
Recoverable robustness by column generation

P.C. Bouman

J.M. van den Akker

J.A. Hoogeveen

Technical Report UU-CS-2011-013

May 2011

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Recoverable robustness by column generation

P.C. Bouman, J.M. van den Akker, J.A. Hoogeveen

Department for Information and Computing Sciences
Utrecht University

Princetonplein 5, 3584 CC Utrecht, The Netherlands
pcbouman@cs.uu.nl, J.M.vandenAkker@cs.uu.nl, J.A.Hoogeveen@cs.uu.nl

Abstract. Real-life planning problems are often complicated by the oc-
currence of disturbances, which imply that the original plan cannot be
followed anymore and some recovery action must be taken to cope with
the disturbance. In such a situation it is worthwhile to arm yourself
against common disturbances. Well-known approaches to create plans
that take possible, common disturbances into account are robust op-
timization and stochastic programming. Recently, a new approach has
been developed that combines the best of these two: recoverable robust-
ness. In this paper, we apply the technique of column generation to find
solutions to recoverable robustness problems. We consider two types of
solution approaches: separate recovery and combined recovery. We show
our approach on two example problems: the size robust knapsack prob-
lem, in which the knapsack size may get reduced, and the demand robust
shortest path problem, in which the sink is uncertain and the cost of edges
may increase.

1 Introduction

Most optimization algorithms rely on the assumption that all input data are
deterministic and known in advance. However, in many practical optimization
problems, such as planning in public transportation or health care, data may
be subject to changes. To deal with this uncertainty, different approaches have
been developed. In case of robust optimization [2] we choose the solution with
minimum cost that remains feasible for a given set of disturbances in the pa-
rameters. In case of stochastic programming [3], we take first stage decisions on
basis of the current information and, after the value of the unknown data has
been revealed, we take the second stage or recourse decisions. The objective here
is to minimize the cost of the first stage decisions plus the expected cost of the
recourse decisions. The recourse decision variables may be restricted to a polyhe-
dron through the so-called technology matrix [3]. So robust optimization wants
the initial solution to be completely immune for a predefined set of disturbances,
while stochastic programming includes a lot of options to postpone decisions to
a later stage or change decisions in a later stage.

Recently, the notion of recoverable robustness [11] has been developed, which
combines robust optimization and second-stage recovery options. Recoverable

2 Bouman, vdAkker, Hoogeveen

robust optimization computes solutions, which for a given set of scenarios can
be recovered to a feasible solution according to a pre-described, fast, and simple
recovery algorithm. The main difference between recoverable robustness and
stochastic programming is the way in which recourse actions are limited. The
property of recoverable robustness that recourse actions must be achieved by
applying a simple algorithm instead of being bounded by a polyhedron makes it
very suitable for combinatorial problems. As an example, consider the planning
of buses and drivers in a large city. We may expect that during rush hour buses
may be delayed, and hence may be too late to perform the next trip in their
schedule. In case of robust optimization, we can counter this only by making the
time between two consecutive trips larger than the maximum delay that we want
to take into account. In case of recoverable robustness, we are allowed to change,
if necessary, the bus schedule, but this is limited by the choice of the recovery
algorithm. For example, we may schedule a given number of stand-by drivers
and buses, which can take over the trip of a delayed driver/bus combination.
Especially in the area of railway optimization (see e.g. [6] and [7]) recoverable
robust optimization methods have gained a lot of attention.

In this paper we present a new approach for solving recoverable robust opti-
mization problems. We use column generation for recoverable robust optimiza-
tion. We will present column generation models for the size robust knapsack
problem and for the demand robust shortest path problem. Our approach can
be generalized to many other problems. To the best of our knowledge, this is
the first paper applying column generation to recoverable robust optimization.
Another decomposition approach, namely Benders decomposition, is used in [5]
to assess the Price of Recoverability for recoverable robust rolling stock planning
in railways.

The remainder of the paper is organized as follows. In Section 2, we define
the concept of recoverable robustness. In Section 3, we consider the size robust
knapsack problem and in Section 4 the demand robust shortest path problem.
In Section 5, we report on computational results. Finally, Section 6 concludes
the paper.

2 Recoverable robustness

In this section we formally define the concept of recoverable robustness. We are
given an optimization problem

P = min{f(x)|x ∈ F},

where x ∈ Rn are the decision variables, f is the objective function and F is the
set of feasible solutions.

Disturbances are modeled by a set of scenarios S. We use Fs to denote the
set of feasible solutions for scenario s ∈ S, and we denote the decision variables
for scenarios s by ys. The set of algorithms that can be used for recovery are
denoted by A, where A(x, s) ∈ A determines a feasible solution ys from a given
initial solution x in case of scenario s. In case of planning buses and drivers a

Recoverable robustness by column generation 3

scenario corresponds to a set of bus trips that are delayed, and the algorithms
in A decide about the use of standby drivers.

The recovery robust optimization problem is now defined as:

RRPA = min{f(x) + g({ys|s ∈ S})|x ∈ F, A ∈ A, ∀s∈Sys = A(x, s)}.

Here, g({ys|s ∈ S}) denotes the cost associated with the recovery variables
ys. There are many possible choices for g. A few examples are as follows:

1. g is defined as the all-zero function. This models the situation where our
only concern is the feasibility of the recovered solutions.

2. g is equal to the maximal cost of the recovered solutions ys. This corresponds
to minimizing the worst-case cost.

3. g measures the deviation of the solutions ys from the initial solution x. Note
that this deviation may also be limited by the recovery algorithms.

4. Suppose we are given the probabilities ps of scenarios s. Then g is de-
fined as expected value of the solution after recovery, i.e., g({ys|s ∈ S}) =∑

s∈S psg(ys), where g(ys) is the cost of solution ys.

Although earlier papers on recoverable robustness (e.g. [11]) consider the
latter type of definition of g as two-stage stochastic programming, we think that
the requirement of a pre-described easy recovery algorithms makes this definition
fit into the framework of recoverable robustness.

3 Size robust knapsack problem

We consider the following knapsack problem. We are given n items, where item
j (j = 1, . . . , n) has revenue cj and weight aj . Each item can be selected at
most once. The knapsack size is b. We define the size robust knapsack problem
as the knapsack problem where the knapsack size b is subject to uncertainty. We
denote by bs < b the size of the knapsack in scenario s ∈ S. We assume that
the knapsack will keep its original size with probability p0 and that scenario s
will occur with probability ps. We study the situation in which recovery has to
be performed by removing items. As soon as it becomes clear which scenario
appears, we can find for a given initial solution the optimal recovery by dynamic
programming. Recently [4] have studied an extended version of our knapsack
problem. They show NP-hardness of several variants and develop a polyhedral
approach to solve these problems.

We are going to discuss two decomposition approaches for the size robust
knapsack problem. In both cases we reformulate the problem such that we have
to select one knapsack filling for the initial problem and all scenarios from a given
set. The difference consists of the way we deal with the scenarios. In Separate
Recovery Decomposition, we select an initial knapsack filling and separately we
select a knapsack filling for each scenario; the relation that the initial knapsack
filling should contain all scenario fillings is enforced by constraints in the master
problem. In Combined Recovery Decomposition, we select for each scenario a

4 Bouman, vdAkker, Hoogeveen

combination of an initial knapsack filling together with the optimal recovery
knapsack for that single scenario. We enforce that only one initial knapsack
filling will get selected in the master problem.

3.1 Separate Recovery Decomposition

We define K(b) as the set of feasible knapsack fillings with size at most b. For
k ∈ K(b), we denote its revenue by Ck =

∑
i∈k ci. In the same way, we denote

the revenue of k ∈ K(bs) by Cs
k =

∑
i∈k ci.

We define decision variables

xk =

{
1 if knapsack k ∈ K(b) is selected,
0 otherwise.

and

ysk =

{
1 if knapsack k ∈ K(bs) is selected for scenario s,
0 otherwise.

The problem can now be formulated as follows. This is called the Master
ILP.

max p0
∑

k∈K(b)

Ckxk +
∑
s∈S

ps
∑

k∈K(bs)

Cs
ky

s
k

subject to ∑
k∈K(b)

xk = 1 (1)

∑
k∈K(bs)

ysk = 1 (2)

∑
k∈K(b)

aikxk −
∑

k∈K(bs)

asiky
s
k ≥ 0 for all i ∈ {1, 2, . . . , n}, s ∈ S (3)

xk, ∈ {0, 1} for all k ∈ K(b) (4)

ysk, ∈ {0, 1} for all k ∈ K(bs), s ∈ S, (5)

where the index variables aik and asik are defined as follows:

aik =

{
1 if item i is in knapsack k ∈ K(b),
0 otherwise.

and

asik =

{
1 if item i is in knapsack k ∈ K(bs),
0 otherwise.

In the above model constraint (1) states that exactly one knapsack is selected
for the original situation and constraints (2) that exactly one knapsack is selected
for each scenario. Constraints (3) ensures that recovery is done by removing
items.

Recoverable robustness by column generation 5

We want to solve this ILP formulation using Branch-and-Price [1]. We relax
the integrality constraints (4) and (5) into xk ≥ 0 and ysk ≥ 0, and solve this
LP-relaxation. To deal with the large number of variables we are going to solve
the problem by column generation. We start with a limited subset of the vari-
ables and solve the LP-relaxation for this subset only; this is called the restricted
master LP. Then we solve the pricing problem, i.e., we look for variables that
are not yet included in the restricted master LP and can to improve the solution
if their value is made positive. If such variables are found, they are added to the
restricted master LP, it is solved again, after which pricing is performed etc. If
pricing does not find any new variables we know that the master LP has been
solved to optimality.

The pricing problem
From the theory of linear programming it is well-known that for a maximization
problem increasing the value of a variable will improve the current solution if
and only if its reduced cost is positive. The pricing problem then boils down to
maximizing the reduced cost.

Let λ, µs, and πis be the dual variables of constraints 1, 2, and 3 respectively.
Now the reduced cost cred(xk) of xk is given by

cred(xk) = p0
∑
i∈k

ci − λ−
n∑

i=1

∑
s∈S

aikπis

=

n∑
i=1

aik(p0ci −
∑
s∈S

πis)− λ.

The pricing problem is to find a feasible knapsack for the original scenario, where
the revenue of item i, equals (p0ci−

∑
s∈S πis). This is just the original knapsack

problem with modified objective coefficients. Similarly the reduced cost cred(ysk)
are given by:

cred(ysk) =

n∑
i=1

asik(psci + πis)− µs.

It follows that the pricing is exactly the knapsack problem with knapsack size
bs and modified objective coefficients. Note that in the pricing problem an item
may have a negative revenue. Clearly such items can be discarded.

To find an integral solution, we are going to apply Branch-and-Price. We
branch on items that are fractional in the current solution; this is easily combined
with column generation.

3.2 Combined Recovery Decomposition

In contrast to the Separate Recovery Decomposition, we consider fillings of the
initial knapsack in combination with the optimal recovery for one scenario. Con-
sequently, we introduce decision variables:

6 Bouman, vdAkker, Hoogeveen

zskq =

1 if the combination of initial solution k ∈ K(b)
and recovery solution q ∈ K(bs) is selected for scenario s,

0 otherwise.

The ILP model further contains the original variable xi signaling if item i is
contained in the initial knapsack. We can formulate the problem as follows:

max p0

n∑
i=1

cixi +
∑
s∈S

ps
∑

(k,q)∈K(b)×K(bs)

Cs
qz

s
kq

subject to∑
(k,q)∈K(b)×K(bs)

zskq = 1 for all s ∈ S (6)

xi −
∑

(k,q)∈K(b)×K(bs)

aikz
s
kq = 0 for all i ∈ {1, 2, . . . , n}, s ∈ S (7)

xi, ∈ {0, 1} for all i ∈ {1, 2, . . . , n} (8)

zskq, ∈ {0, 1} for all k ∈ K(b), q ∈ K(bs), s ∈ S, (9)

Constraints (6) enforce that exactly one combination is selected for each
scenario; constraints (7) ensure that the same initial knapsack filling is selected
for all scenarios.

Again, we are going to solve the LP-relaxation by column generation. We
include the variables xi in the restricted master LP and, hence pricing is only
performed for the variables zskq. We denote the dual variables of constraints (6)
and (7) by ρs and σis, respectively. The reduced cost of zskq is now equal to:

cred(zskq) =

n∑
i=1

asiqpsci +

n∑
i=1

aikσis − ρs.

We solve the pricing problem for each scenario separately. We have to find
an initial and recovery solution. This can be solved by dynamic programming.
The main observation is that there are three types of items: items included in
both the initial and recovery knapsack, items selected for the initial knapsack,
but removed by the recovery, and non-selected items. We define state variables
D(i, w0, ws) as the best value for a combination of an initial and recovery knap-
sack for scenario s, such that the initial knapsack is a subset of {1, 2 . . . , i}, the
recovery knapsack is a subset of the initial knapsack, and the initial and recov-
ery knapsack have weight w0 and ws, respectively. The recurrence relation is as
follows:

D(i, 0, 0) = 0 ∀i
D(0, w0, ws) = −∞ for w0, ws > 0

D(i, w0, ws) = max

D(i− 1, w0, ws)
D(i− 1, w0 − ai, ws) + σis
D(i− 1, w0 − ai, ws − ai) + σis + psci

Recoverable robustness by column generation 7

4 Demand robust shortest path problem

The demand robust shortest path problem is an extension of the shortest path
problem and has been introduced in [8]. We are given a graph (V,E) with cost
ce on the edges e ∈ E, and a source node vsource ∈ V . The question is to find
the cheapest path from source to the sink, but the exact location of the sink is
subject to uncertainty. Moreover, the cost of the edges may change over time.
More formally, there are multiple scenarios s ∈ S that each define a sink vssink
and a factor fs > 1 by which the cost of the edges are scaled.

[12] has studied two variants of this problem. In both cases, the sink is known,
but the costs of the edges can vary. Initially, a path has to be chosen. In the first
variant, recovery is limited by replacing at most k edges in the chosen path; [12]
shows this problem to be NP-hard. In the second variant any new path can be
chosen, but you get a discount on already chosen edges; [12] looks at the worst
case behavior of a heuristic.

In contrast to [12], we can buy any set of edges in the initial planning phase.
In the recovery phase, we have to extend the initial set such that it contains
a path from the source to the sink vssink, while paying increased cost for the
additional edges. Our objective is to minimize the cost of the worst case scenario.
Remark that, when the sink gets revealed, the recovery problem can be solved
as a shortest path problem, where the edges already bought get zero cost.

Observe that the recovery problem has the constraint that the union of the
edges selected during recovery and the initially selected edges contains a path
from source vsource to sink vssink. This constraint is hard to express in Separate
Recovery Decomposition, but it fits very well in Combined Recovery Decompo-
sition.

Our Combined Recovery Decomposition model contains the variable xe sig-
naling if edge e ∈ E is selected initially. Moreover, for each scenario, it contains
variables indicating which edges are selected initially and which edges are se-
lected during the recovery:

zskq =

1 if the combination of initial edge set k ⊆ E
and recovery edge set q ⊆ E is selected for scenario s,

0 otherwise.

Observe that zskq is only defined if k and q are feasible, i.e., their intersection is
empty and their union contains a path from vsource to vssink. Finally, it contains
zmax defined as the maximal recovery cost.

We can formulate the problem as follows:

min
∑
e∈E

cexe + zmax

subject to ∑
(k,q)⊆E×E

zskq = 1 for all s ∈ S (10)

8 Bouman, vdAkker, Hoogeveen

xe −
∑

(k,q)⊆E×E

aekz
s
kq = 0 for all e ∈ E, s ∈ S (11)

zmax −
∑
e∈E

fsce
∑

(k,q)⊆E×E

aseqz
s
kq ≥ 0 for all s ∈ S (12)

xe, ∈ {0, 1} for all e ∈ E (13)

zskq, ∈ {0, 1} for all k ⊆ E, q ⊆ E, s ∈ S, (14)

where the index variables aek and aseq are defined as follows:

aek =

{
1 if edge e is in edge set k,
0 otherwise.

and

aseq =

{
1 if edge e is in edge set q for scenario s,
0 otherwise.

Constraints (10) ensure that exactly one combination of initial and recovery
edges is selected for each scenario; constraints (11) enforces that the same set
of initial edges is selected for each scenario. Finally, constraints (12) make sure
that zmax represents the cost of the worst case scenario.

Let λ, ρes, and πs be the dual variables of the constraints (10), (11), and
(12) respectively. The reduced cost of zskq is now equal to:

cred(zskq) = −λ+
∑
e∈E

ρesaek +
∑
e∈E

πsf
scea

s
eq

Since we are dealing with a minimization problem, increasing the value of a
variable improves the current LP-solution if and only if the reduced cost of this
variable is negative. We have to solve the pricing problem for each scenario
separately. For a given scenario s, the pricing problem amounts to minimizing
cred(zskq) over all feasible aek and aseq. This means that we have to select a subset
of edges that contains a path from vsource to vssink. This subset consists of edges
which have been bought initially and edges which are attained during recovery.
The first type corresponds to aek = 1 and has cost ρes and the second type to
aseq = 1 and has cost πsf

sce. The pricing problem is close to a shortest path
problem, but we have two binary decision variables for each edge. However, we
can apply the following preprocessing steps:

– First, we select all edges with negative cost. From LP theory it follows that
all dual variables πs are nonnegative, and hence, all recovery edges have
nonnegative cost. So we only select initial phase edges. From now on, the
cost of these edges is considered to be 0.

– The other edges can either be selected in the initial phase or in the recovery
phase. To minimize the reduced cost, we have to choose the cheapest option.
This means that we can set the cost of an edge equal to min(ρes, πsf

sce).

The pricing problem now boils down to a shortest path problem with nonnegative
cost on the edges and hence can be solved by Dijkstra’s algorithm [9].

Recoverable robustness by column generation 9

5 Computational results

We performed extensive computational experiments with the knapsack problem.
The algorithms were implemented in the Java Programming language and the
Linear Programs were solved using ILOG CPLEX 11.0. All experiments were
run on a PC with an Intel CoreTM2 Duo 6400 2.13GHz processor.

Our experiments were performed in three phases. In the first phase we tested
12 different instance types to find out which types are the most difficult. Our
instance types are based on the instance types in [10], where we have to add
the knapsack weight bs and the probability ps for each of the scenarios. In the
second phase, we tested many different algorithms on relatively small instances.
In the third phase we tested the best algorithms from the second phase on larger
instances. In this section, we will present the most important issues from the
second and third phase. We omit further details for reasons of brevity.

In the second phase we tested 5 instance classes, including subset sum in-
stances. We considered instances with 5, 10, 15 and 25 items and with 2, 4, 6
and 8 scenarios. For each combination we generated 20 item sets and for each
item set we generated 3 sets of scenarios, with large, middle, and small values
of bs relative to b, respectively. This means that we considered 4800 instances in
total.

We report results on the following algorithms:

– Separate Recovery Decomposition with Branch-and-Price, where we branch
on the fractional item with largest

cj
aj

ratio and first evaluate the node which

includes the item.
– Combined Recovery Decomposition with Branch-and-Price, where we branch

in the same way as in Separate Recovery decomposition.
– Branch-and-Bound where we branch on the fractional item with smallest

cj
aj

ratio and first evaluate the node which includes the item.
– Dynamic programming: a generalization of the DP solving the pricing prob-

lem in case of Combined Recovery Decomposition.
– Hill Climbing: we apply neighborhood search on the initial knapsack and

compute for each initial knapsack the optimal recovery by Dynamic pro-
gramming. Hill climbing performs 100 restarts.

For the branching algorithms we tested different branching strategies. In
the branch-and-price algorithms the difference in performance turned out to be
minor and we report on the strategy that performed best in Separate Recovery
Decomposition. However, in the Branch-and-Bound algorithm some difference
could be observed and we report on the strategy that shows the best performance
for this algorithm.

The results of the second phase are given in Table 1. For each instance and
each algorithm, we allowed at most 3000 milliseconds of computation time. For
each algorithm, we report on the number of instances (out of 4800) that could
not be solved within 3000 ms, the average and maximum computation time over
the successful instances. For Hill Climbing we give the average and minimal

10 Bouman, vdAkker, Hoogeveen

performance ratio and for the branching algorithms the average and maximum
number of evaluated nodes.

Algorithm Failed avg t(ms) max t(ms) avg c
c∗ min c

c∗ avg nodes max nodes

Separate Recovery 39 42 2,609 - - 1.86 33
Combined Recovery 1,628 410 2,969 - - 1.05 13
Branch and Bound 110 49 3,000 - - 442.18 31,183
DP 3,466 401 2,953 - - - -
Hill Climbing 0 40 1,516 1 0.88 - -

Table 1. Second Phase Results

The results indicate that for this problem Separate Recovery Decomposition
outperforms Combined Recovery Decomposition. DP is inferior to Branch-and-
Bound and Hill Climbing.

In the third phase we experimented with larger instances for the two best
algorithms. We present results for instances with 50 and 100 items and 2, 3, 4,
10, or 20 scenarios. Again, for each combination of number of items, number
of scenarios, and instances class, we generated 20 item set with each 3 scenario
sets. This results in 600 instances where the maximum computation time per
instance per algorithm is 4 minutes. The results are depicted in Tables 2 and 3.

Items Scenarios Failed avg t(ms) max t(ms) avg nodes max nodes

50 2 4 354 35,031 1.32 31
50 3 5 1,050 51,032 1.5 27
50 4 22 1,141 39,999 1.42 21
50 10 53 812 36,421 1.11 25
50 20 59 287 50,515 1.01 3

100 2 88 1,151 42,468 1.24 39
100 3 114 388 28,844 1.18 19
100 4 107 175 1,000 1.04 9
100 10 97 287 1,204 1 1
100 20 96 370 1,125 1 1

Table 2. Third Phase Results for Separate Recovery decomposition

The results suggest that the computation time of Separate Recovery Decom-
position scales very well with the number of scenarios. As may be expected, Hill
Climbing shows a significant increase in the computation time when the number
of scenarios is increased. Moreover, the small number of nodes indicates that
Separate Recovery Decomposition is well-suited for instances with a larger num-
ber of scenarios. On average the quality of the solutions form Hill Climbing is
very high. However, the minimum performance ratios of about 0.85 show that

Recoverable robustness by column generation 11

Items Scenarios Failed avg t(ms) max t(ms) avg c
c∗ min c

c∗

50 2 0 299 6,578 0.99 0.86
50 3 0 530 6,500 0.99 0.88
50 4 0 668 7,546 1 0.92
50 10 0 1,097 7,672 1 0.95
50 20 0 1,241 8,156 1 0.97

100 2 5 3,331 52,391 0.99 0.76
100 3 7 6,265 56,609 1 0.92
100 4 20 6,227 58,312 1 0.86
100 10 32 9,989 51,297 1 1
100 20 38 11,195 51,969 1 1

Table 3. Third Phase Results for Hill Climbing

there is no guarantee of quality. Observe that there is a difference in the notion of
Failed. For the Separate Recovery Decomposition it means failed to solve to full
optimality and for Hill Climbing failed complete the algorithm with 100 restarts.
We did not yet include any primal heuristic in our Branch-and-Price algorithm.
Including such a heuristic will enable us to make the notion of Failed similar to
the one in Hill Climbing and is likely to decrease the number of failed instances.

6 Generalization and conclusion

In this paper we investigated column generation for recoverable robust optimiza-
tion. We think that our approach is very promising and that it can be generalized
to many other problems.

We presented two methods: Separate Recovery Decomposition and Combined
Recovery Decomposition. In the first approach, we work with separate solutions
for the initial problem and recovery solutions for the different scenarios; in the
second one, we work with combined solutions for the initial problem and the
recovery problem for a single scenario.

We considered the size robust knapsack problem. We applied Separate Recov-
ery Decomposition and Combined Recovery Decomposition. In the first model,
the pricing problem is a knapsack problem for both the initial solution columns
and the recovery solution columns. In the second model, the pricing problem
is to find an optimal column containing a combination of initial and recovery
solution for a single scenario, i.e., recoverable robust optimization for a single
scenario case. We implemented branch-and-price algorithms for both models.
Our computational experiments revealed that for this problem Separate Recov-
ery Decomposition outperformed Combined Recovery Decomposition and the
first method scaled very well with the number of scenarios. If the algorithm is
improved by a primal heuristic, it will find a feasible solution faster, which is
able to reduce the number of Failed instances as reported in Table 2. This is an
interesting topic for further research.

12 Bouman, vdAkker, Hoogeveen

We developed a Combined Recovery model for the demand robust shortest
path problem. We intend to implement this model in the near future. Interesting
issues for further research are restrictions on the recovery solution such as a
limited budget for the cost of the recovery solution or an upper bound on the
number of edges obtained during recovery.

Finally, the generalization of the presented methods to other problems is a
very interesting area for further research.

References

1. C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and
P.H. Vance (1998). Branch-and-price: column generation for solving huge integer
programs. Operations Research 46, 316–329.

2. A. Ben-Tal, L. El Ghaoui, and A. Nemirovski (2009). Robust Optimization
Princeton University Press.

3. J.R. Birge, F. Louveaux (1997). Introduction to Stochastic Programming,
Springer.

4. C. Büsing, A.M.C.A. Koster, and M. Kutschka (2010). Recov-
erable Robust Knapsacks: the Discrete Scenario Case. ftp://ftp.math.tu-
berlin.de/pub/Preprints/combi/Report-018-2010.pdf

5. V. Cacchiani, A. Caprara, L. Galli, L. Kronn, G. Maroti, and P. Toth
(2008) Recoverable Robustness for Railway Rolling Stock Planning. 8th Work-
shop on Algorithmic Approaches for Transportation Modeling, Optimization, and
Systems (ATMOS 2008). http://drops.dagstuhl.de/opus/volltexte/2008/1590/

6. A. Caprara, L. Galli, L.G. Kroon, G. Maróti, P. Toth: Ro-
bust Train Routing and Online Re-scheduling. ATMOS 2010
http://drops.dagstuhl.de/opus/volltexte/2010/2747/

7. S. Cicerone, G. D’angelo, G. Di Stefano,, D. Frigioni, A. Navarra, M.
Schachtebeck and A. Schöbel (2009) Recoverable Robustness in Shunting and
Timetabling . In R.K. Ahula, R.H. Möhring and C.D. Zaroliagas (eds.), Robust and
On-Line Large Scale Optimization. Lecture Notes in Computer Science, Vol. 5868,
28–60. Springer.

8. K. Dhamdhere, V. Goyal, R. Ravi, and M. Singh (2005). How to pay, come
what may: Approximation algorithms for demand-robust covering problems. Pro-
ceedings of the Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’05). pp. 367-378. IEEE Computer Society.

9. E.W. Dijkstra (1959). A note on two problems in connexion with graphs. Nu-
merische Mathematik 1, 269–271.

10. H. Kellerer, U. Pferschy, and D. Pisinger (2004). Knapsack Problems.
Springer, Berlin, Germany.

11. C. Liebchen, M. Lübbecke, R.H. Möhring, and S. Stiller (2009). Recover-
able Robustness. In R.K. Ahula, R.H. Möhring and C.D. Zaroliagas (eds.), Robust
and On-Line Large Scale Optimization. Lecture Notes in Computer Science, Vol.
5868, 1–27, Springer.

12. . C. Puhl. Recoverable robust shortest path problems.
http://www.di.unipi.it/optimize/Events/proceedings/T/B/2/TB2-2.pdf

