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Modeling Attempt and Action Failure in Probabilistic stit
Logic

Abstract

We define an extension of stit logic that encompasses subjective probabilities representing beliefs
about simultaneous choice exertion of other agents. The formalism enables us to express the notion of
‘attempt’ as a choice exertion that maximizes the chance of success with respect to an action effect.
The notion of attempt (or effort) is central in philosophical and legal discussions on responsibility and
liability.

1 Introduction
The predominant formal theory of agency in philosophy is stit theory [3]. Stit theory gives an elegant and
thoroughly elaborated view on the question of how agents exercise control over the courses of events that
constitute our dynamic world. Also stit theory provides a view on the fundamentals of cooperation and the
limits and possibilities of acting together and / or in interaction. Recently, stit theory attracted the attention
of computer scientist who are interested in deontic logic and logic for the specification of multi-agent
systems [5, 6, 2].

One shortcoming of stit theory is that its central notion of choice exertion is one that assumes that a
choice is always successful. But it is highly unrealistic for formalisms aimed at modeling (group) choice
of intelligent agents to assume that action can never fail. This problem cannot be solved by making the
connection with dynamic logic or the situation calculus, since these formalisms also lack a theory about
how actions can be unsuccessful.

This paper assumes we measure success of action against an agent’s beliefs about the outcome of its
choice. So, the perspective is an internal, subjective one, and the criterion of success is formed by an agent’s
beliefs about its action. To represent these beliefs we choose here to use probabilities. In particular, we will
represent beliefs about simultaneous choice exertion of other agents in a system as subjective probabilities.
Several choices have to be made. We will pose that an agent can never be mistaken about its own choice,
but that it can be mistaken about choices of others. The actual action performed results from a simultaneous
choice exertion of all agents in the system. Then, if an agent can be mistaken about the choices of other
agents (including possibly an agent with special properties called ‘nature’), the action can be unsuccessful.
As a very basic example, consider the opening of a door. An agent exercises its choice to open the door. It
cannot be mistaken about that: it knows what it chooses to do. It does this under the belief that there is no
other agent on the other side exercising its choice to keep the door closed. So it assigns a low probability to
such a choice of any other agent. However, here the agent can be mistaken. And here comes in the notion
of unsuccessful action modeled in this paper: as it turns out, in the situation described there actually is an
agent at the other side of the door choosing to keep it closed and the agent’s opening effort is unsuccessful.

To model this, we endow stit theory with probabilities in the object language, enabling us to say that
an agent exercises a choice for which it believes to have a chance higher than c to see to it that ϕ results in
the next state.

As far as we know, our proposal is the first combining stit logic and probability. Possibly unsuccessful
actions have been considered in the context of Markov Decision Processes, temporal logic and ATL [10].
Two differences with the present work are that here we start from the richer stit theory and that we focus on
fundamental properties of the resulting logic in stead of on issues related to planning, policy generation or
model checking. An independent motivation for considering action with a chance of success comes from

1



the relation between stit theory and game theory. Kooi and Tamminga [11] investigate how to characterize
pure strategy equilibria as stit formulas. An extension of stit logic with probabilistic effects would enable
us to also characterize mixed strategy equilibria.

The distinction between successful and possibly unsuccessful action naturally leads to the concept of
‘attempt’. Attempts are choices that can be unsuccessful. But an attempt is more than just a choice with a
certain probability of success. Consider a choice with a chance p of bringing about ϕ. Then, necessarily,
the chance of bringing about ¬ϕ is 1 − p. Then, if an attempt would be a choice with some probability
different from 0 or 1 of bringing about a certain effect, in this case, the same choice is both an attempt for ϕ
and an attempt for ¬ϕ. This is counter intuitive; we only call something an attempt if the agent exercising
the choice took the best choice available relative to the effect it tries to obtain. This is even completely
unrelated to the absolute chance of success for the choice exercised in the attempt. For instance, the buying
of a lottery ticket can be an attempt to win the jackpot, even though the chance of success is very low. What
this shows, is that attempt is a comparative notion. Here we will model it as the exertion of a choice that in
comparison with other choices possible in a situation is maximal with respect to the chance of success of
obtaining a condition ϕ.

The notion of attempt we consider differs considerably from the one studied in [12], where the focus
is on the idea that an attempt is a ‘mental’ action not having direct but only having indirect consequences
for an agent’s environment. One crucial way in which our logic is different from the one sketched in [14]
is that we explicitly model the epistemic attitude in attempt using subjective probabilities.

2 The base logic: XSTITp

In this section we define the base logic, which is a variant of Broersen’s XSTIT logic that we call XSTITp.
The difference with XSTIT is embodied by an axiom schema concerning modality-free propositions p,
which explains the name. Another difference with XSTIT is that we do not define the semantics in terms
of relations, but in terms of functions. We introduce h-relative effectivity functions, which specialize
the notion of effectivity function from Coalition Logic [13] by defining choices relative to histories. The
function-based semantics explains the formalism better than Broersen’s semantics in terms of relations.

Definition 2.1 Given a countable set of propositions P and p ∈ P , and given a finite set Ags of agent
names, and A ⊆ Ags, the formal language LXSTITp is:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | �ϕ | [A xstit]ϕ | Xϕ

Besides the usual propositional connectives, the syntax of XSTITp comprises three modal operators.
The operator �ϕ expresses ‘historical necessity’, and plays the same role as the well-known path quantifiers
in logics such as CTL and CTL∗ [8]. Another way of talking about this operator is to say that it expresses
that ϕ is ‘settled’. The operator [A xstit]ϕ stands for ‘agents A jointly see to it that ϕ in the next state’.
The third modality is the next operator Xϕ. It has a standard interpretation as the transition to a next state.

Definition 2.2 A function-based XSTITp-frame is a tuple 〈S,H,E〉 such that1:

1. S is a non-empty set of static states. Elements of S are denoted s, s′, etc.

2. H is a non-empty set of possible system histories of the form . . . s−2, s−1, s0, s1,
s2, . . . with sx ∈ S for x ∈ Z. Elements of H are denoted h, h′, etc. We denote that s′ succeeds s on
the history h by s′ = succ(s, h) and by s = prec(s′, h). Furthermore:

a. if s ∈ h and s ∈ h′ then prec(s, h) = prec(s, h′)

3. E : S ×H × 2Ags 7→ 2S is an h-effectivity function yielding for a group of agents A the set of next
static states allowed by the joint actions taken by the agents in the group A relative to a history

1In the meta-language we use the same symbols both as constant names and as variable names, and we assume universal quantifi-
cation of unbound meta-variables.
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a. if s 6∈ h then E(s, h,A) = ∅
b. if s′ ∈ E(s, h,A) then ∃h′ : s′ = succ(s, h′)

c. succ(s, h) ∈ E(s, h,A)

d. ∃h′ : s′ = succ(s, h′) if and only if ∀h : if s ∈ h then s′ ∈ E(s, h, ∅)
e. if s ∈ h then E(s, h,Ags) = {succ(s, h)}
f. if A ⊃ B then E(s, h,A) ⊆ E(s, h,B)

g. if A ∩B = ∅ and s ∈ h and s ∈ h′ then E(s, h,A) ∩ E(s, h′, B) 6= ∅

In definition 2.2 above, we refer to the states s as ‘static states’. This is to distinguish them from
‘dynamic states’, which are combinations 〈s, h〉 of static states and histories. Dynamic states function as
the elementary units of evaluation of the logic. This means that the basic notion of ‘truth’ in the semantics
of this logic is about dynamic conditions concerning choice exertions. This distinguishes stit from logics
like Dynamic Logic and Coalition Logic whose central notion of truth concerns static conditions holding
for static states.

The name ‘h-effectivity functions’ for the functions defined in item 3 above is short for ‘h-relative
effectivity functions’. This name is inspired by similar terminology in Coalition Logic whose semantics is
in terms of ‘effectivity functions’. Condition 3.a above states that h-effectivity is empty for history-state
combinations that do not form a dynamic state. Condition 3.b ensures that next state effectivity as seen
from a current state s does not contain states s′ that are not reachable from the current state through some
history. Condition 3.c states that the static state next of some other static state on a history is always in the
effectivity set relative to that history state pair for any group of agents. Condition 3.d above states that any
next state is in the effectivity set of the empty set and vice versa. This underlines the special role of the
empty set of agents. On the one hand, the empty set is powerless, since it does not have genuine alternatives
for choices, like agents generally do. On the other hand, it is almighty, since whatever is determined by the
effectivity of the empty set must occur in next states. We may refer to the empty set of agents as ‘nature’
and to its effectivity as ‘causation’. Condition 3.e above implies that a simultaneous choice exertion of
all agents in the system uniquely determines a next static state. A similar condition holds for related
formalisms like ATL [1] and Coalition logic (CL for short). However, although 3.d uniquely determines
the next state relative to a simultaneous choice for all agents in the system, it does not determine the unique
next ‘dynamic state’. In this formalism dynamic states are the units of evaluation. In ATL and CL, static
states are the units of evaluation2. Conditions 3.f expresses coalition (anti-)monotony. The second subset
relation in this property is not strict, because we can always add a powerless agent with the same properties
as the empty set of agents: it does not have real choices and always ‘goes with the flow’. This increases
the number of agents while leaving the choices of all agents as they are. Condition 3.g above states that
simultaneous choices of different agents never have an empty intersection. This is the central condition of
‘independence of agency’. It reflects that a choice exertion of one agent can never have as a consequence
that some other agent is limited in the choices it can exercise simultaneously.

The conditions on the frames are not as tight as the conditions in the classical stit formalisms of Belnap,
Perloff and Horty [3]. Appart from the crucial difference concerning the effect of actions (in XSTITp

actions take effect in next states), the classical stit formalisms assume conditions that in our meta-language
can be represented as:

h. E(s, h,A) 6= E(s, h′, A) implies
E(s, h,A) ∩ E(s, h′, A) = ∅

i. E(s, h,A ∪B) = E(s, h,A) ∩ E(s, h,B)

Condition h. says that the choices of a group A are mutually disjoint. Condition i. says that the choices
of a group are exactly the intersections of the choices of its sub-groups. Condition i. is strictly stronger
than the coalition (anti-)monotony property 3.f, which only says that the choices of a group are contained
in the choices of its sub-groups. Since they result in much tidier pictures, in the example visualization of

2This is part of the reason why the coalition logic modality [A]ϕ is not definable as ♦[A xstit]ϕ in XSTITp.
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Figure 1: visualization of a partial two agent XSTITp frame

a frames we consider below, we assume both these conditions. However, we do not include them in the
formal definition of the frames, because both conditions are not modally expressible (e.g., in modal logic
we can give axioms characterizing that an intersection is non-empty, but we cannot characterize that an
intersection is empty). This means that they will not have an effect on our modal logic of agency whose
semantics we will define in terms of the above frames.

Figure 1 visualizes a frame of the type defined by definition 2.2. The small squares are static states in
the effectivity sets of E(s, h,Ags). Combinations of static states and histories running through them form
dynamic states. The big, outmost squares forming the boundaries of the game forms, collect the static (and
implicitly also the dynamic) states in the effectivity sets of E(s, h, ∅). Independence of choices is reflected
by the fact that the game forms contain no ‘holes’ in them. Choice exertion in this ‘bundled’ semantics is
thought of as the separation of two bundles of histories: one bundle ensured by the choice exercised and
one bundle excluded by that choice.

We now define models by adding a valuation of propositional atoms to the frames of definition 2.2.
We impose that all dynamic state relative to a static state evaluate atomic propositions to the same value.
This reflects the intuition that atoms, and modality-free formulas in general do not represent dynamic
information. Their truth value should thus not depend on a history but only on the static state. This choice
does however make the situation non-standard. It is a constraint on the models, and not on the frames.

Definition 2.3 A frame F = 〈S,H,E〉 is extended to a modelM = 〈S,H,E, π〉 by adding a valuation π
of atomic propositions:

• π is a valuation function π : P −→ 2S assigning to each atomic proposition the set of static states
relative to which they are true.

We evaluate truth with respect to dynamic states built from a dimension of histories and a dimension of
static states.

Definition 2.4 Relative to a modelM = 〈S,H,E, π〉, truth 〈s, h〉 |= ϕ of a formula ϕ in a dynamic state
〈s, h〉, with s ∈ h, is defined as:

〈s, h〉 |= p ⇔ s ∈ π(p)
〈s, h〉 |= ¬ϕ ⇔ not 〈s, h〉 |= ϕ
〈s, h〉 |= ϕ ∧ ψ ⇔ 〈s, h〉 |= ϕ and 〈s, h〉 |= ψ
〈s, h〉 |= �ϕ ⇔ ∀h′ : if s ∈ h′ then 〈s, h′〉 |= ϕ
〈s, h〉 |= Xϕ ⇔ if s′ = succ(s, h) then 〈s′, h〉 |= ϕ
〈s, h〉 |= [A xstit]ϕ ⇔ ∀s′, h′ : if s′ ∈ E(s, h,A) and

s′ ∈ h′ then 〈s′, h′〉 |= ϕ

Satisfiability, validity on a frame and general validity are defined as usual.
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Note that the historical necessity operator quantifies over one dimension, and the next operator over the
other. The stit modality combines both dimensions. Now we proceed with the axiomatization of the base
logic.

Definition 2.5 The following axiom schemas, in combination with a standard axiomatization for proposi-
tional logic, and the standard rules (like necessitation) for the normal modal operators, define a Hilbert
system for XSTITp:

(p) p→ �p for p modality free
S5 for �
KD for each [A xstit]

(Det) ¬X¬ϕ→ Xϕ
(∅ = SettX) [∅ xstit]ϕ↔ �Xϕ
(Ags = XSett) [Ags xstit]ϕ↔ X�ϕ
(C-Mon) [A xstit]ϕ→ [A ∪B xstit]ϕ
(Indep-G) ♦[A xstit]ϕ ∧ ♦[B xstit]ψ →

♦([A xstit]ϕ ∧ [B xstit]ψ) for
A ∩B = ∅

Theorem 2.1 The Hilbert system of definition 2.5 is complete with respect to the semantics of definition
2.4.

The proof strategy is as follows. First we establish completeness of the system without the axiom
p → �p, relative to the frames of definition 2.2. All remaining axioms are in the Sahlqvist class. This
means that all the axioms are expressible as first-order conditions on frames and that together they are
complete with respect to the frame classes thus defined, cf. [4]. It is easy to find the first-order conditions
corresponding to the axioms, for instance, by using the on-line SQEMA system [7]. So, now we know
that every formula consistent in the slightly reduced Hilbert system has a model based on an abstract
frame. Left to show is that we can associate such an abstract model to a concrete model based on an
XSTITp frame as given in definition 2.2. This takes some effort, since we have to associate worlds in the
abstract model to dynamic states in the frames of definition 2.2 and check all the conditions of definition
2.2 against the conditions in the abstract model (3.c corresponds with the D axiom, 3.d corresponds to
(∅ = SettX), 3.e to (Ags = XSett), 3.f to (C-Mon), 3.g to (Indep-G)). Once we have done this, we have
established completeness of the axioms relative to the conditions on the frames. Now the second step
is to add the axiom p → �p. This axiom does not have a corresponding frame condition. Indeed, the
axiom expresses a condition on the models. But then, to show completeness, we only have to show that
we can always find a model obtained by the construction just described that satisfies the axiom p → �p.
But this is straightforward. From all the possible models resulting from the first step, we select the ones
where propositional atoms in dynamic states based on the same static state have identical valuations. Since
consistent formulas also have to be consistent with the axiom p → �p for any non-modal formula p, we
can always do that. This means that a satisfying model for a consistent formula is always obtainable in this
way and that completeness is preserved.

3 Choice with a bounded chance of success
We introduce operators [{ag} xstit≥c]ϕ with the intended meaning that agent ag exercises a choice for
which it believes to have a chance of at least c of bringing about ϕ. Roughly, the semantics for this
new operator is as follows. We start with the multi-agent stit-setting of the previous section. Now to the
semantic structures we add belief functions such that in the little game-forms, as visualized by figure 1,
for each choice of an agent ag we have available the subjective probabilities applying to the choices of the
other agents in the system. For agent ag the sum of these probabilities over the choices of each particular
other agent in the system add up to one. So, the probabilities represent agent ag’s beliefs concerning what
choices are exerted simultaneously by other agents. In terms of the subjective probability function we
define for each choice the sum of the probabilities for each of the choices of all other agents in the system
leading to a situation obeying ϕ.
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For the definition of the probabilistic frames, we first define an augmentation function returning the
choices a group of agent has in a given state.

Definition 3.1 The range function Range : S × 2Ags 7→ 22
S

yielding for a state s and a group of agents
A, the combined choices these agents have in s is defined as:
Range(s,A) = {Ch | ∃h : Ch = E(s, h,A)}

A range function corresponds to what in Coalition Logic is called an ‘effectivity function’. Now we are
ready to define the probabilistic stit frames.

Definition 3.2 A probabilistic XSTITp-frame is a tuple 〈S,H,E,B〉 such that:

1. 〈S,H,E〉 is a function based XSTITp-frame

2. B : S ×Ags×Ags× 2S 7→ [0, 1] is a subjective probability function such that B(s, ag1, ag2, Ch)
expresses agent 1’s believe that in static state s agent 2 performs a choice resulting in one of the
static states in Ch. We apply the following constraints.

a. B(s, ag, ag′, Ch) = 0 if Ch 6∈ Range(s, {ag′})
b. B(s, ag, ag′, Ch) > 0 if Ch ∈ Range(s, {ag′})
c. B(s, ag, ag, Ch) = 1

d.
∑

Ch∈Range(s,{ag′})
B(s, ag, ag′, Ch) = 1

Condition 2.a says that agents only assign non-zero subjective probabilities to choices other agents
objectively have. Condition 2.b says these probabilities are strictly larger than zero. Condition 2.c says
that agents always know what choice they exercise themselves. Note that this is not the same as claiming
that agents always know what action they perform (which is not the case in our conceptualization). We
already explained this difference between choice and action in section 2. Condition 2.d says that the sum
of the subjective probabilities over the possible choices of other agents add up to 1.

In the sequel we will need an augmentation function yielding for an agent and an arbitrary next static
state the chance an agent ascribes to the occurrence of this state (given its belief, i.e., subjective probabilities
about simultaneous choice exertion of other agents). For this, we first need the following proposition.

Proposition 3.1 For any static state s′ = E(s, h,Ags) in the static state s there is a unique ‘choice profile’
determining for any agent ag in the system a unique choice Ch = E(s, h, {ag}) relative to s and h.

The proposition follows from the conditions posed on the frames in definition 2.2. Now we can define
the subjective probabilities agents assign to possible system outcomes. Because of the idea of indepen-
dence of agency, we can multiply the chances for the choices of the individual agents relative to the system
outcome (the resulting static state). Note that this gives a new and extra dimension to the notion of inde-
pendence that is not available in standard stit theories.

Definition 3.3 BX : S × Ags × S 7→ [0, 1] is a subjective probability function concerning possible next
static states, defined by

BX(s, ag, s′) =
∏

ag′∈Ags

B(s, ag, ag′, E(s, h, {ag′})) if ∃h : s′ = E(s, h,Ags) or 0 otherwise.

It is basic arithmetic to establish that also the subjective probabilities an agent ag assigns to the choices
of the complete set of agents Ags add up to 1.

Proposition 3.2
∑

s′∈Range(s,Ags)

BX(s, ag, s′) = 1

Now before we can define the notion of ‘seeing to it under a minimal probability of success’ formally
as a truth condition on the frames of definition 3.2 we need to do more preparations. First we observe
that the intersection of the h-effectivity functions of complementary groups of agents yields a unique static
state. This justifies the following definition, that establishes a function characterizing the static states next
of a given state that satisfy a formula ϕ relative to the current choice of an agent.
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Definition 3.4 The ‘possible next static ϕ-states’ function PosX : S ×H × Ags × L 7→ 2S which for a
state s, a history h, an agent ag and a formula ϕ gives the possible next static states obeying ϕ given the
agent’s current choice determined by h, is defined by: PosX(s, h, ag, ϕ) = {s′ | E(s, h, {ag}) ∩ Ch =
{s′} for Ch ∈ Range(s,Ags \ {ag}) and 〈s′, h′〉 |= ϕ for all h′ with s′ ∈ h′}.

Now we can formulate the central ‘chance of success’ (CoS) function that will be used in the truth
condition for the new operator. The chance of success relative to a formula ϕ is the sum of the chances the
agent assigns to possible next static states validating ϕ.

Definition 3.5 The chance of success function CoS : S × H × Ags × L 7→ [0, 1] which for a state s
and a history h an agent ag and a formula ϕ gives the chance the agent’s choice relative to h is an action
resulting in ϕ is defined by: CoS(s, h, ag, ϕ) = 0 if PosX(s, h, ag, ϕ) = ∅ or else CoS(s, h, ag, ϕ) =∑
s′∈PosX(s,h,ag,ϕ)

BX(s, ag, s′).

Extending the probabilistic frames of definition 3.2 to models in the usual way, the truth condition of
the new operator is defined as follows.

Definition 3.6 Relative to a model M = 〈S,H,E,B, π〉, truth 〈s, h〉 |= [{ag} xstit≥c]ϕ of a formula
[{ag} xstit≥c]ϕ in a dynamic state 〈s, h〉, with s ∈ h, is defined as:

〈s, h〉 |= [{ag} xstit≥c]ϕ⇔ CoS(s, h, ag, ϕ) ≥ c

Three validities reflecting interesting properties of this semantics are the following.

Proposition 3.3 Each instance of any of the following formula schemas is valid in the semantics following
from definitions 2.4 and 3.6.

a. [{ag} xstit]ϕ↔ [{ag} xstit≥1]ϕ
b. [{ag} xstit≥0]ϕ
c. [{ag} xstit≥c]ϕ→ [{ag} xstit≥k]ϕ for c ≤ k

Validity schema a. shows that the probabilistic stit operator we gave in definition 3.6 faithfully gener-
alizes the stit operator of our base XSTITp system: the objective stit operator [{ag} xstit]ϕ discussed in
section 2 comes out as the probabilistic stit operator assigning a probability 1 to establishing the effect ϕ.
This is very natural. Where in the standard stit setting we can talk about ‘ensuring’ a condition, in the prob-
abilistic setting we can only talk about establishing an effect with a certain lower bound on the probability
of succeeding. Schema b. expresses that any effect ϕ is always brought about with a probability of zero or
higher, which should clearly hold. Finally, validity schema c. expresses that seeing to it with a chance of
success of at least c implies seeing to it with a chance of success of at least k provided c ≤ k.

4 Choice with an optimal chance of success
As explained in the introduction, we see an attempt for ϕ as the exertion of a choice that is maximal in the
sense that it has the highest chance of achieving ϕ. So we aim to model attempt as a comparative notion.
This means, that in our formal definition for the attempt operator [{ag} xatt]ϕ that we introduce here, we
drop the absolute probabilities. The truth condition for the new operator [{ag} xatt]ϕ is as follows.

Definition 4.1 Relative to a model M = 〈S,H,E,B, π〉, truth 〈s, h〉 |= [{ag} xatt]ϕ of a formula
[{ag} xatt]ϕ in a dynamic state 〈s, h〉, with s ∈ h, is defined as:

〈s, h〉 |= [{ag} xatt]ϕ⇔
∀h′ : if s ∈ h′ then CoS(s, h′, ag, ϕ) ≤ CoS(s, h, ag, ϕ)
and
∃h′′ : s ∈ h′′ and CoS(s, h′′, ag, ϕ) < CoS(s, h, ag, ϕ)

7



This truth condition explicitly defines the comparison of the current choice with other choices possible
in that situation. In particular, if and only if the chance of obtaining ϕ for the current choice is higher
than for the other choices possible in the given situation, the current choice is an attempt for ϕ. The ‘side
condition’ says that there actually must be a choice alternative with a strictly lower chance of success.

Proposition 4.1 Each instance of any of the following formula schemas is valid in the logic determined by
the semantics of definition 4.1.

(Cons) ¬[{ag} xatt]⊥
(D) [{ag} xatt]¬ϕ→ ¬[{ag} xatt]ϕ
(Indep-Att) ♦[{ag1} xatt]ϕ ∧ ♦[{ag2} xatt]ψ →

♦([{ag1} xatt]ϕ ∧ [{ag2} xatt]ψ)
(Sure-Att) [{ag} xstit]ϕ ∧ ♦¬[{ag} xstit]ϕ→

[{ag} xatt]ϕ

The D-axiom says that the same choice cannot be at the same time an attempt for ϕ and ¬ϕ. This is
due to the presence of the ‘side condition’ in definition 4.1. The side condition says that a choice can only
be an attempt if there is at least one alternative choice with a strictly lower chance of success. Now we see
immediately why de D-axiom holds: this can never be the case for complementary effects, since these have
also complementary probabilities. In stit theory, side conditions are used to define ‘deliberative’ versions
of stit operators [9]. And indeed the same intuition is at work here: a choice can only be an attempt if it is
‘deliberate’.

The (Indep-Att) schema says that attempts of different agents are independent. Attempts are inde-
pendent, because maximizing choice probabilities from the perspective of one agent is independent from
maximizing choice probabilities from the perspective of some other agent.

Finally, the (Sure-Att) schema reveals the relation between the stit operator of our base language and the
attempt operator. We already saw that we can associate the base operator [{ag} xstit]ϕ with a probabilistic
stit operator with a chance of success of 1. Now, if such a choice qualifies as an attempt, it can only be
that there is an alternative to the choice with a probability strictly lower than 1 (due to the side condition
in definition 4.1). In the base language we can express this as the side condition ♦¬[{ag} xstit]ϕ saying
that ϕ is not ensured by ag’s choice. This results in the property (Sure-Att) that says that if ag ensures ϕ
with a chance of success of 1, and if ag could also have refrained (i.e., ag took a chance higher than 0 for
¬ϕ), then ag attempts ϕ. This again reveals the relation between the notion of attempt and the notion of
‘deliberate choice’ from the philosophical stit literature [9].

5 Conclusion and Discussion
This paper starts out by defining a base stit logic, which is a variant on Broersen’s XSTIT. However,
we define the semantics in terms of h-effectivity functions, which does more justice to the nature of the
structures interpreting the language. We show completeness relative to this semantics. Then we proceed by
generalizing the central stit operator of the base language to a probabilistic variant. The original operator
comes out as the probabilistic operator assigning a chance 1 to success of a choice. In a second step we
use the machinery used to define the probabilistic stit variant to define a notion of attempt. An attempt of
agent ag is modeled as a ‘kind’ of maximal expected utility: agent ag attempts ϕ if and only if it performs
a choice that is optimal in the sense that the sum of probabilities of the opponent choices ensuring ϕ would
have been lower for any alternative choice by ag. So, an attempt for ϕ is a choice most likely leading to ϕ
given ag’s subjective probabilities about what other agents choose simultaneously.

There are several opportunities for future work. Among them are axiomatizations for the probabilistic
stit and attempt operators. Since the probabilistic stit operator introduces probabilities explicitly in the
object language, axiomatization is expected to be difficult. In case of the attempt operator, probabilities are
implicit. An interesting observation is that this seems to resemble the reasoning of agents like ourselves
that estimate optimality of their choices based on chances that are seldomly made explicit.

Finally, an interesting route for investigation is the generalization of the theory in this paper to group
choices of agents. If a group makes a choice, we may assume all kinds of conditions on the pooling of
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information within the group. This means that the chances that agents assign to choices made by agents
within the group are generally different than the chances they assign to choices by agents outside the
group. How this pooling of information takes form in a setting where beliefs are modeled as subjective
probabilities is still an open question to us.
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