
A Comparative Study of Code Query Technologies

Tiago L. Alves

Jurriaan Hage

Peter Rademaker

Technical Report UU-CS-2011-009

April 2011

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

A Comparative Study of Code Query Technologies

Tiago L. Alves
Software Improvement Group,

Netherlands
University of Minho, Portugal

t.alves@sig.eu

Jurriaan Hage
University of Utrecht, Netherlands

jur@cs.uu.nl

Peter Rademaker
University of Utrecht, Netherlands
peter.rademaker@gmail.com

Abstract
When analyzing software systems we are faced with the challenge
of how to implement a particular analysis for different program-
ming languages. A solution for this problem is to write a single
analysis using a code query language abstracting from the speci-
ficities of languages being analyzed. Over the past ten years many
code query technologies have been developed, based on different
formalisms. Each technology comes with its own query language
and set of features.

To determine the state of the art of code querying we compare
the languages and tools for seven code query technologies: Grok,
Rscript, JRelCal, SemmleCode, JGraLab, CrocoPat and JTrans-
former. The specification of a package stability metric is used as
a running example to compare the languages. The comparison in-
volves twelve criteria, some of which are concerned with properties
of the query language (paradigm, types, parametrization, polymor-
phism, modularity, and libraries), and some of which are concerned
with the tool itself (output formats, interactive interface, API sup-
port, interchange formats, extraction support, and licensing). We
contextualize the criteria in two usage scenarios: interactive and
tool integration. We conclude that there is no particularly weak or
dominant tool. As important improvement points, we identify the
lack of library mechanisms, interchange formats, and possibilities
for integration with source code extraction components.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—code query lan-
guages

General Terms code query, software analysis, comparative study,
tools

Keywords Code query, Grok, Rscript, JRelCal, SemmleCode,
JGraLab, CrocoPat, JTransformer.

1. Introduction
Code query technologies play an important role in software anal-
ysis. Applications of these technologies can be found in software
architecture analysis [13], reverse engineering [13, 16], applying
consistency checks [36], enforcing coding conventions [36], and
finding crosscutting concerns [26].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $10.00

The extensive use of code query technologies is due to the
possibility to analyze different software artifacts. This is achieved
based on the use of the extract-abstract-present paradigm [13, 34].
The extract-abstract-present paradigm defines three steps:

• Extract: take the source code and map it to some intermediate
structure such as a graph;
• Abstract: apply operations and queries to this abstract interme-

diate structure to obtain results;
• Present: graphically display the results.

Language-dependent extractors are responsible for mapping
program sources to an intermediate, usually relational structure.
Queries are specified in a domain specific language offering spe-
cific constructs (e.g. representation of files and source code loca-
tions) and operators (e.g. recursion) that match the problem domain
of the source code analysis. Queries are then executed on the in-
termediate relation structure that abstract the specific details of
the programming languages, allowing immediate reuse of queries
across programming languages.

To effectively query source code repositories it is essential that
the query language support some form of recursion to help deal
with the recursive structure of modern programming languages.
This is why using the regular expressions of, for example, grep
quickly becomes unmanageable. Partly for the same reason, and
partly due to performance problems, the first attempt at using code
query technologies in 1984 was unsuccessful [25].

Many code query technologies have surfaced through the years
differing in many essential ways. Some only provide means for
querying code, but leave extraction and presentation to other tools,
some support the whole paradigm. Some tools provide a separate
language for writing the queries while others provide only a library
to be used from a host programming language. Therefore a com-
parison of these technologies is in order. Indeed, the direct moti-
vation for our work was to enhance code querying productivity at
the Software Improvement Group (SIG), by replacing an existing
imperative implementation for code querying with a more declar-
ative alternative. Within SIG, there is much need for effectively
computing large-grained information from code-bases, and this is
something that code query technologies tend to be most useful for.
We believe the outcome of our comparison to be useful to others as
well.

In this paper, we describe the results of an extensive compar-
ison of seven existing code querying technologies: Grok [16],
Rscript [20], JRelCal [31], SemmleCode [36], JGraLab [12], Cro-
coPat [4] and JTransformer [21]. The criteria for tool selection was
that the tools be available and actively maintained.

The comparison is based on twelve criteria. These criteria are
derived from two typical usage scenarios: interactive use and tool
integration. The criteria are divided into two categories: those re-

1

lated to the query language features, and those related to the tool
features. The comparison of the code query languages is based on
the computation of the package instability metric [28]. This query
is justified since it requires both architecture analysis and metrics
computation, two of the main tasks in software analysis.

We stress that this paper is a comparison and not a competition
between tools. The ultimate goal is to provide enough information
for anyone to make an informed decision on which code query
technology is best for a given context. As such, we do not make
assumptions about the relative importance of the criteria we used,
nor do we provide a qualitative assessment.

This paper provides a significant contribution over an earlier
paper [1]. The previous version only presented a general overview
of three code query technologies while here we present an in-depth
comparison of seven. In the previous version a trivial example was
used and there was no discussion about the comparison. In contrast,
the current version presents a more elaborated example capable to
show differences between the tools and a comprehensive discussion
of the comparison results.

This paper is organized as follows. Background information
about formalisms underlying code query languages is presented in
Section 2. The tools compared in this paper as well as the crite-
ria for selection are presented in Section 3. Section 4 introduces
the usage scenarios and defines the criteria to compare the query
languages and the tools. We compare the implementation of an ex-
ample query in Section 5. The language comparison is done in Sec-
tion 6 and the tool comparison in Section 7. We summarize our
findings in Section 8. An overview of related work is provided in
Section 9 and the paper is concluded in Section 10.

2. Background
In this section we discuss the formalisms that underlie the tools
we have considered. We also list some tools that we have not
considered in our comparison, but that can be considered to belong
to the field.

The tools we consider are based on logics of varying expressiv-
ity. The advantage of logical languages is that they tend to be more
declarative than their procedural and functional counterparts: one
specifies the properties of the answer, leaving it implicit how the
answer should be computed.

With regards to expressivity, Prolog is a language that is Turing
complete: anything expressible in any programming language we
know can be expressed in it. However, expressivity comes at a
price: it is much harder to guarantee bounds on the execution
time of queries, which might become a real problem if the size
of the input is very large. Moreover, many other properties of the
queries, e.g., termination, are (theoretically) undecidable. This does
not mean, however that Prolog implementations are always slower
than those based on less expressive logics. It does mean that fewer
guarantees can be given.

Database query languages are often based on Tarski’s relational
algebra (RA) or Codd’s relational calculus (RC) both based on
first order logic, a much less expressive, but also more tractable
form of logic. The application and formulation of these languages
for database querying is mainly due to Codd [7, 8], although
Kuhns [23] considered RC somewhat earlier. However, the basis of
these languages goes back much further (see Tarski [33]). It is well-
known that RA and RC are computationally equivalent; the main
difference between the two is that RC is somewhat more declara-
tive: in RA an expression also specifies how the result should be
computed. Many database languages are based on a combination
of both logics, although as a rule they tend towards RC; SQL is
the most well known example. SQL also adds, e.g., grouping and
aggregate operators that neither RC and RA contain.

DATALOG [6] lies inbetween SQL and Prolog, inhabiting what
many consider to be a sweet spot for querying: every DATALOG
query can be evaluated in polynomial time and, contrary to SQL,
it does provide a least fixed-point operator vital for querying recur-
sive structures (such as program sources).

In the case of JGraLab, the basis of the language is a particular
language of graphs called grUML, a subset of the UML class
diagrams. These structures are queried with a language that is much
like relational algebra, but tailored to graphs, e.g., by providing so
called regular path expressions [5].

We are not the first to make a comparison of code querying
tools. Holt, Winter and Wu did a similar comparison in 2002 [18],
although with a different goal. They wanted to determine the re-
quirements (or “wishes”) for a common code querying language,
by comparing two widely different tools: Grok and GReQL. They
also mention some other tools: Progres is a language based on
graph transformations [32] and does not seem to be particularly
suited for code querying. ESCAPE [30] is a tool based on many-
sorted algebras extended with subtyping polymorphism, of which
the authors contend that it is more powerful than relational alge-
bra. We did not find any evidence that it has ever passed beyond
the prototype stage. Finally, RPA was based on relational algebra
extended with a “lifting” operator [13]. As far as we have been able
to tell it does not exist anymore.

3. Code Query Technologies
Table 1 provides an overview of each of the code query technolo-
gies used in this comparison. For each one we report the code query
language formalism, original author, release version, implementa-
tion language, and implementation date.

These tools were selected based on the following criteria:

• only tools built specifically for code querying were selected.
Although other (more generic) querying technologies, such as
SQL, can be used for querying source code our focus is to
investigate features that explicitly benefit source code querying.
• only the most active tools based on Tarski’s relational calculus,

Codd’s relational algebra and predicate logic were selected.
Although quite a few other tools could be included, we decided
to limit our study to active tools (both in terms of publications
and tool support). Our comparison can then serve as a basis for
a further comparison to lesser known and active technologies.

For each tool, we provide a brief historical overview below. All
except SemmleCode were developed in university environments for
both research and teaching. SemmleCode, on the other hand, is the
only tool that was developed in an industrial environment, and is
commercially available.

Grok Based on relational calculus, Grok was implemented in
1995 by Ric Holt at the University of Toronto, Canada. Grok
was implemented in the Turing Programming Language [17] also
developed by Holt. The first use of Grok was to manipulate graph
models to aid the reverse engineering of the software architecture
implicit in the source code. Grok was first referred to in a 1996
technical report [15] and the first publication dates from 1998 [16].

Sharing the same concepts and language of Grok, JGrok [37]
started in 2000 in the context of Jingwei Wu’s PhD work, under
supervision of Holt. JGrok, implemented in Java, was developed
and maintained independently from Grok, implementing a richer
set of operations. Since only Grok is being maintained, JGrok will
not be included in our comparison. For the comparison we used
Grok version 89, as available in the SWAG Kit version 3.03.

Rscript Also based on relational calculus, Rscript was developed
in 2002 by Paul Klint at the Centrum voor Wiskunde & Infor-

2

Table 1. Overview of the analyzed tools (sorted by formalism and date).
Tool Formalism Author Version Implementation Date
Grok Tarski Ric Holt 89 (SWAG Kit 3.03) Turing 1995
Rscript Tarski Paul Klint 1.1, rev 26884 ASF+SDF 2002
JRelCal Tarski Tijs van der Storm 0.7 Java 2007
SemmleCode Codd Oege de Moor pre-rel. 1.0, 2009-01-12 Java 2006
JGraLab Codd Steffen Kahle 1095/64 Java 2006
CrocoPat Predicate Logic Dirk Beyer 2.1.4 C 2002
JTransformer Predicate Logic Günter Kniesel 2.6.1 Prolog 2002

matica (National Research Institute for Mathematics and Com-
puter Science), in Amsterdam, The Netherlands. Implemented in
ASF+SDF [35], Rscript was developed especially for program
analysis and querying source code. The first publication mention-
ing Rscript dates from 2003 [20]. For the comparison we used
Rscript version 1.1, rev. 26884.

JRelCal Based on Rscript, the JRelCal project started as an effi-
cient Java implementation of Rscript datatypes and its operations.
JRelCal started in 2007 in the context of the PhD thesis of Tijs van
der Storm, under supervision of Klint. The purpose of JRelCal is
not a Java re-implementation of the Rscript tool, but an API with
the same functionality. Hence, JRelCal can be used as an embedded
DSL and can be easily integrated with Java projects. The authors
have no publications about JRelCal, but Rademaker discusses it in
his Master’s thesis [31]. Although JRelCal is similar to Rscript, we
decided to included because it contrasts with all other code query
technologies for being just an API. For the comparison we used
JRelCal version 0.7.

SemmleCode Based on relational algebra, but with an objected
oriented style of programming, SemmleCode started in 2006. Al-
though it has an academic background, at the University of Ox-
ford, UK, it is commercialized by a spin-off company, Semmle
Ltd., led by the mentor of the project, Oege de Moor. SemmleCode
was developed with the purpose of offering a competitive tool (as
an Eclipse plug-in) for code analysis. The ideas were initially pre-
sented in January 2007 [9] and the first publications date from the
same year [10, 36]. For the comparison we used SemmleCode a
pre-release version 1.0 dated from 2009-01-12.

JGraLab Based on relational algebra and graph theory, JGraLab
started in 2006 in the context of the diploma thesis of Steffen Kahle.
Since then, JGraLab has been developed and maintained by several
people, among them Volker Riediger and Daniel Bildhauer, the
current maintainers of the tool. JGraLab replaced GraLab initially
developed in 1985 by Jürgen Ebert. Both GraLab and JGraLab were
developed at the University of Koblenz and Landau, Germany, in
the research group of Jürgen Ebert. The first publication of GraLab
dates from 1987 [11] and JGraLab was first referred to in 2007 [12].
For the comparison we used JGraLab release 1094/64.

CrocoPat Based on first-order predicate logic, CrocoPat was
started in May 2002 by Dirk Beyer as a first project as PostDoc
at the University of Cottbus, Germany. CrocoPat, implemented
in C, was meant to replace the SQL front-end of the Crocodile
reengineering tool developed at the same university. The ideas of
CrocoPat were first described in a technical report from 2003 [3].
CrocoPat was described in more detail in 2005 [4] and in 2006 [2].
For the comparison we used CrocoPat version 2.1.4.

JTransformer Based on first-order predicate logic, JTransformer
was initially implemented by Tobias Rho and Uwe Bardey, under
supervision of Günter Kniesel. JTransformer development started

in 2002 as a program transformation tool to prove the effective-
ness of logic-based conditional transformations. In 2003, the first
Eclipse plug-in was developed and since then JTransformer has
been used for program analysis in both research and teaching. Al-
though much research was done using JTransformer, the first publi-
cation describing the tool is from as late as 2006 [21]. JTransformer
was described in more detail in 2007 [22]. For the comparison we
used JTransformer version 2.6.1.

It is not surprising that the tools reveal different strong points
as advertised by their authors and maintainers. For instance, Grok
advocates its language conciseness, Rscript its static type checking
and the expressiveness of set comprehensions, JRelCal its seam-
less integration with Java, and SemmleCode the accessibility of the
language to O.O. programmers due to their borrowing syntax from
well-known O.O. languages and integration with the Eclipse envi-
ronment. Furthermore, JGraLab advocates its ease of manipulating
graph based structures, CrocoPat its efficiency in computing tran-
sitive closures, and JTransformer the use of Prolog as basis for its
code query language, combined with the Eclipse environment inte-
gration.

Notwithstanding these differences, we do not expect the tools to
differ very much in their suitability for code querying, certainly not
to the extent that one tool is inferior to one other tool in all respects
and thereby can be considered to be superfluous.

4. Criteria
In this section, we define the criteria for comparing language and
tool features of the analyzed code query technologies. Table 2
summarizes the criteria used and the scenarios for which these
criteria are of importance.

The following notation is used to describe the importance of
the criteria: “4” is used when the criterion is important for a
particular scenario; “o” is used when the criterion is relevant but
not important; and “5” is used when the criterion is not important.

Although we expect every potential user of code query tech-
nologies to have his own set of requirements, we indicate the rela-
tive importance of the criteria for two typical usage scenarios: in-
teractive use and tool integration. In the interactive use scenario,
the code query technology is used directly by a software analyst.
The analyst is responsible for the specification and execution of the
queries, and the extraction of results for further processing. This
scenario imposes strong requirements on the language, but also on
support provided by the tool. However, the presence of an API is
not an issue, and since the tool is used directly, the particular license
plays only a minor role. In the tool integration scenario the code
query technology is used as a component by a developer with the
purpose of being used indirectly from a tool. The developer is re-
quired to interface with the code query language, and therefore API
support, Interchange format and Output format criteria are crucial.
Style/Paradigm is important when interfacing is done through the
language instead of the API. The remaining language criteria are

3

relevant but are not as important as in the interactive use scenario,
since shortcomings in these areas can typically be compensated for
by the constructs in the language of the host tool. Clearly, an inter-
active user interface is not relevant in this scenario. Additionally,
extraction support is relevant but not important since it is likely
that extractors are already available in the host tool.

Language criteria To compare language features we consider the
following criteria:

• Paradigm specifies the paradigm the code query language is
based upon which typically has implications for the conciseness
of the code queries.
• Types make explicit which data types are supported by the query

languages.
• Parametrization indicates that the behavior of queries may de-

pend on parameter values;
• Polymorphism specifies whether queries that abstract away

from the types from which the relations are built are supported.
We consider both parametric and subtyping polymorphism.
• Modularity determine the extent it is possible to reuse queries

for constructing other queries; and
• Libraries determine the possibility to use and/or define libraries

of queries.

Tool criteria To compare tool features we consider the following
criteria:

• Output formats specifies the output formats provided by the
tools, e.g., charts, plain text, and XML.
• Interactive interface lists the types of interfaces available to ac-

cess the code query technology functionalities, e.g., command-
line interface (CLI), graphical user interface (GUI) or Eclipse
plug-in.
• API support indicates the availability of an API, allowing the

functionality to be used from a host program.
• Interchange format specifies the file formats supported to read

and write extracted facts and query results. Users of code query-
ing technologies benefit from being able to interchange ex-
tracted facts and query results. For example, if a user needs to
analyze a language L, but tool Y does not support it, then if tool
Z can extract facts for L and both Y and Z support a particular
format, then the problem is solved. Or, consider that Y is opti-
mized for a particular class of queries, and Z for another. In an
application for which both kinds of queries are necessary, it is
desirable to be able to easily switch tools.** RSF **
• Extraction support indicates the existence of fact extractors for

known programming languages, e.g., C or Java.
• Licensing specifies the license under which the code query

technology was released. This can be essential, because the
license may restrict the user in how the tool may be employed.
A technology is proprietary if the company has reserved some
measure of control over the software. Otherwise, the technology
is free (open-source). The drawback of proprietary software is
that the source code is typically not made available to its users
and changing the software is not allowed or simply impossible.
Within the open-source community, various licenses exist. BSD
is a very permissive license that allows the inclusion of the
licensed material into proprietary software. The GNU LGPL
(GNU Lesser General Public License) also allows inclusion
into proprietary software, but with rather subtle restrictions. It is
typically used for libraries. Software under the less permissive

Table 2. Language and tool criteria vs. usage scenarios. We use4
for important, o for relevant, and5 for not important.

Scenario
Interactive use Tool integration

C
ri

te
ri

a L
an

gu
ag

e Paradigm 4 4
Types 4 o

Parametrization 4 o
Polymorphism 4 o

Modularity 4 o
Libraries 4 o

To
ol

Output formats 4 4
Interactive interface 4 5

API support 5 4
Interchange format 4 4
Extraction support 4 o

Licensing o 4

GNU GPL (GNU General Public License) may not be used in
proprietary software at all.

These criteria equally apply to assess the tools in both industrial
and academic environments.

5. Examples Comparison
To compare the languages of the code query technologies, we im-
plemented a query to compute the package instability metric [28] in
each one. Despite that the original motivation of this metric was to
be applied to OO languages, when considering the notion of pack-
age in a broader term, e.g. component, this metric can be applied
to any programming language. The usage of this metric is moti-
vated by the fact that it combines two of the main tasks in software
analysis: architectural analysis and metrics computation. By cod-
ing this analysis in different code query technologies we expect to
stress three main aspects: the syntactical differences between the
code query languages, how the respective models can be enriched
with new facts, and how results can be extracted.

The package instability metric is derived from two other met-
rics: afferent coupling and efferent coupling of a package.

Afferent coupling Ca = number of classes outside the package
that depend upon classes within the package.

Efferent coupling Ce = number of classes inside the package that
depend upon classes outside the package.

Instability I = Ce/(Ca + Ce). Instability I = 0 indicates a
maximally stable package, and I = 1 indicates a maximally
unstable package.

In this section we show excerpts of the package instability
metric implemented in each of the tools. We first formulate what
we aim to compute, and define the input relations for the queries.
Then, to make it a fair and easy comparison, we describe some
implementation guidelines that should be followed. Finally, we
show excerpts for all the implementations and comment on key
issues.

5.1 Implementation Guidelines
To be fair when comparing examples it is necessary to define im-
plementation guidelines. Hence, we will define the input relations
and the implementation steps of the example.

The defined input relations are:

PackageOf : Package × Class : records for each package the
classes that belong to that package or, more precisely, if
(P,C) ∈ PackageOf then class C is defined in package P ;

4

ClassOf : Class ×Method : records for each class the meth-
ods that belong to that class or, more precisely, if (C,M) ∈
ClassOf then method M is defined in class C; and

MethodCall : Method ×Method : records methods invocations
or, more precisely, if (M,N) ∈ MethodCall then the method
M calls the method N .

For SemmleCode and JTransformer similar relations were used,
albeit with different names, because the naming of these relations
are under the control of the extractors.

For the examples, the following implementation steps were
defined:

ClassDep : Class × Class where (A,B) ∈ ClassDep records
that a class A depends on a class B: A has a method that calls
a method from class B.

ClassDepInterPackg : Class × Class records that (A,B) ∈
ClassDep and A and B belong to different packages.

AffCoupling : Package × Class records for each package P all
classes outside P that depend on classes within P .

EffCoupling : Package × Class records for each package P all
classes inside P that depend on classes outside P .

AfferentCoupling : Package ×N records for each package the
number of classes outside the package that depend upon classes
inside the package.

EfferentCoupling : Package ×N records for each package the
number of classes inside the package that depend upon classes
outside the package.

PackageInstability : Package ×R records for each package the
instability value I computed as indicated above.

The ClassDep and ClassDepsInterPackages are intermediate
relationships that allow us to compute the afferent and efferent
coupling metrics.

5.2 Language examples
For each code query technology, excerpts of the implementation of
the package instability metric will be presented. Due to to space
constraints, only the implementation of the ClassDepInterPackg ,
AffCoupling , AfferentCoupling and PackageInstability rela-
tions will be shown. Instead of describing each example in detail,
we focus on the language constructs we employed.

Grok

PackageDep := PackageOf o ClassDep o (inv PackageOf)

PackgDepInterPackg := PackageDep - (id dom PackageOf)

ClassFowardRel
:= (inv PackageOf) o PackgDepInterPackg o PackageOf

ClassDepInterPackg := ClassForwardRel ^ ClassDep

AffCoupling := PackageOf o (inv ClassDepInterPackg)

AfferentCoupling
:= (dom AffCoupling) outdegree AffCoupling

Listing 1. Grok fragment of expressible package instability metric.

Grok provides a very concise language requiring few operators or
symbols. However, this requires construction of queries by small
pieces leading to some fragmentation at the expense of being hard
to understand, e.g. three auxiliary relations were required to im-
plement the ClassDepInterPackg relation. Since the language is

untyped and there is no checking, debugging a wrongly composed
relations is hard. Finally the PackageInstability relation is miss-
ing since it is not possible to implement the computation of the
instability. Grok does not offer combinators to combine two rela-
tions by their domain applying a function to the range of the re-
lations, operation necessary to finalize the example. Grok is not
Turing complete.

Rscript

rel[str ,str] PackageOf
rel[str ,str] ClassOf
rel[str ,str] MethodCall

rel[&T1, int] outdegree(rel[&T1 ,&T2] R)
= { <D, #R[D]> | <&T1 D, &T2 U> : R }

rel[str ,str] ClassDepInterPackg
= { <C1,C2 > | <str C1, str C2> : ClassDep

, PackageOf[-,C1] != PackageOf[-,C2] }

rel[str ,str] AffCoupling
= PackageOf o inv(ClassDepInterPackg)

rel[str ,int] AfferentCoupling = outdegree(AffCoupling)

rel [str ,int] PackageInstability
= { <P1, (100* N1)/(N1+N2)>

| <str P1 , int N1> : EfferentCoupling
, <str P2, int N2> : AfferentCoupling
, P1 == P2 }

Listing 2. Rscript package instability metric.

Rscript requires the declaration of the input relations in the begin-
ning of the program (first three lines) enabling type-checking of
the queries. In addition to relations, user-defined functions are al-
lowed (see outdegree definition, which computes the cardinality
of the range of a relation). This function makes use of parametric
polymorphism. Besides relational calculus, set comprehensions are
also supported (see outdegree and ClassDepInterPackg defini-
tions). Finally, since Rscript does not support reals, it is necessary
to multiply the numerator by 100.

JRelCal

Relation <String , String > packageDep
= packageOf.compose(classDep.compose(

packageOf.inverse ()));

Relation <String , String > packgDepInterPackg
= packageDep.difference(packageOf.domain ().id());

Relation <String ,String > classForwardRel
= (packageOf.inverse ())

.compose(packgDepInterPackg)

.compose(packageOf);

Relation <String ,String > classDepInterPackg
= classForwardRel.intersection(classDep);

Relation <String ,String > affCoupling
= packageOf.compose(classDepInterPackg.inverse ());

Relation <String ,Int > afferentCoupling
= affCoupling.outdegree ();

Listing 3. JRelCal package instability metric.

JRelCal queries are a mix of Java code and relational calculus.
Except minor syntactic sugar, due to the use of a fluent-interface
API [14], JRelCal queries are identical to those for Rscript. JRelCal
supports Java generics which enables the use of any Java type

5

and allows for static checking support. The implementation of
the packageInstability relation was omitted, because its code is
straightforward Java.

SemmleCode

predicate classDepInterPackg(Class c1 , Class c2) {
c1.getPackage () != c2.getPackage () and
classDep(c1,c2)

}
class MyPackage extends Package {

MyPackage () { this.fromSource () }

predicate affCoupling(Class c) {
exists(Class c1 | this.contains(c1) and

classDepInterPackg(c1, c))
}
int afferentCoupling () {

result = count(Class c | this.affCoupling(c))
}
float packageInstability () {

result = (1.0 * this.efferentCoupling ()) /
(this.afferentCoupling () +
this.afferentCoupling ())

}
}

Listing 4. SemmleCode package instability metric.

SemmleCode offers a language based relatation algebra with a
syntax with a distinctive object-oriented flavour. The excerpt above
clearly shows the OO influence. Relations can be implemented as
a classless predicates, e.g. classDepInterPackg definition, and/or
by using extension mechanisms. An example of model extension
is shown in the MyPackage definition which extends the class
Package predefined in the library (subtyping polymorphism).
Since there is no control over the extraction, it was required to
specify functionality not related with our problem (see the use of
the fromSource() predicate in the class constructor to filter out
library classes). SemmleCode is statically typed.

JGraLab

from p : V {JavaPackage}
reportMap p,

from outerClass : V {JavaClass}
with

(not p --> {PackageOf} outerClass) and
(p --> {PackageOf} <-- {ClassDep} outerClass)

report outerClass end
end store as AffCoupling

using AffCoupling:
from p : V {JavaPackage}
reportMap p, count(get(AffCoupling ,p)) end
store as AfferentCoupling

using AfferentCoupling , EfferentCoupling:
from p : V {JavaPackage}
reportMap p, get(EfferentCoupling ,p) /

(get(EfferentCoupling ,p) +
get(AfferentCoupling ,p))

end store as PackageInstability

Listing 5. JGraLab package instability metric.

JGraLab is based on relational algebra and path expressions.
JGraLab uses an inverted SQL notation, which can be identified in
the beginning of the query. Path expressions, which can be observed
by the use of arrows, specify how to identify objects by specifying
how to navigate a graph structure. Modularity is achieved by saving
the query results into variables, e.g., in the first query we specify
that the result is a map (reportMap) and that the result should be
stored in the AffCoupling variable.

CrocoPat

ClassDepInterPackg(c1,c2)
:= EX(p1, PackageOf(p1, c1)

& EX(p2, PackageOf(p2 , c2) & !=(p1,p2)
& ClassDep(c1 , c2)));

AffCoupling(p,c) := EX(c1, PackageOf(p, c1) &
ClassDepInterPackg(c, c1));

Package(x) := PackageOf(x,_);
FOR p IN Package(x) {

ca := #(AffCoupling(p,c));
PRINT "AfferentCoupling ", p, " ", ca, ENDL;

ce := #(EffCoupling(p,c));
PRINT "EfferentCoupling ", p, " ", ce, ENDL;

i := ce / (ca + ce);
PRINT "Instability ", p, " ", i, ENDL;

}

Listing 6. CrocoPat package instability metric.

CrocoPat queries are specified in a mix of predicate logic and im-
perative code. Except for the use of quantifiers and minor syntactic
sugar the implementation of the AffCoupling and ClassDepInterPackg
relations are identical to Rscript. However, the implementation of
afferent and efferent coupling and package instability metrics is
completely different. CrocoPat does not allow these metrics to be
specified as relations. As a workaround, we have to write a loop
printing these relations and import them later for further process-
ing.

JTransformer

classDepInterPackg(C1, C2) :-
packageOf(P1, C1), packageOf(P2,C2),
not(P1 = P2), classDep(C1 ,C2).

affCoupling(P, C) :-
packageOf(P, C1), classDepInterPackg(C, C1).

afferentCoupling(P,N) :-
setof(C, affCoupling(P, C), AffClasses),
length(AffClasses , N).

packageInstability(P, I) :-
efferentCoupling(P, Ec), afferentCoupling(P, Ac),
I is Ec/(Ec + Ac).

Listing 7. JTransformer package instability metric.

JTransformer is based on SWI-Prolog. Hence, relations are de-
fined as logic predicates. Comparing JTransformer implementation
with others, e.g. Rscript, we observe that it is not much different.
The classDepInterPackg and affCoupling implementations are
nearly identical, and the implementation of afferentCoupling re-
quires only a minor additional effort.

6. Language comparison
Table 3 presents a summary of the comparison of the language fea-
tures for each code query technology. Tarski relational calculus is
supported by three tools (Grok, Rscript and JRelCal), while the oth-
ers support Codd relational algebra (SemmleCode and JGraLab) or
logic (CrocoPat and JTransformer). However, some of the tools of-
fer constructors from other paradigms. For example, Rscript sup-
ports set comprehensions which can elegantly express a wide va-
riety of properties. SemmleCode is the only tool that borrows in-
spiration from the Object-Oriented programming community, in
an effort to be more easily adopted by this large community of

6

Table 3. Summary of the language comparison results.
Criteria vs. tools Grok Rscript JRelCal SemmleCode CrocoPat JGraLab JTransformer

Paradigm Relational Relational and API OO & FO-logic SQL-like & FO-logicComprehensions Relational SQL-like Imperative Path Expr.
String x x x x x x x

Int x x x x x x x
Types Real x - x x x x x

Bool - x x x x x x

Other - Composite Java Object - Edge Logic termsand Location and Node
Parametrization - x x - x x x
Polymorphism - x x x - x x

Modularity x x x x x - x
Libraries - - x x - - x

programmers. CrocoPat, on the other hand, supports constructors
taken from imperative programming and, finally, JGraLab features
path-expressions. The example is fully expressable in all languages
except Grok which lacks the necessary operators. Most common
types are supported by all tools. The only exception is that Rscript
does not provide any reals. JRelCal types are inherited directly
from Java. Parametrization is not present only in Grok and in
SemmleCode. Polymorphism is not present at all in Grok and Cro-
coPat. However different types of polymorphism are supported:
SemmleCode supports subtype polymorphism, while the others
support parametric polymorphism. Modularity is only lacking in
JGraLab. Finally, libraries are supported by JRelCal (through the
use of Java), SemmleCode and JTransformer (through the use of
Prolog). All others lack the support of libraries.

7. Tool comparison
Table 4 presents a summary of the tool features of each code query
technology.

Text is the dominant output format, supported by five out of
seven tools. However, in both Grok and JGraLab the output text
cannot be customized. Rscript only outputs Rstore, a textual for-
mat that is also used for interchange. With JRelCal, since it is a li-
brary, output can only be done through Java. Finally, SemmleCode
supports a rich set of output formats (charts, maps, graphs).

Interactive use is mostly provided via the command-line. Excep-
tions are Rscript which provides a GUI in addition to the command
line interface, and SemmleCode and JTransformer which offer an
Eclipse plug-in. JRelCal is meant to be used as a library, so no in-
teractive interface is available.

API support is absent only in Grok and Rscript, although inter-
facing is possible through interchange support.

Interchange format support is diverse. RSF is supported by only
three tools: Grok, JRelCal and CrocoPat. Rscript and JGraLab use
their own formalisms, and JTransformer uses Prolog fact bases.
SemmleCode does not support interchange format and relies on its
integrated fact extractor only.

Java extraction support is available for three tools: Semmle-
Code, JGraLab and JTransformer. SemmleCode supports addi-
tional XML extraction support. In addition to Java, JGraLab also
supports C extraction, although neither extractor is publicly avail-
able. Grok uses the C++ extractor that is provided by the SWAG
kit. Rscript, CrocoPat and JRelCal lack extraction support. The
lack of extraction support can be overcome by using either Grok,
JTransformer or SemmleCode to extract and then convert to a suit-
able interchange format. The file formats RSF and Rstore can be
automatically generated by the tools that support them. Also au-
tomatic conversion between RSF, Rstore and Prolog is possible

with a small amount of work. In all three formats, nodes and edges
are defined as untyped constructs, so conversion can be achieved
by simple syntactical transformations. In the case of JGraLab’s
TGraph, however, both nodes and edges are typed and declared
in the header of the format. Converting RSF files to TGraph is a
semi-automatic process. The header file describing the used types
must be manually defined. After this, the nodes and edges can be
automatically converted.

Finally, most of the tools are available under an open-source
license: Rscript is available under a BSD license, JRelCal and Cro-
coPat under LGPL, and JTransformer under EPL. Exceptions are
Grok, SemmleCode and JGraLab. For Grok no license could be
found. SemmleCode is only available under a commercial license.
JGraLab is offered in a dual license: for non-commercial projects
GNU GPL 2 is available otherwise a commercial license is appli-
cable.

8. Summary
In summary, Grok offers a very concise and simple language which
is its strongest point. However, note that in Grok it was not possible
to fully specify the package instability metric. Parametrization,
polymorphism and libraries would be desirable to enable query
reuse. Tool support is limited to the essential only, lacking API
support and other output options.

Rscript, like Grok, has as its strongest point the language. Type-
checking is a valuable addition at the expense of more verbose
queries. The lack of support for reals is relevant when computing
metrics. Support for libraries is missing. Tool support is rudimen-
tary, missing support for other interchange formats and support for
text output functionality.

JRelCal was specifically designed to be used as a library to be
embedded in Java programs. As such, it is only recommended for
this particular scenario that it was built for.

SemmleCode offers a simple Java-styled language based on
SQL. The language is simple to learn since these two paradigms
are commonly known by programmers. However SemmleCode’s
strongest point is the seamless integration with Eclipse and the
supported output formats. The lack of parametrization is relevant
but not essential. More important is the lack of interchange formats
restricting the use of other extractors.

CrocoPat strongest point is the conciseness of the language
although with some limitations in expressivity. Note that in order to
compute package instability, it is necessary to print out the results
and read them back. Also, it lacks support for polymorphism and
libraries.

JGraLab strongest point is the use of path expressions. On the
downside, the language is difficult to learn and understand mainly

7

Table 4. Summary of the tool comparison results.
Criteria vs. tools Grok Rscript JRelCal SemmleCode CrocoPat JGraLab JTransformer

Output formats Text Rstore Sets and Text, charts, Text, Text, Textrelations maps, graphs RSF HTML
Interactive interface CLI CLI, GUI - CLI, Eclipse CLI CLI Eclipse

API support - - x x x x x
Interchange format RSF, TA Rstore RSF - RSF TGraph Prolog
Extraction support C++ - - Java, XML - Java, C Java

Licensing - BSD LGPL Proprietary LGPL GPL 2 EPLProprietary

due to the lack of documentation. Support for modularity and
libraries is lacking. Tool support is rudimentary.

Finally, JTransformer’s strongest point is the conciseness. How-
ever due to the use of tuples it is sometimes difficult to memo-
rize the order and what each component of the tuple represents.
Eclipse integration is a bonus, but the ease of interfacing could be
improved. Also, more output formats would be desirable.

In conclusion, the variation of the tools is not as large as may
seem at first glance. Most code query technologies can be used in
both the interactive and tool integration scenarios. In the interactive
scenario, only JRelCal is less suitable, since only an API is avail-
able. In the tool integration scenario, only Grok and Rscript are less
suitable since they do not support an API (however this is com-
pensated with interchange format(s) support). Also, when consid-
ering the various implementations of the example, ignoring syntac-
tic sugar, the differences are not significant (although, admittedly,
we could not fully implement the query in Grok). Indeed, some
tools provide a handsome interface, other provide a useful API, but
when looking at the comparison results there is not a particularly
weak or dominant tool among them. However, there is space for
improvement and we hope the authors use our comparison as basis
for improvement by adopting other tools strongest points.

9. Related work
Alves and Rademaker presented a similar comparison between
three code query technlogies: CrocoPat, SemmleCode and Rscript [1].
Features were compared using language and tool criteria, and lan-
guages were compared through an example. However, this work
presents just a brief overview of the technologies. The current paper
is an extension of that overview, presenting more and more clearly
defined criteria, highlighting differences between tools. Also the
example used in this paper is far less trivial, showing that for some
code query technologies its implementation is not possible or obvi-
ous.

Holt et al. [18] present a comparison between Grok and JGraLab
with the goal of deriving requirements for a new code query lan-
guage. Their comparison is based only on code examples in a tool
manual style. In contrast, we provide a comparison between seven
tools, present a well-defined criteria and example challenge. Fi-
nally, we provide a discussion of each tool covering their strongest
and weakest points.

Lange et al. [24] present a comparison between GUPRO, which
implements the JGraLab language, and relational databases for re-
verse engineering of a real world software system. This comparison
highlights the advantages of code query languages over traditional
relational databases. Although examples are used, this work com-
pares two tools that are based on two (different) paradigms. Our
work, however, is meant to show differences between different al-
ternatives of the same technologies. Moreover, we do so by com-
paring language and tool features, and provide example implemen-
tations.

Beyer et al. [4], in their paper about CrocoPat, present a per-
formance comparison between CrocoPat, Prolog and the relational
database MySQL. However this comparison deals with the issue of
performance. In contrast, we focus on focus on language or tool
features and the expressiveness and conciseness of the languages.

10. Conclusions and Future work
We have compared seven code querying tools on a total of twelve
criteria. To compare language features – paradigm, types, parametriza-
tion, polymorphism, modularity, and libraries– were used, while
properties of the tools were address through the comparison of oth-
ers – output formats, interactive interface, API support, interchange
formats, extraction support, and licensing. The criteria were moti-
vated by two usage scenarios: one in which a user interacts directly
with the tool, and one in which the tool is used indirectly from other
tools. The comparison of the languages was performed by imple-
menting a query in each of the languages under consideration. In
Section 8, we have already summarized our findings.

The main goal of our paper is to allow potential users of code
querying technologies to make an informed decision which tool to
select to address their specific needs by having an initial under-
standing about each tool. This paper can be used as a guideline for
comparing code query technologies. The selected criteria form a
substantial basis that can, of course, be further extended.

Moreover, the comparison can be used by the tool developers
to decide on the directions in which to further extend their tools. In
particular, we hope that more attention will be paid to the support of
libraries, interchange formats and integration with code extractors.

A criterion that was left out of the comparison is performance.
Measuring performance would provide additional information
about if the tools can be used in practice. While experimenting
with the queries we observed that some tools were faster than other
for specific analysis, yet we did not observe major issues with any
of them.

However, our focus was in showing how things can be done
rather then how fast they can be done. In the absence of an ac-
cepted benchmark for code query technologies, a fair comparison
of performance should include the development of such a bench-
mark. Also, these queries should be executed under identical con-
ditions, which is hard considering that some tools are executed via
the command line while others are executed from a GUI. For those
reasons we believe that a fair performance comparison deserves a
study by itself and is beyond the scope of this paper.

Future Work Our work can be extended in various directions.
There are quite a few more tools that operate within the cho-
sen formalisms. Examples include JQuery [19], SOUL [29], and
PQL [27]. We can also extend along a different dimension by
contrasting the technologies with technologies based on other for-
malisms, e.g., generic tools for analysis and transformation of code,
or including more generic querying technologies. In this paper
there was room for only one example query, but our work can

8

be strengthened by adding more example queries. We already dis-
cussed the possibility of addressing performance as an additional
criterion for the comparison, a second additional criterion would
be a description, for each tool, of the type of queries for which the
tool is most eminently suited. We certainly welcome outside par-
ticipation to broaden our study.

Challenges The first challenge to be met by code querying tools
is to adopt each other’s strong points. Also, better support for li-
braries, interchange formats and extraction is required. As previ-
ously stated, tool integration can be achieved through an API or
via the combination of CLI and interchange format. However, an
API exposing the same functionality is preferable since this allows
a cleaner integration. All tools should be both programmable via an
API and be useable in an interactive way, preferably as plugin to an
IDE.

Currently, code querying technologies are applied to obtain
information from a large body of code, typically a single single
version of some software system. It would be interesting to provide
capabilities and abstractions to be able to use code querying to
analyze and compare several revisions of the same code.

A final application for code querying is to automatically support
architecture checking: automatically generate code queries to ver-
ify whether the implementation satisfies the constraints specified
set by an architecture specification.

Acknowledgements We are grateful to the various authors/main-
tainers of all the considered tools for their help in getting the histor-
ical details right, answering questions about the tools and providing
helpful comments: Ric Holt for Grok, Bas Basten and Paul Klint for
Rscript, Tijs van der Storm for JRelCal, Oege de Moor and Math-
ieu Verbaere for SemmleCode, Daniel Bildhauer for JGraLab, Dirk
Beyer for CrocoPat and Günter Kniesel for JTransformer. Addition-
ally, we are grateful to Bart Luijten, Xander Schrijen, Eric Bouw-
ers and Joost Visser of Software Improvement Group for providing
valuable comments on an earlier version of the paper. The first au-
thor is supported by the Fundação para a Ciência e a Tecnologia
(FCT), grant SFRH/BD/30215/2006 and the SSaaPP project, FCT
contract no. PTDC/EIA-CCO/108613/2008.

References
[1] T. L. Alves and P. Rademaker. Evaluation of code query technologies

for industrial use. In QTAPC’08, 2008.
[2] D. Beyer. Relational programming with CrocoPat. In ICSE’06, pages

807–810, New York, NY, USA, 2006. ACM. ISBN 1-59593-375-1.
doi: http://doi.acm.org/10.1145/1134285.1134420.

[3] D. Beyer and C. Lewerentz. CrocoPat: A tool for efficient pattern
recognition in large object-oriented programs. Technical Report I-
04/2003, Institute of Computer Science, Brandenburgische Technische
Universität Cottbus, January 2003.

[4] D. Beyer, A. Noack, and C. Lewerentz. Efficient relational calculation
for software analysis. IEEE Transactions on Software Engineering, 31
(2):137–149, Feb. 2005. ISSN 0098-5589. doi: 10.1109/TSE.2005.23.

[5] D. Bildhauer and J. Ebert. Querying software abstraction graphs.
In Proceedings of the Working Session on Query Technologies and
Applications for Program Comprehension (QTAPC’08), 2008.

[6] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to
know about Datalog (and never dared to ask). IEEE Transactions on
Knowledge and Data Engineering, 01(1):146–166, 1989. ISSN 1041-
4347. doi: http://doi.ieeecomputersociety.org/10.1109/69.43410.

[7] E. F. Codd. A relational model of data for large shared data banks.
Commun. ACM, 13(6):377–387, 1970. ISSN 0001-0782. doi: http:
//doi.acm.org/10.1145/362384.362685.

[8] E. F. Codd. Relational completeness of data base sublanguages. In:
R. Rustin (ed.): Database Systems: 65-98, Prentice Hall and IBM
Research Report RJ 987, San Jose, California, 1972.

[9] O. de Moor, E. Hajiyev, and M. Verbaere. Object-oriented queries
over software systems: (abstract of invited talk). In PEPM’07, pages
91–91, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-620-2.
doi: http://doi.acm.org/10.1145/1244381.1244396.

[10] O. de Moor, M. Verbaere, and E. Hajiyev. Keynote address: .QL for
source code analysis. SCAM, pages 3–16, 2007. doi: 10.1109/SCAM.
2007.31.

[11] J. Ebert. A Versatile Data Structure For Edge-Oriented
Graph Algorithms. Communications ACM, 30(6):513–519, 6
1987. URL http://www.uni-koblenz.de/~ist/documents/
Ebert1987AVD.pdf.

[12] J. Ebert, D. Bildhauer, H. Schwarz, and V. Riediger. Using difference
information to reuse software cases. Softwaretechnik-Trends, 27(2),
May 2007. URL http://pi.informatik.uni-siegen.de/stt/
27_2/SE2007/Ebert_Bildhauer_Schwarz_Riediger_2007_
stt.pdf.

[13] L. Feijs, R. Krikhaar, and R. van Ommering. A relational approach
to support software architecture analysis. Softw. Pract. Exper., 28
(4):371–400, 1998. ISSN 0038-0644. doi: http://dx.doi.org/10.1002/
(SICI)1097-024X(19980410)28:4〈371::AID-SPE154〉3.0.CO;2-1.

[14] M. Fowler. MF Bliki: FluentInterface.
http://martinfowler.com/bliki/FluentInterface.html.

[15] R. C. Holt. Binary relational algebra applied to software architecture.
CSRI Technical Report 345, Computer Systems Research Institute,
University of Toronto, March 1996.

[16] R. C. Holt. Structural manipulations of software architecture using
Tarski relational algebra. In WCRE’98, page 210. IEEE Computer
Society, 1998. ISBN 0-8186-8967-6.

[17] R. C. Holt and J. R. Cordy. The Turing programming language.
Commun. ACM, 31(12):1410–1423, 1988. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/53580.53581.

[18] R. C. Holt, A. Winter, and J. Wu. Towards a common query language
for reverse engineering. Technical Report 8/2002, Fachbereich Infor-
matik, Universität Koblenz Landau, June 2002.

[19] D. Janzen and K. De Volder. Navigating and querying code without
getting lost. In AOSD ’03: Proceedings of the 2nd international
conference on Aspect-oriented software development, pages 178–187,
New York, NY, USA, 2003. ACM. ISBN 1-58113-660-9. doi: http:
//doi.acm.org/10.1145/643603.643622.

[20] P. Klint. How understanding and restructuring differ from compiling—
a rewriting perspective. In IWPC’03, pages 2–12. IEEE, 2003.

[21] G. Kniesel and U. Bardey. An analysis of the correctness and com-
pleteness of aspect weaving. In WCRE’06, pages 324–333. IEEE,
2006. ISBN 0-7695-2719-1. doi: http://dx.doi.org/10.1109/WCRE.
2006.10.

[22] G. Kniesel, J. Hannemann, and T. Rho. A comparison of logic-
based infrastructures for concern detection and extraction. In
LATE’07. ACM, 2007. ISBN 1-59593-655-4. doi: http://doi.acm.org/
10.1145/1275672.1275678. URL http://www.cs.uni-bonn.de/

~gk/papers/knieselHannemannRho-late07-preprint.pdf.

[23] J. L. Kuhns. Answering questions by computer: a logical study.
Technical Report RM-5428-PR, The RAND Corporation, December
1967.

[24] C. Lange, H. M. Sneed, and A. Winter. Applying the graph-oriented
GUPRO-approach in comparison to a relational database based ap-
proach. In IWPC’01, 2001.

[25] M. A. Linton. Implementing relational views of programs.
In SESPSDE’84, pages 132–140, New York, NY, USA, 1984.
ACM. ISBN 0-89791-131-8. doi: http://doi.acm.org/10.1145/800020.
808258.

[26] M. Marin, L. Moonen, and A. van Deursen. Soquet: Query-based
documentation of crosscutting concerns. In ICSE’07, pages 758–
761. IEEE, 2007. URL http://swerl.tudelft.nl/twiki/pub/
Main/TechnicalReports/TUD-SERG-2007-005.pdf.

[27] M. Martin, B. Livshits, and M. S. Lam. Finding application errors and
security flaws using pql: a program query language. SIGPLAN Not.,

9

40(10):365–383, 2005. ISSN 0362-1340. doi: http://doi.acm.org/10.
1145/1103845.1094840.

[28] R. C. Martin. OO design quality metrics — an analysis of dependen-
cies. Technical report, Object Mentor, October 1994.

[29] K. Mens, I. Michiels, and R. Wuyts. Supporting software development
through declaratively codified programming patterns. In Journal on
Expert Systems with Applications, pages 236–243, 2001.

[30] S. Paul and A. Prakash. Querying source code using an algebraic query
language. In H. A. Müller and M. Georges, editors, ICSM, pages 127
– 136. IEEE Computer Society, 1994.

[31] P. Rademaker. Binary relational querying for structural source code
analysis. http://www.cs.uu.nl/wiki/Hage/MasterStudents.

[32] A. Schürr, A. J. Winter, and A. Zündorf. The PROGRES approach:
language and environment, pages 487–550. World Scientific Publish-
ing Co., Inc., 1999. ISBN 981-02-4020-1.

[33] A. Tarski. On the calculus of relations. The Journal of Symbolic Logic,
6(3):73–89, 1941. ISSN 00224812. URL http://www.jstor.org/
stable/2268577.

[34] S. R. Tilley, S. Paul, and D. B. Smith. Towards a framework for
program understanding. In IWPC’96, pages 19 – 28. IEEE Computer
Society, 1996.

[35] M. van den Brand, J. Heering, H. de Jong, M. de Jonge, T. Kuipers,
P. Klint, L. Moonen, P. Olivier, J. Scheerder, H. Vinju, E. Visser, and
J. Visser. The ASF+SDF Meta-Environment: a Component-Based
Language Development Environment. In CC’01, LNCS. Springer,
2001.

[36] M. Verbaere, E. Hajiyev, and O. de Moor. Improve software qual-
ity with SemmleCode: an Eclipse plugin for semantic code search.
In OOPSLA’07, pages 880–881, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-865-7. doi: http://doi.acm.org/10.1145/1297846.
1297936.

[37] J. Wu. Open source software evolution and its dynamics. PhD thesis,
University of Waterloo, Canada, 2006.

10

