanar embedding is called ak-outerplanar graph. Usually
1-outerplanar graphs are calledouterplanar graphs. Theouterplanarity op(G) of a planar graph
G is the minimumk such thatG has ak-outerplanar embedding.

The dual graph G∗ of a plane graphG is the graph that has the vertex setF (G), the faces
of G, and in which two verticesf , f ′ ∈ F (G) are adjacent if and only if the two facesf and f ′

have a common edge ofG. If edgee ∈ E(G) is adjacent to facesf and f ′, then we call the edge
{ f , f ′} ∈ G∗ the dual edge of e. We say thate ∈ E(G) is anouter edge of G if it lies on the exterior
face. For each outer edgee and each inner faceF of G, define theindex ie(F) as the length of a
shortest path inG∗ which joins the exterior faceΩ with F and satisfies the additional condition:
its first edge ise∗. For each inner faceF of G, we define theabsolute index i(F) = mine ie(F),
where the minimum is taken over all outer edgese.

In this paper, we only consider simple planar graphs; that is, we consider finite undirected
planar graphs without loops and parallel edges. Note that the dual of a simple plane graph may
have loops or parallel edges.

3 Upper bound for k-outerplanar graphs

In this section, we present our main result. That is, we provethat Simonson’s conjecture is
true and the bound in the conjecture is tight in some sense. Although Simonson’s proof for
outerplanar graphs was somewhat involved, our proof fork-outerplanar graphs is very simple.
The idea is to use the connection between spanning tree congestion and edge remember number.
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3.1 Proof of the bound

For the sake of simplicity, we first extend the notion of spanning tree congestion to disconnected
graphs. We define thespanning tree congestion of a disconnected graph to be the maximum
spanning tree congestion over all its connected components.

A maximal spanning forest T of a graphG contains a spanning tree of every connected
component ofG. Let G be a graph andT its maximal spanning forest. Afundamental cycle
for an edge{u, v} ∈ E(G) \ E(T ) is the cycle consists of{u, v} and the uniqueu–v path inT .
Bodlaender [2] defined theedge remember number erG(T ) as the maximum over all edgese ∈
E(T ) of the number of fundamental cycles that containe. From the definitions, the following
proposition follows.

Proposition 3.1. For any graph G and its maximal spanning forest T , erG(T ) + 1 = cngG(T ).

Proof. Let G be a graph,T its maximal spanning forest, ande ∈ E(G)\E(T ). LetC andD be the
fundamental cycle and the detour fore, respectively. Obviously,C = D ∪ {e}. This implies one-
to-one correspondence between the detours and the fundamental cycles for edges inE(G)\E(T ).
Since the congestion of an edge inT counts the edge itself as well,cngG(T ) = erG(T ) + 1. �

To bound the treewidth ofk-outerplanar graphs, Bodlaender [2] showed the following lemma.

Lemma 3.2 ([2, Lemma 79]). Let G = (V, E) be a plane graph, H = (V, E′) be the graph obtained
from G by removing all outer edges, and T ′ = (V, F′) be a maximal spanning forest of H. Then
there exists a maximal spanning forest T = (V, F) of G, such that erG(T ) ≤ erH(T ′) + 2.

Proposition 3.1 and Lemma 3.2 together imply the following corollary.

Corollary 3.3. Let G = G0 be a plane graph, and Gp be the graph obtained from Gp−1 by
removing all outer edges. Then stc(G) ≤ stc(Gp) + 2p.

Now, we can prove the following theorem, which settles Simonson’s conjecture. Note that
we prove a slightly stronger bound for the odd maximum degreecase.

Theorem 3.4. For any k-outerplanar graph G with the maximum degree d, stc(G) ≤ kd. Fur-
thermore, if d is odd, then stc(G) ≤ k(d − 1)+ 1.

Proof. Let Gp be the graph defined in Corollary 3.3. Letv be a vertex on the exterior face ofGp

for somep, where 0≤ p ≤ kd/2. For convenience, we denote bydegp(v) the degree ofv in the
graphGp. Observe thatdegp+1(v) = max{0, degp(v) − 2}. We assumek ≥ 1.

If d is even, thendegp+d/2(v) = 0. Hence,Gkd/2 has no edge, and thusstc(Gkd/2) = 0. By
Corollary 3.3,stc(G) ≤ stc(Gkd/2) + kd = kd.

If d is odd, thendegp+⌊d/2⌋(v) ≤ 1. Thus we haveop(Gp+⌊d/2⌋) < op(Gp), since vertices
of degree one do not contribute to outerplanarity. This implies op(G(k−1)⌊d/2⌋) ≤ 1, and thus
∆(Gk⌊d/2⌋) ≤ 1. Therefore,stc(G) ≤ stc(Gk⌊d/2⌋)+ 2k⌊d/2⌋ ≤ 1+ 2k⌊d/2⌋ = k(d − 1)+ 1 ≤ kd. �
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3.2 Tightness of the bound

We shall discuss the tightness of the bounds. Fork = 1, that is, for the case of outerplanar graphs,
we can show that the bounds is tight.

Theorem 3.5. For any d ≥ 1, there exists an outerplanar graph G with the maximum degree d
such that stc(G) = d.

Proof. Simonson [17] proved this fact for all evend ≥ 2. Thus we can assumed is odd. If
d = 1, then the proposition is trivially true (G is an edgeK2). For each oddd ≥ 3, we define the
outerplanar graphHd as follows (see Figure 1): the initial graphH3 is a square with a diagonal
edge; ford ≥ 5, Hd is obtained fromHd−2 by attaching triangles to all outer edges. Clearly,
∆(Hd) = d andHd is outerplanar. Letu andv be the vertices marked with black dots in Figure 1.
It is easy to see that, there ared edge disjointu–v paths inHd. On the other hand, any spanning
tree ofHd has only oneu–v path. This impliesstc(Hd) ≥ d [14]. �

u

v

u

v

u

v

u

v

H5 H7 H9H3

Figure 1: GraphsHd for d ∈ {3, 5, 7, 9}.

Next we show the tightness of the bound fork ≥ 2. Thek × k grid Γk is the graph that has
the vertex set{(i, j) | i, j ∈ {1, . . . , k}} and in which two vertices (i, j) and (i′, j′) are adjacent if
and only if |i − i′| + | j − j′| = 1. Clearly,op(Γ2k) ≤ k and∆(Γ2k) = 4 for k ≥ 2. It is known
that stc(Γ2k) = 2k [8, 4]. Hence, we havestc(Γ2k) ≥ op(Γ2k) · ∆(Γ2k)/2. This example shows
the bound is tight up to the constant factor 1/2. Modifying this example, we can eliminate the
constant factor. TheD-grid, denoted byDk, is the induced subgraph ofΓ4k obtained by removing
isosceles right triangles with side lengths 2k − 2 from each corner (see Figure 2). We assume
that the planar embedding ofDk is induced from the natural embedding of the original gridΓ4k

as depicted in Figure 2. It is easy to see thatop(Dk) ≤ k and∆(Xk) = 4. To provestc(Dk) = 4k,
we need Ostrovskii’s result.

Ostrovskii [15] defined the center-tail system and its congestion indicator for planar graphs.
The system is designed to give a lower bound on the spanning tree congestion of planar graphs.
Here, we use that system. Note that we use a simplified system,which contains only one vertex
as its center. The original system can contain a set of centervertices. See [15] for the original
definition.

A center-tail system S in the dual graphG∗ of a plane graphG consists of:
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Γ8 D2

Figure 2: GridΓ8 and D-gridD2.

1. A center vertexC of G∗.

2. A set of paths inG∗ joining the centerC with the exterior faceΩ. Each such path is called
a tail. Thetip of a tail is the last vertex of the corresponding path before it reachesΩ.

3. An assignment ofopposite tails for outer edges ofG. This means: For each outer edgee
of the graphG one of the tails is assigned to be the opposite tail ofe, it is denoted byT (e)
and its tip is denoted byt(e).

The congestion indicator CI(S) of a center-tail systemS is defined as the minimum of the fol-
lowing two numbers:

1. mine ie(t(e)) + 1, where the minimum is taken over all outer edges ofG.

2. mine minF∈T (e) mine′,e(ie(F) + ie′(F′) + 1), where the first minimum is taken over all outer
edges ofG; the second minimum is over verticesF from the pathT (e) different fromt(e)
and the exterior face,F′ is the vertex inT (e) which follows immediately afterF if one
moves alongT (e) from F to t(e); and the third minimum is over all outer edges different
from e.

Theorem 3.6 ([15]). Let S be a center-tail system in a plane graph G. Then stc(G) ≥ CI(S).

Using the Ostrovskii’s center-tail system, we can show thatstc(Dk) = 4k.

Theorem 3.7. For any k ≥ 1, there exists a k-outerplanar graph G of maximum degree 4 such
that stc(G) = 4k.

Proof. It suffices to prove thatstc(Dk) = 4k. We define the center-tail system forDk as follows
(see Figure 3(a)):

1. The centerC is the face depicted in Figure 3(a).

2. We have two tails: one tail goes straight to the north; another one to the south. We call
these tails thenorth tail and thesouth tail, respectively.
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3. For each outer edge on the clockwise path between (1, 2k) and (4k, 2k + 1), we assign the
south tail as its opposite tail. For the remaining outer edges, we assign the north tail.
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Figure 3: Center-tail system forD-grids (k = 3).

First we evaluate the first value of the congestion-indicator of this system. Lete be an outer
edge. Observe that any shortestΩ–t(e) path with the first edgee∗ can be converted to a shortest
Ω–t(e) path passing through the centerC. It is easy to see thatie(C) = 2k for any outer edgee
(see Figure 3(b)). Hence, we haveie(t(e)) + 1 = ie(C) + distD∗k

(C, t(e)) + 1 = 4k, as required.
Next we evaluate the second value of the congestion-indicator. Let e be an outer edge. Let

T (e) = (t0, t1, . . . , t2k−1) be the opposite tail ofe, wheret0 = C andt2k−1 = t(e). Clearly,ie(t j) =
2k + j andi(t j) = 2k − j (see Figure 3(b) and 3(c)). Hence, for any outer edgee′ other thane,

ie(t j) + ie′(t j+1) + 1 ≥ ie(t j) + i(t j+1) + 1 = (2k + j) + (2k − ( j + 1))+ 1 = 4k.

We havestc(Dk) ≥ 4k by Theorem 3.6, andstc(Dk) ≤ 4k by Theorem 3.4. �

4 Linear time algorithm for outerplanar graphs

It is known thatk-outerplanar graphs have treewidth at most 3k − 1 [2]. Thus, one expects that
the problem can be solved in polynomial time fork-outerplanar graphs. However, using standard
dynamic programming for graphs of bounded treewidth for thespanning tree congestion problem
appears to give algorithms with a running time of the formO(n f (k)), i.e., belong to XP. It is still
open if there exists an algorithm for the spanning tree congestion ofk-outerplanar graphs whose
running time is of the formO( f (k) · n), or if this problem belongs to the class FPT. However, we
present in this section a simple linear time algorithm for determining the spanning tree congestion
of outerplanar graphs. That is, we prove the following theorem.

Theorem 4.1. Given outerplanar graph G, stc(G) can be determined in linear time.
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Our algorithm is based on an elegant characterization of thespanning tree congestion of
outerplanar graphs, Theorem 4.3, which is a variant of an upper bound given by Ostrovskii [15].

From the definition of the spanning tree congestion of graphs, it is easy to see that the span-
ning tree congestion of a graph is the maximum spanning tree congestion over all its biconnected
components. The biconnected components of a graph can be obtained in linear time [7]. Thus
we assume graphs are biconnected in the rest of this section.We also assume that graphs are
not cycles since any cycle has spanning tree congestion two.It is easy to see that ifG is a sim-
ple biconnected outerplanar graph andG is not a cycle, then each vertex ofG∗ has at least two
neighbors. Ostrovskii [15] showed the following upper bound.

Lemma 4.2 ([15]). For any plane graph G, stc(G) ≤ maxF,F′ (i(F)+i(F′))+1, where the maximum
is taken over all pairs F, F′ of inner faces with a common edge.

He also showed that the bound is not tight for some planar graphs. We can prove, however,
that the bound is tight for outerplanar graphs. That is, we will prove the following theorem,
which itself is of interest in the graph-theoretical point of view.

Theorem 4.3. For any outerplanar graph G, stc(G) = maxF,F′(i(F) + i(F′)) + 1, where the
maximum is taken over all pairs F, F′ of inner faces with a common edge.

Ostrovskii [15] showed that for any plane graphG, a spanning tree whose congestion meets
the bound can be constructed as follow: take the dualG∗ of G; construct a breadth first search
treeT ∗ of G∗ rooted at the exterior face ofG; remove edgese from G if whose dual edgese∗

appear inT ∗; resultant graph is the desired tree. It is easy to see that these processes can be done
in linear time, and maxF,F′(i(F)+ i(F′)) can be calculated by usingT ∗ in linear time also. Hence,
Theorem 4.3 implies Theorem 4.1.

To prove Theorem 4.3, we use a connection between the spanning tree congestion and the
tree spanners of planar graphs. LetG be a graph andT a spanning tree ofG. If distT (u, v) ≤ t for
any{u, v} ∈ E(G), thenT is atree t-spanner of G [3]. We denote bytsp(G) the minimum number
t such thatG has a treet-spanner. Since a cut inG corresponds to a cycle inG∗, the next relation
holds.

Lemma 4.4 ([5]). For any connected plane graph G, stc(G) = tsp(G∗) + 1.

We define theweak dual Gw of a plane graphG asG∗ −Ω, whereΩ is the exterior face ofG.
It is well known that ifG is a biconnected outerplanar graph, thenGw is a tree (see [6, 1]). Now,
we are ready to prove Theorem 4.3.

Theorem 4.3. Let G∗ be a dual ofG andΩ ∈ V(G∗) the exterior face vertex ofG∗. ThusGw
=

G∗−Ω. Let {F, F′} be an edge inG∗ such thatF andF′ maximizei(F)+ i(F′). It suffices to show
that tsp(G∗) ≥ i(F) + i(F′) by Lemma 4.4. Note thati(R) = distG∗(R,Ω) for anyR ∈ V(G∗). Let
T ∗ be a spanning tree ofG∗ such thatT ∗ is a treetsp(G∗)-spanner ofG∗. We have two cases.

[Case 1] {F, F′} < E(T ∗): SinceGw is a tree, there is noF–F′ path inGw − {F, F′}, and thus
the uniqueF–F′ path inT ∗ contains the exterior vertexΩ. Hence, we have

tsp(G∗) ≥ distT ∗(F, F
′) = distT ∗(F,Ω) + distT ∗(F

′,Ω) ≥ distG∗(F,Ω) + distG∗(F
′,Ω).
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[Case 2] {F, F′} ∈ E(T ∗): Let T ∗1 andT ∗2 be the components ofT ∗ − {F, F′}. Without loss of
generality, we assume thatF,Ω ∈ T ∗1 andF′ ∈ T ∗2. We also assume that the treesT ∗ andGw are
rooted atF. Let T ∗

Ω
be the subtree ofT ∗1 rooted atΩ. We have the following claim (see Figure 4).

Claim 4.5. There exist vertices R ∈ V(T ∗
Ω
) and R′ ∈ V(T ∗2) such that {R,R′} ∈ E(G∗).

Claim 4.5. Suppose that the claim does not hold. Recall that any vertex has at least two neighbors
in G∗. Thus any leaf of the treeGw is adjacent toΩ in G∗. Let R′ be a leaf ofT ∗2. From the
assumption,R′ is not adjacent to any vertex ofT ∗

Ω
in G∗, and thusR′ is not a leaf ofGw. Hence,

R′ has at least two neighbors inGw. Let NT ∗(R′) = {p(R′)} andR ∈ NGw(R′) \ {p(R′)}.
SinceR < V(T ∗

Ω
), the uniqueR–R′ pathP in T ∗ does not containΩ. This implies thatP is

the uniqueR–R′ path inGw as well. SinceR′ is a leaf ofT ∗, P containsp(R′). This implies
that P is not a single edge{R,R′}, sinceR , p(R′). Therefore, the pathP ⊆ Gw and the edge
{R,R′} ∈ E(Gw) together form a cycle inGw. This contradicts thatGw is a tree. �

R R′
{R,R′} ∈ E(G∗)

Ω
T∗1 T∗2

F′F

Figure 4: Illustration of Claim 4.5.

Let R andR′ be the vertices in the above claim. Clearly,{R,R′} < E(T ∗). SincedistT ∗(F, F′) =
distG∗(R′,R) = 1, we have

distT ∗(R,R
′) = distT ∗(R,Ω) + distT ∗(Ω, F) + distT ∗(F, F

′) + distT ∗(F
′,R′)

= distT ∗(Ω, F) + distT ∗(F
′,R′) + distG∗(R

′,R) + distT ∗(R,Ω)

≥ distG∗(Ω, F) + distG∗(F
′,Ω).

This implies thattsp(G∗) ≥ distG∗(Ω, F) + distG∗(F′,Ω), as required. �

5 Conclusions

In this paper, we obtained an upper bound ofk·d for the spanning tree congestion ofk-outerplanar
graphs with maximum degreed, and gave examples where this bound is tight, for outerplanar
graphs, andk-outerplanar graphs of maximum degree four. We also have obtained a characteriza-
tion of the spanning tree congestion of outerplanar graphs,which enabled a linear time algorithm
for the problem on outerplanar graphs.

An interesting open problem is the complexity of determining the spanning tree congestion
of k-outerplanar graphs. Taking the outerplanarityop(G) = k as parameter, does this problem
belong to the class FPT?
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