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Abstract

In 1987, Simonson conjectured that evirguterplanar graph of the maximum degree
has spanning tree congestion at most [Math. Syst. Theory 20 (1987) 235-252]. We show
that his conjecture is true and the bound is tight for outerat graphs an#é-outerplanar
graphs of maximum degree 4. We give a precise charactenizafithe spanning tree con-
gestion of outerplanar graphs, and thus show that the spgineie congestion of outerplanar
graphs can be determined in linear time.

1 Introduction

In this paper, we settle a conjecture posed by Simonson fl7987. His conjecture claims that
everyk-outerplanar grapl has spanning tree congestion at miosiA(G), whereA(G) is the
maximum degree o&. We prove that Simonson’s conjecture is true. Moreover, stal#dish
tightness of the bound, by giving outerplanar graphslaodterplanar graphs of maximum de-
gree 4 whose spanning tree congestion edkdal$Ve also show that the spanning tree congestion
of outerplanar graphs can be determined in linear time.

The parameter of spanning tree congestion is defined asvillbetG be a graph and a
spanning tree ofs. Thedetour for an edgdu, v} € E(G) is the uniquas—v path inT. We define
the congestion of e € E(T), denoted bycngg 1(€), as the number of edges & whose detours
containe. Thecongestion of G in T, denoted byng(T), is the maximum congestion over all
edges inT. Thespanning tree congestion of G, denoted bystc(G), is the minimum congestion
over all spanning trees @.

Spanning tree congestion was formally defined by Ostroy&HKij in 2004. Prior to Ostro-
vskii [14], Simonson [17] studied the parameter for outenglr graphs as a variation of cutwidth.
He showed that every outerplanar graphhas spanning tree congestion at mogs) + 1. He
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also showed that there exists some outerplanar géaginch thastc(G) = A(G). Ostrovskii [15]
investigated the parameter for planar graphs, and predesaime lower and upper bounds on
the parameter. Recently, Otachi, Bodlaender, and van Leeiave shown that the problem of
determining the spanning tree congestion is NP-hard evepldoar graphs [16]. The parameter
has been studied intensively [17, 14, 4, 8, 10, 11, 13, 199187].

2 Préeiminaries

Let G be a connected graph. F8rc V(G), we denote by5[S] the subgraph induced . For
an edgee € E(G), we denote by — e the graph obtained froi® by the deletion o&. Similarly,
for a vertexv € V(G), we denote bys — v the graph obtained fror® by the deletion olr. The
neighborhood oW in G is denoted byNg(v). The distance betweanandv in G, denoted by
dists(u, v), is the length of a shortestv path inG.

An embedding of a graph into the surfaceplanar if it has no edge crossing. A graph is
planar if it has a planar embedding. A planar graph with a certaimatambedding is called a
plane graph. A planar embedding of a graph isalterplanar, if all vertices lie on the exterior
face. Foik > 2, a planar embedding of a graphkisuterplanar, if the embedding obtained from
the original embedding by removing all vertices on the egtdace is a k — 1)-outerplanar em-
bedding. A plane graph withlaouterplanar embedding is called-@uterplanar graph. Usually
1-outerplanar graphs are calledterplanar graphs. Theouterplanarity op(G) of a planar graph
G is the minimumk such thatG has ak-outerplanar embedding.

The dual graph G* of a plane grapl@ is the graph that has the vertex $e(G), the faces
of G, and in which two verticed, f’ € #(G) are adjacent if and only if the two facésand f’
have a common edge &. If edgee € E(G) is adjacent to face§ and f’, then we call the edge
{f, '} € G* thedual edge of e. We say thae € E(G) is anouter edge of G if it lies on the exterior
face. For each outer edgeand each inner faceé of G, define thandex i(F) as the length of a
shortest path i165* which joins the exterior fac with F and satisfies the additional condition:
its first edge i". For each inner fac& of G, we define thebsolute index i(F) = mingie(F),
where the minimum is taken over all outer edges

In this paper, we only consider simple planar graphs; thawes consider finite undirected
planar graphs without loops and parallel edges. Note tlattial of a simple plane graph may
have loops or parallel edges.

3 Upper bound for k-outerplanar graphs

In this section, we present our main result. That is, we prbnae Simonson’s conjecture is
true and the bound in the conjecture is tight in some senséhodgh Simonson’s proof for

outerplanar graphs was somewhat involved, our prookfouterplanar graphs is very simple.
The idea is to use the connection between spanning tree stimgand edge remember number.



3.1 Proof of thebound

For the sake of simplicity, we first extend the notion of spagriree congestion to disconnected
graphs. We define thgpanning tree congestion of a disconnected graph to be the maximum
spanning tree congestion over all its connected components

A maximal spanning forest T of a graphG contains a spanning tree of every connected
component ofG. Let G be a graph and its maximal spanning forest. Aundamental cycle
for an edge{u,v} € E(G) \ E(T) is the cycle consists diu, v} and the uniquerv path inT.
Bodlaender [2] defined thedge remember number erg(T) as the maximum over all edgese
E(T) of the number of fundamental cycles that containFrom the definitions, the following
proposition follows.

Proposition 3.1. For any graph G and its maximal spanning forest T, erg(T) + 1 = cngg(T).

Proof. LetG be a graphT its maximal spanning forest, ard E(G) \ E(T). LetC andD be the
fundamental cycle and the detour respectively. ObvioushC = D U {e}. This implies one-
to-one correspondence between the detours and the funtirogeies for edges i&(G) \ E(T).
Since the congestion of an edgelircounts the edge itself as wethgg(T) = erg(T) +1. O

To bound the treewidth d¢-outerplanar graphs, Bodlaender [2] showed the followamma.

Lemma3.2([2, Lemma79]) Let G = (V, E) beaplanegraph, H = (V, E’) be the graph obtained
from G by removing all outer edges, and T’ = (V, F’) be a maximal spanning forest of H. Then
there exists a maximal spanning forest T = (V, F) of G, such that erg(T) < erpy(T’) + 2.

Proposition 3.1 and Lemma 3.2 together imply the followingotliary.

Corollary 3.3. Let G = Gy be a plane graph, and G, be the graph obtained from G,_; by
removing all outer edges. Then stc(G) < stc(G,) + 2p.

Now, we can prove the following theorem, which settles Sismrs conjecture. Note that
we prove a slightly stronger bound for the odd maximum degese.

Theorem 3.4. For any k-outerplanar graph G with the maximum degree d, stc(G) < kd. Fur-
thermore, if d isodd, then stc(G) < k(d — 1) + 1.

Proof. Let G, be the graph defined in Corollary 3.3. hebe a vertex on the exterior face Gf,
for somep, where 0< p < kd/2. For convenience, we denote gg,(v) the degree of in the
graphGy. Observe thatleg,,;(v) = maxo0, deg,(v) — 2}. We assumé& > 1.

If dis even, therdeg,.4,(v) = 0. HenceGyy2 has no edge, and thee(Gyq2) = 0. By
Corollary 3.3,stc(G) < stc(Gyg,2) + kd = kd.

If dis odd, thendeg,, 4(v) < 1. Thus we havep(Gp,42) < 0p(Gp), since vertices
of degree one do not contribute to outerplanarity. This iggbp(Gyk-1y4/2)) < 1, and thus
A(Gydyz)) < 1. Thereforeste(G) < ste(Gyaz)) +2kld/2] < 1+2k|d/2] =k(d-1)+1<kd. O



3.2 Tightnessof the bound

We shall discuss the tightness of the bounds.k~erl, that is, for the case of outerplanar graphs,
we can show that the bounds is tight.

Theorem 3.5. For any d > 1, there exists an outerplanar graph G with the maximum degree d
such that stc(G) = d.

Proof. Simonson [17] proved this fact for all eveh> 2. Thus we can assuntkis odd. If

d = 1, then the proposition is trivially truégX is an edgeK,). For each oddl > 3, we define the
outerplanar graplty as follows (see Figure 1): the initial graphy is a square with a diagonal
edge; ford > 5, Hy is obtained fromHy_, by attaching triangles to all outer edges. Clearly,
A(Hg) = d andHy is outerplanar. Let andv be the vertices marked with black dots in Figure 1.
It is easy to see that, there ateedge disjoinu—v paths inHgy. On the other hand, any spanning

tree ofHy has only onarv path. This impliestc(Hy) > d [14]. |
u
Y
Hs Hs H-

Figure 1: Graph#y ford € {3,5,7,9}.

Next we show the tightness of the bound ko 2. Thek x k grid I is the graph that has
the vertex set(i, j) | i, ] € {1,...,Kk}} and in which two verticesi(j) and {’, ') are adjacent if
and only if|i —i'| + |] — J'| = 1. Clearly,op(I'a) < kandA(I'x) = 4 fork > 2. Itis known
thatstc(I'a) = 2K [8, 4]. Hence, we havetc(I'x) > op(I'a) - A(T'x)/2. This example shows
the bound is tight up to the constant factg@1 Modifying this example, we can eliminate the
constant factor. Th®-grid, denoted byDy, is the induced subgraph biy obtained by removing
isosceles right triangles with side lengths-22 from each corner (see Figure 2). We assume
that the planar embedding BX is induced from the natural embedding of the original drid
as depicted in Figure 2. It is easy to see w@Dy) < k andA(Xy) = 4. To provestc(Dy) = 4Kk,
we need Ostrovskii's result.

Ostrovskii [15] defined the center-tail system and its catige indicator for planar graphs.
The system is designed to give a lower bound on the spanreagtmgestion of planar graphs.
Here, we use that system. Note that we use a simplified systhiolh contains only one vertex
as its center. The original system can contain a set of cestéices. See [15] for the original
definition.

A center-tail system S in the dual grapl&* of a plane graplé consists of:
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Figure 2: Gridl's and D-gridD..

1. A center vertexC of G*.

2. A set of paths iG* joining the centeC with the exterior fac&). Each such path is called
atail. Thetip of a tail is the last vertex of the corresponding path before it reahe

3. An assignment obpposite tails for outer edges o&5. This means: For each outer edge
of the graphG one of the tails is assigned to be the opposite tad, afis denoted byl (e)
and its tip is denoted bife).

The congestion indicator C$) of a center-tail systen® is defined as the minimum of the fol-
lowing two numbers:

1. minig(t(e)) + 1, where the minimum is taken over all outer edge&of

2. MineMiNget e MiNeze(ie(F) + i (F’) + 1), where the first minimum is taken over all outer
edges ofG; the second minimum is over verticésfrom the pathr (e) different fromt(e)
and the exterior facer’ is the vertex inT (e) which follows immediately aftefF if one
moves alondr (e) from F to t(e); and the third minimum is over all outer edgesfeient
frome.

Theorem 3.6 ([15]). Let S be a center-tail systemin a plane graph G. Then stc(G) > CI(S).
Using the Ostrovskii’'s center-tail system, we can show #i&Dy) = 4k.

Theorem 3.7. For any k > 1, there exists a k-outerplanar graph G of maximum degree 4 such
that stc(G) = 4k.

Proof. It suffices to prove thadtc(Dy) = 4k. We define the center-tail system Ok as follows
(see Figure 3(a)):

1. The centeC€ is the face depicted in Figure 3(a).

2. We have two tails: one tail goes straight to the north; la@mobne to the south. We call
these tails thaorth tail and thesouth tail, respectively.
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3. For each outer edge on the clockwise path betwegzk(hnd (4, 2k + 1), we assign the
south tail as its opposite tail. For the remaining outer sdge assign the north tail.

(a) Center-tail system. (b) Absolute indices. (c) Distances from the bottom.

Figure 3: Center-tail system f@-grids K = 3).

First we evaluate the first value of the congestion-indicatdhis system. Lee be an outer
edge. Observe that any shortexstt(e) path with the first edge* can be converted to a shortest
Q-t(e) path passing through the cent@r It is easy to see tha(C) = 2k for any outer edge
(see Figure 3(b)). Hence, we hav(e)) + 1 = i¢(C) + distp; (C, t(€)) + 1 = 4k, as required.

Next we evaluate the second value of the congestion-imatichet e be an outer edge. Let
T(e) = (to, 11, ..., tx1) be the opposite tail of, wheret, = C andty_, = t(e). Clearly,iq(t;) =
2k + j andi(t;) = 2k — j (see Figure 3(b) and 3(c)). Hence, for any outer eglgeher thare,

io(t;) + e (tier) + 12 ia(t) + ity + 1= (2k+ )+ (2k— (j+ 1))+ 1 = 4k

We havestc(Dy) > 4k by Theorem 3.6, andc(Dy) < 4k by Theorem 3.4. |

4 Linear timealgorithm for outerplanar graphs

It is known thatk-outerplanar graphs have treewidth at mast-3L [2]. Thus, one expects that
the problem can be solved in polynomial time ksouterplanar graphs. However, using standard
dynamic programming for graphs of bounded treewidth forsi@nning tree congestion problem
appears to give algorithms with a running time of the fabm’®), i.e., belong to XP. It is still
open if there exists an algorithm for the spanning tree cetige ofk-outerplanar graphs whose
running time is of the forn®O(f (k) - n), or if this problem belongs to the class FPT. However, we
presentin this section a simple linear time algorithm fdedaining the spanning tree congestion
of outerplanar graphs. That is, we prove the following tleeor

Theorem 4.1. Given outerplanar graph G, stc(G) can be determined in linear time.
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Our algorithm is based on an elegant characterization osganing tree congestion of
outerplanar graphs, Theorem 4.3, which is a variant of areuppund given by Ostrovskii [15].

From the definition of the spanning tree congestion of graphs easy to see that the span-
ning tree congestion of a graph is the maximum spanning tregestion over all its biconnected
components. The biconnected components of a graph can amedbtn linear time [7]. Thus
we assume graphs are biconnected in the rest of this sedfienalso assume that graphs are
not cycles since any cycle has spanning tree congestionltwseasy to see that & is a sim-
ple biconnected outerplanar graph &ads not a cycle, then each vertex Gf has at least two
neighbors. Ostrovskii [15] showed the following upper bdun

Lemma4.2 ([15]). For any planegraph G, stc(G) < max:¢ (i(F)+i(F’"))+1, where the maximum
istaken over all pairsF, F’ of inner faces with a common edge.

He also showed that the bound is not tight for some planarhgrap/e can prove, however,
that the bound is tight for outerplanar graphs. That is, wi pvove the following theorem,
which itself is of interest in the graph-theoretical poifiveew.

Theorem 4.3. For any outerplanar graph G, stc(G) = maxg (i(F) + i(F’)) + 1, where the
maximum is taken over all pairs F, F’ of inner faces with a common edge.

Ostrovskii [15] showed that for any plane gra@ha spanning tree whose congestion meets
the bound can be constructed as follow: take the @iadf G; construct a breadth first search
tree T* of G* rooted at the exterior face @&; remove edgesg from G if whose dual edges
appear inr*; resultant graph is the desired tree. It is easy to see thaetprocesses can be done
in linear time, and max: (i(F) +i(F’)) can be calculated by usiAg in linear time also. Hence,
Theorem 4.3 implies Theorem 4.1.

To prove Theorem 4.3, we use a connection between the satrem congestion and the
tree spanners of planar graphs. Gebe a graph and@ a spanning tree d&. If distt(u, V) <t for
any{u, v} € E(G), thenT is atreet-spanner of G [3]. We denote bysp(G) the minimum number
t such thaG has a tree¢-spanner. Since a cut {& corresponds to a cycle &, the next relation
holds.

Lemma 4.4 ([5]). For any connected plane graph G, stc(G) = tsp(G*) + 1.

We define theveak dual G" of a plane graplé asG* — Q, whereQ is the exterior face 0&.
It is well known that ifG is a biconnected outerplanar graph, tlé&his a tree (see [6, 1]). Now,
we are ready to prove Theorem 4.3.

Theorem 4.3. Let G* be a dual ofG andQ € V(G*) the exterior face vertex d&*. ThusG" =
G"*—Q. Let{F, F’} be an edge i6* such thaF andF’ maximizei(F) +i(F’). It suffices to show
thattsp(G*) > i(F) + i(F’) by Lemma 4.4. Note thafR) = dists-(R, Q) for anyR € V(G*). Let
T* be a spanning tree @* such thafl* is a treetsp(G*)-spanner of5*. We have two cases.

[Case 1] {F,F’} ¢ E(T*): SinceG" is a tree, there is nB—F’ path inG" — {F, F’}, and thus
the uniqueF—F’ path inT* contains the exterior verteR. Hence, we have

tsp(G*) > distr-(F, F') = distr-(F, Q) + distr-(F’, Q) > diste. (F, Q) + diste. (F/, Q).
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[Case 2] {F,F’} € E(T"): Let T; andT; be the components af* — {F, F’}. Without loss of
generality, we assume thBfQ € T; andF’ € T;. We also assume that the treésandG" are
rooted at-. LetT;, be the subtree oF; rooted at2. We have the following claim (see Figure 4).

Claim 4.5. Thereexist verticesR € V(T;) and R € V(T3) such that {R, R} € E(G").

Claim4.5. Suppose that the claim does not hold. Recall that any vedgatieast two neighbors
in G*. Thus any leaf of the tre€" is adjacent ta2 in G*. Let R be a leaf ofT;. From the
assumptionR’ is not adjacent to any vertex af, in G, and thusR' is not a leaf oiG". Hence,
R has at least two neighbors @'. Let Nt (R) = {p(R)} andR € Ng«(R') \ {p(R)}.

SinceR ¢ V(T;), the uniqueR-R pathP in T* does not contai®2. This implies thatP is
the uniqueR-R path inG" as well. SinceR is a leaf of T*, P containsp(R’). This implies
that P is not a single edgéR R}, sinceR # p(R’). Therefore, the patP c G" and the edge
{R,R'} € E(G") together form a cycle i&". This contradicts thaB" is a tree. ]

F/

{R R} e E(GY)

\\ ........ / .....................

Figure 4: lllustration of Claim 4.5.

LetRandR be the vertices in the above claim. Cleafig, R} ¢ E(T*). Sincedisty:(F, F’) =
dists:(R,R) = 1, we have

distr-(R, R) = distr-(R, Q) + distr-(Q, F) + distr-(F, F’) + distr-(F’, R)
= distr-(Q, F) + distr-(F’, R) + diste- (R, R) + disty- (R, Q)
> diste:(Q, F) + diste- (F', Q).

This implies thatsp(G*) > dists:(Q, F) + dists:(F’, Q), as required. ]

5 Conclusions

In this paper, we obtained an upper bound-offor the spanning tree congestionkebuterplanar
graphs with maximum degrest and gave examples where this bound is tight, for outerplana
graphs, and-outerplanar graphs of maximum degree four. We also haardd a characteriza-
tion of the spanning tree congestion of outerplanar graphi&h enabled a linear time algorithm
for the problem on outerplanar graphs.

An interesting open problem is the complexity of determgnihe spanning tree congestion
of k-outerplanar graphs. Taking the outerplanagpf(G) = k as parameter, does this problem
belong to the class FPT?
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