
Modeling XML Content Explained

Harrie Passier

Bastiaan Heeren

Technical Report UU-CS-2011-019

June 2011

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Modeling XML Content Explained

Harrie Passier
School of Computer Science
Open Universiteit Nederland

Harrie.Passier@ou.nl

Bastiaan Heeren
School of Computer Science
Open Universiteit Nederland

Bastiaan.Heeren@ou.nl

ABSTRACT
Over the years, a lot of course material has been devel-
oped to explain to undergraduate students the fundamentals
of XML, and schema languages such as DTD and XML-
Schema. Typically, the syntax of these languages is dis-
cussed and examples are given. How to find a schema for
some XML content is often not covered by the material. As
a result, students have problems to start with modeling a
complex schema, many of their inferred XML schemas are
too liberal, and some are even incorrect. In this paper we
present a systematic approach for modeling XML content
models based on rewriting regular expressions. A small-
scale experiment has demonstrated that the quality of the
models is improved, and that the approach helps students
to begin modeling XML content.

Categories and Subject Descriptors
F.4.3 [Mathematical and formal languages]: Formal
Languages; K.3.2 [Computers and education]: Computer
and Information Science Education

General Terms
Design, Experimentation, Languages, Measurement

1. INTRODUCTION
Many of today’s computer science courses introduce and

explain their topics without mentioning their underlying for-
mal methods [9]. As a result, it remains unclear how to con-
struct a program, an algorithm, a data structure, et cetera.
For example, introductory courses on data structures and
algorithms are often limited to the common data structures
and accompanying algorithms, and how to use these, but
how to develop algorithms on new data structures is not al-
ways explained. Instead, teaching methods and engineering
approaches are used that mainly rely on inspiration and in-
tuition, and this does not always work out well. As a result,
students are often not sufficiently aware of what to do and

why: they need and ask for more guidance in terms of “how
to do” a particular task.

In this paper, we discuss the use of formal methods in an
introductory course on XML at bachelor level. We focus on
XML schema languages, such as the Document Type Defini-
tion (DTD) language and XML-Schema. More specifically,
we present an approach based on regular expressions for de-
riving content models for XML elements in a systematic way.
Consider the following XML instance document:

<book>
<title>Touch of class</title>
<author>Bertrand Meyer</author>
<chapter>The industry of pure ideas</chapter>
<chapter>Dealing with objects</chapter>
<!-- Much more chapters follow -->

</book>

Based on this instance only, a book element contains a title,
an author, and one or more chapters. If we also use our
common sense, then we could allow several authors for a
book, but not multiple titles.

Although the similarities between schema languages and
regular expressions are well understood, books and teaching
material do not use this to their advantage. Typically, a
number of (small) examples is given, but without an expla-
nation of how the resulting content model was found. We
are not aware of books on XML that introduce regular ex-
pressions to provide a deeper insight into content models, or
a systematic way to model XML content.

We have made the following observations about students
asked to give a suitable XML content model for some XML
instance document:

– They have difficulties to get started: they need assis-
tance with the first steps in constructing a complex
content model, or the evaluation of such a model;

– The process of finding a model is not structured, and
involves a lot of trial-and-error;

– Resulting models are too liberal (the schema accepts
too many XML documents), or even incorrect (parts
are missing in the schema);

– Resulting models are not deterministic;
– Students are unable to evaluate a generated model on

correctness and precision.

Similar observations can be made about learning material
for other XML-related languages, such as the navigation and
selection language XPath, and the transformation languages
XQuery and XSLT.

We present a systematic approach based on rewriting reg-
ular expressions [1] that helps students in constructing con-

Construct DTD notation RE notation
empty set ∅
empty string EMPTY ε
alphabet element names atoms
sequence R,S RS
choice R | S R | S
zero or one R? R?
zero or more R∗ R∗

one or more R+ R+

Figure 1: Syntax of DTDs versus REs

tent models as part of a schema. By establishing a link be-
tween schema languages and regular expressions, it becomes
much easier to reason about content models, and to manipu-
late these models. Rewrite rules on regular expressions pave
the way for a stepwise derivation of a content model. We dis-
tinguish between precise content models (describing exactly
the set of allowed sequences of XML elements, but nothing
more), and correct models (describing at least the sequences
of XML elements we want to have). For both cases we spec-
ify a strategy that makes precise how and where to apply
the rewrite rules. This is the paper’s first contribution.

We have tested our modeling approach on a group of stu-
dents. The test clearly shows that the approach can help
students in learning to model complex XML content mod-
els. Test and interview results are given in the last part of
the paper. This is our second contribution.

The paper is structured as follows. Section 2 gives an
introduction to DTDs and regular expressions, and presents
rules to rewrite these expressions. Section 3 then explains
how to make a content model deterministic, a requirement
of the DTD language. Sections 4 and 5 define strategies
for precise and correct content models, respectively. We
then discuss our small-scale experiment (Section 6). The
last sections give related work, draw conclusions, and give
directions for future work.

2. DTDS AND REGULAR EXPRESSIONS
We start with a comparison of DTDs and regular expres-

sions (REs), followed by a formal definition of the language
that is generated by an RE. In the final part, we give some
rewrite rules for manipulating expressions.

2.1 Syntax
A DTD lists all the elements that can be part of an XML

document by means of element declarations, such as:

<!ELEMENT book (title, author+, chapter+)>

The content model of an XML element specifies which child
elements may occur, and in which order. In our example,
(title, author+, chapter+) is the content model of ele-
ment book. Each element book must have a title element,
followed by one or more author elements, and one or more
chapter elements. In the remainder of this paper, we choose
DTD as our schema language, but our approach works for
other languages as well (such as XML-Schema).

The syntax of a content model differs slightly from stan-
dard RE notation: Figure 1 shows the correspondence be-
tween the notations. There is no counterpart of the empty
set construct in DTD notation. Furthermore, ε concisely
denotes the empty string. Also observe how the commas

R | (S | T) = (R | S) | T (1a)
R | S = S |R (1b)
R |R = R (1c)

R(ST) = (RS)T (1d)
εR = R (1e)
Rε = R (1f)

R? = ε |R (2a)
R∗ = ε |RR∗ (2b)
R+ = RR∗ (2c)

RS |RT = R(S | T) (3a)
RT | ST = (R | S)T (3b)

R∗R = RR∗ (3c)
(RS)∗R = R(SR)∗ (3d)

Figure 2: Rewrite rules on REs

are dropped for sequences (since the atoms of an RE are
generally assumed to be single characters, unless otherwise
noted). For reasons of presentation, we adopt the RE syntax
in this paper, without the ∅ construct.

We use R, S, and T to represent arbitrary REs, and
a, b, c, . . . for the atoms in our examples. The standard
precedence levels apply: the unary operators (?, *, and
+) bind stronger than sequence, which binds stronger than
choice. Parentheses are used to group expressions. Hence,
the expression ab∗ | c is interpreted as (a(b∗)) | c, and not
a(b∗ | c) or (ab)∗ | c.

2.2 Language
An RE describes a possibly infinite set of sentences, which

we call the language generated by that expression, denoted
by L(·). This can be defined inductively as follows [8]:

L(ε) = {ε}
L(a) = {a}
L(ST) = L(S)L(T)
L(S | T) = L(S) ∪ L(T)
L(S?) = L(ε | S)
L(S∗) = (L(S))∗

L(S+) = L(SS∗)

Here, concatenation of two sets, written XY , is short-hand
notation for { xy | x ∈ X, y ∈ Y }. The star-closure of a set,
X∗, equals X0 ∪X1 ∪ . . ., where:

X0 = {ε}
Xn+1 = XXn

Similarly, Rn is used as shorthand notation for a sequence
of n occurrences of regular expression R.

These definitions provide the proper foundation to reason
about and manipulate REs. In forthcoming sections, we use
this to evaluate content models on correctness.

2.3 Rewrite rules
Figure 2 presents a list of rewrite rules that operate on

REs. The first set of rules (1a–1f) expresses some basic
properties of the choice and sequence operators: choice is as-
sociative, commutative, and idempotent, whereas sequence
is associative and has ε as its unit. Soundness of these
rules follows straightforwardly from the language generated
for both sides of the equation. The rules for associativity

Rn ⇒ R∗ (if n ≥ 0) (4a)
Rn ⇒ R+ (if n ≥ 1) (4b)

R∗S∗ ⇒ (R | S)∗ (4c)

Figure 3: Directed rewrite rules

(1a and 1d) are typically performed implicitly, and paren-
theses are dropped accordingly.

The second set of rules (2a–2c) defines a translation for
each of the cardinality operators. These rules show that all
occurrences of R? and R+ can be removed from an expres-
sion. On the other hand, R∗ can be expanded one step.

The last set of rules is for making expressions determin-
istic, which is discussed in the next section. We have rules
for left factoring (3a), and right factoring (3b). Rule 3d
(and 3c as a special case) help in rearranging expressions
involving R∗ (under the right circumstances these can be
shifted to the right). More rewrite rules can be added to the
collection, for example by combining existing ones. When
modeling XML content with REs, it is convenient to have
a rich set of rules that covers common patterns. Note that
the rules in Figure 2 can be applied in both directions (i.e.,
also from right to left) because both sides are equal.

When modeling XML content, one typically uses the car-
dinality operators to reduce the size of the model. For ex-
ample, a | aa | aaa can be written as a+, which is far more
concise. The price we pay for this reduction in size is a loss
of precision: the latter expression now also accepts aaaa.
Figure 3 shows two more rewrite rules for the introduction
of cardinality operators. These rules are directed from left
to right.

Semantically, these directed rules extend the language that
is generated. To specify this property, we introduce a partial
ordering between REs: R ≤ S if and only if L(R) ⊆ L(S).
A directed rewrite rule R ⇒ S must satisfy R ≤ S, and
indeed, the rules of Figure 3 have this property.

3. REMOVING NON-DETERMINISM
XML is defined to be compatible with SGML, and as a

consequence, content models of DTDs have to be determin-
istic. A content model is deterministic if an XML proces-
sor can check a document against a DTD without looking
forward in the document (i.e., inspecting only the current
element). Generally, there are two situations in which non-
determinism occurs [13]:

1. A content model contains R |S and the sets of element
names that can start a sequence in L(R) and L(S) are
not disjoint. For example, ab | ac is not deterministic
because the set of starters (known as the first set [4])
is {a} for both alternatives.

2. A content model contains R?, R∗, or R+, and the set
of element names that can start a sequence in L(R) is
not disjoint with the set of names that can follow in
this particular context (the follow set [4]). An example
of such a non-deterministic expression is (ab)∗ac.

3.1 Strategy for removing non-determinism
We now present a strategy for the stepwise removal of

non-determinism: rewrite problematic subexpressions (one
of the two situations described above) until we have reached
a deterministic expression. We discuss the two situations.

Situation 1.
Given is a subexpression R | S with at least one element
that is starter of R and S. Let this element be a. The
non-determinism can be removed in three steps.

(a) Rewrite R and S until element a is the first of a se-
quence. This involves expanding cardinality operators
(2a–2c), removing ε in sequences (1e), and distributing
sequence over choice (3b). Rules 1c, 3c, and 3d (and
variants for the other operators) can provide a shortcut.

(b) If needed, rearrange alternatives (1b) so that the se-
quences starting with a are adjacent.

(c) Apply the factorization rule 3a. In some cases, an ε has
to be introduced first (1f).

Example 1. Applying the above strategy to the non-de-
terministic expression (ab)+ | bc | abc results in:

(ab)+ | bc | abc = ab(ab)∗ | bc | abc (2c)
= ab(ab)∗ | abc | bc (1b)
= ab((ab)∗ | c) | bc (3a)

Example 2. The top-level alternatives in the following ex-
ample make the expression non-deterministic:

(a | b)a | a = aa | ba | a (3b)
= aa | a | ba (1b)
= aa | aε | ba (1f)
= a(a | ε) | ba (3a)

The last two steps are a good candidate for adding a new,
derived rewrite rule to the collection: RS |R = R(S | ε).

Situation 2.
The second case is more complicated because some REs
cannot be transformed into a deterministic form [2, 5, 4].
Examples of such expressions are (ab)∗(ac)∗ and (ab)∗a?.
Note that deterministic REs should not be confused with
deterministic finite-state automata (DFA) [7], another well-
known formalism. Every RE can be transformed into an
equivalent DFA, and the other way around. An RE con-
structed from a DFA, however, is not automatically deter-
ministic.

Suppose we have some subexpressionR?, R∗, orR+, which
has element a as a starter. Furthermore, a is also in the fol-
low set of the subexpression at hand. We proceed by case
analysis on the operator used.

(a) For content model R?, we remove the operator by ap-
plying rule 2a, resulting in the alternative ε |R. Then,
this alternative should be combined with its context,
for instance by using distribution (rule 3b, from right
to left). Eventually, we arrive at a situation 1 problem.
This case also covers non-deterministic expressions of
the form ε | R (instead of R?) that have a non-disjoint
follow set.

(b) At its best, removing non-determinism involving R∗

can be done with rules 3c and 3d. In some cases, ex-
pression R or its context needs some rewriting before
these rules are applicable. If this does not work (e.g.
because it is impossible), then two possibilities remain
to deal with the situation:

– Make the expression less precise, and extend the
language generated by the RE.

– Introduce an extra level in the XML tree, and cir-
cumvent the ambiguity altogether.

(c) In case of R+, we use rule 2c. This reduces the problem
to the case for R∗.

Example 3. The following derivation illustrates the case
for an optional part:

(ab)?a = (ε | ab)a (2a)
= a | aba (3b and 1e)
= a(ε | ba) (3a and 1f)

Example 4. Consider the regular expression (ab)∗(ac)∗,
for which there is no equivalent deterministic RE. We can
opt for a less precise (but deterministic) model:

(ab)∗(ac)∗ ≤ (ab | ac)∗ (4c)
= (a(b | c))∗ (3a)

Alternatively, we can decide to introduce an extra level by
defining new elements. Suppose that the model (ab)∗(ac)∗

belongs to an element abacs. We can split the model into
two parts, resulting in the following element declarations:

<!ELEMENT abacs (abs, acs)>
<!ELEMENT abs (a,b)*>
<!ELEMENT acs (a,c)*>

The new element names are abs and acs. Notice that intro-
ducing extra levels is not related to rewriting REs.

3.2 Normal form for content models
Besides the requirement that content models have to be

deterministic, an ε should not be part of a composite content
model according to the DTD language specification. This
means that in the end, ε’s have to be removed, which is
fairly simple (e.g., with rules 2a, 1e, and 1f). This gives us
a normal form for content models.

Definition 1. A content model M is in XML normal form
(XNF) if and only if M is deterministic, and no ε is present
in M (except when M itself is ε).

Reaching XNF is not a goal of its own, but rather a final step
after the strategies presented next (Section 4 and Section 5).

4. PRECISE CONTENT MODELS
We now turn our attention to deriving a content model

from some instance document. A content model should
not be made too liberal without careful thought: after all,
schema languages are used in the first place to reject docu-
ments and to spot inconsistencies. We start by considering
precise content models only: a precise content model con-
tains exactly those sequences of child elements that we want
to have, and no others.

Definition 2. Let M be a content model, and X a set of
sequences of child elements. Then M is a precise model for
X if and only if L(M) = X.

Obtaining a precise model for some XML content is rather
easy. First, we write down all sequences of child elements for
some particular element that appear in the instance docu-
ment. These sequences are the choices of the starting model.
For example, suppose we have:

<recs><rec><a/></rec>
<rec/>
<rec><a/><a/></rec>
<rec><a/></rec>

</recs>

This instance document contains four sequences of child
elements for element rec. Hence, the starting model is
ab | ε | abab | ab. We call such a first approximation of a
precise content model the starting form (SF).

The next step is to rewrite the content model in starting
form, and turn the model into XNF without loosing preci-
sion. A strategy for this step is discussed next.

4.1 Strategy for precise content models
The strategy described in Section 3 can turn any content

model into XNF. However, if we start with a model in SF
and look for a precise model, a much simpler strategy is
sufficient. More specifically, cardinality operators are not
present in the starting model, nor are they introduced dur-
ing rewriting (since that would make the model no longer
precise). The strategy for precise content models is as fol-
lows:

Input: An XML content model in SF.
Output: A precise XML content model in XNF.

Step 1. Remove redundant choices of the form R |R by ap-
plying rule 1c. If the duplicate choices are not adjacent,
then change the order (rule 1b).

Step 2. Remove situation 1 type of non-determinism (for
subexpressions of the form R|S) by repeating the strat-
egy of Section 3.1 until the model is deterministic.

Step 3. To reach XNF, we remove all occurrences of ε. For
this, we apply rule 2a, from right to left.

The strategy for precise content models returns canonical
models (up to the order of choices). The order in which the
rules are applied does not influence the result. Removing
duplicates early (step 1) helps to shorten the derivations.
Also note that the size of the final model is never larger
than the original model.

Example 5. We continue with the starting form for ele-
ment rec, introduced earlier in this section. We rewrite its
model into a precise model in XNF.

ab | ε | abab | ab = ab | ab | ε | abab (1b)
= ab | ε | abab (1c)
= ε | ab | abab (1b)
= ε | abε | abab (1f)
= ε | ab(ε | ab) (3a)
= ε | ab(ab)? (2a)
= (ab(ab)?)? (2a)

4.2 Using the strategy
The strategy for precise models should be used if the num-

ber of choices in the SF is relatively small, and rewriting the
model in a precise way is still manageable. Also use the
strategy if a precise model is needed, i.e., the context de-
mands a content model representing exactly the sequences
of child elements in the SF and no other ones.

Precise models are not always desirable in practice, how-
ever, because models quickly become too verbose. For ex-
ample, a book record has exactly one ISBN, but multiple
authors and chapters. In this case, a content model with
cardinality operators (isbn, author+, chapter+) is more ap-
propriate than a model without these operators.

The precision of a content model cannot be tested with
a validating parser. The only approach here is to manually
generate the language of the content model (see section 2.2)

and check whether the sequences of child elements we want
to have are the same as the language of the content model.

5. CORRECT CONTENT MODELS
A correct content model contains at least the sequences

of child elements we want to have, and possibly more.

Definition 3. Let M be a content model, and X a set of
sequences of child elements. Then M is a correct model for
X if and only if L(M) ⊇ X.

For instance, (ab)∗ is a correct content model for {ε, ab, abab},
but not a precise model since ababab ∈ L((ab)∗). Correct
models are generally more concise than precise models: the
trade-off is that they can be more liberal than needed.

Smaller models show the structure more clearly. For ex-
ample, (a | b)∗ is equal to (a∗b∗)∗, but the first one is (ar-
guably) simpler. Minimizing the size of an expression should
not be the only goal though. A model that allows everything
(e.g. (a1 | a2 | . . . | an)∗ where a1 . . . an are all existing el-
ements, which can be abbreviated to ANY) is concise, but
defeats the purpose of writing content models. The chal-
lenge is to find the right balance between conciseness and
precision. For this, expert knowledge about the domain be-
ing modeled is needed. For example, chapter+ is reasonable
for a book record, whereas isbn∗ is questionable. Such deci-
sions cannot be made automatically by a strategy.

5.1 Strategy for correct content models
We now present a strategy for correct (but not necessarily

precise) content models. This strategy introduces cardinal-
ity operators during rewriting. As a rule of thumb, cardi-
nality operators should be introduced early on, and before
factorization, because the initial model in SF best exposes
the replicated parts. The introduction of cardinality oper-
ators can lead to non-deterministic models, for which we
use the strategy described in Section 3 to remove this non-
determinism.

Input: An XML content model in SF.
Output: A correct XML content model in XNF.

Step 1. Remove redundant choices of the formR|R (rule 1c).
Change the order of alternatives if needed (rule 1b).

Step 2. Search for opportunities to introduce cardinality op-
erators, and make sure that this is appropriate in the
underlying domain. Find all choices that can be com-
bined, and place these next to each other (rule 1b).
If the ε alternative is not present, rewrite all choices
to R+ (rule 4b); otherwise, use rule 4a. Afterwards,
duplicate alternatives can be removed (rule 1c). Some-
times, parts have to be rewritten before the cardinality
operators can be introduced.

Step 3. If no more cardinality operators have to be intro-
duced, bring the expression into XNF by applying fac-
torization and removing ε’s. The details of this proce-
dure are discussed in Section 3.

Example 6. Consider the model ab | abab | abc | ε, which is
in SF. We identify three out of four alternatives as instances
of (ab)∗, i.e., zero or more occurrences of ab. Rewriting the
term then proceeds as follows:

ab | abab | abc | ε = ε | ab | abab | abc (1b)
≤ (ab)∗ | (ab)∗ | (ab)∗ | abc (4a)
= (ab)∗ | abc (1c)
= ε | ab(ab)∗ | abc (2b)
= ε | ab((ab)∗ | c) (3a)
= (ab((ab)∗ | c))? (2a)

The resulting model is in XNF. The step in which we give up
precision and introduce (ab)∗ is made explicit in the deriva-
tion, and this is where domain knowledge is required. We
could have decided to also rewrite the subexpression abc into
(ab)∗c, which would lead to the more concise (but less pre-
cise) content model (ab)∗c?.

5.2 Using the strategy
The strategy for correct models should be used if the num-

ber of choices in the SF is large, and a precise content model
would be too verbose. The correctness of a final content
model can be tested using a validating parser: this parser
checks all sequences of child elements in the instance XML-
document against the content model, and it will complain if
the model is incorrect.

Our strategies are also useful if we start with an informal
description of a content model, instead of a starting form.
For example, in a chess game, white and black alternate
moves, and white has the opening move. These requirements
could be translated into the model (white, black)+, white?.
The strategy for removing non-determinism (situation 2,
case b) suggests to make the model less precise, or to in-
troduce an extra level.

6. EXPERIMENT AND VALIDATION
Five students have participated in a small experiment con-

sisting of a pretest, an online lecture of two hours, a posttest,
and an interview. These students have followed the regular
bachelor course on XML. The course introduces schema lan-
guages, but does not explain any method for modeling con-
tent models. All students, except for one, have some basic
knowledge about REs or propositional logic.

During the lecture, the relation between content models
and REs, the syntax of REs, the language generated by an
RE, the rules for rewriting REs, non-determinism and how
to remove this, and strategies for modeling precise and cor-
rect models were discussed. Students were asked to practice
with some exercises. After the lecture, the students had ac-
cess to the lecture sheets (including examples and exercises).

The pre and posttest consisted of nine questions about
modeling precise and correct content models, and removing
non-determinism by rewriting or by introducing extra levels
in the XML-tree. In the posttest, four questions were re-
peated from the pretest. The pre and posttest were marked
after the students were interviewed: answers were either cor-
rect (1 point) or wrong (no score).

6.1 Results
All students scored one or two points higher on the posttest

with respect to the pretest; the mean score increased from
4.6 to 6.0, where the maximum score was nine points. Fur-
thermore, we observed a shift in the kind of mistakes. In
the pretest, students often produced models that are too
liberal for the XML instance document, or models that are
not deterministic. Typically, only a final model was given.
In the posttest, intermediate steps were given by the stu-
dents, although not always successfully. Typical mistakes

were the incorrect application of the distribution rule and
the empty content missing in the starting form. In addition,
we observed an over-carefulness in introducing cardinality
operators.

In the interview, the students were asked to what extent
the strategies helped in finding precise and correct models.
The students reported that the method was particularly use-
ful to get started with complex models. In the pretest, most
used a trial-and-error approach. The students also stated
that the approach provided a better understanding of pre-
cise versus correct models. As a consequence, they think
more carefully about introducing cardinality operators.

The participants did not find the method difficult to learn,
but they indicated that more practice is needed for applying
the rewrite rules and strategies without errors. The students
also agreed with the claim that formal methods are lacking
in computer science education.

6.2 Discussion
We are careful not to draw strong conclusions based on

the tests and the interview. For this, an experiment on a
larger scale is needed. We also acknowledge that the stu-
dents were encouraged to practice with modeling XML con-
tent between the pre and posttest, and to study the new
material, which also contributes to the improved scores for
the posttest. Nevertheless, the students generally welcome
the use of formal methods for a practical purpose, and our
approach has some clear advantages from an educational
point of view.

The first advantage is that it stimulates students to write
down a stepwise derivation, and not just a final answer.
Once students become more familiar with rewriting mod-
els, some trivial steps can be safely skipped. A stepwise
approach helps in decomposing a complex task, which is
particularly helpful to get started. We observed that many
errors during rewriting were not noticed, partly because the
students are not accustomed to check their answer. Such a
sanity check deserves more attention in teaching the method.

A second advantage is that students are much more aware
of the strictness of a content model, and the consequences
of introducing cardinality operators. This aspect of schema
languages is often overlooked in teaching material on XML.

7. RELATED WORK
Systematic approaches to problem solving play an impor-

tant role in education. These approaches are often based
on three components: knowledge about the domain, means
to reason with that knowledge, and a strategy or procedure
to guide that reasoning [6, 11]. Our approach is based on
making the rewrite rules, and the procedure for using these
rules, explicit.

In computer science education, the incorporation of for-
mal methods is strongly suggested by scientific societies such
as ACM/IEEE, and many influential scientists [10]. Stu-
dents employing formal methods during analysis and spec-
ification produce more correct, concise, and less complex
models [12]. In many curricula, however, formal methods
are treated solely as a separate subject to study [9]. Wing
et al. [14] advise to weave the use of formal methods into
existing courses, making it an additional problem solving
technique. We think that our approach is a good example
of this advise.

There is an extensive literature about the algorithmic in-
ference of XML content models, and about dealing with non-
determinism [3]. These algorithms often involve the con-
struction of finite-state automata, which makes them more
difficult to carry out by hand. We are not aware not other
approaches that aim at manually deriving models, at the
level of an undergraduate course.

8. CONCLUSIONS AND FUTURE WORK
We have shown that rewrite rules and strategies for regu-

lar expressions help students in understanding XML content
models, and to guide in the stepwise construction of such a
model. The approach makes a sharp distinction between
precise and correct models. The first results from using the
approach in practice are promising: students appreciate the
use of formal methods for solving practical problems. More
importantly, they produce better XML content models.

We will proceed our research in the following directions.
We plan to further incorporate the method in our course ma-
terial, and to use it for a larger group of students. Currently,
we are also working on methods for the design of algorithms
that process XML trees. We are interested in applying our
approach to other computer science topics, and to embed
the method in a didactic framework.

Acknowledgements. The authors wish to thank Marko van
Eekelen, Johan Jeuring, and Lex Bijlsma for their helpful
comments on an earlier draft. We are grateful to the stu-
dents that participated in the experiment.

9. REFERENCES
[1] F. Baader and T. Nipkow. Term rewriting and all

that. Cambridge university press, 1999.

[2] G.J. Bex, W. Gelade, F. Neven, and S. Vansummeren.
Learning deterministic regular expressions for the
inference of schemas from XML data. In International
Conference on World Wide Web, pages 825–834.
ACM, 2008.

[3] G.J. Bex, W. Martens, W. Gelade, and F. Neven.
Simplifying XML schema: Effortless handling of
nondeterministic regular expressions. In International
Conference on Management of Data, pages 731–744.
ACM, 2009.

[4] A. Bruggemann-Klein. Regular expressions into finite
automata. Theoretical Computer Science, 120:87–98,
1993.

[5] A. Bruggemann-Klein and D. Wood.
One-unambiguous regular languages. Information and
Computation, 140:229–253, 1998.

[6] A. Bundy. The Computer Modelling of Mathematical
Reasoning. Academic Press, 1983.

[7] J.E. Hopcroft and J.D. Ullman. Introduction to
Automata Theory, Languages, and Computation.
Addison-Wesley, 1979.

[8] J. Jeuring and S.D. Swierstra. Grammars and
Parsing. Universiteit Utrecht, 2001. Lecture notes.

[9] L. Lamport. The future of computing: logic or biology,
2003. Text of a talk given at Christian Albrechts
University, Kiel.

[10] B. Meyer. Touch of class: Learning to program well
with objects and contracts. Springer, 2009.

[11] J.G. van Merriënboer and P. Kirschner. Ten steps to
complex learning. Routledge, 2007.

[12] A.E.K. Sobel and M.R. Clarkson. Formal methods
application: An empirical tale of software
development. IEEE Transactions on Software
Engineering, 28:308–320, 2002.

[13] D.A. Watt and D.F. Brown. Programming language
processors in Java. Prentice Hall, 2000.

[14] J.M. Wing and J.M. Wing. Weaving formal methods
into the undergraduate computer science curriculum.
In Proceedings of AMAST, pages 2–9, 2000.

