CTy: a Haskell DSL for Specifying and Generating
Combinatoric Test-cases

I1.5.W.B. Prasetya
J. Amorim

T.E.J. Vos
A. Baars

Technical Report UU-CS-2011-005.
March 2011

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089

3508 TB Utrecht
The Netherlands

CTy: a Haskell DSL for Specifying and Generating Combinatoric
Test-cases

[.S.W.B. Prasetya*

Abstract.

The Classification Tree Method (CTM) is a popular
approach in functional testing. It allows testers to sys-
tematically partition the input domains of a target pro-
gram, and specifies the combinations they want. This
paper presents an implementation of CTM as a domain
specific language (DSL) embedded in a functional lan-
guage Haskell. Such an implementation is lean, but
very powerful. It furthermore gives the testers first
class access to all features of Haskell, e.g. clean syntax,
lazy evaluation, and higher order functions.

1 Introduction

The Classification Tree Method (CTM) is a combi-
natoric testing approach proposed by Grochtmann and
Grimm [3]. Imagine we have a program P to test. To
help in deciding which test-cases we will need, we first
construct a ’classification tree’. Such a tree specifies
how the domain of each parameter of P is abstractly
and hierarchically split into partitions. The lowest
level partitions are called ’classes’; each is represented
by a single concrete test-value. Each combination of
classes (where each parameter of P is represented ex-
actly once) abstractly represents a test-case. So, the
classification tree defines the maximum space of test-
cases that we are interested in. However, if the input
domains of P are complex then this space is quite large.
So, it is not practical to just do all test-cases in the
space. There are tools like EXTRACT [9], ADDICT[I],
or CTE-XL [5] that implement CTM with visual edi-
tors like in Figure [1| to allow testers to visually create
a classification tree, and select the class-combinations
they want to use as test-cases. A ’concretization’ phase
then turns these combinations into concrete test-cases
(that will actually test P). In principle we can just

*Dept. of Inf. and Comp. Sciences, Utrecht Univ. Email:
wishnu@cs.uu.nl

TDept. de Sistemas Informéticos y Comp., Univ. Polit. de
Valencia. Email: tvos@Qdsic.upv.es

fUniv. de Valencia, as above. Email: abaars@pros.upv.es

J. Amorim

T.E.J. Vos' A. Baarst

city noneity

i

super kid1 kid2
comfart

standard

)

young old

~AT) Testcase 1
~A_) Testoase 2

() Testoase 3
~AT) Testcase 4

Figure 1. A classification tree, graphically de-
picted in the tool CTE-XL. Below it is a so-called
combination table, depicting various test-cases,
and how each test-case is constructed by combin-
ing classes from the tree.

manually list down the combinations we want. But
this is not very reliable, since we may miss some im-
portant combinations. So, in e.g. CTE-XL people use
combination rules to declaratively specify the combina-
tions they want. The combinations are then generated.
The CTM approach can be used in both white box or
black box testing, and has been successfully applied in
various industrial projects [5].

We will presents an implementation of CTM as
a small Domain Specific Language (DSL). The DSL
is called CTy, embedded in the functional language
Haskell. We will have to drop the luxury of a visual
editor, but we get something else in return. Haskell
is a very good host language for embedding DSLs.
Successful examples include DSLs for writing financial
contracts [4], parsers [§], and animation [6]. DSLs in
Haskell get native access to its features, e.g. clean syn-
tax, lazy evaluation, polymorphism, and higher order
functions. For us it means that we can write powerful
expressions to specify and process the combinations of
the classes that we want to include in our test-suite.
As a concrete example, we will also discuss how CTy
can be used to combinatorically test a web service.

ctreel = tree [insuranceType,age,place]
where
insuranceType = "insType" <==
"standard" %)%= (frag Standard, (0.5::Float)),
"comfort" Y%= (frag Comfort, 0.35) ,
"super" %h= (frag Super, 0.15)]

age = "age" <==

"kid1" %%= (Int32 4, (0.2::Float)),

"kid2" %%= (Int32 16, 0.2),

adult]

where

adult = "adult" <==
"young" %%= (Int32 20, (0.4::Float)),
"old" %%= (Int32 66, 0.2)]

place = "place" <==
"city" %%= (StringN 100 "Delft",
"noncity" %%= (StringN 100 "Achterhoek", 0.4) 1]

Figure 2. A classification tree in Haskell/CTy.

2 Specifying input domain

Imagine as an example the function below for calcu-
lating the premium’s price of some insurance; suppose
we want to test it.

calcPremium(itype, age, city)

where itype is the type of insurace (e.g. stan-
dard,comfort,super).

Rather than just trying arbitrary test-cases, recall
that in the CTM approach we first divide the input do-
mains of calcPremium into logical partitions. This par-
titioning is specified with a tree structure called clas-
sification tree. This tree defines the maximum space
of various test-cases that we are going to try (but note
that we do not typically want to do them all). Figure
shows how such a tree is expressed in CTy. E.g. it
divides the parameter age into three partitions: kid1,
kid2, and adult. The last one is partitioned further
into young and old.

Partitions of the lowest level (which are not further
partitioned) are special, and are called classes. Each
class logically specifies a subdomain. However, for test-
ing purpose all values in this subdomain are assumed to
be equivalent. Under this assumption we can represent
a class with just one test-value. This is the value we
will use when the class is later used to form a test-case.
We construct a class using the following notations:

7kid1” %= Int32 4

This constructs a class named kid1, with the value 4
as the concrete test-value representing it. Each class
is assumed to get a unique name. Test-values are rep-
resented by a separate type TestVal that supports a

(0.6::Float)),

number of constructors. E.g. Int32 in the above ex-
ample represents a 32-bits two’s complement integer.
In Haskell itself we can have integers of any size, but
because we may target a different language then it is
necessary to specify the specific range that we want.
The constructor StringN n s is used to construct a
string (s) whose length is at most n.

With a slightly different notation, we can also dec-
orate a class with additional information:

7city” %= (StringN 100 "Delft”,0.4)

This constructs a class named city, with "Delft” as
the test-value representing it, and decorates the class
with the value 0.4, representing the importance/weigth
of the class. In principle, we can put a decoration of
any type though.

Non-class and non-top-level partitions are repre-
sented by the type Partition, and are constructed
using the following notation:

7adult” <= [pi, ..., Pu]

This constructs a partition named adult, with all those
pi’s as subpartitions.

A top-level partition specifies the whole domain of
a parameter of our target function. In the tradition
of CTM this is called category. So, any classification
tree of calcPremium will consist of three categories:
one for the parameter itype, one for age, and one for
city. We will represent a category with its own type
Category, but use the same <= notation as above to
construct it.

Finally, a classification tree itself is represented by
the type CTree,, and is constructed with notation like
this:

tree [C1, ..., Cy]

where C} is a category. See also the example in Figure
2

The « in the type CTree, is a type parameter rep-
resenting the the type of test-values (that are sitting
in the classes in the tree) and their decorations, if they
have those. E.g. if we have no decoration then « is just
TestVal. If we use a number as a 'weight’ decoration
then « is (TestVal,Float).

The types Partition and Category we mentioned
before should actually be parameterized by a. The
same applies to the types TestCase and Suite intro-
duced later. However, in favor for readability, in the
sequel we will however just omit this a.

3 Test-case and test-suite

A test-case should specify two components: (1) an
input for the target program f that we want to test,
and (2) the expected result, also called oracle. In our
work, we will only address the problem of generating
the inputs. Oracles will be left as place holders. If an
executable specification for f exists, these place holders
can be replaced by calls to this specification. Without
a specification oracles cannot in principle be automat-
ically generated.

Consider again the calcPremium example. Since
each class contains a test-value, a test-case can be
represented by a list ¢ of classes where every cate-
gory /parameter of calcPremium is represented in ¢ by
exactly one class. E.g. the list [city, standard, kidl]
would represent a test-case for calcPremium. Con-
cretely, this corresponds a test-case whose input is this:

calcPremium(Standard, 4, ”Delft”)

We will however call any list of classes a ’test-case’.
Those that satisfy the above criterion will be called
complete’ test-cases. We introduce these types to rep-
resent, test-case and the corresponding notion of test
suite:

[Class]
[TestCase]

type TestCase
type Suite

Below we will define a number of auxiliary notations
for the purpose of explaining our concepts. Since they
are however not exposed to CTy’s users, we refrain from
presenting them in terms of their actual Haskell imple-
mentation, and instead do so in plain mathematical
notation.

If p is a class or a partition let cat(p) denote the
category to which p belongs. If P is a list or a set of
classes or partitions, we define cat(P) = {cat(p) | p €
P}. Since a test-case is also a list of classes, we can use
the same notation on it. If ¢ is a classification tree, we
will write cat(¢) to denote the set of categories in ¢.

A test-case t is well-formed if for any distinct ¢, d € t,
cat(c) # cat(d). With respect to a given classification
tree ¢, t is complete if it is well-formed and furthermore
cat(t) = cat(¢p). A well-formed test-case that is not
complete is called partial.

If p is a partition or a category, we write class(p)
to denote the classes that are descendants of p (as a
tree). In other words, these are the classes that make
up p. If P is a list or set of partitions, class(P) =
U{class(p) | p € P}. We will also write ¢ € p to mean
¢ € class(p). Similarly, we also write ¢ € P.

If ¢ is a test-case, and v be a set of categories. We
write t|y = [c | ¢ € t A cat(c) € 4] to mean the

subset of t restricted to . Analogously, t]¥ is simply
the complement of |, which is: [c|c €t A ¢ & tly].

Let s and t be test-cases. We write s D t if as sets
s subsumes t. They are equivalent, written as s = ¢, if
they subsume each other. The union and intersection
of two suites are defined as follows:

SUT = S++[t|teT, (VseSut#s)]
SNT = [t|teT, (IseSut=s)]

4 Specifying combinations

The simplest way to generate a test suite from a
classification tree is by using one of these functions:

allf :: CTree — Suite
allm :: CTree — Suite

The first produces the full suite, consisting of all pos-
sible test-cases induced by a given classification tree
¢. The second one gives the minimalistic suite, which
is the smallest suite such that every class in ¢ is cov-
ered/used at least once.

Recall that a test-case is essentially a combination
over classes from different categories. The total num-
ber of combinations can explode very fast. So, for a
function with complex input domains, we can expect
its full suite to be too large, e.g. containing thousands
of test-cases which in many situations is not feasible to
be fully explored. On the other hand, the minimalistic
suite is often too small to be adequate.

Inspired by CTE-XL [5] below we provide a simple
language to write ‘combination rules’, so that we can
declaratively specify the combinations that we want to
cover. We will however use a deviated set of operators
(than that of CTE-XL —see also Section .

The combination rules are implemented ’symbolic’.
It means that they are represented as data in Haskell
and have to be interpreted first to actually produce
the corresponding suites. This allows us to check
them first for their well-formedness, before interpreting
them. This also allows us to more efficiently implement
the complement operator. For further expressiveness,
the generated test-suites can be further combined at
Haskell’s native level —we will return to this later.

A combination rule will be represented by the type
Rule, which can be constructed in this way:

R == incl P | R op R | negR
where P is a so-called 'monocat’. It is either single a

category name or a list of partition names, such that
|cat(P)| = 1. So, all partitions in P should belong to

the same category. The op above is an operator from
the following set:

|+|7 |&47 &8[*’ &b~

Semantically, a combination rule R specifies a suite
over the categories mentioned in R. We will define
a function:

rule :: Rule — Suite

that interprets a rule and produces the suite it specifies.
This function is essentially our test-cases generator. R
may indeed produce test-cases which are still partial
—we will deal with this later.

A suite S is well-formed if it consists of well-formed
test-cases, and for all ¢,u € S, cat(t) = cat(u) (all test-
cases in S cover exactly the same set of categories).
Two well-formed suites can be combined more effi-
ciently since we do not have to keep checking whether
two test-cases from the suites are actually compatible
to be combined. Combination rules will be restricted
(and checked) so that they only produce well-formed
suites.

The simplest rule is of the form incl P. Since P
is a monocat, all classes under P belong to the same
category. Each is a candidate test-value for the cate-
gory. Each is then lifted to a partial test-case, and then
collected in a suite. So:

rule (incl P) = [|[d] | ¢ € class(P)]

We discuss the definition of rule(neg R) later.
Next, this operator provides the union over the gen-
erated suites:

rule (R1 H R2) = rule Ry U rule R,

Similarly, we define intersection [&. To be well-
formed, R; and Ry above should specify the same set
of categories.

If Ry and Ry are rules with no common categories,
this operator construct the Cartesian product of their
test-cases:

rule (R; &&* Rz) = rule Ry X rule R;
So xSy = [81—|—|—52 ‘ s1 €51, s2 € SQ}

Notice that this operator is the binary version of allf.
The ’minus’-variant will combine R; and R, in a
minimalistic way, analogous to allm:

rule (R; &&— R;) = rule Ri + rule R,

Sy + S is defined as follows. Assuming |Sa| < [S1],
we fill S5 by duplicating some of its elements to make

its size equal to S;. We do the oppsite if |Sa| > |S1].
Then the definition looks as belowl}

S1 4+ S2 = [si+H+Ht1, ..., Sntttn]

where s1,..., 8, are elements of S7, and %4, ...
elements of Ss.

Let N1 and N5 be the size of rule R; and rule Rs.
Whereas &&x produces a suite of size N1*Ns, that of
&&— has the size of max(Ny, Na).

Notice that we can write nested rules and mix the
full and the minimalistic variants of the operators. For
example:

,tn are

{ incl 7age” &&— incl ”insType”
rl =

incl ["kid1”] &&x incl ”insType”

With respect to the classification tree in Figure [2] it
specifies a suite of partial test-cases over the categories
insurance-type and age. The first line minimally com-
bines the two categories. The second line fully com-
bines the category insurance-type and a single class
kidl from the category age. The two suites are then
merged. This gives us in total 6 test-cases, whereas
simply fully combining the two categories will give 12
test-cases.

4.1 Derived operators

The above set of operators is complete. That is, we
will be able to specify any subset of allf. Actually,
we only need the incl, i, and && operators, but just
using these is not going to be convenient.

Boolean-like operators

For further convenience we can define a whole array
of derived operators, e.g. as below, based on the full
combinator &&*. Let P be a monocat, and Ry, Ry be
rules that have no common category:

excl P = neg(incl P)

Ry or: Ry (R1 && R2)
H (neg R1 & R2)
H (R1 & neg R»)

Ry xors Ry = (R1 & neg Rz) |—H (neg Ry &&+ Rz)
Riequs Re = (R1 &&* R2) H (neg R1 &&* neg R2)
Ry imps R2 = neg Ry or: R>

Analogously we can have the minimalistic version of
those operators, which are based on the combinator
&&e—.

We use the names of the Boolean operators because
intuitively our operators have analogous meaning. But

11t is essetially a zip; and is implemented lazily.

note that they do mot form a Boolean algebra. E.g.
&&x and org, as well as their minimalistic counterparts,
are still commutative and associative, but they are not
idempotent. E.g. R &&* R is not allowed in our alge-
bra, since it does not produce a well-formed test suite.
We also do not have distributivity. E.g.:

R1 818[* (R2 ors R3) # (R1 &Kl* Rz) ors (R1 &&'}k Rg)

The right formula will not produce a well-formed suite.

k-wise combination

We can also define an operator wisey Z where Z is a
list of rules with no common category. This constructs
a new rule that combines the rules in Z, such that
every possible pair from Z is fully combined, and then
minimally combined with the rest. More precisely, for
every pair of rules R;, R; € Z, it first constructs the
full combination T; ; = R; &&* R;, and then T; ; is
minimally combined with the rules from Z/{R;, R;}
to obtain U; ;. Then we take the union over all these
Ui7j7S.

For a Z consisting of just three rules, this will give
us:

wises [Rl,Rz, R3} = ((Rl &&ex Rz) 88— R3)
H ((R2 &&* R3) &&— R1)

H ((Rs &&* R1) &&— R3)

The definition can be further generalized to wisey.
This corresponds to a generalization of the k-wise-
combination operator of CTE-XL [5]; the above is more
general as it operates on rules rather than just on par-
titions as in CTE-XL.

4.2 Implementing Complement

The complement operator neg R should give
us the ’complement’” of R’s suite. Consider
neg (incl P; &&x incl P,). Let C; be the catagory
of P;. In this case the ’complement’ is just the
full space C7 x (3 substracted with the suite of
incl P, &&* incl P,. Now, what is the complement
of the one below?

(incl Py &&* incl Py) &&— incl Pj

We decide that it is not sensical to get it by just
substracting from the fully combined space C; x Cs X
C3. Instead, we will susbtract it from (C; x Cs) + Cj.

Calculating complement by substracting from a cer-
tain maximum space implies that we first have to con-
struct this maximum space. Due to combinatorical na-
ture of &, this space can be quite large. The effort is

wasted if we turn out to throw away most combinations
from the space.

Because of the above two issues we calculate comple-
ment indirectly by first applying some symbolic rewrit-
ing to our rule.

Let us now impose that when interpreted over
Suite, the algebras (neg, H,|&) and (neg, &&x, &&—)
are to satisfy de Morgan equations. The equations will
allow us to normalize a rule to its a negative normal
form, obtained by pushing occurrences of neg as far as
possible toward the ’atoms’ of the formula.

The full procedure is shown below, by the function
nnf. The various cases should be interpreted in the
cascade-mode. No definition is provided for or; and
ory, since they are defined in terms of &&+ and &&—.

nnf R

nnf (neg Ri ors neg R2)
nnf (neg Ri orn neg R»)
nnf(neg R1) HH nnf(neg R2)
nnf(neg R1) |&] nnf(neg R2)

nnf
nnf
nnf
nnf
nnf

neg(neg R))
neg(R1 &&x R2))
neg(R1 &&— R»))
neg(R1 |& Ry))
neg(R1 H Rz))

Py

nnf (neg a) neg a

nnf (R; &&* R2) nnf R1 &&+ nnf Rs
nnf (R; &&— R2) nnf Ry &&— nnf Rs
nnf (R1 HH R2) nnf R H nnf Ro
nnf (R; |&] R2) nnf R; |& nnf Ry
nnf a a

To produce the suite of neg R we first normalize the
formula. Basically, the normalization does some sym-
bolical pre-calculation on the parts of the maximum
space that we need to construct, so that we do not
have to do the more expensive set complement. The
only thing left is to define neg at the atomic level. Let
C be a single category, and P be a (monocat) list of
partitions:

rule (neg(incl C))
rule (neg (incl P)) =

[]

where D = cat(P).

5 Combining test-suites

Applying the function rule interprets a given com-
bination rule R to produce the corresponding test-
suite. Since suites are just lists, we can further com-
bine and process them with any Haskell function of
a compatible type. This can give us a lot of expres-
siveness. However, because we now directly combine
suites (rather than rules), we will not check their well-
formedness during the combinations. Doing so would
be inefficient. We will just filter the final suite to throw
away ill-formed test-cases. Since such filtering can
make the meaning of suite operators less predictable,
the user is now responsible to make sure that that does

[[e] | ¢ € class(D)/class(P)]

not happen (by not producing intermediate ill-formed
test-cases).
We can combine two suites as follows:

S1 op S2
where op is one of the following operators:
H, |&], ‘suchthat’, ‘except, M

The first two are just the union and intersection over
suites (the U and N we defined before). The arguments
of these two operators should be suites over the same
categories.

S1 ‘suchthat‘ Ss specifies a subset of S consisting
of those test-cases t that subsumes some test-case in
SQZ

S1 ‘suchthat’ S = [s|s€ Sy, (Ft€S2::821)]
Then we can define the negative counterpart of this:
S1 ‘except‘ So = S1 / (S1 ‘suchthat’ S)

S1 W Sy constructs the ’relational-joint’ on S; and
So. Let C7 and C5 be the set of categories of S re-
spectively Sy, C =C1UCs, and D =C1NCy (so D is
the set of their common of categories). The operator
is defined as below:

S1 M S2
[s++tl(C/D) | s€ S, t€ Sy, s]D=t|D]
For example, we can now write like this:

rule (incl ["kid1”] &&* incl ”insType”)

H

rule (incl ”place” &&* excl [’standard”])

The first line interprets a combination rule to pro-
duce a suite that combines all possible insurance types
with the class kidl. The second line gives a suite
that combines all possible place with non-standard
insurance-type. The operator }{ will join these two
suites, by picking the combinations of the test-cases
from both suites that have a common insurance type.

Padding test-suite

Let f be the target function to test, and 7 is the clas-
sification tree we want to use. A suite expression such
as discussed above may not produce complete test-
cases if the underlying combination rules in the ex-
pression do not mention all categories of 7. Before we
can turn them to concrete test-cases for f, we need to
pad/extend these test-cases to make them complete.

Let S be a test-suite. Suppose A = [Dy,..., Dy] is
the set of categories which are still missing from the
test-cases in S. We can pad these test-cases by either
fully or minimally combining them with A. This gives
the following padding functions:

paddindf S = S x A1 x..x AN
paddingm_ S = S+ A1 +..+ An

where Ay = rule (incl Dy); times and + are opera-
tors on test-suites as defined before.

5.1 Priority-based selection

We can also sort a suite and then take e.g. just the
first k test-cases. This is useful if after specifying the
combination rule as explained above we still end up
with a very large suite. Haskell can provide us with an
easy and flexible way to program this.

Remember that a class can be decorated. We can
use this to express the 'weight’ of the class. Let W be a
function that can retrieve this weight info from a class.
We can generically define the corresponding notion of
the weight of a test-case as below. Let t = [cq, ..., ¢,
be a test-case.

weight(@w)t = We & ... & We,

Let D be the co-domain of W. If we also provide
a total ordering < over D, we can define a function
in Haskell to ascendingly sort any suite based on the
value of weight g y) and < as ordering:

ssorts gw) S = 9

where S’ is the sorted version of S as explained above.
Now we can for example define these:

wsort = $S0rt(> 4 sna)
psort = $S0rt(< 4 snq)

The >, <, 4, * above refer to the corresponding nu-
merical relations and operators.

The first function above induces the concept of test-
case weight that sums the weight of its classes. If the
weight of a class indicates its importance, wsort will
make important test-cases to float to the top.

If the weight is used to express the estimated likeli-
hood that a class occurs in practice, psort induces the
concept of test-case weight that corresponds to the es-
timated likelihood that the combination of the classes
that occur in the test-case will actually occur in prac-
tice. It will sort a suite so that rare cases will float to
the top.

We can now write this expression in Haskell:

suite = tau $$ rule (incl ["kid1"] &&* incl "insType")
>>= paddingm
>>= psort
>>= 1lift_ .

take 3

This first line produces the base suite (that combines
kid1l with all types of insurance). Then we pad the
suite, then we sort it according to its likelihood, then
we take the three rarest ones.

Functions like paddingm and psort have in princi-
ple the type Suite—Suite. But in some cases, e.g.
as in paddingm it also needs access to the used clas-
sification tree. We can indeed just explicitly pass the
tree, but then we will have to pass it again every time
we need it. To make the notation nicer we implement
these functions, and also the suite operators from the
previous section, on top a so-called reader monad. In a
functional language this allows us to store a value to a
context. The functions that need them can implicitly
inspect this context, which leads to a cleaner notation.
As the reader can see above, we only pass the tree tau
once to the whole expression.

Because we use monad, pipe-line processing such as
what we do in the above example is not done using the
usual function composition, but with the >>= operator,
which is the monadic pipe-lining operator.

We can also apply an ordinary list function to pro-
cess a suite (since suite is also a list); for example as
in the application of take k in the above example (to
take the first k elements from a list). Lifting is needed
to pull it to the monad level.

6 Generating concrete suite

Let f be the target function to test. The test-cases
as we discuss so far cannot be directly used for testing.
They must first be passed to a concretization phase,
to be turned into concrete test-cases. E.g. they have
to be expressed in the programming language that we
will use to actually execute the test-cases. Currently
we only provide concretization targeting Haskell itself.
In principle it is not too hard to customize it to target
other languages.

An example of the result of concretization is shown
below. It comes from a CTy suite of two test-cases:

module CTy.ExampleOTestl where

import Test.HUnit
import CTy.ExampleO

-- start generated code
tcl = TestCase (

assertEqual "** Case standard, kidl, city"
(calcPremium (Standard) (4) ("Amsterdam"))

undefined)

tc2 = TestCase (
assertEqual "** Case standard, kidl, noncity"
(calcPremium (Standard) (4) ("Achterhoek"))
undefined)

-- to run the whole suite do: runTestTT suite
suite = TestList [tcl, tc2]
-- end generated code

This generated code is syntax-correct, but it is still
incomplete. The reader can see that there are some
undefineds in the code. These are 'place holders’ for
the expected values (the test-oracles) for each test-case.
As pointed out before, we cannot generate them. So
the tester will have to manually fill these in. After that,
the suite is ready to run.

Performance

CTyis quite fast. It can generate a suite in a fraction
of a second, or a bit longer if the suite is large. See
the table below. The 2nd row gives the time needed
to generate the suites of various sizes. In practice we
seldom want to generate a suite of e.g. 30 thousands
test-cases. So, next we sort them and select just few
test-cases. The third row gives the total time of gen-
erating a suite, then sorting it, then selecting the first
100 test-cases.

|suite| 1K | 30K | 290K
time-1 0.0 2.0 33.8
time-2 (sort) || 0.2 | 9.4 | 90.0

We use a 32-bits PC with AMD dual-core, 1.9 GHz,
3GB RAM, and Win-Vista. We run the examples in
the interpreter-mode using GHCi.

In comparison, CTE-XL takes over 1.5 hour to
produce a selection of 12K test-cases. It probably
spends most of this time in producing the GUI ele-
ments needed for showing the test-cases, which we do
not have to do here. So this comparison should not be
taken as fair.

7 A bigger example: regressing Google
Geocoding API

Google Geocoding API is a web-service provided
by Google to calculate the geographic coordinate of a
place. The place is described by its address, e.g. ”pad-
ualaan 14, utrecht, netherlands”. A coordinate is given
in latitude and longitude e.g. (52.08503,5.1704884). It
is a RESTful service; we can query it by sending a
HTTP request e.g. like this (for the above example):

http://maps.googleapis.com/maps/api/geocode/xml?
address=padualaan+14+utrecht+netherlands

If the address is recognized, an XML containing its
coordinate is returned. It it matches multiple places,
the XML will contain multiple coordinates as well.

The service can handle different ordering of the com-
ponents of an address (e.g. if we specify the town before
the street), or if we mangle some component a little bit
(e.g. ’utrecth’ instead of 'utrecht’), or even omit the
component. Note: there are cases where it seems to
have problems.

Suppose we have a set P of important
places/addresses (e.g. hospitals in your town).
We want to make sure that over time Geocoding API
always give consistent coordinates of those places. We
will do this by regularly performing a regression test
on the service. We use CTy to specify the test suite to
use. We will construct one generic suite which can be
instantiated for each address in P.

Let a be a full and correct address. We will con-
struct a test-suite S, where each test-case is obtained
by permuting and mangling a’s components in various
ways. S, is then used for regression with respect to a.
This is done in two stages.

The first stage is a manual approval stage. For ev-
ery test-case in S, we verify if Geocoding API’s an-
swer is ’correct’. Every test-case is basically a query
using some variant of a, sent to the API. The answer is
correct if either the API says it doesn’t recognize the
query, or else if the coordinates returned by the API
contains a correct one.

Once all test-cases in S, are approved, we will store
the API’s answer of each test-case t and uses it as the
oracle for t. Then we can proceed to the regression
stage where we regularly re-run the S,; it will report
an error if one query gives a different answer than the
stored answer (the one we approved earlier). We will
do this for every address a in our set P.

The API is tested through the test-interface below.
The interface takes care e.g. the HTTP connection
with the API, formatting a query before it is sent to the
API, and parsing the API’s XML answer. Additionally
it also: (1) mangles and permutes the given address
according to the given mangling and order specifiers,
and (2) checks the answer against the oracle.

ggTI address coM ciM stM nrM o

The function returns true if the result is equal to the
oracle; else false. The parameter address is specified
by a tuple (country, city, street, streetnr). The next
four parameters are mangling-specifiers for respectively
country, city, street, and street-number. Finally o spec-
ifies the order /permutation of the address’ components

ct a = tree [address,countryMode,cityMode,
streetMode,numberMode, order]

where
address = "Address" <== ["Address" Y= addr_ al
countryMode = "CountryMode" <==

["CoCorrect" Y%= mode_ Correct,
"CoSwapped2" %= mode_ Swapped2,
"CoDropLast" %= mode_ DropLast,
"CoEmpty" %= mode_ Empty]

cityMode = "CityMode" <==
["CiCorrect" Y%= mode_ Correct,
"CiSwapped2" %= mode_ Swapped2,
"CiDropLast" %= mode_ DropLast,
"CiEmpty" %= mode_ Empty]

streetMode = "StreetMode" <==
["StCorrect" Y%= mode_ Correct,
"StSwapped2" %= mode_ Swapped2,
"StDropLast" %= mode_ DropLast]

numberMode = "NrMode" <==
["NrCorrect" %= mode_ NCorrect,
"NrEmpty" %= mode_ NEmpty]

order = "ArgsOrder" <==
["CommonOrder" %= mode_ CommonO,
"CoCiSN" %= mode_ CoCiSN,
"NSCiCo" %= mode_ NSCiCo,
"CoNSCi" %= mode_ CoNSCi]

Figure 3. The classification tree for Google
Geocoding API

in the concrete query to the Geocoding API (e.g. pad-
ualaan+14+utrecht, or utrecht+padualaan+14).

We use a classification tree to express various ways
to mangle each address component, and various per-
mutations we want to consider; this is shown in Figure
Roughly for each address component we have four
mangling modes: no-mangling, swapping the last two
letters, dropping the last letter, and deleting the whole
component. For street numbers, only the first and the
last modes are used.

The tree is specified with respect to a specific ad-
dress a. Given such an address, the tree induces in
total 384 test-cases. This is too many for the manual
approval stage. On the other hand, the minimal suite
will just contain 4 test-case, which does not feel to be
adequate. So, we use a rule to select the combinations
that we think more important to cover:

rl = incl ["StCorrect"]
&&* incl "ArgsOrder" &&* incl "CityMode"
[+1
neg (incl ["StCorrect"])
&&- incl "ArgsOrder" &&- incl "CityMode"

Below we show how we construct the final test-suite.
Basically it turns the rule above to a test-suite, then
we apply minimalistic padding. The we do few other
format-related things, e.g. fixing the order of the
classes in each test-case.

ggSuite a = ct a $$ rule ril
>>= paddingm
>>= fixorder
>>= 1lift_ . strip

E.g. this suite will fully combine an un-mangled street-
name with the four permutations included in the clas-
sification tree and with all mangled variations of the
city-name. The resulting combinations are then min-
mally combined with the other parameters.

The above suite gives 20 test-cases. It is then given
to a concretization function to generate the correspond-
ing concrete test-suite.

8 Related work

Other tools implementing CTM are EXTRACT [9],
ADDICT [I], and CTE-XL. The last one, by Lehmann
and Wegener [5], is probably the most prominent one.
CTE-XL also provides a set of operators to declara-
tively select a suite. The selection is expressed by two
kinds of rules: ’combination rules’ and ’dependency
rules’. The first are used to specify which base-suite
to generate, the second specify constraints on the suite
and are used to filter the base-suite. Just as in CTy,
any suite can be generated with CTE-XL. However the
used operators are different. CTE-XL does not have
the neg, H, and |& in its combination rules. Hav-
ing these operators allow us to provide the derived
Boolean-like operators imps, impy, x0r¢, x0Ty, etc. We
can also define the k-wise combination operator as a
derived operator. CTE-XL provide Boolean operators
to express dependency rules. CTy does not distinguish
between the two kinds of rules. It uses the suite-level
operators suchthat and except to express constraints,
where any rule or suite can be used as a constraint.

Yu et al [9] proposed an extension to CTM where
classes can be annotated with tags (also called proper-
ties’). Selector expressions are then written to specify
that e.g. a class ¢ can only occur in a test case t if
t contains (or does not contain) a certain set of tags.
The expresiveness of tags is equal to CTE-XL’s depen-
dency rules. A class can also be annotated with weight
reflecting its importance. The generated test-cases are
then sorted so that ’heavy’ test-cases will be exercised
first. We have seen that in CTy we can also sort and
prioritize test-cases. But we also we more flexibility,

e.g.:

(suite; >>= sorty)
‘suchthat*
(rule R >>= sorty >>= lift_ . take 3)

This combines two suites sorted with different criteria.
We are also not limited to sorting according to additive
weight; we can basically define any sorting criterion.

Conrad proposed CTMgyg as an extension of CTM
for continuous or hybrid embedded systems; he later
improved it together with Krupp in [2]. When test-
ing an embedded system the sequences with which the
test-cases are exercised may matter. That is, SUT’s re-
action to a test-case t depends not only on ¢, but also on
the preceding test-cases. So, a test-case here is actually
a sequence of ordinary CTM’s test-cases (called here
test-steps). Since the SUT is also continuous, we may
have to specify how SUT’s inputs evolve between two
subsequent test-steps (e.g. they step, ramp, or follow
a sinuous curve). This can be expressed in CTMpyp.
We did not explore this direction. It is conceivable that
in this area the sequences tend to be very specific and
delicate that visualization is important; then CTy is not
an appropriate tool to generate them.

Singh et al proposed to associate formal predicates
expressed in Z to the classes in a classification tree [7].
So, test-case t induces a formula f; that logically iden-
tifies it, which is just the conjunction of the formulas
associated to t’s classes. Modulo decidability, this al-
lows non-sensical test-cases to be filtered out by check-
ing if the conjunction of f; and SUT’s pre-condition
is satisfiable. We can also use a formula to specify
a partition, and implicitly use e.g. its DNF-clauses
as its classes. We did not explore into this direction.
But in principle people can do this in Haskell. CTy
itself allows any type to be used to represent a test-
value, including a formula. Haskell has a number of
theorem prover libraries. Some provide satisfiability
checking. Moreover, they provide a symbolic represen-
tation of formulas, which means that we can analyze
them. E.g. to apply an algorithm to calculate bound-
ary test-values. Admittedly, for convenient use high
level operators must be provided, which we have not
done.

9 Conclusion

CTy is an implementation of the CTM approach.
However, it is not graphical; it is less suitable for testers
who are less proficient in programming. It is provided
as a DSL embedded in Haskell. This gives us first class
access to Haskell’s features. E.g. we get type checking,
higher order function, lazy evaluation, and libraries for

free. The embedding approach gives us much expres-
siveness and flexibility, while the syntax is still quite
clean. Testers do have to be familiar with some degree
of Haskell concepts and syntax.

References

[1]

A. Cain, T.Y. Chen, D. Grant, P.L. Poon, S.F.
Tang, and T.H. Tse. An automatic test data gener-
ation system based on the integrated classification-
tree methodology. In Software Engineering Re-
search and Applications, volume 3026 of LNCS,
pages 225-238. Springer, 2004.

M. Conrad and A. Krupp. An extension of the
classification-tree method for embedded systems for
the description of events. In 2md Workshop on
Model Based Testing, volume 164 of ENTCS, pages
3-11, 2006.

M. Grochtmann and K. Grimm. Classification trees
for partition testing. Software Testing, Verification
€9 Reliability, 3(2):63-82, 1993.

S.L.P. Jones. Composing contracts: An adven-
ture in financial engineering. In Int. Symp. of For-
mal Methods Europe (FME), volume 2021 of LNCS,
page 435. Springer, 2001.

E. Lehmann and J. Wegener. Test case design by
means of the CTE XL. In Proc. of 8th European
Int. Conf. on Software Testing, Analysis € Review
(EuroSTAR), 2000.

J. Peterson, P. Hudak, and C. Elliott. Lambda in
motion: Controlling robots with Haskell. LNCS,
1551:91-105, 1999.

H. Singh, M. Conrad, and S. Sadeghipour. Test
case design based on Z and the classification-tree
method. In IEEF Int. Conf. on Formal Engineering
Methods (ICFEM), pages 81-90, 1997.

S.D. Swierstra. Combinator parsers - from toys
to tools. FElectr. Notes Theor. Comput. Sci, 41(1),
2000.

Y.Y. Yu, S.P. Ng, and E.Y.K. Chan. Generating,
selecting and prioritizing test cases from specifica-
tions with tool support. In Int. Conf. on Quality
Software (QSIC), pages 83-90, 2003.

10

	Introduction
	Specifying input domain
	Test-case and test-suite
	Specifying combinations
	Derived operators
	Implementing Complement

	Combining test-suites
	Priority-based selection

	Generating concrete suite
	A bigger example: regressing Google Geocoding API
	Related work
	Conclusion

