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Abstract
An indexed datatype is a type that uses a parameter as a type-level
tag; a typical example is the type of vectors, which are indexed over
a type-level natural number encoding their length. Since the intro-
duction of generalised algebraic datatypes, indexed datatypes have
become commonplace in Haskell. Values of indexed datatypes are
often more involved than values of plain datatypes, and program-
mers would benefit from having generic programs on indexed da-
tatypes. However, no generic programming library adequately sup-
ports them, leaving programmers with the tedious task of writing
repetitive code.

We show how to encode indexed datatypes in a generic pro-
gramming library with type families and type-level representations
in Haskell. Our approach can also be used in similar libraries, and
is fully backwards-compatible. We show not only how to encode
indexed datatypes generically, but also how to instantiate generic
functions on indexed datatypes. Furthermore, all generic represen-
tations and instances are generated automatically, making life eas-
ier for users.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Functional Programming

General Terms Languages

1. Introduction
Runtime errors are undesirable and annoying. Fortunately, the
strong type system of Haskell eliminates many common program-
mer mistakes that lead to runtime errors, like unguarded casts.
However, even in standard Haskell, runtime errors still occur often.
A typical example is the error of calling head on an empty list.

Indexed datatypes, popular since the introduction of General-
ized Algebraic Datatypes (GADTs, Peyton Jones et al. 2006), allow
us to avoid calling head on an empty list and many other runtime er-
rors by encoding further information at the type level. For instance,
one can define a type of lists with a known length, and then define
head in such a way that it only accepts lists of length greater than
zero. This prevents the usual mistake by guaranteeing statically that
head is never called on an empty list.

Datatype-generic programming (Gibbons 2007) is a program-
ming technique that increases abstraction and reduces code dupli-
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cation. Given the regular structure of inductive algebraic datatypes
in Haskell, there is a small set of primitive operations upon which
all datatypes are built. Datatype-generic programming exploits the
isomorphism between a datatype and its representation, using only
a small set of primitive types to provide functions that operate simi-
larly on any datatype. Many functions depend only on the structure
of the datatype, and can therefore be defined generically. Typical
examples are equality, enumeration, conversion to and from strings
or binary encodings, traversals, etc.

Unfortunately, datatype-generic programming and indexed da-
tatypes do not mix well. The added complexity of the indices and
associated type-level computations needs to be encoded in a generic
fashion, and while this is standard in dependently-typed approaches
to generic programming, we know of no Haskell approach dealing
with indexed datatypes. In fact, even the standard deriving mech-
anism, which automatically generates instances for certain type
classes, fails to work for GADTs, in general.

We argue that it is time to allow these two concepts to mix.
Driven by an application that makes heavy use of both generic pro-
gramming and indexed datatypes (Magalhães and De Haas 2011),
we have developed an extension to a current generic programming
library to support indexed datatypes. Our extension is conservative,
in that it preserves all library functionality without requiring mod-
ifications to client code, and general, as it applies equally well to
other libraries. Furthermore, we show that instantiating functions
to indexed datatypes is not trivial, even in the non-generic case.
In the context of datatype-generic programming, however, it is es-
sential to be able to easily instantiate functions; otherwise, we lose
the simplicity and reduced code duplication we seek. Therefore we
show a way of automatically instantiating generic functions to in-
dexed datatypes, which works for most types of generic functions.

The rest of this paper is organized as follows: we first intro-
duce generic programming briefly in Section 2, and define indexed
datatypes in Section 3. Section 4 deals with representing indexed
datatypes generically, and Section 5 focuses on the problem of in-
stantiation. Section 6 presents a general algorithm for automating
the procedures described in the preceding two sections, and Sec-
tion 7 deals with lifting a limitation of our encoding. Finally, we
show related work in Section 8, present directions for future re-
search in Section 9, and conclude in Section 10.

2. Generic programming with type families
In this paper we use a lightweight generic programming library
using type-level representations with type families in a style similar
to that first described by Chakravarty et al. (2009) and used by Van
Noort et al. (2010) which we call instant-generics (the same
name as its Hackage package).

1 2011/6/24

http://hackage.haskell.org/package/instant-generics


2.1 Generic representation
The basic idea in datatype-generic programming is to devise a small
number of primitive types that can be used to define a large number
of derived types. If we can represent many complicated types using
a small number of primitive types, we can also define functions that
operate on the primitive types, and make these functions work on all
types by converting to and from the primitive types appropriately.
We call these primitive types the representation types, as they are
used to represent all other types.

The instant-generics library uses the following representa-
tion types:

infixr 5 +
infixr 6×
data α + β = L α | R β

data α × β = α × β

data C γ α = C α

data U = U
data Var α = Var α

data Rec α = Rec α

As usual, we use sums to encode alternatives (different construc-
tors), and products to encode multiple arguments to a construc-
tor. Constructors are tagged with C, so that we can store meta-
information such as constructor name, fixity, etc. After tagging with
C, constructors without any arguments are encoded using the unit
type U, and every argument to a constructor is further wrapped in a
Var or Rec tag to indicate if the argument is a parameter of the type
or a (potentially recursive) occurrence of a datatype.

To mediate between a value and its generic representation we
use a type class:

class Representable α where
type Rep α

to ::Rep α → α

from :: α → Rep α

A Representable type has an associated Representation type,
which is constructed using the types shown previously. We use
a type family (Schrijvers et al. 2008) to encode the isomorphism
between a type and its representation, together with conversion
functions to and from.

As an example, we show the instantiation of the standard list
datatype:

data List[]
instance Constructor List[] where conName = "[]"

data List:
instance Constructor List: where

conName = ":"
conFixity = Infix RightAssociative 5

instance Representable [α ] where
type Rep [α ] = C List[] U

+ C List: (Var α × Rec [α ])

from [ ] = L (C U)
from (a : as) = R (C (Var a× Rec as))
to (L (C U)) = [ ]
to (R (C (Var a× Rec as))) = (a : as)

The first lines deal with the constructor meta-information. Ev-
ery constructor of the original datatype gives rise to an empty
datatype, used as the first argument to C in the representation. The
instances of the Constructor class provide the meta-information.
Lists have two constructors: the empty case corresponds to a Left

injection, and the cons case to a Right injection. For the cons case
we have two parameters, encoded using a product. The first one is
a Variable, and the second a Recursive occurrence of the list type.

2.2 Generic functions
Generic functions are defined by giving an instance for each repre-
sentation type. We show two examples of generic functions: equal-
ity and enumeration.

2.2.1 Equality
We start the definition of generic equality with a type class and
instances for the sum and product cases:

class GEq′ α where
geq′ :: α → α → Bool

instance (GEq′ α,GEq′ β )⇒ GEq′ (α + β ) where
geq′ (L a) (L b) = geq′ a b
geq′ (R a) (R b) = geq′ a b
geq′ = False

instance (GEq′ α,GEq′ β )⇒ GEq′ (α × β ) where
geq′ (a× b) (a′ × b′) = geq′ a a′ ∧ geq′ b b′

The instance for sums checks that both arguments are injected on
the same side, and proceeds recursively. Products proceed recur-
sively, requiring both arguments to be equal.

Units are trivially equal, and Constructors are equal if their
arguments are equal:

instance GEq′ U where
geq′ U U = True

instance (GEq′ α)⇒ GEq′ (C γ α) where
geq′ (C a) (C b) = geq′ a b

Finally, variables and recursive occurrences simply call another
type-class for equality:

instance (GEq α)⇒ GEq′ (Var α) where
geq′ (Var a) (Var b) = geq a b

instance (GEq α)⇒ GEq′ (Rec α) where
geq′ (Rec a) (Rec b) = geq a b

This new type class GEq is used to aggregate all types we can
compare for equality (be it generically or not):

class GEq α where
geq :: α → α → Bool

We can give ad-hoc instances for base types:

instance GEq Char where
geq = (≡)

But what we mostly want is to be able to use the generic instances
of the GEq′ class. For this we need a default implementation, which
defines how to apply generic equality to a representable type:

geqDefault :: (Representable α,GEq′ (Rep α))
⇒ α → α → Bool

geqDefault x y = geq′ (from x) (from y)

If a type is representable and its representation has an instance of
GEq′, we can compute generic equality by first converting from the
original datatype and then calling geq′ on the generic representa-
tion. All we are missing is a GEq instance for lists, now trivial:

instance (GEq α)⇒ GEq [α ] where
geq = geqDefault
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2.2.2 Enumeration
Often generic functions are divided into three groups: consumers,
transformers, and producers. Generic consumers, like equality, take
a representable value and consume it into some constant type.
Generic transformers, like fmap, take a representable type, trans-
form it in some way, but return an element of the same type.
Generic producers, like read, take some constant type and pro-
duce a representable type out of it. This distinction is important
because often functions of the same group are defined in a simi-
lar style. Also, generic producers tend to be more problematic than
consumers or transformers (Rodriguez Yakushev et al. 2008).

As an example of a generic producer, we show generic enumer-
ation:

class GEnum′ α where
genum′ :: [α ]

instance GEnum′ U where
genum′ = [U ]

instance (GEnum α)⇒ GEnum′ (Rec α) where
genum′ = map Rec genum

instance (GEnum α)⇒ GEnum′ (Var α) where
genum′ = map Var genum

instance (GEnum′ α)⇒ GEnum′ (C γ α) where
genum′ = map C genum′

We represent enumerations simply as lists of elements. There is
only one unit, and the recursive and variable cases rely on another
type-class, just as in the equality function. Constructors are gener-
ated by recursive invocation.

The most interesting cases are for sums, where we have a choice
of what to generate, and products, where we have to combine all
possible generated values:

instance (GEnum′ α,GEnum′ β )⇒ GEnum′ (α + β ) where
genum′ = map L genum′++map R genum′

instance (GEnum′ α,GEnum′ β )⇒ GEnum′ (α × β ) where
genum′ = [x× y | x← genum′,y← genum′ ]

It is better to replace (++) with an operator that alternates the
elements of the lists, and the list product with a diagonalization,
thereby guaranteeing that every element of the datatype will even-
tually be generated. For the purposes of this paper those details are
unimportant, so we take a simplistic implementation.

The default generic implementation simply maps the conversion
function over the list of generated elements:

genumDefault :: (Representable α,GEnum′ (Rep α))⇒ [α ]
genumDefault = map to genum′

We now define the top-level class GEnum and give ad-hoc
instances for Int (simplified) and Bool, and a generic instance for
lists:

class GEnum α where
genum :: [α ]

instance GEnum Int where
genum = [0 . .5 ]

instance GEnum Bool where
genum = [True,False]

instance GEnum α ⇒ GEnum [α ] where
genum = genumDefault

Finally, we can generate lists of integers, for instance: take 5 (genum::
[[Int]]) evaluates to [[ ], [0], [0,0], [0,0,0 ], [0,0,0,0]].

2.3 Similarities to other libraries
We chose to present instant-generics only for its simplicity;
we know of at least three other libraries which use type families
and type classes in a very similar way: regular (Van Noort et
al. 2008), which further allows for mapping over container types;
multirec (Rodriguez Yakushev et al. 2009), which further allows
catamorphisms over mutually-recursive families of datatypes; and
generic-deriving (Magalhães et al. 2010), which merges in-
stant-generics and regular, due to be implemented in the
Glasgow Haskell Compiler (GHC). These libraries work in a sim-
ilar way to instant-generics, and the modification we describe
in the next sections applies equally well to all of them.

3. Indexed datatypes
While the libraries described in the previous section already allow
a wide range of datatypes to be handled in a generic fashion, they
cannot deal with indexed datatypes. We call a datatype indexed if it
has a type parameter that is not used as data (also called a phantom
type parameter), but at least one of the datatype’s constructors
introduces type-level constraints on this type. The type of vectors,
or size-constrained lists, is an example of such a datatype:

data Vec α ν where
Nil :: Vec α Ze
Cons :: α → Vec α ν → Vec α (Su ν)

The first parameter of Vec, α , is the type of the elements of the
vector. In the GADT syntax above with type signatures for each
constructor, we see that α appears as an argument to the Cons
constructor; α is a regular type parameter. On the other hand, the
second parameter of Vec, ν , does not appear as a direct argument
to any constructor: it is only used to constrain the possible ways of
building Vecs. We always instantiate ν with the following empty
(uninhabited) datatypes:

data Ze
data Su ν

type 0T = Ze
type 1T = Su 0T
type 2T = Su 1T

A vector with two Chars, for instance, is represented as follows:

exampleVec ::Vec Char 2T
exampleVec = Cons 'p' (Cons 'q' Nil)

Note that its type, Vec Char 2T, adequately encodes the length
of the vector; giving any other type to exampleVec, such as
Vec Char 0T or Vec Char Char, would result in a type error.

Indexed types are easy to define as a GADT, and allow us to
give more specific types to our functions. For instance, the type of
vectors above allows us to avoid the usual empty list error when
taking the first element of an empty list, since we can define a head
function that does not accept empty vectors:

headVec ::Vec α (Su ν)→ α

headVec (Cons x ) = x

GHC correctly recognizes that it is not necessary to specify a case
for headVec Nil, since that is guaranteed by the type-checker never
to happen.

Indexed datatypes are also useful when specifying well-typed
embedded languages:

data Term α where
Lit :: Int → Term Int
IsZero ::Term Int → Term Bool
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Pair ::Term α → Term β → Term (α,β )
If ::Term Bool→ Term α → Term α → Term α

The constructors of Term specify the types of the arguments they
require and the type of term they build. We will use the datatypes
Vec and Term as representative examples of indexed datatypes in
the rest of this paper.

3.1 Type-level equalities and existential quantification
Indexed datatypes such as Vec and Term can be defined using
only existential quantification and type-level equalities (Johann and
Ghani 2008, Theorem 3). For example, GHC rewrites Vec to the
following equivalent datatype:

data Vec α ν = ν∼Ze ⇒ Nil
| ∀µ.ν∼Su µ ⇒ Cons α (Vec α µ)

The constructor Nil introduces the constraint that the type variable
ν equals Ze; α∼β is GHC’s notation for type-level equality be-
tween types α and β . The Cons constructor requires ν to be a
Su of something; this “something” is encoded by introducing an
existentially-quantified variable µ , which stands for the length of
the sublist, and restricting ν to be the sucessor of µ (in other words,
one plus the length of the sublist).

This encoding of Vec is entirely equivalent to the one shown
previously. While it may seem more complicated, it makes explicit
what happens “behind the scenes” when using the Nil and Cons
constructors: Nil can only be used if ν can be unified with Ze,
and Cons introduces a new type variable µ , constrained to be
the predecessor of ν . In the next section we will look at how to
encode indexed datatypes generically; for this we need to know
what kind of primitive operations we need to support. Looking at
this definition of Vec, it is clear that we will need not only a way
of encoding type equality constraints, but also introduction of new
type variables.

3.2 Functions on indexed datatypes
The extra type safety gained by using indexed datatypes comes at
a price: defining functions operating on these types can be harder.
Consumer functions are not affected; we can easily define an eval-
uator for Term, for instance:

eval ::Term α → α

eval (Lit i) = i
eval (IsZero t) = eval t ≡ 0
eval (Pair a b) = (eval a,eval b)
eval (If p a b) = if eval p then eval a else eval b

In fact, even GHC can automatically derive consumer functions
on indexed datatype for us; the following Show instances work as
expected:

deriving instance Show α ⇒ Show (Vec α ν)
deriving instance Show (Term α)

Things get more complicated when we look at producer func-
tions. Let us try to define a function to enumerate values. For lists
this is simple:

enum[] :: [α ]→ [[α ]]

enum[] ea = [ ] : [x : xs | x← ea,xs← enum[] ea ]

Given an enumeration of all possible element values, we generate
all possible lists, starting with the empty list.1 However, a similar
version for Vec is rejected by the compiler:

1 Once again we are not diagonalizing the elements from ea and enum[] ea,
but that is an orthogonal issue.

enumVec :: [α ]→ [Vec α ν ]
enumVec ea = Nil : [Cons x xs | x← ea,xs← enumVec ea]

GHC complains of being unable to match Ze with Su ν , and
rightfully so: we try to add Nil, of type Vecα Ze, to a list containing
Conses, of type Vec α (Su ν). To make this work we can use type
classes:

instance GEnum (Vec α Ze) where
genum = [ ]

instance ( GEnum α,GEnum (Vec α ν))
⇒ GEnum (Vec α (Su ν)) where

genum = [Cons a t | a← genum, t← genum]

In this way we can provide different types (and implementations)
to the enumeration of empty and non-empty vectors.

Note that GHC (version 7.0.3) is not prepared to derive pro-
ducer code for indexed datatypes. Trying to derive an instance
Read (Vecα ν) results in the generation of type-incorrect code. We
show in Section 5.2 a way of identifying the necessary instances to
be defined, which could also be used to fix this issue.

4. Handling indexing generically
As we have seen in the previous section, to handle indexed data-
types generically we need support for type equalities and quantifi-
cation in the generic representation. We deal with the former in
Section 4.1, and the latter in Section 4.2.

4.1 Type equalities
A general type equality α∼β can be encoded in a simple GADT:

data α ' β where
Refl :: α ' α

We could add the ' type to the representation types of in-
stant-generics, and add type equalities as extra arguments to
constructors. However, since the equalities are always introduced
at the constructor level, and we have a representation type to encode
constructors, we prefer to define a more general representation type
for constructors which also introduces a type equality:

data CEq γ φ ψ α where
CEq :: α → CEq γ φ φ α

The new CEq type takes two extra parameters which are forced
to unify by the CEq constructor. The old behavior of C can be
recovered by instantiating the φ and ψ parameters to trivially equal
types:

type C γ α = CEq γ () () α

Note that we can encode multiple equalities as a product of
equalities. For example, a constructor which introduces the equality
constraints α∼Int and β∼Char would be encoded with a represen-
tation of type CEq γ (α × β ) (Int × Char) δ (for suitable γ and
δ ).

4.1.1 Encoding types with equality constraints
At this stage we are ready to encode types with equality constraints
that do not rely on existential quantification; the ' type shown
before is a good example:

instance Representable (α ' β ) where
type Rep (α ' β ) = CEq 'Refl α β U

from Refl = CEq U
to (CEq U) = Refl

The type equality introduced by the Refl constructor maps directly
to the equality introduced by CEq, and vice-versa. As Refl has
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no arguments, we encode it with the unit representation type U.
The auxiliary datatype 'Refl, which we omit, is used to encode
constructor information about Refl, as usual in instant-gener-
ics.

4.1.2 Generic functions over equality constraints
We need to provide instances for the new CEq representation type
for each generic function. The instances for the equality and enu-
meration functions of Section 2.2 are:

instance (GEq′ α)⇒ GEq′ (CEq γ φ ψ α) where
geq′ (CEq a) (CEq b) = geq′ a b

instance (GEnum′ α)⇒ GEnum′ (CEq γ φ φ α) where
genum′ = map CEq genum′

instance GEnum′ (CEq γ φ ψ α) where
genum′ = [ ]

Generic consumers, such as equality, are generally not affected by
the equality constraints. We do not bother requiring that φ and
ψ are equal because there is no way to build a value which does
not obey that restriction. Generic producers are somewhat trickier,
because we are now trying to build a generic representation, and
thus must take care not to build impossible cases. For generic
enumeration, we proceed normally in case the types unify, and
return the empty enumeration in case the types are different. Note
that these two instances overlap, but remain decidable.

4.2 Existentially-quantified indices
Recall the shape of the Cons constructor of the Vec datatype:

∀µ.ν∼Su µ ⇒ Cons α (Vec α µ)

We need to be able to introduce new type variables in the type
representation. A first idea would be something like:

type Rep (Vec α ν) = ∀µ.CEq VecCons ν (Su µ) ...

This however is not accepted by GHC, as the right-hand side of a
type family instance cannot contain quantifiers. This restriction is
well justified, as allowing this would lead to higher-order unifica-
tion problems.

Another attempt would be to encode representations as data
families instead of type families, so that we can use regular exis-
tential quantification:

data instance Rep (Vec α ν) =
∀µ.RepVec (CEq VecCons ν (Su µ) . . .)

However, we do not want to use data families to encode the generic
representation, as these introduce a new constructor per datatype,
thereby effectively precluding a generic treatment of all types.

4.2.1 Faking existentials
Since the conventional approaches do not work, we turn to some
more unconventional approaches. All we have is an index type vari-
able ν , and we need to generate existentially-quantified variables
that are constrained by ν . We know that we can use type families to
create new types from existing types, so let us try that. We introduce
a type family

type family X ν

and we will use X ν where the original type uses µ . We can now
write a generic representation for Vec:

instance Representable (Vec α ν) where
type Rep (Vec α ν) = CEq VecNil ν Ze U

+ CEq VecCons ν (Su (X ν))
(Var α × Rec (Vec α (X ν)))

from Nil = L (CEq U)
from (Cons h t) = R (CEq (Var h× Rec t))
to (L (CEq U)) = Nil
to (R (CEq (Var h× Rec t))) = Cons h t

This is a good start, but we are not done yet, as GHC refuses to
accept the code above with the following error:

Could not deduce (m ~ X (Su m))
from the context (n ~ Su m)
bound by a pattern with constructor
Cons :: forall a n. a -> Vec a n

-> Vec a (Su n),
in an equation for `from'

What does this mean? GHC is trying to unify µ with X (Su µ),
when it only knows that ν∼Su µ . The equality ν∼Su µ comes
from the pattern match on Cons, but why is it trying to unify µ

with X (Su µ)? Well, on the right-hand side we use CEq with type
CEq VecCons ν (Su (X ν)) . . ., so GHC tries to prove the equality
ν∼Su (X ν). In trying to do so, it replaces ν by Su µ , which leaves
Su µ∼Su (X (Su µ)), which is implied by µ∼X (Su µ), but GHC
cannot find a proof of the latter equality.

This is unsurprising, since indeed there is no such proof. Fortu-
nately we can supply it by giving an appropriate type instance:

type instance X (Su µ) = µ

We call instances such as the one above “mobility rules”, as they
allow the index to “move” through indexing type constructors
(such as Su) and X. Adding the type instance above makes the
Representable instance for Vec compile correctly. Note also how
X behaves much like an extraction function, getting the parameter
of Su.

Representation for Term. The Term datatype (shown in Sec-
tion 3) can be represented generically using the same technique.
First let us write Term with explicit quantification and type equali-
ties:

data Term α =
α∼Int ⇒ Lit Int

| α∼Bool ⇒ IsZero (Term Int)
| ∀β γ.α∼(β ,γ)⇒ Pair (Term β ) (Term γ)
| If (Term Bool) (Term α) (Term α)

We see that the Lit and IsZero constructors introduce type equal-
ities, and the Pair constructor abstracts from two variables. This
means we need two type families:

type family X1 α

type family X2 α

Since this strategy could require introducing potentially many type
families, we use a single type family instead, parametrized over two
other arguments:

type family X γ ι α

We instantiate the γ parameter to the constructor representation
type, ι to a type-level natural indicating the index of the introduced
variable, and α to the datatype index itself.

The representation for Term becomes:

type RepTerm α =
CEq TermLit α Int (Rec Int)

+ CEq TermIsZero α Bool (Rec (Term Int))
+ CEq TermPair α (X TermPair 0T α,X TermPair 1T α)

( Rec (Term (X TermPair 0T α))
× Rec (Term (X TermPair 1T α)))
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+ C TermIf
(Rec (Term Bool)× Rec (Term α)× Rec (Term α))

We show only the representation type RepTerm, as the from and to
functions are trivial. The mobility rules are induced by the equality
constraint of the Pair constructor:

type instance X TermPair 0T (β ,γ) = β

type instance X TermPair 1T (β ,γ) = γ

Again, the rules resemble selection functions, extracting the first
and second components of the pair.

Summarising, quantified variables are represented as type fam-
ilies, and type equalities are encoded directly in the new CEq rep-
resentation type. Type equalities on quantified variables need mo-
bility rules, represented by type instances. We have seen this based
on two example datatypes; in Section 6 we describe more formally
how to encode indexed datatypes in the general case.

5. Instantiating generic functions
Now that we know how to represent indexed datatypes, we pro-
ceed to instantiate generic functions on these types. We split the
discussion into generic consumers and producers, as they require a
different approach.

5.1 Generic consumers
Instantiating generic equality to the Vec and Term types is unsur-
prising:

instance (GEq α)⇒ GEq (Vec α ν) where
geq = geqDefault

instance GEq (Term α) where
geq = geqDefault

Using the instance for generic equality on CEq of Section 4.1.2,
these instances compile and work fine. The instantiation of generic
consumers to indexed datatypes is therefore no more complex than
to standard datatypes.

5.2 Generic producers
Instantiating generic producers is more challenging, as we have
seen in Section 3.2. For Vec, a first attempt could be:

instance (GEnum α)⇒ GEnum (Vec α ν) where
genum = genumDefault

However, this will always return the empty list: we do not know
what ν is, so we cannot assume it to be Ze, Su Ze, or anything else.
It could even be something nonsensical such as Int, so the only
possible thing to return is the empty list. Instead, as before, we give
two instances, one for Vec α Ze, and another for Vec α (Su ν),
given an instance for Vec α ν :

instance (GEnum α)⇒ GEnum (Vec α Ze) where
genum = genumDefault

instance ( GEnum α,GEnum (Vec α ν))
⇒ GEnum (Vec α (Su ν)) where

genum = genumDefault

We can check that this works as expected by enumerating all the
vectors of Booleans of length one: genum :: [Vec Bool (Su Ze)]
evaluates to [Cons True Nil,Cons False Nil ], the two possible com-
binations.

Instantiating Term. Instantiating GEnum for the Term datatype
follows a similar strategy. We must identify the types that Term is
indexed on. These are Int, Bool, and (α,β ), in the Lit, IsZero, and
Pair constructors, respectively. The If constructor does not impose

any constraints on the index, and as such can be ignored for this
purpose. Having identified the possible types for the index, we give
an instance for each of these cases:

instance GEnum (Term Int) where
genum = genumDefault

instance GEnum (Term Bool) where
genum = genumDefault

instance (GEnum (Term α),GEnum (Term β ))
⇒ GEnum (Term (α,β )) where

genum = genumDefault

We can now enumerate arbitrary Terms:

genum :: [Term Int] !! 5 Pair (Lit 0) (IsZero (Lit 5))

However, having to write the three instances above manually is
still a repetitive and error-prone task; while the method is trivial
(simply calling genumDefault), the instance head and context still
have to be given, but these are determined entirely by the shape
of the datatype. We have written Template Haskell (Sheard and
Peyton Jones 2002) code to automatically generate these instances
for the user. In this section and the previous we have seen how
to encode and instantiate generic functions for indexed datatypes.
In the next section we look at how we automate this process, by
analyzing representation and instantiation in the general case.

6. General representation and instantiation
In general, an indexed datatype has the following shape:

data D α = ∀β1.γ1⇒ C1 φ1

...
| ∀βn.γn⇒ Cn φn

We consider a datatype D with arguments α (which may or may not
be indices), and n constructors C1 . . .Cn, with each Ci constructor
potentially introducing existentially-quantified variables βi, type
equalities γi, and a list of arguments φi. We use an overline to denote
sequences of elements.

We need to impose some further restrictions to the types we are
able to handle:

1. Quantified variables are not allowed to appear as standalone
arguments to the constructor: ∀i,β ∈ βi

.β /∈ φi.

2. Indices are not allowed to appear as standalone arguments to a
constructor: ∀α ∈ α .isIndex α D→∀i.α /∈ φi. We define isIndex
in Section 6.2.

3. Quantified variables have to appear in the equality constraints:
∀i,β ∈ βi

.∃ψ.ψ β ∈ γi We require this to provide the mobility
rules; in Section 7 we discuss how this restriction can be lifted.

For such a datatype, we need to generate two types of code:

1. The generic representation

2. The instances for generic instantiation

We deal with (1) in Section 6.1 and (2) in Section 6.2.

6.1 Generic representation
Most of the code for generating the representation is not specific to
indexed datatypes; see, for instance, Magalhães et al. (2010) for a
formalization of a similar representation. What needs to be adapted
is the code generation for constructors, since now CEq takes two
extra type arguments. The value generation (functions from and to)
is not affected, only the representation type.
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Type equalities. For each constructor Ci, an equality constraint
τ1∼τ2 ∈ γn becomes the second and third arguments to CEq, for
instance CEq . . .τ1 τ2 . . . Multiple constraints like τ1∼τ2,τ3∼τ4 be-
come a product, as in CEq . . .(τ1× τ3) (τ2× τ4) . . .. An existentially-
quantified variable βi appearing on the right-hand side of a con-
straint of the form τ∼ . . . or on the arguments to Ci is replaced by
X γ ι τ , with γ the constructor representation type of Ci, and ι a
type-level natural version of i.

Mobility rules. For the generated type families we provide the
necessary mobility rules (Section 4.2.1). Given a constraint ∀βn.γn,
each equality β∼ψ τ , where β ∈ β and ψ τ is some type expression
containing τ , we generate a type instance X γ ι (ψ τ) = τ , where
γ is the constructor representation type of the constructor where
the constraint appears, and ι is a type-level natural encoding the
index of the constraint. As an example, for the Cons constructor of
Section 3.1, β is ν , τ is µ , ψ is Su, γ is VecCons, and ι is 0T.

6.2 Generic instantiation
To give a more thorough account of the algorithm for generation of
instances, we will sketch its implementation in Haskell. We assume
the following representation of datatypes:

data Datatype= Datatype [TyVar ] [Con]
data Con = Con Constraints [Type]

data Type -- abstract
data TyVar -- abstract
tyVarType ::TyVar→ Type

A datatype has a list of type variables as arguments, and a list
of constructors. Constructors consist of constraints and a list of
arguments. For our purposes, the particular representation of types
and type variables is not important, but we need a way to convert
type variables into types (tyVarType).

Constraints are a list of (existentially-quantified) type variables
and a list of type equalities:

data Constraints= [TyVar ]m [TyEq ]
data TyEq = Type :∼: Type

We will need equality on type equalities, so we assume some
standard equality on types and type equalities.

With this representation of datatypes we are ready to start the
description of the algorithm for encoding indexed datatypes. We
start by separating the datatype arguments into “normal” arguments
and indices:

findIndices ::Datatype→ ([TyVar + TyVar ])
findIndices (Datatype vs cs) =

[if v ‘inArgs‘ cs then L v else R v | v← vs]
inArgs ::TyVar→ [Con ]→ Bool
inArgs = . . .

We leave inArgs abstract, but its definition is straightforward: it
checks if the argument TyVar appears in any of the constructors as
an argument. In this way, findIndices tags normal arguments with
L and potential indices with R. These are potential indices because
they could also just be phantom types, which are not only not used
as argument but also have no equality constraints. In any case, it
is safe to treat them as indices. The isIndex function used before is
defined in terms of findIndices:

isIndex ::TyVar→Datatype→ Bool
isIndex t d = R t ∈ findIndices d

Having identified the indices, we want to identify all the return
types of the constructors, as these correspond to the heads of the
instances we need to generate. This is the task of function findRTs:

findRTs :: [TyVar ]→ [Con]→ [Constraints]
findRTs is [ ] = [ ]
findRTs is ((Con cts args) : cs) = let rs = findRTs is cs

in if anyIn is cts
then cts : rs
else rs

anyIn :: [TyVar ]→ Constraints→ Bool
anyIn vs ( m teqs) = or [v ‘inTyEq‘ teqs | v← vs]
inTyEq ::TyVar→ [TyEq ]→ Bool
inTyEq = . . .

We check the constraints in each constructor for the presence of
a type equality of the form i :∼: t, for some index type variable i
and some type t. We rely on the fact that GADTs are converted
to type equalities of this shape; otherwise we should look for the
symmetric equality t :∼: i too.

Having collected the important constraints from the construc-
tors, we want to merge those with the same return type. Given the
presence of quantified variables, this is not a simple equality test;
we consider two constraints to be equal modulo all possible instan-
tiations of the quantified variables:

instance Eq Constraints where
(vs m cs)≡ (ws m ds) = length vs≡ length ws

∧ cs≡ subst ws vs ds
subst :: [TyVar ]→ [TyVar ]→ [TyEq ]→ [TyEq ]
subst vs ws teqs = . . .

Two constraints are equal if they abstract over the same number of
variables and their type equalities are the same, when the quantified
variables of one of the constraints are replaced by the quantified
variables of the other constraint. This replacement is performed by
subst; we do not show its code since it is trivial (given a suitable
definition of Type).

Merging constraints relies on constraint equality. Each con-
straint is compared to every element in an already merged list of
constraints, and merged if it is equal:

merge ::Constraints→ [Constraints]→ [Constraints]
merge c1 [ ] = [c1 ]
merge c1@(vs m cs) (c2@(ws m ds) : css)
| c1≡ c2 = (vs m (cs++ subst ws vs ds)) : css
| otherwise = c2 : merge c1 css

mergeConstraints :: [Constraints]→ [Constraints]
mergeConstraints = foldr merge [ ]

We can now combine the functions above to collect all the
merged constraints:

rightOnly :: [α + β ]→ [β ]
rightOnly [ ] = [ ]
rightOnly ((R a) : t) = a : rightOnly t
rightOnly ( : t) = rightOnly t
allConstraints ::Datatype→ [Constraints]
allConstraints d@(Datatype cons) =

let is = rightOnly (findIndices d)
in mergeConstraints (findRTs is cons)

We know these constraints are of shape i :∼: t, where i is an index
and t is some type. We need to generate instance heads of the form
instance G (D α), where α ∈ buildInsts D. The function buildInsts
computes a list of type variable instantiations starting with the list
of datatype arguments, and instantiating them as dictated by the
collected constraints:

buildInsts ::Datatype→ [[Type]]
buildInsts d@(Datatype ts ) = map (instVar ts) cs
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where cs = concat (map (λ ( m t)→ t) (allConstraints d))
instVar :: [TyVar ]→ TyEq→ [Type]
instVar [ ] = [ ]
instVar (v : vs) tEq@(i :∼: t)
| tyVarType v≡ i = t : map tyVarType vs
| otherwise = tyVarType v : instVar vs tEq

This completes our algorithm for generic instantiation to indexed
datatypes. As mentioned before, the same analysis could be used
to find out what Read instances are necessary for a given indexed
datatype. Note however that this algorithm only finds the instance
head for an instance; the method definition is trivial when it is a
generic function.

7. Unrestricted indices
In the previous section we have seen how to handle datatypes
with indices generically. We imposed three restrictions on the da-
tatypes we handle. Restrictions (1) and (2) deal with existentially-
quantified arguments; it is not the aim of this paper to add generic
support for existentially-quantified datatypes. We discuss this issue
in more detail in Section 9.1.

Restriction (3), on the other hand, seems a bit more arbitrary. A
contrived example of a datatype which does not pass this restriction
is the following:

data Tag α where
TagI :: Tag Int
TagB ::Tag α → Tag Bool

Let us first write Tag with explicit quantification and constraints:

data Tag α = α∼Int ⇒ TagI
| ∀β .α∼Bool⇒ TagB (Tag β )

The constructor TagI simply sets the index α to Int. The constructor
TagB sets the index to Bool, and also takes an argument tagged with
any tag β . Valid values of type Tag are sequences of TagB’s ending
with a TagI .

Although this use of indices appears more simple than others
we have shown before, the approach presented so far cannot handle
these datatypes. Our first take would be to represent Tag as follows:

data TagTagI

data TagTagB

instance Constructor TagTagI
where conName = "TagI"

instance Constructor TagTagB
where conName = "TagB"

instance Representable (Tag α) where
type Rep (Tag α) =

CEq TagTagI
α Int U

+ CEq TagTagB
α Bool (Rec (Tag (X TagTagB

0T α)))

from TagI = L (CEq U)
from (TagB c) = R (CEq (Rec c))
to (L (CEq U)) = TagI
to (R (CEq (Rec c))) = TagB c

But this code does not type-check: the second equation of from
introduces the constraint β∼X TagTagB

0T Bool which we cannot
prove. Since TagB does not put any constraints on β , we do not have
any mobility rule, so we have no type instance for XTagTagB

0T α .
The problem is that we have to come up with a particular instanti-
ation for X TagTagB

0T α , while the constructor TagB accepts any
index.

However, we can see from the declaration of Tag that the only
possible instantiations for β are Int and Bool. In fact, we have al-
ready shown how to automatically determine the possible instan-

tiations of an index variable: this is the task of function buildInsts
of Section 6.2. Therefore we argue the following equality should
hold:

type instance X TagTagB
0T α = Int+ Bool

However, this does not change the situation much: the second
equation of from now requires the type equality β∼Int + Bool,
which we informally know is true, but cannot convince the type
checker of.

7.1 Digression: proper kinds
In fact, all this trouble could be avoided if we had user-defined
kinds. We are using type families and GADTs to perform type-
level computations and make our programs very strongly typed.
This means we make the structure of possible values well-defined
and cleanly separated, but unfortunately the structure of the types
themselves is not so organized: all types belong to a single kind ?.

This is clearly not what we want. Two examples follow:

• In Section 2.2, we say we define type classes to provide in-
stances for the generic representation types. However, nothing
prevents us from giving GEq′ instances for any other types.
Also, the compiler does not check that we have given instances
for all the representation types; if we forget one instance, we
only get an error (and a slightly obscure one) when instantiat-
ing the function to a particular type.

• When defining an indexed datatype, like Vec, we define its kind
as being ?→ ?→ ?, while we hope the second parameter to
only be instantiated with the types Ze or Su.

What we really need is the ability to create our own kinds and then
restrict type arguments based on their kinds. Our representation
types, for instance, should be grouped in a separate kind. We il-
lustrate this with a hypothetical new language feature:

kind ?R where
U :: ?R
+ ::?R→ ?R → ?R
× ::?R→ ?R → ?R
CEq ::?C→ ?→ ?→ ?R→ ?R

Var ::? → ?R
Rec ::? → ?R

We would also have a kind ?C containing only the generated data-
types for the constructor information. Furthermore, we can say that
Var and Rec expect datatypes of kind ? as their arguments.

A type class for defining a generic function would then explic-
itly state the kind of its argument:

class GEq′ (α ::?R) where . . .

The type-checker could then check that all necessary instances
were given.

Indexed datatypes could give proper kinds to their indices:

kind ?T where
Int ::?T
Bool ::?T

data Tag ::?T→ ? where
TagI :: Tag Int
TagB ::∀β ::?T.Tag β → Tag Bool

Note how TagB now constrains its argument to kind ?T, effectively
stating that it can only be Int or Bool. We would then hopefully
be able to handle Tag generically by using kind genericity (albeit
in a different style from Hinze (2002), as our kind structure is now
richer).
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However, while this style of programming is common practice
in Ωmega (Sheard 2006), or in dependently-typed languages such
as Agda (Norell 2007), it remains unclear how to integrate such
features in Haskell, in particular regarding type and kind checking,
inference, and interaction with all the other language features.

7.2 Unsafe coercions
Lacking better mechanisms for type-safe programming, we are left
with telling the compiler it should just accept our code and stop
complaining. In the second equation of from we have underlined c:
this means that in the code we actually write unsafeCoerce c, where
unsafeCoerce ::α→ β is a Haskell primitive to cast between values
that are known to be equivalent.

Using unsafeCoerce means effectively abandoning the safety
of Haskell; in theory we are now prone to runtime errors caused
by using arguments of the wrong type. However, we are certain
that our cast will not cause any problems because the variable
is never used for purposes other than type-checking. In fact, as
soon as we introduce the cast, the specific right-hand side of the
type instance XTagTagB

0T α is not important; the instance might
even be absent altogether. The consequence is that the generic rep-
resentation type Rep (Tag α) is not isomorphic to Tag α; ignor-
ing undefined values, Tag α might contain more inhabitants than
Rep (Tag α), depending on the instance for X TagTagB

0T α .
Consider the possible instantiation type instanceXTagTagB

0T α =
Int. In this case, it is clear that Tag α contains more inhab-
itants than its representation, as the value TagB (TagB TagI),
for instance, cannot be represented. Its representation would be
R (CEq (Rec (TagB TagI))), but this does not type-check because
we cannot prove that Tag Int∼Tag Bool. However, we know we
only have values of the generic representation types in two cases:

1. Converted with from from a user datatype value;

2. Produced from a generic producer such as genum.

Case (1) is handled by the unsafe cast: values of type Tag are,
by definition, type-correct and can be converted to the generic
representation because we cast them. Case (2) is more problematic:
in the concrete case of genum, it means we might not be generating
all possible values. This can happen because we first generate
values of the generic representation type and then convert these
with to. If the representation type is “too small”, we might not
generate all possible cases.

7.3 Generic instantiation
We can verify this easily by instantiating GEnum to Tag:

instance GEnum (Tag Int) where
genum = genumDefault

instance GEnum (Tag Bool) where
genum = genumDefault

At this stage, the type-checker complains we lack an instance for
GEnum (Tag (XTagTagB

0T α)). This is to be expected, as we use
Rec (Tag (XTagTagB

0T α)) in the generic representation. We add
such an instance:

instance GEnum (Tag (Int+ Bool)) where
genum = genumDefault

Note that we cannot use a type family in the instance head, so
we replace X TagTagB

0T α by its right-hand side Int + Bool.
This code type-checks correctly, but genum :: [Tag Bool ] returns
[ ]. This should not be really surprising: the implementation of
genumDefault hits an instance GEnum′ (CEq TagTagI

Int (Int +
Bool) α) and an instance GEnum′ (CEq TagTagB

Bool (Int +
Bool) α); both return the empty list.

What we want is to mimic the behavior of GEnum′ for sums in
our GEnum (Tag (Int+ Bool)) instance:

instance GEnum (Tag (Int+ Bool)) where
genum = gi++gb where

gi = genum :: [Tag Int]
gb = genum :: [Tag Bool ]

The enumeration now works as expected, with take 2 (genum ::
[Tag Bool]) returning [TagB TagI ,TagB (TagB TagI)]. However, we
are forced to use an unsafe cast one more time to convince the
type checker to accept returning two lists of different types. We
know this is “ok” because Int and Bool are the two only possible
instantiations of the index of Tag, so enumerating all possible terms
for both indices and merging is the right implementation.

Lastly, it is worth mentioning that generic consumers such as
GEq are not affected by our casts, and their instantiation remains
trivial:

instance GEq (Tag α) where
geq = geqDefault

7.4 Reflection
Circumventing the type system by using unsafeCoerce is not some-
thing to be taken lightly. Although we have explained informally
why things cannot “go wrong” with our casts, we would still much
prefer a well-kinded solution along the lines of Section 7.1. We do
not consider the techiques described in this section to be part of the
library, and we do not provide Template Haskell code to automat-
ically introduce unsafe casts for the user. Instead, with this section
we aim only at pointing out the feasability of generic programming
for unrestricted indices, and providing a foundation for more struc-
tured future work.

8. Related work
Indexed datatypes can be seen as a subset of all GADTs, or as
existentially-quantified datatypes using type-level equalities. Jo-
hann and Ghani (2008) developed categorical semantics of GADTs,
including initial algebra semantics. While this allows for a better
understanding of GADTs from a generic perspective, it does not
translate directly to an intuitive and easy-to-use generic library.

Gibbons (2008) describes how to view abstract datatypes as
existentially-quantified, and uses final coalgebra semantics to rea-
son about such types. Rodriguez Yakushev and Jeuring (2010) de-
scribe an extension to the spine view (Hinze et al. 2006) support-
ing existential datatypes. Both approaches focus on existentially-
quantified data, whereas we do not consider this case at all, instead
focusing on (potentially existentially-quantified) indices. See Sec-
tion 9.1 for a further discussion on this issue.

Within dependently-typed programming, indexing is an ordi-
nary language feature which can be handled generically more easily
due to the presence of type-level lambdas and explicit type appli-
cation (e.g. Chapman et al. (2010); Morris (2007)).

9. Future work
In this section we discuss two possible extensions to the techniques
described in the paper. Both extensions further increase the number
of datatypes that can be handled generically using the library.

9.1 Existentials as data
While we can express indexed datatypes as GADTs or existentially-
quantified datatypes with type-level equalities, the reverse is not
true in general. Consider the type of dynamic values:

data Dynamic= ∀α.Typeable α ⇒ Dyn α
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The constructor Dyn stores a value on which we can use the op-
erations of type class Typeable, which is all we know about this
value. In particular, its type is not visible “outside”, since Dynamic
has no type variables. Another example is the following variation
of Term:

data Term α where
Const :: α → Term α

Pair ::Term α → Term β → Term (α,β )
Fst ::Term (α,β ) → Term α

Snd ::Term (α,β ) → Term β

Here, the type argument α is not only an index but it is also used
as data, since values of its type appear in the Const constructor.
Our approach cannot currently deal with such datatypes. We plan
to investigate if we can build upon the work of Rodriguez Yakushev
and Jeuring (2010) to also support existentials when used as data.

9.2 Kind-generic programming with user-defined kinds
As discussed in Section 7.1, having user-defined kinds would al-
low for much safer type-level programming and more expressive
programs. However, it remains to be seen how user-defined kinds
can be introduced in Haskell, and how they can be used for generic
programming. This is a promising direction for future research.

10. Conclusion
In this paper we have seen how to increase the expressiveness of
a generic programming library by adding support for indexed da-
tatypes. We have used the instant-generics library for demon-
strative purposes, but we believe the technique readily generalizes
to all other generic programming libraries using type-level generic
representation and type classes. We have shown how indexing can
be reduced to type-level equalities and existential quantification.
The former is easily encoded in the generic representation, and the
latter can be handled by encoding the restrictions on the quantified
variables as relations to the datatype index. All together, our work
brings the convenience and practicality of datatype-generic pro-
gramming to the world of indexed datatypes, widely used in many
applications but so far mostly ignored by boilerplate-removing
strategies. We also hope to have illustrated the need and the po-
tential advantages of a better kind system for Haskell.
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