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Abstract

Music scholars have been intensively studying tonal harmony for centuries, yielding
numerous theories and models. Unfortunately, a large number of these theories are
formulated in a rather informal fashion and lack mathematical precision. In this article
we present HarmTrace, a functional model of Western tonal harmony, which builds on
well-known theories of tonal harmony. In contrast to many other theories which remain
purely theoretical, we present an implemented system that is evaluated empirically.
Given a sequence of symbolic chord labels, HarmTrace automatically derives the
harmonic relations between chords. For this, we use advanced functional programming
techniques which are uniquely available in the Haskell programming language. We
show that our system is fast, easy to modify and maintain, is robust against noisy
data, and returns harmonic analyses that comply with Western tonal harmony theory.

1 Introduction

For ages, musicians, composers, and musicologists have been theorizing the structure of music
to better understand how music is perceived, performed, and appreciated. In particular, tonal
harmony exhibits a considerable amount of structure and regularity, and the first theories
describing tonal harmony date back at least to the 18th century (Rameau 1971). Since then,
a rich body of literature has emerged that aims at explaining the harmonic regularities in
both informal and formal models (e.g. Lerdahl and Jackendoff 1996). Such models have
attracted numerous computer music researchers to automate the analysis and generation
of harmony. However, most of these theories have proven to be very hard to implement
(e.g. Clarke 1986). We are not aware of a model that has a working implementation that
effectively analyses tonal harmony and deals robustly with noisy data, while remaining simple
and easy to maintain, and scaling well to handle musical corpora of considerable size. In this
paper we present HarmTrace1 , a system that meets these requirements using state-of-the-
art functional programming techniques. HarmTrace allows to easily adapt the harmonic
specifications, empirically evaluate the harmonic analyses, and use these analyses for tasks
such as similarity estimation and automatic annotation of large corpora.

The HarmTrace harmony model draws on the ideas of Rohrmeier (2007, 2011). Rohr-
meier modelled the core rules of Western tonal harmony as a (large) context-free grammar
(CFG, Chomsky 1957). Later, De Haas et al. (2009) implemented this grammar and specifi-
cally tuned it for jazz harmony, with the aim of modelling harmonic similarity. The Harm-
Trace system transfers these ideas to a functional setting, solving typical problems that
occur in context-free parsing, e.g. the rejection of non-parsing pieces, and controlling the
number of ambiguous solutions. Since it relies on advanced functional programming tech-
niques not readily available in most programming languages, HarmTrace is inextricably
bound to Haskell (Bird 1998). Haskell is a purely functional programming language with
strong static typing. It is purely functional because its functions, like regular mathematical
functions, guarantee producing the same output when given the same input. It is strongly

1Harmony Analysis and Retrieval of Music with Type-level Representations of Abstract Chord Entities
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Figure 1: A typical chord sequence and its harmonic analysis (as generated by HarmTrace)
The chord labels are printed below the score, and the scale degrees and functional analysis
above the score. We ignored voice-leading for simplicity.

typed because it enforces restrictions on the arguments to functions, and it does so statically,
i.e. at compilation time. Through its main implementation, the Glasgow Haskell Compiler,2

Haskell offers state-of-the-art functional programming techniques, like error-correcting com-
binator parsers, type-level computations, and datatype-genericity (polytypic functions) that
are not available in any other mainstream language. These features proved to be essential
to HarmTrace, as we will show.

Following Rohrmeier, a core assumption that underlies our harmony model is that West-
ern tonal harmony is organized hierarchically and transcends Piston’s table of usual root
progressions (Piston and DeVoto 1991, ch. 3, p. 21). As a consequence, within a sequence of
chords some chords can be removed because of their subordinate role, leaving the global har-
mony structure intact, while removing other chords can significantly change how the chord
sequence is perceived. This is illustrated in the sequence displayed in Figure 1: the D7 chord
in this sequence can be removed without changing the general structure of the harmony,
while removing the G7 or the C at the end would cause the sequence to be perceived very
differently. This implies that within a sequence not all chords are equally important, and
must be organised hierarchically. This hierarchical organisation is reflected in the tree in
Figure 1. The subdominant F has a subordinate role to the dominant G7, which is locally
prepared by a secondary dominant D7. The tonic C releases the harmonic tension built up
by the F, D7, and G7.

Following De Haas et al. (2009), the development of HarmTrace has been driven by
its application in content-based Music Information Retrieval (MIR, Downie 2003) research.
Within MIR the notion of musical similarity plays a prominent role because it allows ordering
musical pieces in a corpus. Using such an ordering, one could imagine retrieving harmonically
related pieces of music, like cover-songs, classical variations, or all blues pieces in a corpus.
For performing such searches, a measure of harmonic similarity is essential. De Haas et al.
(2009, 2011) and Magalhães and de Haas (2011) show that analysing the hierarchical relations
between chords in a sequence significantly improves the quality of a harmonic similarity

2http://www.haskell.org/ghc/
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measure in a retrieval task. The application to MIR explains some of the choices made
in the development of HarmTrace. In particular, because a large corpus of mainly jazz
chord sequences is available for retrieval tasks, the harmony model exhibits a bias towards
jazz harmony. Here we describe the musical aspects of the HarmTrace system; its Haskell-
specific implementation aspects are described elsewhere (Magalhães and de Haas 2011).

A fully-functional model of tonal harmony that can quickly analyse chord sequences
offers several benefits. First, musicologists study the harmonic structure of pieces and an-
notate them by hand. This is a time-consuming enterprise, especially when large corpora
are involved. With the automatic annotation techniques that we present here, this can be
done quickly, even for large corpora possibly containing errors. Second, because our system
captures the global and local relations between chords, it can be used to improve systems
designed for other tasks that can benefit from this contextual information, such as chord
labelling systems. These systems traditionally determine the chord root and type based on
the musical information (audio or notation) from within a limited time frame, without incor-
porating knowledge about the surrounding chord sequences. Last, HarmTrace could aid
in (automatic) composition by generating sequences of chords, or by generating harmonically
realistic continuations given a sequence of chords.

This paper is organised as follows. We start by discussing a relevant selection of the
large body of existing literature on harmony theory and modelling in the next section.
Subsequently, we explain our harmony model, and then evaluate some detailed example
analyses created by this model. Next, we show that HarmTrace can deal with large
amounts of noisy data. Finally, we conclude the paper by discussing the limitations of our
system, and pointing out the future directions of our research.

2 Related work

The nineteenth and twentieth century have yielded a wealth of theoretical models of Western
tonal music; in particular, tonal harmony has been prominently researched. Most theories
that describe the relationships between sequential chords capture notions of order and regu-
larity; some combinations of chords sound natural while others sound awkward (e.g. Rameau
1971). These observations led music theorists to develop ways to analyse the function of a
chord in its tonal context (e.g. Riemann 1893). Unfortunately, the majority of these theories
are formulated rather informally and lack descriptions with mathematical precision. In this
section we give a condensed overview of the theories that played an important role in the
formation of the harmony model we present in this paper.

Seminal has been the Generative Theory of Tonal Music (GTTM, Lerdahl and Jackendoff
1996) that further formalised the ideas of Schenker (1935). Lerdahl and Jackendoff struc-
tured Western tonal compositions by defining recursive hierarchical dependency relationships
between musical elements using well-formedness and constraint-based preference rules. The
GTTM framework distinguishes four kinds of hierarchical structure: meter, grouping, time-
span reduction, and prolongational reduction. Although GTTM can be considered one of the
greatest contributions to music theory and music cognition of the last decades, implementing
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the theory is difficult because the often vague and ambiguous preference rules lead to a wide
range of possible analyses (Clarke 1986; Temperley 2001, ch. 1; Hamanaka et al. 2006).

The recursive formalisation proposed by Lerdahl and Jackendoff suggests a strong con-
nection between language and music. Also, many other authors have argued that tonal
harmony should be organized in hierarchical way similar to language, leading to numerous
linguistically-inspired models since the 1960’s (Roads 1979). One of the pioneers to propose
a grammatical approach to harmony was Winograd (1968). More recently, Steedman (1984,
1996) modelled the typical four-bar blues progression with a categorial grammar; Chemillier
(2004) elaborates on these ideas by transferring them to a CFG. Similarly, Pachet (1999)
proposes a set of rewrite rules for jazz harmony comparable to Steedman’s grammar. Pa-
chet furthermore shows that these rules can be learned from chord sequence data in an
automated fashion. Additionally, quasi-grammatical systems for Schenkerian analysis have
been proposed recently (Marsden 2010). Furthermore, Choi (2011) developed a system for
analysing the harmony of jazz chord sequences; this system identifies common harmonic phe-
nomena, like secondary dominants and tritone substitutions, and labels the chords involved
accordingly.

The generative formalism proposed by Rohrmeier (2007, 2011), which the HarmTrace
model greatly draws on, expands these earlier approaches in a number of ways. Rohrmeier
gives an encompassing account of how tonal harmony relationships can be modelled using a
generative CFG with variable binding. It aims to model form, phrasing, theoretical harmonic
function (Riemann 1893), scale degree prolongation (Schenker 1935; Lerdahl and Jackendoff
1996), and modulation. Rohrmeier’s grammar differs from earlier grammatical formalisms
in various ways. Steedman’s approach (Steedman 1984, 1996) merely concerns blues pro-
gressions. It features seven context-sensitive rules (with variations), but it omits a number
of theoretically important features to support broader domains. Rohrmeier’s formalism also
differs from GTTM: GTTM aims at describing the core principles of tonal cognition, and
harmony is covered mainly as a prolongational phenomenon, while Rohrmeier’s formalism
describes the structure of tonal harmony from an elaborate music-theoretical perspective
with concrete context free rules. Rohrmeier acknowledges that a full account of tonal har-
mony would require a large number of varying style-specific rules, and his formalism aims to
capture only the core rules of Western tonal harmony.

De Haas et al. (2009) performed a first attempt to implement the ideas of Rohrmeier.
Although the results were promising, the used context-free parsing techniques hampered
both theoretical as well as practical improvements. First, a sequence of chords that does
not match the context-free specification precisely is rejected and no information is given to
the user. For example, appending one awkward chord to an otherwise grammatically correct
sequence of chords forces the parser to reject the complete sequence, not returning any partial
information about what it has parsed. Second, musical harmony is ambiguous and chords can
have multiple meanings depending on the tonal context in which they occur. This is reflected
in all grammatical models discussed above. A major drawback of context-free grammars is
that they are very limited in ways of controlling the ambiguity of the specification. It is
possible to use rule-weightings and to set low weights to rules that explain rare phenomena.
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This allows for ordering the ambiguous solutions by the total relevance of the used rules.
However, this does not overcome the fact that, for some pieces, the number of parse trees
grows exponentially, given the number of input chords. Last, writing context-free rules by
hand is a tedious and error-prone enterprise, especially since the grammatical models can
become rather large. For instance, a rule generalising over an arbitrary scale degree has to
be expanded for each scale degree, I, II, III, etc. Hence, some form of high-level grammar
generation system is needed to allow for generalising over scale degree and chord type, and
to control conditional rule execution.

Another important model that has influenced the development of HarmTrace is that
of Temperley (2001) and Temperley and Sleator (1999). They give an elaborate formal
account of Western tonal music, and also provide an efficient implementation. This rule-
based system, which is partly inspired by GTTM, can perform an analysis of the chord
roots and the key given a symbolic score, but does not formalise the hierarchical relations
between chords. Our system continues where Temperley’s left off: we assume we have the
chord and key information of the piece, and model the global and local dependency relations
between these chords. Hence, the input to our model consists of plaintext key and chord
label information.

3 The HarmTrace system

In this section we explain how we model the regularities and hierarchical dependencies of
tonal harmony. HarmTrace transfers the ideas of De Haas et al. (2009) to a functional
setting. While the contributions of the majority of models we discussed in the previous
section are purely theoretical, we present a system that can be evaluated empirically and is
usable in practice. However, this comes at a price: our present model does not support full
modulation, and can only distinguish between parallel keys—going from major to minor or
vice versa without changing the root of the key. As a consequence, this requires the model
to have information about the key of the piece. Also, since we mainly use jazz-oriented input
data in this article, we also include some specific jazz harmony specifications. Figure 2 shows
an example analysis as produced by HarmTrace. The chords that were used as input are
the leaves of the tree, and the internal nodes represent the harmonic relations between the
chords.

Music, and harmony in particular, is intrinsically ambiguous; certain chords can have
multiple meanings within a tonal context. Although a model of tonal harmony should
reflect some ambiguity, defining many ambiguous specifications can make the number of
possible analyses grow exponentially for certain chord progressions. However, in most of the
ambiguous cases it is clear from the context which of the possible solutions is the preferred
one. Hence, we can select the favoured analysis by constraining the application of the
specification leading to the undesired analysis. In cases where it is less clear from the
context which solution is preferred, we accept a small number of ambiguous analyses.

The HarmTrace system explores the relations between (generalised) algebraic data
types and context-free production rules. A CFG defines a language: given a set of production
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Figure 2: An example of a diatonic cycle of fifths progression in C major. The leaves
represent the input chords and the internal nodes denote the harmony structure. Ton, Dom,
and Sub denote tonic, dominant, and subdominant. The Vd/X nodes represent diatonic
fifth successions.

rules and a set of words or tokens, it accepts only combinations of tokens that are valid
sequences of the language. The notion of an algebraic datatype is central in Haskell. Similar
to a CFG, a datatype defines the structure of values that are accepted. Hence, a collection
of datatypes can be viewed as a very powerful CFG: the type-checker accepts a combination
of values if their structure matches the structure prescribed by the datatype, and rejects
this combination if it does not. Within HarmTrace, the datatypes represent the relations
between the structural elements in tonal harmony, and the chords are the values. However,
an important difference between a CFG and a Haskell datatype is that datatypes provide
more much modelling freedom and control, especially the generalised algebraic datatypes
(Schrijvers et al. 2009) that we use. They allow constraining the number of applications of
a specification, constraining the conditions for application, and ordering specifications by
their importance. This allows defining mode and key-specific specifications, excluding scale
degree-specific applications (e.g. Spec. 18) of transposition functions, and preferring certain
specifications over others. For technical details, we refer to Magalhães and de Haas (2011)
and the code online (package HarmTrace-0.6).

3.1 A model of tonal harmony

We now elaborate on how our harmony datatypes are organised. Haskell knowledge is not
required to understand our model: we use a simplified syntax to describe the datatype
specifications that is inspired by the syntax used to describe CFGs. We start by introducing
a variable (denoted with bold font) m for the mode of the key of the piece, which can
be major or minor. The mode variable is used to parametrise all the specifications of our
harmonic datatype specification; some specifications hold for both modes (m), while other
specifications hold only for the major (Maj subscript) or minor mode (Min). Similar to
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a CFG, we use a | to denote alternatives, and a + to represent optional repetitions of a
datatype.

1 Piecem → Func+
m

2 Funcm → Tonm | Domm

3 Domm → Subm Domm

m ∈ {Maj,Min}

Spec. 1–3 define that a valid chord sequence, Piecem, consists of at least one and possibly
more functional categories. A functional category classifies chords as being part of a tonic
(Tonm), dominant (Domm), or subdominant (Subm) structure, where a subdominant must
always precede a dominant. These functions constitute the top-level categories of the har-
monic analysis and model the global development of tonal tension: a subdominant builds
up tonal tension, the dominant exhibits maximum tension, and the tonic releases tension.
The order of the dominants and tonics is not constrained by the model, and they are not
grouped into larger phrases.

4 TonMaj → IMaj | IMaj IV Maj IMaj | III m
Maj

5 TonMin → I m
Min | I m

Min IV m
Min I m

Min | III [Maj

6 Domm → V 7
m | Vm

7 DomMaj → VII m
Maj | VII 0

Maj

8 DomMin → VII [Min

9 Subm → II m
m

10 SubMaj → IV Maj | III m
Maj IV Maj

11 SubMin → IV m
Min | III [Min IV Min

c ∈ {∅,m, 7, 0}

Spec. 4–11 translate the tonic, dominant, and subdominant datatypes into scale degree
datatypes. A tonic translates to a first degree, a dominant to a fifth degree, and the sub-
dominant to a fourth degree in both major and minor keys. We denote scale degree datatypes
with Roman numerals, but because our model jointly specifies datatypes for major as well
as minor mode, we deviate from notation that is commonly used in classical harmony and
represent scale degrees as intervals relative to the diatonic major scale. For example, III Min

unequivocally denotes the minor chord built on the note a major third interval above the
key’s root and does not depend on the mode of the key.

A scale degree datatype is parametrised by a mode, a chord class, and the scale degree,
i.e. the interval between the chord root and the key root. The chord class categorises scale
degrees as one of four types of chords (denoted with superscripts) and is used to constrain
the application of certain specifications, e.g. Spec. 16–17. The four classes are major (no
superscript), minor (m), dominant seventh (7), and diminished (0). Chords in the minor class
contain a minor or diminished triad and can have possible altered or non-altered additions,
except for the diminished seventh. Chords categorised as major contain a major triad and
can be extended by with non-altered additions, with exception of the dominant seventh chord
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(with additions). Chords of the dominant class have a major or augmented triad and a minor
seventh and can be extended with altered or non-altered notes. Finally, the diminished class
contains only the diminished seventh chord. In case a specification holds for all chord classes,
the chord class variable c is used. This allows us to define certain specifications that only
hold for dominant chords, while other specifications might hold only for minor chords, etc.

Tonics can furthermore initiate a plagal cadence (Spec. 4–5). We deliberately chose not
to model the plagal cadence with scale degrees and not with Sub and Ton because this keeps
the number of possible analyses smaller. Also a Subm can translate into the a II m

m, because
of its preparatory role, and the dominant translates into the seventh scale degree, VII 7

Maj

(and VII [7
Min in minor) Similarly, we could have chosen to model the Subm to translate also

to the VI m
Maj (VIbMaj in minor). However, we chose to solve this by creating specifications

for chains of diatonic fifths instead (Spec. 18–19, see for instance Figure 2).
The Tonm resolving into III m

Maj (and III [Min in minor), is perhaps the most unexpected
transformation. Often the third degree can be explained as either a preparation of a sec-
ondary dominant (Spec. 17), as being part of diatonic chain of fifths (Spec. 19) or as support-
ing the subdominant (Spec. 10–11). However, in certain progressions it cannot be explained
by any of these specifications, and is best assigned a tonic function since it has two notes in
common with the tonic and does not really create any harmonic tension.

12 IMaj → "C:maj" | "C:maj6" | "C:maj7" | "C:maj9" | . . .
13 I m

Min → "C:min" | "C:min7" | "C:min9" | "C:min(13)" | . . .
14 V 7

Maj → "G:7" | "G:7(b9,13)" | "G:(#11)" | "G:7(#9)" | . . .
15 VII 0

m → "B:dim(bb7)"

Finally, scale degrees are translated into the actual surface chords that are used as input
for the model. The chord notation used is that of Harte et al. (2005). The conversions are
trivial and illustrated by a small number of specifications above, but the model accepts all
chords in Harte et al.’s syntax. The model uses a key-relative representation; in Spec. 12–15
we used chords in the key of C. Hence, a IMaj translates to the set of C chords with a major
triad, optionally augmented with additional chord notes that do not make the chord minor
or dominant. Similarly, V 7

Maj translates to all G chords with a major triad and a minor
seventh, etc. To treat repeating chords in a natural way, we cluster chords with the same
class and same scale degree, e.g. "C:min7" "C:min9", in one datatype.

16 Xc
m → V /X7

m Xc
m

17 X7
m → V /Xm

m X7
m

c ∈ {∅,m, 7, 0}
X ∈ {I , II [, II , . . . ,VII }

Besides these basic elements of tonal harmony, we distinguish various scale degree substi-
tutions and transformations. For this we introduce the function V /X which transposes an
arbitrary scale degree X a fifth up. Herewith, Spec. 16 accounts for the classical preparation
of a scale degree by its secondary dominant, stating that every scale degree, independently of
its mode, chord class, and root interval, can be preceded by a chord of the dominant classs,
one fifth up. Similarly, every dominant scale degree can be prepared with the minor chord
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one fifth above (Spec. 17). These two specifications together allow for the derivation of the
typical and prominently present ii-V motions in jazz harmony. However, these specifications
interfere with Spec. 4–11, causing multiple ambiguous analyses. Because we prefer e.g. a
II m, V 7, and I to be explained as Sub, Dom, and Ton, we constrain the application of
Spec. 16 and 17 to the cases were Spec. 4–11 do not apply.

18 Xm
Maj → V /Xm

Maj X
m
Maj

19 XMin → V /XMin XMin

The model also accounts for the diatonic chains of fifths in major (Spec. 18) and minor
(Spec. 19) keys. 3 These diatonic chain specifications are necessary to explain the typical
cycle of fifths progressions: I IV VII m III m VI m II m V 7 I (see Figure 2 for the major case,
and the Autumn leaves example of the next section in Figure 3). We constrain the major
key specification to only apply to the minor chords because I , IV , and V 7 translate directly
to Ton, Sub, and Dom, respectively. Similarly, Spec. 19 captures the same phenomenon
in a minor key. Here, we restrict the application of the specification only to the major
chords because, again, I m, IV m, and V 7 translate directly to Ton, Sub, and Dom in minor.
Without these restrictions the parser would generate multiple ambiguous solutions.

20 X7
m → V [/X7

m

The harmony model in HarmTrace allows for various scale degree transformations.
Every chord of the dominant class can be transformed into its tritone substitution with
Spec. 20. This specification uses another transposition function V [/X which transposes a
scale degree X a diminished fifth—a tritone—up (or down). This tritone substitution rule
allows for the derivation of progressions with a chromatic baseline, e.g. Am G]7 G. Because
we want the application of the Spec. 16–20 to terminate, we limit the number of possible
recursive applications of these rules (see parsing section below).

21 X0
m → III [/X0

m

22 X7
m → II [/X0

m

Diminished seventh chords can have various roles in tonal harmony. An exceptional char-
acteristic of these chords—consisting only of notes separated by minor third intervals—is
that they are completely symmetrical. Hence, a diminished seventh chord has four enhar-
monic equivalent chords that can be reached by transposing the chord by a minor third
with the transposition function III [/X (Spec. 21). In general, we treat diminished chords as
dominant-seventh chords with a [9 and no root note. For instance, in a progression Am7 A[0

G7, the A[0 closely resembles the G7[9, because a G7[9 chord consists of G, B, D, F, and an
A[0 chord consists of A[, B, D, and F. This similarity is captured in Spec. 22, where II [/X
transposes a scale degree one semitone up. Similarly, by combining secondary dominants

3We implemented one exception to the diatonic minor specification that allows the VI [ to precede the
IIm in minor. Here, the major chord precedes a minor chord. See E[∆ Am7[5 in Figure 3.
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(Spec. 16) with Spec. 22, e.g. F E[0 ( ≈ D7[9) G, and an application of Spec. 21, e.g. F
F]0 (≈ E[0) G, we can account for most of the ascending diminished chord progressions.
Within harmony theory this phenomenon is usually labelled as VII /X , where F]0 would be
the VII /X (in C major) in the previous example. However, since our model can explain it
without a specific VII /X specification, there is no need to add one.

23 FuncMaj → FuncMin

24 FuncMin → FuncMaj

25 SubMin → II [Min

We support borrowings from the parallel key by changing the mode but not the root
of the key in the Funcm datatype (Spec. 23 and 24). Although the parallel keys are often
considered rather distantly related (there is a difference of three accidentals in the key signa-
ture), borrowing from minor in major occur frequently in jazz harmony. These specifications
account, for instance, for the picardy third—ending a minor piece on a major tonic. The
actual implementation of Spec. 23 and 24 differs marginally to overcome endless recurring
transitions between major and minor. Finally, the Neapolitan chord II [Min is categorised as
being part of a SubMin structure (Spec. 25), which is also reachable in a major key through
Spec. 23. Although it might be considered an independent musical event, it often has a
subdominant function.

The datatype specification that we have presented in this section match the Haskell code
closely. Nevertheless, to maintain clarity, some minor implementation details were omitted;
these can be found in the real datatype specifications of the model, i.e. the Haskell code as
found online (package HarmTrace-0.6).

3.2 Parsing

Having a formal specification as a datatype, the next step is to define a parser to transform
textual chord labels into values of our datatype. Writing a parser that parses labels into
our datatype would normally mean writing tedious code that closely resembles the datatype
specification. However, in Haskell we can use datatype-generic programming4 (Jeuring et al.
2009) techniques to avoid writing most of the repetitive portions of the code. Moreover,
we derive not only the parser automatically, but also a pretty-printer for displaying the
harmony analysis in tree form, and functions for comparing these analyses. This makes
the development and fine-tuning of the model much easier, as only the datatypes have to be
changed, and the code adapts itself automatically. For technical details of the implementation
and the generic programming techniques we refer to Magalhães and de Haas (2011).

Because music is an ever changing, culturally dependent, and extremely diverse art form,
we cannot hope to model all valid harmonic relations in our datatype. Furthermore, songs
may contain mistakes or mistyped chords, perhaps feature extraction noise, or malformed
data of dubious harmonic validity. In HarmTrace we use a parsing library featuring error
correction: chords that do not fit the structure are automatically deleted or preceded by

4Not to be confused with regular polymorphism, as in Java generics.

10

http://hackage.haskell.org/package/HarmTrace-0.6


Piece

Ton

I m

Gm

Dom

Dom

V 7

D7[13

Sub

II m

Am7[5

Vd/II ·

VI [

E[∆

V /VI [7

III [7

B[7

V /III [m

VII [m

Fm7

V /VII [7

IV 7

C9

Ton

I m

Gm7

Dom

Dom

Dom

V 7

D7

Sub

II m

Am7[5

Vd/II ·

VI [

E[∆

Vd/VI [·

III [

B[∆

V /III [7

VII [7

F7

Sub

IV m

Cm7

Ton

I m

Gm7

Dom

Dom

V 7

D7

Sub

II m

Am7[5

Figure 3: The harmony analysis of the B-part of the jazz standard Autumn Leaves as derived
by HarmTrace. For convenience we left out the mode subscript Min and we printed the
chord labels as is common in Real Book lead-sheets. The key of the piece is G minor.

inserted chords, according to the datatype structure (Swierstra 2009). The error-correction
process uses heuristics to find a reasonable parse tree in a reasonable amount of time. For
most songs, parsing proceeds with none or very few corrections. Songs with a very high
error ratio denote multiple modulations, bad input, or a wrong key assignment. Note that
depending on the severity of “unexpectedness” of a chord there might be multiple error
corrections necessary to create a valid analysis, e.g. one deletion and two insertions.

In our model, one particular parameter has a large influence on the parsing and error-
correction process. This parameter controls the number of recursive applications of the
specifications for secondary dominant and the like (Spec. 16–20). It must be set carefully,
because setting it to a very low value will lead to bad analyses, while setting it to a high value
will make the internally generated model very large, resulting in increased error-correction
times and often sub-optimal error-correction solutions. For the examples and results in this
paper we have used values between 5 and 7.

4 Example analyses

In this section we demonstrate the analytic power of the HarmTrace system. The input
presented to HarmTrace consists of a sequence of plain text chord labels in the syntax
defined by Harte et al. (2005), and the output consists of a parse tree similar to those often
used in natural language processing. In these trees the input chord labels are the leaves,
which are subsequently grouped into scale degrees, scale degree transformations, functional
categories, and finally collected in a Piece node, as prescribed by the rules of the model. The
notation used in the parse trees is identical to the notation used to describe the datatype
specifications in the previous section.

We start by analysing the B-part of the Autumn Leaves jazz standard as found in the Real
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Figure 4: The automatic analysis of the first two phrases of J.S. Bach’s Ach Herre Gott,
mich treibt die Not, BWV 349, in the key of F.

Book (Various authors 2005). The parse tree of this piece in the key of G minor is depicted
in Figure 3. Within the piece, the three A0 D7 Gm sequences resolve into subdominant,
dominant, and tonic categories (Spec. 9, 6, and 5, respectively), forming ii-V-progressions,
towards the tonic of the piece. The second and third Dom branches of Piece display different
types of descending fifth movements, which build up tension towards a D7: the preparation
of the B[ by an F is labelled as a secondary dominant or as a diatonic decending fifth,
depending on whether the chord is dominant or major (Spec. 16 or 19).

Although the model has a bias towards a jazz repertoire, it can be used to analyse Bach
chorales as well. In Figure 4 we present the HarmTrace analysis of the first 9 measures
of Bach’s Ach Herre Gott, mich treibt die Not chorale. The key of the piece is F major.
After an introduction of the tonic, a diatonic chain of fifths prepares the dominant, C, which
subsequently resolves to the tonic. The next branch prepares a C with a B0, which is VII /V .
As explained in the previous section, the B0 is enharmonic equivalent to A[0 (III[0) which
is very similar to a G7[9 (denoted by II[7[9/II , Spec. 22), which is in turn the V/V of C. The
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Figure 5: An analysis of Blue Bossa in C minor.
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Figure 6: Two analyses of a phrase of Bornianski’s piece Tebe Poëm. The left analysis above
the score is adopted from Rohrmeier (2011), and the right analysis is the analysis output by
HarmTrace.

final branch creates some harmonic movement around the B[ by preparing the second B[
with a VII /IV . The VII /X derivation is identical to the one explained above. The fragment
is concluded with a descending fifth preparation of the subdominant that is followed by the
dominant.

In Figure 5 we show the analysis of another well-known standard, Blue Bossa. The
progression starts by introducing the tonic, Cm, followed by a perfect cadence. The B-part
displayed in the second Dom branch shows a ii-V-motion to the Neapolitan II [ (Spec. 25)
and is followed by a ii-V-I to Cm.

Figure 6 displays the score and two analyses of Bortnianski’s piece Tebe Poëm. The
analysis on the left is the theoretical analysis proposed by Rohrmeier (2011). Although
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Figure 7: An excerpt of the analysis of It don’t mean a thing (if it ain’t got that swing).
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Figure 8: Two examples that illustrate error correction. On the left an excerpt of the jazz
standard There is no greater love and on the right an excerpt of the jazz standard Someday
my prince will come is displayed.

the notation used by Rohrmeier differs slightly from the notation used in this paper, the
analyses are clearly similar. However, there are also some differences. Rohrmeier connects
the tonic, dominant, and subdominant nodes in tonal regions while HarmTrace does not
(we elaborate on this issue in the discussion section). Another difference in derivation is that
because we treat the F]0 (≈ D7[9) as a V /V , the E7 and Am are analysed as being part of
a larger chain of fifths.

In Figure 7 we show the HarmTrace analysis of the jazz standard It don’t mean a thing
(if it ain’t got that swing). The analysis shows how similar Gm chords are grouped under one
VI m node. It furthermore illustrates how the Sub and Dom nodes are prepared by chains of
secondary dominants.

We conclude this section with two small examples that contain error corrections. The
example on the left in Figure 8 is an excerpt of the jazz standard There is no greater love,
and the example on the right is an excerpt of the jazz standard Someday my prince will come.
In the left example the model cannot explain the E[∆ at that position. Because the D7 can
immediately resolve to the G7, the parser deletes the E[∆. The model specification does not
allow a Sub to translate into a VI m scale degree. Adding such a specification would cause
a large number of ambiguous solutions, if the diatonic fifth specification (Spec. 19) is not
constrained. Therefore, in the example in Figure 8 on the right, the model needs a diatonic
chain of fifths to explain the VI m and the parser solves this by inserting a II m. Corrections
like the ones in Figure 8 represent typical examples of error corrections in HarmTrace.

5 Experimental results

To demonstrate that the HarmTrace system can be efficiently and effectively used in
practice, we evaluate its parsing performance on two chord sequence datasets: a small dataset
that has been used before by De Haas et al. (2009, which we will refer to as small), and a
large dataset that is used by De Haas et al. (2010, large). The small dataset contains 72
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chord sequences that describe mainly jazz pieces. The large dataset contains 5028 chord
sequences that describe jazz, latin, pop pieces, and a few classical works. Both datasets
consist of textual chord sequences extracted from user-generated Band-in-a-Box files that
were collected on the Internet. Band-in-a-Box (Gannon 1990) is a commercial software
package that generates accompaniment given a chord sequence. For the extraction of the
plain text chord labels we have extended software of Mauch et al. (2007). To our knowledge
the large dataset is currently the largest dataset of symbolic chord sequences currently
available to the research community.

The small dataset contains a selection of pieces that were checked manually and “har-
monically make sense”, while the large dataset includes many songs that are harmonically
atypical. This is because the files are user-generated, contain peculiar and unfinished pieces,
wrong key assignments, and other errors; it can therefore be considered “real life” data.
Also, the large dataset contains pieces that modulate, and even some pieces that might
be considered atonal, e.g. Giant Steps. We deliberately chose to use a “real life” dataset to
illustrate that HarmTrace is robust against noisy data, offers good performance in terms
of parsing speed, and still delivers analyses that make sense.

5.1 Parsing results

When parsing the data we measure the number of parsed chords, deleted chords, inserted
chords, and parsing time. These numbers are summarized in Table 1. Both runs were
performed on the same Intel Core 2 6600 machine running at 2.4 GHz with 3 GB of random
access memory compiled using GHC version 7.0.3.

On the small dataset the HarmTrace model performs very well. The songs are parsed
quickly and on average fewer than one chord per song is deleted. Also, fewer than three
insertions are necessary for a piece to parse, on average. It would have been possible to
adapt the model in such way that the small dataset would parse without any errors, as
was done by De Haas et al. (2009). However, we chose to accept this small number of error
corrections and keep our grammar small and easy to comprehend. The dataset is parsed
within a second.

For the large dataset the parsing time per song increases considerably, mostly because
the ambiguity of our model can make the error-correction process rather expensive. However,
the 5028 chord sequences are still parsed reasonably fast, in 6 min 24 s. The number of error
corrections increases considerably, but the parser never crashes or refuses to produce valid
output. The higher number of error corrections is expected, since this dataset contains songs

Dataset del/song ins/song cor/song chords/song time/song tot. time

small 0.83 2.79 3.63 42.49 10.00 ms 0.72 s
large 3.38 9.85 13.24 62.05 76.53 ms 384.81 s

Table 1: The deleted, inserted, and total number of corrections per song; the total number
of chords per song; the parsing time per song; and the total parsing time in seconds.
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with modulations, atonal harmonies, and a variety of errors. Still, HarmTrace keeps the
number of deleted chords under six percent of the total chords parsed.

When we compare the parsing results of the small dataset with the results of De Haas
et al. (2009), we notice that HarmTrace is much faster. The Java-based parser used by
De Haas et al. takes more than 9 min to parse the dataset. We cannot compare the parsing
results of the large dataset because the majority of the pieces is rejected by their grammar.
This emphasises how important the error-correction process is.

6 Discussion

We have presented HarmTrace, a system that automatically analyses sequences of musical
chord labels. Implementing our system in Haskell has proven to be a profitable decision, given
the advantages of error-correcting parsers and datatype-generic programming. We have
shown that HarmTrace can handle corpora of considerable size, parses chord progressions
fast, and is robust against noisy data. However, HarmTrace currently features only parallel
key distinction, and no support for full modulation. Although the model presented has a
bias towards jazz harmony, we have furthermore shown that it can be used to analyse some
classical works as well.

If we compare HarmTrace to other models of tonal harmony we notice various differ-
ences. The theoretical work of Steedman (1984), for instance, focuses only on the structure
of the (very particular) style of 12-bar blues, whereas our model aims to formalise the core of
tonal harmony with a bias towards jazz harmony, including the 12-bar blues. Although our
work draws on the work of Rohrmeier (2007, 2011), there are also considerable contrasts.
The most pronounced difference to Rohrmeier’s CFG is that the latter features modula-
tion/tonicisation. By tonicising to a local tonic, chords are analysed with respect to that
local tonic. As a consequence, his approach can explain secondary dominants by tonicisation,
while the HarmTrace model uses a more jazz-oriented approach to harmony by identify-
ing ii-V-I motions, e.g. Figure 3. For instance, in a progression in the key of C major, after
moving to the subdominant, F can be viewed as a local tonic allowing the derivation of Gm
and C as local subdominant and local dominant. A benefit of Rohrmeier’s approach is that
it is also possible to derive B[ C as local subdominant/dominant pair. A specification for
this would be easy to add to the HarmTrace model. However, implementing both toni-
cisations and secondary dominants, as Rohrmeier suggests, will be problematic since both
rules explain the same phenomena. After all, the preparation F by C can be explained both
by the tonicisation rules as well as by the secondary dominant rules. This will inevitably
lead to an explosion of ambiguous solutions for a harmony progression featuring secondary
dominants.

Another difference is that Rohrmeier groups tonics and dominants into higher order
phrases or functional regions. He acknowledges that these rules are highly ambiguous, but
chooses to keep them for theoretical completeness. The problem is that the harmonic infor-
mation alone generally does not provide enough information for determining phrase bound-
aries. For instance, it is unclear whether Ton Dom Ton represents a half cadence phrase
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followed by a tonic (Ton Dom) (Ton), or an introduction of the tonic followed by a perfect
cadence phrase (Ton) (Dom Ton). We believe that such clusterings should be done in a
post-processing step, based on metrical positions and phrase length constraints.

On the whole, when we compare HarmTrace to other models of tonal harmony, we
observe that most models remain purely theoretical. This is regrettable because although
theoretical work can yield valuable insights, having a model that is implementable allows it
to be evaluated empirically and used in practice. Hence, we argue that if a model designer
wants their model to have practical value, they should keep in mind how the model can
be implemented. As we have seen in this paper, it may take state-of-the-art programming
techniques to create a model that is maintainable, has expressive power, and yet remains
fast. We are confident that HarmTrace will contribute to new insights in the modelling
of harmonic analysis, and that it will prove itself useful in tasks such as harmonic similarity
estimation and chord labelling.
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