Exact Algorithms for Kayles

Hans L. Bodlaender
Dieter Kratsch

Technical Report UU-CS-2011-003
February 2011

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl



ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089

3508 TB Utrecht
The Netherlands



Exact Algorithms for Kayles *

Hans L. Bodlaender Dieter Kratsch *

Abstract

In the game of Kayles, two players select alternatingly a vertex from a given
graph G, but may never choose a vertex that is adjacent or equal to an already
chosen vertex. The last player that can select a vertex wins the game. In this paper,
we give an exact algorithm to determine which player has a winning strategy in this
game. To analyse the running time of the algorithm, we introduce the notion of
K-set: a nonempty set of vertices W C V is a K-set in a graph G = (V, E), if G[W]
is connected and there exists an independent set X such that W =V — N[X]. The
running time of the algorithm is bounded by a polynomial factor times the number
of K-sets in G. We show that the number of K-sets in a graph with n vertices
and m edges is bounded by O(1.6052™), and thus we have an algorithm for KAYLES
with running time O(1.6052™). We also show that the number of K-sets in a tree is
bounded by n -3/ and thus KAYLES can be solved on trees in O(1.4423") time. We
show that apart from a polynomial factor, the number of K-sets in a tree is sharp.

1 Introduction

When a problem is computationally hard, then there still are many situations in which
the need can arise to solve it exactly. This motivates the field of exact algorithms, where
exact, exponential time algorithms whose running time is as small as possible are sought.
Many such exact algorithms have been designed and analysed for problems that are NP-
complete or # P-complete, see [6]. Of course, also problems that are complete for a "harder’
complexity class, e.g., PSPACE-complete often ask for exact solutions. Many PSPACE-
complete problems arrive from the question which player has a winning strategy for a
given position in a combinatorial game. Exact algorithms are of great relevance here, e.g.,
a program could use a heuristic to find a move, but once a position is simple enough, it
switches to an exact algorithm to give optimal play in the endgame.

In this paper, we study exact algorithms for one such PSPACE-complete problem,
namely the problem to determine which player has a winning strategy in an given instance
of the game KAYLES. KAYLES is a two-player game that is played on a graph G = (V, E).

*The work of the second author was supported by the ANR project AGAPE.
TUtrecht University, P.O. Box 80.089, 3508 TB Utrecht, the Netherlands. hansb@cs.uu.nl
tUniversité Paul Verlaine — Metz, LITA, 57045 Metz Cedex 01, France. kratsch@univ-metz.fr



Alternatingly, the players choose a vertex from the graph, but players are not allowed to
choose a vertex that already has been chosen or is adjacent to a vertex that already has
been chosen. Thus, the player build together an independent set in GG. The last player
that chooses a vertex (i.e., turns the independent set into a maximal independent set) wins
the game. Alternatively, one can describe the game as follows: the chosen vertex and its
neighbors are removed and a player wins when his move empties the graph. The problem
to determine the winning player for a given instance of the game is also called KAYLES.
This problem was shown to be PSPACE-complete by Schaefer [9]. In an earlier paper [3],
we showed that by exploiting Sprague-Grundy theory, KAYLES can be solved in polynomial
time on several special graph classes, in particular graphs with a bounded asteroidal number
(which includes well known classes of graphs like interval graphs, cocomparability graphs
and cographs). Fleischer and Trippen [5] showed that KAYLES can be solved in polynomial
time on stars of bounded degree, and also analysed this special case experimentally. For
general trees, the complexity of KAYLES is a long standing open problem. Variants of the
game on paths were studied and shown to be linear time solvable by Guignard and Sopena
[7]. For more background, the reader can consult [1, 2, 4].

It is not hard to find an algorithm that solves KAYLES in O*(2") time, by tabulating for
each induced subgraph of G which player has a winning strategy from that position. In this
paper, we improve upon this trivial algorithm, and give an algorithm that uses O(1,6052")
time. The algorithm uses ideas from [3], exploiting results from Sprague-Grundy theory
(also known as the theory of nimbers). To analyze the running time of the algorithm,
we introduce the notion of K-set: a set of nonempty vertices W C V is a K-set in a
graph G = (V, E), if G[W] is connected and there exists an independent set X such that
W =V — N[X]. With a nontrivial analysis we obtain that the number of K-sets of a graph
with n vertices is bounded by O(1.6052™), which yields the bound on the running time of
our algorithm. We also show that if G is a tree, then G has at most n - 3"/3 K-sets, and
thus, KAYLES can be solved in O*(3"/3) = O(1.4423") time on trees (and forests). ' We
also give lower bounds for the number of K-sets. In particular, our bound of 3"/3 K-sets
for trees is sharp except for polynomial terms.

2 Preliminaries

Graph terminology Throughout this paper all graphs G = (V| E) are undirected and
simple. Let S C V. Then N[S]| = UsesN|s| is the closed neighborhood of S, N(S) =
N[S]\ S is the open neighborhood of S, and G|[S| denotes the subgraph of G induced by S.

A nonempty set of vertices W C V of a graph G = (V, E) is called a K-set (Kayles set)
of G, if it fulfills each of the following criteria:

e G[WW] is connected

e there exists an independent set X C V such that W =V — N(X)

'We use the so called O* notation: f(n) = O*(g(n)) if f(n) = O(g(n)p(n)) for some polynomial p(n).
See also [6].



Sprague-Grundy theory Next, we review some notions and results from Sprague-
Grundy theory, and give some preliminary results on how this theory can be used for
Kayles. For a good introduction to Sprague-Grundy theory, the reader is referred to [1, 4].

A nimber is an integer belonging to N = {0,1,2,...}. For a finite set of nimbers S C N,
define the minimum excluded nimber of S as mex(S) = min{i € N | i ¢ S}.

To each position in a two player game that is finite, deterministic, full-information,
impartial, and with ‘last player wins rule’, one can associate a nimber in the following
way. If no move is possible in the position (and hence the player that must move loses the
game), the position gets nimber 0. Otherwise the nimber is the minimum excluded nimber
of the set of nimbers of positions that can be reached in one move.

Theorem 1 [1, /] There is a winning strategy for player 1 from a position, if and only if
the nimber of that position is at least 1.

Denote the nimber of a position p by nb(p). Given two (finite, deterministic, impartial,
...) games Gy, Go, the sum of G; and Gy, denoted G; + G, is the game where a move consists
of choosing G; or G; and then making a move in that game. A player that cannot make
a move in G; nor in Gy looses the game G; + Go. With (py1, p2) we denote the position in
G1 + Go, where the position in G; is p; (i = 1,2).

The binary XOR operation is denoted by &, i.e., for nimbers iy, iy, i1Piz = > {27 | ([41/27]
is odd) < ([ia/27] is even)}.

Theorem 2 [1, 4] Let py be a position in Gy, pa a position in Go. The nimber of position
(p1,p2) in Gi + Ga equals nb((p1,p2)) = nb(p1) & nb(pz).

As Kayles is an impartial, deterministic, finite, full-information, two-player game with
the rule that the last player that moves wins the game, we can apply Sprague-Grundy
theory to Kayles, and we can associate with every graph G the nimber of the start position
of the game Kayles, played on G. We denote this nimber nb(G), and call it the nimber of
G.

An important observation is the following: when G = G, U G for disjoint graphs G,
and Go, then the game Kayles, played on G is the sum of the game Kayles, played on Gf,
and the game Kayles, played on GG5. Hence, by Theorem 2, we have the following result.

Lemma 3 nb(G; U Gsy) = nb(G;) @ nb(G).

Note that G; and G2 might be disconnected graphs.

Our second observation shows how to express the nimber of a graph G in the nimbers of
some subgraphs of G. Consider Kayles, played on G = (V, E'), and suppose that a vertex
v € V is played. Then, the nimber of the resulting position is the same as the nimber
of G — N[v], as the effect of playing on v is the same as the effect of removing v and its
neighbors from the graph. As the nimber of a position is the minimum nimber that is not
in the set of nimbers of positions that can be reached in one move, we have:

Lemma 4 (i) If G = (V, E) is the empty graph, then nb(G) = 0.
(ii) If G = (V, E) is not the empty graph, then nb(G) = mex(nb({G — N[v] | v € V'}).



3 An Upper Bound on the Number of K-sets

In this section, we will show an upper bound on the number of K-sets in a graph. This
bound is needed for the analysis of our algorithm, see Section 5. Our main result is the
following.

Theorem 5 Let G be a graph with n vertices. Then G has O(1,6052") K-sets.

The proof of Theorem 5 is algorithmic: we give a branching procedure that generates all
K-sets. By distinguishing different types of vertices, assigning these different weights, and
considering the different branching vectors, we obtain a set of recurrences, whose solution
gives us the desired bound. For information on branching algorithms and their analysis,
in particular branching vectors and the corresponding recurrences we refer to [6].

We say that a K-set is nontrivial, if it has at least three vertices; otherwise we call it
trivial. As each trivial set either consists of a single vertex or the two endpoints of an edge,
the number of trivial K-sets is at most n+m, where m is the number of edges of the graph.

During our branching process, we decide at some points to put some vertices in an
independent set X and forbid for some vertices to put them in the independent set. When
placing a vertex in X, we say we select the vertex. The vertices in GG are of four types:

e White or free vertices. Originally all vertices in G are white. We have not made
any decision yet for a white vertex. All white vertices have weight one.

e Red vertices. Red vertices may not be placed in the independent set X: i.e., we
already decided this during the branching. It still is possible that a red vertex
becomes deleted later, however. Red vertices have a weight o = 0, 5685.

e Green vertices. A green vertex is ‘safe’: it never will be removed. I.e., we cannot
place the green vertex nor any of its neighbors in the independent set X. Green
vertices have weight zero.

e Removed vertices: these are either placed in the independent set or are a neighbor
of a vertex in the independent set. All removed vertices have weight zero. Removed
vertices are considered not existing, i.e., when discussing the neighbors of a vertex,
these neighbors will be white, red, or green.

The measure of an instance G is the total weight of all vertices, and the difference in the
measure from an instance to one of a subproblem often called gain is used to analyse the
branching algorithm via branching vectors. Our branching process may be overcounting
the number of K-sets (in particular, in some cases, we will not detect that a generated set
is not connected), but the obtained bound nevertheless is valid as an upper bound.

The semantics of the colors imply that we can always perform the following actions:

e Rule 1: If a red vertex v has no white neighbors, we can color it green. This is valid,
as we can no longer place a neighbor of v in X.



e Rule 2: If a green vertex v has a white neighbor w, we can color w red. This is valid,
as placing w in X would remove v, which we are not allowed by the green color of v.

Rules 1 and 2 will always decrease the measure. They ensure that each red vertex will
have a white neighbor, and that white vertices have no green neighbors.

The following action also can always be performed; the removed vertices can no longer
be part of a nontrivial K-set.

e Rule 3: If W C V is a set of white vertices that are not incident to nondeleted
vertices not in W, and |[W| < 2, then remove all vertices of .

Before starting the main recursive branching, we first fix one vertex vy € V', of which
we will assume that it is an element of the K-set. In terms of colors, this means that we
color vy green and all neighbors of vy red. Clearly, the total number of K-sets will be at
most n times the bound on the number of K-sets that contain a specific vertex.

We obtain a fourth rule.

e Rule 4: If G has more than one connected component, then remove all vertices from
components that do not contain vj.

As a consequence, we have that when no rule can be applied and there is at least one
white vertex, then there exists a white vertex that is adjacent to a red vertex.

We consider two main types of branching. The first type of branching is a vertex branch.
Let v € V be a white vertex. We consider two cases: v is placed in X, and v is not placed
in X. In the former case, we remove and decrease the measure by the total weight of all
white and red vertices in the closed neighborhood of v. In the latter case, we color v red
and have a measure decrease of 1 — a. In some cases, we gain more by applications of
Rules 1, 2, and 3.

In the second type of branching, we consider a number of cases, of which one must
apply. Again, in some cases, we can gain more by applications of Rules 1, 2, and 3.

In the sequel we present all branching rules in a preference order. Hence when Case ¢
branching is applied to an instance all earlier cases do not apply.

Case 1: There is a white vertex with at least three white neighbors If v has
three white neighbors, we can perform a vertex branch on v. The branching vector in this
case will be (4,1 — «), i.e., in one case, we decrease the measure by at least four, and in
the other case, we decrease the measure by 1 — a.

Case 2: There is a white vertex with two white neighbors and at least one
red neighbor If v has two white neighbors and at least one red neighbor, then a vertex
branch on v gives a branching vector of (3 + a,1 — «).

Suppose Cases 1 and 2 cannot be applied anymore. Then all white vertices have at
most two white neighbors. Moreover, there cannot be a cycle of white vertices, as such
a cycle would either be removed by Rule 4 or contains a vertex to which Case 2 applies.
Similar for white vertices forming paths. Only the endpoints of such a path can be adjacent
to a red vertex, and at least one endpoint is adjacent to a red vertex.



Case 3: The subgraph induced by white vertices contains a path of length at
least two, with both endpoints incident to at least one red vertex. Suppose now
we have a path of white vertices vy,...,v,, r > 2, with v; and v, incident to a red vertex.
As Case 2 no longer applies, we can assume that vs, ..., v,_; have no nondeleted neighbors
outside the path.

Let R be the set of red vertices that are adjacent to v; and/or v,..

Case 3.1: » =2 We must either select vy, or select vq, or select neither v nor v,. In the
latter case, both v; and v, can be colored green, so the measure is decrease by two in this
case. Hence, we have a branching vector (2 + a,2 + «, 2).

Case 3.2: r =3 and |R| >2 We consider all cases of placing vertices from {vy, vo, v}
in X:

Select vy and v3: we decrease the measure by 3 + 2 - a.

Select vy: we decrease the measure by 3 + a.

Select vy: we decrease the measure by 3.
e Select v3: we decrease the measure by 3 + a.
e Choose none: we decrease the measure by 3. (All three vertices can be colored green.)

So, in this case, we obtain a branching vector (3 +2-a,3 + a,3,3 + «, 3).

Case 3.3: r =3 and |R| =1 The vertices v; and v3 have a common red neighbor. Now,
we can perform a vertex branch on v;. If we select v, then v3 becomes an isolated vertex,
and thus we have a branching vector of (3 + a,1 — «).

Case 3.4: r =4 and |R| > 2 Like in Case 3.2, we consider all cases of placing vertices
from {vy,v2,v3,v4} in X, and obtain a somewhat tedious case analysis. In each case, each
vertex in {vy,ve, v3,v4} either is removed or is green. If vy or vy is placed in X, we gain
an additional « for the removal of the red neighbor of this vertex. In case we select both
vy and vy, we gain 2 - «; here we use that |R| > 2. This gives a branching vector of
4+ a,44+2 - a,44+ a,4+ a,4,4,4 + «,4), corresponding to selecting {vy,vs}, {v1,v4},
{va,v4}, {1}, {v2}, {vs}, {v4} or no vertex from this path for inclusion in X.

Case 3.5: r =4 and |R| =1 We do a vertex branch on v;: if we select vy, then Rule 3
will remove v3 and vy. So the branching vector is (4 + a, 1 — «).



Case 3.6: » > 5 We branch as follows:
e v is placed in X: we decrease the measure by 2 + .
e v, is placed in X: we decrease the measure by 3.

e v3 is placed in X and w; is not placed in X. vy can be colored green, and thus we
decrease the measure by 4.

e v, is placed in X and v; and v, are not placed in X. vy and vy can be colored green,
and thus we decrease the measure by 5.

e None of vy, vy, v3,v4 is placed in X. vy, vy, v3 become green, and v, becomes red: a
measure decrease of 4 — a.

Thus, the branching vector is (2 + «, 3,4,5,4 — «).

Case 4: The subgraph induced by white vertices contains a path of length at
least two, with exactly one endpoint incident to a red vertex Suppose vy,...,0,
is a path of white vertices, and suppose r > 2 is maximal. Assume without loss of generality
that v, has a red neighbor, say w.

Case 4.1: r >3 We do a vertex branch on v,_5. If we select v,_o then we gain at least
3+ a: if r > 4, then v,_5 has two white neighbors, and if » = 3, then v,_, has a white
neighbor (v,_1) and a red neighbor (w). Moreover, v, becomes an isolated vertex after v,_
is placed in the independent set, and thus is removed by Rule 3. If we do not select v,_»,
we gain 1 — «, and thus we have a branching vector of (34 «,1 — «).

Case 4.2: r = 2 and w has a white neighbor = # v; We can now perform a vertex
branch on z. If we place z in the independent set, then w and x are removed, but also
vy, V9 are removed as Rule 3 can be applied: they form a connected component of at most
two white vertices. So, the measure is decreased by at least 3 4+ «. If we do not select =z,
we color x red so obtain a measure decrease of 1 — . So, this case gives a (34 «a,1 — «)
branching vector.

Case 4.3: »r = 2 and w has no white neighbor We either must select vy, or we select
vy, or we select neither v; or vy. If we select vy, then w can be colored green, as its only
white neighbor v; is removed. If we select neither v; nor vy, then w, v; and vy can be
colored green, so we decrease the measure 2 + « in this case. So we obtain a branching
vector of (24 a,2 4+ «a,2 + «).

If Cases 1 — 4 cannot be applied, then there are no adjacent white vertices. The
remaining cases thus deal with white vertices that have no white neighbors. If a white
vertex has no red neighbors, then it is removed by Rule 3, so we assume that each white
vertex has at least one red neighbor but no other neighbors.



Case 5: vy is a white vertex with no white but at least two red neighbors We
do a vertex branch on v;. If we do not select vy, it can be colored green, by Rule 1. So we
obtain a branching vector (1+2- «, 1).

Case 6: v; is a white vertex with exactly one neighbor, which is red Let w be
the red neighbor of v;.

Case 6.1: w has a white neighbor = # v; If a white neighbor of w has at least two
red neighbors, then we can deal with it as in Case 5, and obtain a branching vector of
(1+2-a,1). So suppose all white neighbors of w have degree one, and thus w is their
unique neighbor. We now have the following branch:

e w is a vertex in the K-set. In this case, w and all white neighbors of w are colored
green. S0, the measure decreases by at least 2 + a.

e w is not a vertex in the K-set. In this case, we must place all white neighbors of w
in the independent set X. Again, the measure decreases by at least 2 + a.

So, we obtain a (2 + «, 2 + «) branching vector.

Case 6.2: v, is the unique white neighbor of w In this case, we do a vertex branch
on v;. If we do not place v; in the independent set, then both v; and w can be colored
green. So, the branching vector is (1 + «, 1 + «).

If no case applies, then there are no white, and hence also no red vertices left, so we
found one (or zero, in case the green vertices are not connected) K-set. Our choice of
a = 0,5685 gives the best value for the base of the exponent for the given branching
vectors, namely the claimed 1,6052. Thus, it follows that there are O(1.6052™) nontrivial
K-sets that contain vg. As the value 1.6052 is obtained by rounding, and there are at most
n + m trivial K-sets, the result follows.

4 A Bound on the Number of K-sets in Trees

In this section, we establish an upper bound on the number of K-sets in a tree. This bound
is used in Section 5 to show a bound on the running time of our algorithm, when the input
graph is a tree or a forest.

Theorem 6 Let T'(n) be the mazimum number of K-sets in a tree on n nodes. Then
T(n) <n-3"3.

Proof. We denote as a rooted K-set of a rooted tree T any K-set of T containing r, where
r denotes the root of T'. Let R(n) be the maximum number of rooted K-sets in any rooted
tree on n nodes. We claim that R(n) < 3"/3 — 1 for all n > 2.



We are going to prove this claim by induction. To see that the claim is true for the
base case n = 2, note that the only K-set containing r is the one containing both nodes of
the tree, and that 3%/ — 1 > 1.08.

As induction hypothesis let us assume that the claim is true for all n’ < n and consider

any rooted tree 7" on n > 2 nodes. Let r be the root of the tree and w;, us, ..., u, be the
children of v. For every i = 1,2,...,p, let T; be the subtree of T rooted at u;. Furthermore
forall i =1,2,...,p, we denote by n; the number of nodes of T;.

Let W be any K-set of T" containing its root r. Then for every ¢, the intersection of W
with T} is either empty or a K-set of T; containing its root u;. Note that n; = 1 implies
that W also contains u; since r € W (and thus r cannot be taken into the independent set
X generating W). Using the induction hypothesis and Y 7, n; = n — 1, we establish the
following upper bound for the number of rooted K-sets of a rooted tree on n nodes

Rn) < [] (R +1) < T 37

n; >2 n; >2

S H3(TL—1)/3 S 3n/3 o 1

This completes the proof of our claim.
To complete the proof of the theorem simply note that any K-set is counted at least

once as a rooted K-set for some vertex v chosen to be the root, and thus 7'(n) < n- R(n).
U

The above proof can be used to obtain an algorithm to enumerate all K-sets of a tree
in time O*(3"/3). This algorithm chooses any vertex r of maximum degree and branches
into two subproblems: in one r is taken into W and in the other one r is discarded from
W and thus all neighbors of r are discarded from S.

5 The Exact Algorithm

In this section we present our exact exponential time algorithm solving KAYLES. The
algorithm starts with a call to the procedure compute_nimber shown in Figure 1, with
input G = (V, E). If it returns a nimber that is at least one, then Player 1 has a winning
strategy on G if it otherwise returns nimber zero, then Player 2 has a winning strategy.
Correctness of the procedure directly follows from the discussion in Section 2.

Note that the procedure compute nimber(G[W]) is only called for K-sets, and thus
G[W] is always connected, with one possible exception: if G is not connected, then the
first call to the procedure is for G[V] with V' not a K-set. As the overhead per recursive
call is polynomial, the running time is a polynomial factor times the number of K-sets in
G. The procedure computes the nimber nb(W) of G[W] for all K-sets W of G and stores
the value in a table using Memorisation, i.e., computed values are stored in a table, and
by look-up no value nb(W) is computed more than once. It follows that the running time

of the algorithm is O*(|C(G)|) where K(G) is the set of K-sets of G.



Procedure compute_nimber(G[W]).

if nb(W) already computed then
| return nb(W)
else
M =0,
for allve W do
let Z1,Zs,...,Z, (r > 1) be the components of G — N[w];
nim := 0;
for i — 1 to r do
nim := nim @ compute_nimber(G|[Z;]);
M := M U {nim}

answer = mex(M);

nb(W) := answer;
L return answer

Figure 1: Procedure compute_nimber

Combining the bounds of the previous sections on the number of K-sets with the algo-
rithm of this section, we establish the following result.

Theorem 7 KAYLES can be solved in time O*(1.6052™) for graphs on n vertices. KAYLES
can be solved in time O*(1.4423™) for trees on n nodes.

6 Lower Bounds

In this section we present graphs on n vertices having ©(3"/3) different K-sets. This implies
a lower bound on the maximum number of K-sets of any graph on n vertices as well as
a lower bound on the running time of any exact algorithm solving KAYLES by using all
K-sets of the input graph.

Theorem 8 There are graphs on n vertices with 3™3 + 2n/3 different K-sets.

Proof. Consider the following family of (chordal) graphs G, for all positive integers n
on the vertex set {1,2,...,3n}. The edge set of G, is constructed as follows:

e {3i : i=1,2,...,n} is a clique of G},, and
e forall i =1,2,... n, the vertex set {3i — 2,3i — 1,3i} induces a path.

Let us count the K-sets W of G,,.
Case 1: WN{3i : i=1,2,...,n} =0, which implies [SN{3:; : i=1,2,...,n}| =1. Say
SN{3i : i=1,2,...,n} = {3ip}. Hence W C {3i — 1,3i — 2} for some i. Thus if i # i
then W = {3i — 1,3i — 2}; and if i = iy then W = {3i — 2}. thus there are 2n different
K-sets in this case.

10



Figure 2: Example of the construction of Theorem 8, with n =5

Case 2: WN{3i : i=1,2,...,n} # 0, which implies SN{3; : i =1,2,....,n} = 0.
Then W C {3i —2,3i — 1, 3i} may be any of the following sets {3i — 2,3i — 1, 3i}, {3i}, 0.
Thus there are 3" — 1 different K-sets W in this case.

In total the graph G, has at least 3" + 2n K-sets. U

Theorem 9 There are trees on n nodes with 3("~1/3 4 4(n —1)/3 different K-sets.

Proof. Consider the following family of trees T,, for all positive integers n. The node set
of T,, is the set {0,1,2,...,3n+ 1}. The edgeset is constructed as follows:

e Foralli=1,2,... n, the vertex set {3i — 2,3i — 1, 3i} induces a path, and

e the node 0 is adjacent to all nodes in the set {37 : i =1,2,...,n} and no others.

i

Figure 3: Example of the construction of Theorem 9, with n =5

To count the K-sets W of T,, we distinguish two cases.
Case 1: 0 ¢ W. Then SN{0,3,6,...,3n} # (. Hence W C {3i,3i — 1,3i — 2} for some 1.
Thus W = {3i,3i — 1,3i — 2}, W = {3i,3i — 2}, W = {3i}, W = {3i — 2}. thus there are
4n different K-sets.
Case 2: 0 € W. Then SN{0,3,6,...,3n} = (. For every i, consider WN{3i—2,3i—1, 3i}.
By connectedness of G[W] and 0 € W, we obtain that W N{3i —2,3i — 1,3i} is any of the
following sets {3i — 2,3i — 1, 3i}, {3i}, 0. Thus there are 3™ — 1 different K-sets TV in this

case.

Summarizing, the tree T}, has at least 3" + 4n K-sets. O

11



7 Conclusions

In this paper, we gave an algorithm to determine which player has a winning strategy for
the game KAYLES. To analyse the running time, we introduced the notion of K-sets, and
obtained upper and lower bounds on the maximum number of K-sets that a graph can
have. We also obtained such bounds for trees; up to a polynomial factor, the bounds are
sharp for trees.

A number of interesting directions for further research remain. The complexity of
KAYLES on trees remains a long standing open problem. But one can also ask if there
exists a subexponential time algorithm for KAYLES on trees, e.g., with running time of the
form O(cV™).

Our algorithm uses exponential memory. It also is open if there exists a polynomial
space algorithm with a running time of O*(2"), and this may well be hard to obtain.

Our paper is a first example of exact algorithms for problems that are PSPACE-
complete. It would be interesting to study such algorithms for other PSPACE-complete
problems, e.g., for other combinatorial games, or for a problem like QUANTIFIED 3-
SATISFIABILITY [8]. An algorithm that solves QUANTIFIED (3-)SATISFIABILITY in O*(2")
time is not hard to find, but it seems very hard (or impossible) to find an algorithm with
a running time O*(¢") with ¢ < 2 for this problem.

References

[1] BERLEKAMP, E. R., CoNnwAY, J. H., AND Guy, R. K. Winning Ways for your mathematical
plays, Volume 1: Games in General. Academic Press, New York, 1982,

[2] BERLEKAMP, E. R., CoNnwAy, J. H., AND Guy, R. K. Winning Ways for your mathematical
plays, Volume 2: Games in Particular. Academic Press, New York, 1982.

[3] BODLAENDER, H. L., AND KRATSCH, D. Kayles and nimbers. Journal of Algorithms 43
(2002), 106-119.

[4] CoNwAy, J. H. On Numbers and Games. Academic Press, London, 1976.

[5] FLEISCHER, R., AND TRIPPEN, G. Kayles on the way to the stars. In Proceedings of the 4th
International Conference on Computers and Games, CG 2004 (2006), H. J. van den Herik,
Y. Bjornsson, and N. S. Netanyahu, Eds., vol. 3846 of Lecture Notes in Computer Science,
Springer Verlag, pp. 232-245.

[6] FomiN, F. V., AND KRATSCH, D. Ezxact Exponential Algorithms. Springer, 2010.

[7] GUIGNARD, A., AND ERrIC SOPENA. Compound Node-Kayles on paths. Theoretical Computer
Science 410 (2009), 2033-2044.

[8] SCHAEFER, T. J. The complexity of satisfiability problems. In Proceedings of the 10th Annual
Symposium on Theory of Computing, STOC’78 (1978), pp. 216-226.

12



[9] SCHAEFER, T. J. On the complexity of some two-person perfect-information games. Journal
of Computer and System Sciences 16 (1978), 185-225.

13



