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Abstract

In this thesis, we analyze the problem of computing pure Nash

equilibria in succinctly representable games, with a focus on graphical

and action-graph games. While the problem is NP-Complete for both

models, it is known to be polynomial time computable when restricted

to games of bounded treewidth. We propose a dynamic programming

approach for computing pure Nash equilibria of graphical games. Our

algorithm attacks the combinatorics of the problem directly, in con-

trast to previous algorithms that use mappings to other problems.

The analysis yields substantial improvements over the known bounds

on the time complexity of the problem. From the viewpoint of pa-

rameterized complexity, we prove that computing pure Nash equilibria

for graphical games is W [1]-Hard when parameterized by treewidth.

On the other hand, our algorithm becomes Fixed-Parameter-Tractable

for games with bounded cardinality strategy sets. Moreover, we dis-

cuss the implication of our algorithm for solving games with O(log n)

bounded treewidth. Finally, it is possible to construct a sample, and

the maximum payoff, pure Nash equilibrium without additional com-

putational effort.

1 Introduction

Game theory is receiving a lot of attention in computer science, in areas like

the algorithmic study of competitive network routing, market mechanisms
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and auctions, the behavior of large multi-agent systems, and interactions

over the Internet. Algorithmic Game Theory lies at the points of contact

between Game Theory, Economic Theory, Theoretical Computer Science

and the Internet [34]. It is one of the most booming fields within computer

science research. This is due to its important applications in areas like online

auctions and electronic commerce. An indication of this importance is that

major IT companies have build high-scale research groups that specialize in

algorithmic game theory. The computational problem of utmost importance,

in this context, is the computation of solution concepts; the most widely used

such concept is the Nash equilibrium.

1.1 Computing Equilibria

In a series of breakthrough papers, Daskalakis et al. [11] showed that the

problem of computing a mixed Nash equilibrium is PPAD-Complete. This

holds even for the restricted case of only two players and the case of approx-

imate ε-Nash equilibria for n-player games [9]. PPAD stands for “Polyno-

mial Parity Argument Directed”. It is a complexity class defined on the basis

of the parity argument for directed graphs: “If a directed graph has a node

whose in-degree and out-degree are unequal, then it must have another such

node”. The issue is to find such a node. Additionally, PPAD-Completeness

holds also for succinct representations of games, such as graphical [11] or

action-graph games [13]. Interestingly enough, there are even non-game-

theoretic problems complete for this class (see for example [29]). The com-

plexity class FIXP was introduced by Etessami and Yannakakis; it captures

search problems that can be cast as fixed point computation problems for

functions represented by algebraic circuits [15]. They show that comput-

ing Nash equilibria for 3 or more players (either exact or approximate),

is FIXP -Complete. A related survey on the computational complexity of

computing equilibria is given in [37].

Another important problem in algorithmic game theory is the compu-

tation of equilibrium (market clearing) prices in computational markets.

The most popular market models are based on either spending or exchange

economies. The problem is known to be FIXP -Complete for exchange
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markets [15] and PPAD-Complete [8, 10] for both exchange and spending

economies, in the general case. On the other hand, there exist polynomial

time algorithms for solving restricted cases of market models, in particular

with linear utilities (e.g. the one described in [14]). Besides their importance

in the field, computational markets are out of the scope of this thesis and

thus will not be further examined.

1.2 This thesis

In this thesis we will discuss games played on graphs. Our analysis will take

into account two different graphical game-theoretic models, namely graphical

games proposed by Kearns et al. [28] and action-graph games proposed by

Bhat and Leyton-Brown [2]. The focus is on the computational aspects

of pure Nash equilibria for these models and the role of treewidth in such

computations. In particular, our effort will be focused on analyzing the time

complexity of the problem from the viewpoint of parameterized complexity,

when the parameter is the treewidth of the input graph.

1.2.1 Contributions in this thesis

In the subsequent section we will review several known results from the

literature that are essential for the completeness for this thesis. For a number

of these results we will add some value, especially in terms of careful analysis,

in order to clarify that the results of our approach are not not subsumed by

any of the previous ones. In detail:

• We provide the NP-Completeness proof of computing pure Nash equi-

libria of graphical games with focus on how the parameter of treewidth

is preserved (Section 6.2.1). This observation will be used when we

argue about the existence of polynomial kernels for the problem under

consideration (Section 7.5).

• We provide a unified analysis of the approach of [20], in order to

discover the exact time complexity of the implied algorithms (Sec-

tion 6.2.2). Similarly, for the different approach of [12] (Section 6.2.3).
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We will argue that our approach improves on the known bounds for

the time complexity of computing pure Nash equilibria.

• We will describe a new interpretation of the well-known mapping from

graphical to action-graph games with focus on the preservation of

treewidth. It will be shown that the mapping cannot be used to achieve

tractability results (Section 6.1.1).

• Based on the existing and new results, we will provide a compar-

ison of the computational power of both graphical and action-graph

games from the perspective of pure Nash equilibria and treewidth (Sec-

tion 8.1).

Besides the review and analysis of existing literature, we will describe a

number of new results. The following list contains the main contributions

of this thesis to the scientific community:

• A W[1]-Hardness proof that indicates that the problem of comput-

ing pure Nash equilibria for graphical games is not Fixed-Parameter-

Tractable for the parameter of treewidth (Section 6.2.5).

• A simple algorithm that solves the problem in linear time on trees

(Section 7.1).

• A generalization of the previous algorithm to graphs of bounded treewidth

which leads to a polynomial algorithm with improved bounds for graph-

ical games of bounded treewidth (Section 7.2). The algorithm proves

that the problem is Fixed Parameter Tractable for games of bounded

treewidth and bounded cardinality strategy sets.

• A proof that most likely there does not exist a polynomial kernel for

the problem of interest (Section 7.5).

• A method for games of O(log n)-treewidth that exploits a similar ap-

proach suggested in [12] and effectively improves on the time complex-

ity (Section 7.6).
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• A proof that a sample pure Nash equilibrium can be constructed with-

out additional computational effort. The same holds for a Maximum

Payoff PNE (where each individual receives the maximum possible

payoff). Details in Section 7.7.

1.2.2 Outline

The remainder of this document is organized as follows. In Chapter 2 we

give several preliminary notions that will be needed for the rest of the the-

sis. First, we give general notions from game theory, graph theory and

parameterized complexity. Then we explain succinctly represented games

and the necessity of succinct representations from an algorithmic point of

view. Definitions of the models of graphical and action-graph games fol-

low, along with illustrative examples and a review of a well-known mapping

from graphical to action-graph games. In Chapter 3 we study pure Nash

equilibria, and their computational properties, for the two models under

consideration. First, we discuss the importance of pure Nash equilibria

as models of the rationality of agents and the difference from mixed Nash

equilibria. Subsequently, we focus on action-graph games. We give the NP -

Completeness proof for the problem of computing pure Nash equilibria and

also give an approach for efficiently deciding instances of symmetric action-

graph games with bounded treewidth. Similarly, for graphical games we

review the NP-Completeness proof and describe two different approaches

for solving the problem of pure Nash equilibria computation on games of

bounded treewidth. In addition, we give the W [1]-Hardness proof for the

parameter of treewidth. In Chapter 4 we describe our new approach. The

outline is given in the contributions list in the previous section. Finally, in

Chapter 5 we recapitulate the contents of this thesis, give our conclusions

-including a comparison of graphical and action-graph games, and describe

a number of questions that remain unanswered.
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2 Preliminaries

In this section we will introduce a number of notions needed to understand

the mechanics of multiplayer games. In a multiplayer game G we have n

players and each player p ∈ P has a finite set of strategies, St(p), with

|St(p)| ≥ 2. The cardinality of the largest strategy set is denoted with

α = maxp∈P |St(p)|. In contrast to Gottlob et al. [20], we do not differenti-

ate between an “action” and a “strategy”. Actually, the two terms will be

treated equivalently in this thesis, while in [20] a strategy implies a player

choosing an action. Thus, when we denote an action as ap, we do this to

clearly indicate that ap ∈ St(p) for player p ∈ P . For a non-empty set of

players P ′ ⊆ P a combined strategy or configuration C is a set containing

exactly one strategy for each player p ∈ P ′, i.e. C = (ap)p∈P . The set of all

combined strategies of players in P ′ is denoted as St(P ′) and thus we write

C ∈ St(P ′). Moreover, we write CP
′
to indicate, without explicitly mention-

ing it, that CP
′ ∈ St(P ′). For a player p, Cp denotes the strategy of player p

with respect to configuration C and C−p denotes the configuration resulting

when we remove the strategy suggested for p in C. Additionally, for every

ap ∈ St(p) and C−p ∈ St(P\{p}) we denote by (C−p; ap) the configuration

in which p plays ap and every other player p′ 6= p plays according to C.

Abusing notation, we use C ∪ {ap} to denote the configuration resulting by

adding strategy ap ∈ St(p) to configuration C ∈ St(P ′) where p /∈ P ′. A

configuration C is termed global if it contains exactly one strategy for each

player p ∈ P (C ∈ St(P )). The global configurations are the possible out-

comes of the game. The utility function of a player p ∈ P is denoted as up

and in the general case it is defined as up : CP → R.

Definition 1. The best response function of a player p is a function βp :

C−p → 2St(p) such that:

βp(C) = {ap|ap ∈ St(p) and ∀a′p ∈ St(p) : up(C) ≥ up(C−p; a′p)}

Intuitively, the βp(C) is the set of pure strategies that maximize the

payoff of player p when the players in p’s neighborhood play according to

C. It follows, that a pure Nash equilibrium (PNE for short) is a global con-

figuration C such that for every player p ∈ P , Cp ∈ βp(C−p). Alternatively:
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Definition 2. A configuration C is a pure Nash equilibrium if for every

player p and strategy ap ∈ St(p) we have up(C) ≥ up(C−p; ap).

2.1 Graph Theory

We define the neighborhood of player p ∈ P as N (p) = {u ∈ V |(p, u) ∈ E}.
Following Kearns et al. [28], for a game G with set of players P we define

the strategic dependency graph as the undirected graph G(G) = (P,E) that

has P as its set of vertices and E = {(p, q)|p, q ∈ P and p ∈ N (q)} as

its set of edges. Similarly, we define the strategic dependency hypergraph

H(G) = (P,E) that has P as the set of vertices and whose set of hyperedges

is E = {{p} ∪ N (p)|p ∈ P}. These types of graphs will be useful only for

the graphical games model in this thesis, and thus we will refer to them as

the graph and the hypergraph of game G, respectively.

Definition 3 ([35]). A tree decomposition of a graph G = (V,E) is a pair

({Xi|i ∈ I}, T = (I, F )), where each node i ∈ I has associated to it a subset

of vertices Xi ⊆ V , called the bag of i such that

1. Each vertex belongs to at least one bag, ∪i∈IXi = V ;

2. ∀{v, u} ∈ E, ∃i ∈ I with v, u ∈ Xi;

3. ∀v ∈ V , the set of nodes {i ∈ I|v ∈ Xi} induces a subtree of T .

The width of a tree decomposition T is maxi∈I |Xi| − 1. The treewidth

of a graph G is the minimum width over all tree decompositions of G. In

this thesis, w denotes the treewidth of the graph under consideration (for

graph G, w = twd(G)).

Definition 4 ([21]). Let H = (N,H) be a hypergraph. A hypertree decom-

position of H is a triplet 〈T, χ, λ〉, where T = (V,E) is a rooted tree and χ, λ

are labelling functions associating each vertex v ∈ V with two sets χ(v) ⊆ N
and λ(v) ⊆ H, such that

1. ∀h ∈ H, ∃v ∈ V : h ⊆ χ(v)

2. ∀n ∈ N , the set {v ∈ V |n ∈ χ(v)} induces a connected subgraph of T .

3. ∀v ∈ V, χ(v) ⊆
⋃
h∈λ(v) h
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4. ∀v ∈ V, χ(Tv) ∩
⋃
v′∈vert(Tv) χ(v′)

The width of 〈T, χ, λ〉 is maxv∈V {|λ(v)|}. The hypertreewidth of a hy-

pergraph H, hwd(H), is the minimum width over all possible hypertree

decompositions.

2.2 Parameterized Complexity

We begin with the basic definition of a parameterized and a fixed parameter

tractable problem respectively.

Definition 5 ([33]). A parameterized problem is a language L ⊆ Σ∗ × Σ∗,

where Σ is a finite alphabet. The second component is called the parameter

of the problem.

The only parameter we consider in this thesis (treewidth) is integer and

therefore we will write L ∈ Σ∗ × N from now on. For (x, k) ∈ L, the

two dimensions of parameterized complexity analysis are constituted by the

input size n, that is, n = |(x, k)| and the parameter value k (usually a

nonnegative integer).

Definition 6 ([33]). A parameterized problem L is fixed-parameter tractable

if, for all (x, k), it can be determined in f(k) ·nO(1) time whether (x, k) ∈ L,

where f is a computable function depending only on k.

The class of decision problems of the form (x, k), that are solvable in

time f(k) · nO(1), is denoted as FPT . Moreover, to prove hardness for

parameterized problems we need a reducibility concept.

Definition 7 ([33]). Let (Q, k) and (Q′, k′) be parameterized problems over

the alphabets Σ and Σ′. An fpt-reduction is a mapping R : Σ∗ → (Σ′)∗ such

that

• For all x ∈ Σ∗ we have (x ∈ Q⇔ R(x) ∈ Q′).

• R(x) is computable in time f(k(x)) · p(x).

• There is computable function g : N→ N such that k′(R(x)) ≤ g(k(x)),

∀x ∈ Σ∗.
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The lower class of fixed-parameter intractability, W [1], can be defined

as the class of parameterized problems that are fpt-reducible to Weighted

3SAT. That is, given a 3SAT formula, decide if it has a satisfying assign-

ment of Hamming weight k. In parameterized complexity, the fundamental

conjecture is FPT 6= W [1]. It is analogous to the P 6= NP assumption,

but essentially weaker [33]. A parameterized problem is W [1]-Hard if it

lets Weighted 3SAT reduce to it by a fpt-reduction. For example, the

well-known problems Clique and Independent Set are both W [1]-Hard,

parameterized by the size of the solution set.

Furthermore, we give a number of more involved notions from parame-

terized complexity. These notions will be used in Section 7.5 to prove the

non-existence of a polynomial kernel for the problem of interest. A polyno-

mial kernel is a data reduction algorithm that replaces the input instance

by a reduced instance with size polynomially bounded in the parameter.

Definition 8 (And-Composition [3]). An and-composition algorithm for a

parameterized problem L ⊆ Σ∗ × N is an algorithm that takes as input a

sequence ((x1, k), . . . , (xt, k)), with (xi, k) ∈ Σ∗ × N+ for each 1 ≤ i ≤ t,

uses time polynomial in
∑t

i=1 |xi|+ k and outputs (y, k′) ∈ Σ∗ × N+ with:

• (y, k′) ∈ L⇐⇒ (xi, k) ∈ L for all 1 ≤ i ≤ t

• k′ is bounded by a polynomial in k

Definition 9 (And-Distillation Conjecture [3]). Let R be an NP-Complete

problem. There is no algorithm D, that gets as input a series of m instances

of R, and outputs one instance of R, such that

• If D has as input m instances, each of size at most n, then D uses

time polynomial in m and n, and its output is bounded by a function

that is polynomial in n.

• If D has as input instances x1, . . . , xm, then D(x1, . . . , xm) ∈ R if and

only if ∀1≤i≤mxi ∈ R.

Finally, let (Q, k) and (Q′, k′) be parameterized problems. A polynomial

time and parameter transformation is a polynomial time many-one trans-

formation from Q to Q′, with the additional condition that k′ ≤ p(k) for a

polynomial p : N→ N [6].
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3 Succinctly representable multiplayer games

The standard representation of games is the normal form representation.

Traditionally, 2-player games are presented by way of a matrix, that in-

cludes the actions available to each player and the corresponding payoff of

each outcome. For multi-party game theory this representation includes all

perceptible and conceivable strategies and the corresponding payoffs for each

player. The computational problem in this thesis is computing a pure Nash

equilibrium. One can easily observe that computing such an equilibrium,

when the input game is in normal form, would take time linear in the size

of the representation, simply by going through all possible configurations.

The problem may be thought of as computationally easy, but it actually

is not. The impracticality of normal form representation lies in the multi-

dimensionality of the input matrices (curse of dimensionality). In fact, the

input length is exponential; for n players we need to describe nαn utility

values.

A succinctly representable game, or simply succinct game, is a game

whose size of representation is much smaller than its normal form. Such

representations are studied since, in real-world applications, games have

structured utility functions. The aim of succinct game representations is to

effectively capture this structure. The most ancient form of succinct games

are the symmetric games which were already studied by von Neumann and

Nash. A game is symmetric if one player’s payoffs can be expressed as a

transpose of the other player’s payoffs. Famous examples used in literature

include the prisoner’s dilemma, the game-of-chicken and the battle-of-sexes

game. In such games players are identical, in the sense that a player’s utility

depends only on her strategy and on the number of other players that have

chosen each of available the strategies. Therefore, to describe a symmetric

game with n players we need αs numbers, which can be significantly better

than αn of normal form.

There are several types of succinct games found in literature, many of

which have been introduced recently. For the computer science community

the quest for a succinct representation that captures well-structured games
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and that has nice computational properties, is more active than ever. Besides

action-graph and graphical games that will be described extensively in the

next sections, other important classes of succinct games include:

Circuit games. A very flexible representation of succinct games is ob-

tained by describing each player by a polynomial-time bounded Turing ma-

chine, which takes as input the actions of all players and outputs the player’s

utility. Such a machine is equivalent to a Boolean circuit and such games

are known as circuit games. Deciding the existence of pure Nash equilibria

in such games is NP -Complete in the general case [38].

Anonymous games. In such games the utilities do not depend on the

identity of the players making these choices. The players do not distinguish

between other players but are only interested in how many other players

chose which strategy. Note that this is more general than symmetric games:

each player can evaluate the situation in her own, individual way. Anony-

mous games are of great interest since they capture important aspects of

auctions and markets. Deciding the existences of pure Nash equilibria for

anonymous games is NP -Complete [7].

Congestion games. Games that have to do with allocation of resources

across a network of agents. This kind of games was introduced by Rosenthal

as a class of games that always contains a pure Nash equilibrium [36]. The

strategies of each player are subsets of the available resources and each

resource has a delay that is a function of the number of players that use it.

The utility of the player is the summation of the delays of the resource she

chose. Even though the existence of a pure Nash equilibrium is guaranteed,

finding such an equilibrium is PLS-Complete in the general case [16].

4 Graphical Games

In this section we will discuss the graphical game model introduced by

Kearns et al. in [28]. A graphical game is played on an undirected graph

G = (V,E), where each player is represented by a vertex.

11



Definition 10 ([28]). A graphical game is a pair (G,M), where G = (V,E)

is an undirected graph and M is a set of n = |V | local matrices. For any

combined strategy C, the local game matrix Mp ∈ M specifies the payoff

Mp(C) for player p ∈ V , which depends only on the actions taken by p and

the players in N (p).

Graphical games are potentially succinct representations of games that

are more compact than standard normal form. Instead of requiring a number

of parameters that is exponential in n, a graphical game needs a number of

parameters that is exponential in ∆ + 1, where ∆ is the largest degree and

∆+1 the size of the largest neighborhood. For a player p ∈ P a local matrix

holds payoff values for any possible configuration of the vertices in N (p).

Therefore, |Mp| = |St(p)| · |St(N (p))| ≤ α∆+1. When players are directly

influenced by a number of others, much smaller than the overall population

size, then the graphical game representation is dramatically smaller than

the normal form. Of course, any normal form game can be represented as a

graphical game played on a complete graph. Therefore, the graphical game

representation is only meaningful when the interactions between players are

limited. We also note that even though the payoffs of a player are determined

according to the behavior of her neighborhood, a (pure) Nash equilibrium

still requires global coordination over all players. Even the players that are

not connected in the game graph, with their choices, may change indirectly

the incentives of all other participants. One of the computational challenges

imposed by graphical games is how local influences propagate to determine

global equilibrium outcomes [28].

Furthermore, note that the interests of players are necessarily symmetric

for graphical games on undirected graphs. That is, for any pair of players

p1, p2: p1 ∈ N (p2) if and only if p2 ∈ N (p1). On the other hand, there is

also the choice of representing the game structure using a directed graph,

which also takes into account that the dependencies between payoffs do not

have to be symmetric. Although, directed graphs arguably do not help with

efficiently computing equilibria [20]. In this thesis we follow the original

model of Kearns et al. [28] and use undirected graphs to represent the game
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structure. Finally, we denote the size of the collection of matrices as

|M| =
∑
p∈V
|Mp|

An illustrative example. Five coworkers, who live in the same block,

want to carpool to work using two company cars. Each one has the choice to

either drive (d) or be driven to work by someone else (e). Alice (A) prefers

to not drive, be with her husband Bob(B) who does not know anyone else,

and does not mind the company of Daniel(D). The latter wants to be with

Chris(C) and does not care if he drives. Christine would like to be with her

friend Eva(E) and prefers to not drive. Eva cannot stand Alice but enjoys

driving and the company of Chris. The dependency graph of this game is

depicted in Figure 1.

c

d

e

a b

Figure 1: The graph of the game described in the example.

In this game when player A prefers player B it means that A wants to

do the opposite of the action of B and thus they are more likely to end up

in the same car. Below, we give the payoff matrices for Alice and Eva; the

rest can be defined analogously.

A BdDd BdDe BeDd BeDe

d 0 0 0 0

e 1 1 1 -1

E AdCd AdCe AeCd AeCe

d 1 1 0 1

e 1 0 1 0

For the above game we have a significant save in size by using the graphi-

cal game representation. Let |G| denote the size of the game description. By

representing G as a graphical game, |G| = 3 · 23 + 24 + 22. The normal-form

would require size 5 ·25. Thus, we save 160−44 = 116 values with graphical

games.
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The complexity of the best response function. The best response

function is in the core of the algorithms presented subsequently; thus, it is

crucial to characterize the time complexity needed to compute it for graph-

ical games. Let G = (G,M) be a graphical game and p ∈ P a player of the

game. In addition, let P ′ = N (p) ⊆ P and C ∈ St(P ′). To compute βp(C)

we need to perform |St(p)| steps; that is, to perform a pass of the column

of Mp corresponding to configuration C. Now, let C ′ ⊂ C. To compute

βp(C
′) we have to read the columns (configurations) that adhere to C ′ and

also contain all possible actions St(v) for each player v ∈ N (p) such that

v /∈ C ′. The worst case is when C ′ contains information only for one player

v (thus, C ′ = Cv). Then, computing βp(C
′) takes

|Mp|
|St(v)|

< |Mp|

computational steps in the worst case.

5 Action Graph Games

In this section we introduce the notions relevant to the action-graph game

model introduced by Bhat and Leyton-Brown [2]. The central notion, here,

is the action-graph.

Definition 11. An action graph G = (S,E) is a directed graph where:

• S is the set of nodes. Each node s ∈ S represents an action and S

the set of distinct actions. For each agent i, Si is the set of actions

available to i and Si ⊆ S. Agents’ actions may partially or completely

overlap.

• E is a set of directed edges, with self-edges allowed. The notion of

neighborhood here has to take into account that the graph is directed.

Thus, for action s, N (s) = {s′ ∈ S|(s′, s) ∈ E}.

Given an action, an action graph and a set of agents, we can define a con-

figuration. For an action graph game, that is, a feasible disposition of agents

over the nodes in the action graph. Let C denote the set of configurations

of agents over actions.
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Definition 12. Given an action graph G = (S,E), a configuration C is an

|S|-tuple of integers (C(s))s∈S, where C(S) denotes the number of agents

that choose action s ∈ S. For a subset of actions S′ ⊂ S, let CS
′

denote the

restriction of C over S′, i.e. CS
′

= (C(s))s∈S′. Similarly, let CS′
denote the

set of restricted configurations over S′.

Then, an action graph game (AGG for short) can be defined as follows:

Definition 13. An action graph game is a tuple 〈p,S, G, u〉 where

• P = {1, . . . , n} is the set of agents.

• S =
∏
i∈P Si is the set of action profiles, where

∏
is the Cartesian

product and Si is agent i’s set of actions.

• G = (S,E) is the action graph, where S =
⋃
i∈P Si is the set of distinct

actions.

• u is a |S|-tuple (us)s∈S, where each us : CN (s) → R is the utility

function for s. Semantically, us(CN (s)) is the utility of an agent that

choses s when the configuration over N (s) is CN (s).

Finally, we give two definitions of different types of symmetry that can

appear in this model. The first is total symmetry, where all players have

the same action set, and the second is selective symmetry, where the players

can be partitioned in categories with each category having the same action

set.

Definition 14. An action game is symmetric if all players have identical

action sets, i.e. if Si = S, ∀i ∈ P .

Definition 15. An action game is k-symmetric if there is a partition {P1, . . . , Pk}
of P such that ∀l ∈ {1, . . . , k} if i, j ∈ Pl then Si = Sj.

5.1 Some interesting properties

First we would like to point out that action graph games are fully expressive.

That is, any (symmetric) game can be represented as an (symmetric) AGG.

Intuitively, two types of structure can be effectively captured with the action-

graph game representation:
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• A game’s anonymity structure can be capture with shared actions.

Each agent cares only about the number of players that play each

action and not the identities of those players.

• AGGs allow for context-specific independencies of utilities with the

lack of edges between nodes. The configuration over actions not in

N (s) does not affect the utility of any player that plays s. Note that

N (s) is defined only on incoming edges.

As happens with graphical games the size of an action-graph game rep-

resentation is dominated by the size of its utility functions, since the latter

is worst-case exponential. Then, for an AGG G we let the size of the rep-

resentation ||G|| be equal to the number of utility values the representation

needs to be described:

||G|| =
∑
s∈S
|CN (s)|

It is argued in [26] that this is the number of ordered combinatorial compo-

sitions of n− 1 into |N (s)|+ 1 non-negative integers

||G|| ≤ |S|
(
n− 1 + I
I

)
= |S|(n− 1 + I)!

(n− 1)!I!

where I = maxs∈S |N (s)| is the maximum in-degree of the action graph

G. In addition, if I is bounded by a constant, ||G|| = O(|S|nI) which is

polynomial in n.

Proposition 1. Given an AGG, the number of payoff values stored by its

utility functions is at most |S| (n−1+I)!
(n−1)!I! . If I is bounded by a constant then

the number of payoff values is O(|S|nI).

An illustrative example. The example we describe in this section is

taken from [25]. Suppose there are n agents who are interested in opening a

business that can be located in either side of a road of length m (there are

m blocks for businesses in each side of the road). The blocks are considered

to be non-exclusive and thus multiple agents are allowed to choose the same

block. The payoff of each agent depends on the number of agents who

chose the same block or chose one of the adjacent ones. This game can be
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Figure 2: A road game with m = 8, taken from [25].

represented succinctly as a symmetric AGG, whose action-graph is depicted

in Figure 2. Observe that each node has at most four incoming edges and

thus for road length m the respective AGG representation holds O(|S|n4) =

O(2mn4) payoff values. On the contrary, a graphical game representation

would induce a clique since any pair of agents potentially affect each other’s

payoffs. Therefore, a graphical game would have as much space complexity

as the normal form since it is unable to capture the anonymity structure of

the road game example.

Mapping graphical games to AGGs. It is well-known that graphical

games can be represented as AGGs by replacing each node i of the graphical

game by distinct set of nodes Si representing the action set of agent i [26].

If in the graphical game there exists the edge (i, j), in the AGG we take a

number of edges such that ∀si ∈ Si and ∀sj ∈ Sj , si ∈ N (sj). The resulting

AGG representation is as compact as the original graphical game represen-

tation. In the next section we are going to argue on why this mapping is

not profitable in computing pure Nash equilibria for graphical games.

6 Pure Nash Equilibria

Mixed Nash equilibria are guaranteed to exist but are very fragile as models

of behavior and rationality. On the other hand, pure Nash equilibria are

intuitive and comprehended in a straightforward manner. A complete def-

inition of how a player will play a game is provided by a pure strategy. It

determines how a player would behave in any situation she could face. This

determinism comes with a trade-off: pure Nash equilibria are not guaran-
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teed to exist. Following, we give two examples, famous in the game-theoretic

literature.

H T

H +1,−1 −1,+1

T −1,+1 +1,−1

(a) Matching Pennies

C D

C +3,+3 0,+5

D +5, 0 +1,+1

(b) Prisoner’s Dilemma

Figure 3: Two well-known examples of 2-player games: (a) does not have a

PNE; (b) has a single PNE, (D,D).

The examples of Figure 3 demonstrate the possible lack of pure Nash

equilibria in the input game. This possibility is increased for multiplayer

games with complex interactions. We will argue in the following sections

that deciding the existence of a pure Nash equilibrium is an NP-Complete

problem, in the general case, for both graphical and action-graph games. Of

course, the problem is computationally trivial for normal form games, due

to the exponentially large input size.

The rest of this chapter is outlined in the following manner: First, we

review the complexity results for the problem of deciding the existence of a

pure Nash equilibrium for action-graph games. The problem is shown to be

NP -Complete. Then, we discuss restrictions that lead to tractable classes

of action-graph games. Subsequently, we review the complexity of deciding

the existence of PNE for graphical games. Again, the problem is shown

to be NP -Complete. In addition, two different approaches are described

for graphical games. The first is by a mapping to Constraint Satisfaction

problems and the second by a mapping to Markov Random Fields. Both

lead to polynomial algorithms for graphical games of bounded treewidth.

A different characterization, for broader classes of graphical games, is also

described. Finally, we parameterize the problem of interest by treewidth

and prove that it is W [1]-Hard. The latter result is originally presented in

this thesis.
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6.1 Action-graph games

In this section we will describe the computational properties of pure Nash

equilibria for action-graph games. First, we argue that the problem is NP -

Complete both in the general and the symmetric case. Then, we describe an

approach that leads to the tractability of symmetric action-graph games of

bounded treewidth. Observe that in the asymmetric case the hardness holds

even for instances with treewidth 1 (the input graph is a directed tree).

6.1.1 NP-Completeness

Computing PNE for Action Graph Games has been shown NP-Complete,

both in the general and the symmetric case [13]. The proofs of the two

subsequent results rely on reductions from the NP-Complete problem CIR-

CUITSAT, were presented in [13] and follow an approach that was first

employed in [38]. It is well-known in complexity theory that deciding sat-

isfiability of a circuit is NP -Complete, even when all gates have maximum

degree 3.

Theorem 1. Given a circuit C, that consists of AND, OR and NOT gates,

with maximum degree 3 (in plus out degree), it is NP-Complete to decide if

C is satisfiable.

In the reductions described below, given a circuit C, we construct an

AGG AC that corresponds to C in the sense that pure Nash equilibria of

AC map to valid circuit evaluations. Two extra agents are added, that have

a simple pure strategy equilibrium if C evaluates to true. In the negative

case they are forced to play a game of matching pennies that does not have a

pure equilibrium. In this section we denote a configuration with D to avoid

confusion with a circuit C.

The Copy Gadget Before we proceed to the NP-Completeness result we

will describe a copy gadget. This is used to simulate action graph games

of arbitrary treewidth by games of treewidth 1 and was first described in

[13] to attain hardness results even in the restricted case where the input

graph has treewidth 1. Using the gadget, we create several copies of each
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player, but only one copy of each edge relating different players (specifically

the pure strategies corresponding to those players). This results in a very

“sparse” simulation whose treewidth can be controlled. Given an AGG A

and an agent i with strategy set Si = {fi, ti} used only by player i, the copy

gadget will add two additional players c which is the “copy” and a which is

an auxiliary player. The inclusion of a allows the strategies of player i to be

disconnected from those of player c.

Figure 4: A depiction of the copy gadget taken from [13].

Definition 16. Given an AGG A = 〈P,S, G, u〉 and an agent i with two

strategies {fi, ti} such that no other player may play strategy fi, we create

AGG A′ = 〈P ′,S ′, G′, u′〉 via the addition of a copy gadget on i as follows:

• P ′ := P ∪ {a, c}

• Sc′ := (S1, . . . , S|P |, Sa, Sc), where Sa = {fa, ta} and Sc = {fc, tc}.

• G′ consists of the graph G with the additional vertices fa, ta, fc, tc and

the directed edges (fi, fa), (ta, fc), (fc, ta).

• u′ and u are identical for all strategies in S′\{Sa ∪ Sc}. Moreover,

for configuration D we have u′(fa) = D(fi), u
′(ta) = D(fc), u

′(fc) =

1− 2D(ta) and u′(tc) = 0.

An illustration of the copy gadget can be found in Figure 4. Note that

the incentives of the players are set such that in any pure Nash equilibrium

if i plays fi then a plays fa and c plays fc. If i plays ti then a is indifferent

between fa or ta but can only play ta and consequently c plays tc in a pure

Nash equilibrium: when c plays fc then a has an incentive to play fc but

then a would have the incentive to play ta. Below we describe two theorems
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from [13] that settle the computational complexity of deciding whether a

pure Nash equilibrium exists in a given action graph game.

Theorem 2. Deciding the existence of a PNE for AGGs with strategy graph

GA is NP-Complete even if twd(GA) = 1, and GA has constant degree.

Proof. Membership in NP is clear: given any pure strategy profile we can

verify whether it is a Nash equilibrium in polynomial time and strategy

profiles are polynomial in the number of available actions. Given a circuit

C we construct the associated AGG AC = 〈P,S, G, u〉 as follows:

• P := {1, . . . , n, p1, p2}, where n is the number of gates in C and the

gate corresponding to n is the output gate.

• S := ((f1, t1), . . . , (fn, tn), (fp1 , tp1), (fp2 , tp2)).

• If a pair of gates i, j is such that the output of i is an input to j,

then G has the edges (fi, fj) and (fi, tj). Moreover, we add the edges

(fn, fp1), (fn, tp1), (fn, fp2), (fn, tp2) and the edges (fp1 , fp2), (fp1 , tp2),

(fp2 , fp1), (fp2 , tp1).

• The utility function u is defined in the following manner:

– if agent i corresponds to an input gate, both strategies fi, ti have

utility 0;

– if agent i corresponds to a non-input a gate of C, the payoff of

strategy ti is 1 or 0 according to whether true is the correct out-

put value of gate i given the values corresponding to the strategies

played by agents with neighboring actions. Similarly for the pay-

off of strategy fi.

– If D(fn) = 0 (there is input for which C evaluates to true), then

fp1 and tp1 have utility 0. Otherwise the utility of p1 is 1 when

D(fp1) = D(fp2) and 0 otherwise.

– The utility of p2 is 1 if D(fp1) 6= D(fp2) and 0 otherwise.

Claim 1. Using the construction above, AC has a pure Nash equilibrium if

and only if C is satisfiable.

Proof. If C is satisfiable then there is a pure strategy profile where agent

n plays tn such that agents 1, . . . , n cannot improve their utility by devi-

ating from their strategies. In addition, p1 will be indifferent between her
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strategies, and p2 will play the opposite of p1. This profile is a pure Nash

equilibrium.

If C is not satisfiable, then any pure strategy profile that is an equilibrium

for agents 1, . . . , n will have D(fn) = 1, and thus p1 will have the incentive

to agree with p2 who will have the incentive to disagree. This consists of a

matching pennies games between p1 and p2 and does not have a pure Nash

equilibrium.

To complete the proof, we will apply the copy gadget to each agent of

AC to yield a game A′C that has action graph of treewidth 1. We obtain A′C
by making three copies of each player i ∈ P via the copy gadget. For each i

we add agents i1, i2, i3 with Sik = {fki , tki }. In addition, we replace the (at

most three) outgoing edges of fi that are not part of the copy gadgets: each

edge of the form (fi, fj) is replaced by an edge (fki , fj) with each fk having

at most one outgoing edge. The utility function u is modified analogously

so as to have the action fj depend on fki rather than fi. Similar edge re-

placements happen for the outgoing edges of ti. The copied strategies fki , t
k
i

are disconnected from the original strategies fi, ti and thus the longest path

in G has length at most 4 (from an auxiliary vertex, to a copy vertex, to a

non-copy vertex, to an auxiliary vertex ). Moreover, G has maximum degree

6 (3 that originally had from the transformation from CIRCUITSAT and

another 3 from applying the copy gadget) and treewidth at most 1. Finally,

from Definition 16, the representation size of A′C is at most a constant larger

than that of AC .

At this point, let us turn back to the mapping from graphical to action-

graph games that we described earlier in Section 5. Since every action node

in each cluster is connected to all the action nodes in the clusters that rep-

resent neighboring players of the original graphical game, every node has at

most α time the degree it had originally. Therefore, the treewidth of the

resulting graph, say w′, is at most w′ ≤ αw, where w is the treewidth of the

original graph. This means that for game instances with bounded α, this

reduction preserves treewidth linearly. Since each player of the graphical

game has her own cluster of nodes in the action-graph, the game is nec-

essarily asymmetric. In light of Theorem 2 we cannot expect to compute

efficiently pure Nash equilibria of graphical games with bounded treewidth
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via this mapping. Different, efficient approaches will be discussed in the next

chapters; for the time being, let us characterize the complexity of computing

PNE for a symmetric AGG.

Theorem 3. Deciding the existence of a PNE for symmetric AGGs is NP-

Complete even if the strategy graph GA has bounded degree.

Proof. We use the same technique as for Theorem 2. To make AC sym-

metric while retaining the same number of agents, we allow them to pick

any of the strategies. The strategy graph G is modified by adding edges

(fx, tx), (tx, fx), (fx, fx), (tx, tx) for each player x ∈ P . In addition, we ex-

tend the utility function u such that if D(fx) +D(tx) > 1 then strategies fx

and tx have utility −1. Thus, in any pure Nash equilibrium D(fx)+D(tx) =

1 (only one player plays either fx or tx and thus the value of the correspond-

ing gate is correctly either true or false). The reasoning of Theorem 2 applies

to complete the reduction.

Observe that the copy gadget is not applicable in the case of symmetric

AGGs and thus the NP-Completeness result does not necessarily hold for

action-graphs of bounded treewidth. In fact, we will describe an approach

that computes pure Nash equilibria of symmetric AGGs in polynomial time

for action-graphs of bounded treewdith.

6.1.2 Tractable Cases

The results in this section, about tractable cases of action-graph games, were

first described by Jiang and Leyton-Brown in [25].

Theorem 4. Deciding the existence of a PNE in a symmetric AGG with

bounded |S| is in P.

Proof. If |S| is bounded, then the number of possible configurations
(n+|S|−1
|S|−1

)
=

O(n|S|−1) is polynomial. Thus, a polynomial algorithm is to check all con-

figurations.

This can be easily extended for k-symmetric games.

Lemma 1. Deciding the existence of PNE in a k-symmetric AGG with

bounded |S| and bounded k is in P.
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Proof. If |S| is bounded, for each l ∈ {1, . . . , k} the number of distinct

Dl is
(|Nl|+|Sl|−1
|Sl|−1

)
= O(|Nl||S

l|−1). Therefore, the number of distinct k-

configurations is O(nk(|S|−1)) which is polynomial for bounded k. Checking

if a k-configuration is a PNE also takes polynomial time.

Consequently, the next theorem follows directly from Lemma 1 and

shows that the full class of AGGs with bounded |S| can be solved efficiently.

Theorem 5. Deciding the existence of a PNE in an arbitrary AGG with

bounded |S| is in P.

Proof. Observe that any AGG G is k-symmetric by definition, where k is the

number of distinct action sets. Since Si ⊆ S for all i, the number of distinct

nonempty action sets is at most 2|S|−2. Thus, the number of distinct action

sets is bounded since |S| is bounded. We conclude that G is k-symmetric

with bounded k and Lemma 1 applies.

To generalize the simple results above, in [25] is given a dynamic pro-

gramming approach which constructs pure Nash equilibria of the game from

first considering restricted parts of the action-graph and then synthesizing

the information. The algorithm uses similar techniques to [12]: it runs on

a tree decomposition of the primal graph of the game; more details on the

primal graph will be given in Section 6.2.3.

Theorem 6. Deciding the existence of PNE in a symmetric AGG with

bounded treewidth is in P.

The algorithm hidden behind this theorem is quite technical and we will

not present the proof in this thesis. An analysis, including the algorithm

in full detail, can be found in [25]. The time complexity of the algorithm

is O(||G||w+1), which is polynomial for bounded treewidth. Therefore, the

road game example, described in the previous chapter, can be solved in

polynomial time since road games have treewidth 2 for any value of m.

Finally, it is discussed in [25] that after the dynamic programming ap-

proach is finished, one can construct a pure Nash equilibrium using a top-

down pass of the tree decomposition. The number of PNE could be expo-

nential in the representation size ||G|| but the resulting set of tables, after
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the bottom-up pass, contain information for all PNE and thus constitute a

succinct description of the set of PNE. More details on succinct descriptions

and this method will be explained in Section 7.7.

6.2 Graphical Games

Given a graphical game G and a global strategy profile C we can decide

in polynomial time whether C is a pure Nash equilibrium. This holds for

any approximation scheme and any graph input [38]. Since there are only a

polynomial number of players and each has a polynomial number of strate-

gies, a strategy can be evaluated in polynomial time by checking if each

player’s strategy with respect to C is a best response to the strategies of her

neighbors. In the subsequent sections we will prove that computing PNE for

graphical games is NP-Complete, argue that the problem becomes tractable

for graphs of bounded treewidth and describe a complexity-theoretic charac-

terization. Finally, we argue that the problem is W [1]-Hard, with treewidth

as the parameter, by giving an original proof.

6.2.1 NP-Completeness

Theorem 7 ([20]). Deciding whether a graphical game (G,M) has a PNE

is NP-complete even for the restricted cases of 3-bounded neighborhood and

fixed number of actions.

Proof. Membership in NP should is clear. Given a global configuration C

we can verify if it is a pure Nash equilibrium of G by checking for each

player p and action a ∈ St(p) that choosing this action does not lead to an

increment of her payoff. This can done in polynomial time.

For the hardness part we use a reduction from the NP-Complete problem

3SAT. The input consists of a Boolean formula in conjunctive normal form

Φ = c1 ∧ . . .∧ cm, over the variables X1, . . . , Xn, where each clause contains

at most three distinct variables and each variable occurs in at most three

clauses. W.l.o.g assume that Φ contains at least one clause per variable.

Given formula Φ, we define a graphical game that is played on the inci-

dence graph of Φ. The incidence graph GΦ is the bipartite graph where each

variable and clause appears as a vertex and each variable vertex connects to

all the vertices that correspond to the clauses that it appears. In our case
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GΦ = (Pv ∪ Pc, E) is the game graph. For each player c ∈ Pc, N (c) is the

set of players corresponding to the variables in clause c, and for each player

v ∈ Pv, N (v) is the set of players corresponding to the clauses in which v

occurs. The set of available actions for all the players is {t, f, u}, in which t

can be interpreted as the value true and f as the value false for variables

and clauses.

Let x be a global strategy. For each player c ∈ Pc, uc is such that

(i) uc(x) = 3 if c plays t, and all of her neighbors play an action in {t, f}
in such a way that at least one of them makes the corresponding clause

true;

(ii) uc(x) = 2 if c plays u, and all of her neighbors play an action in {t, f}
in such a way that none of them makes the corresponding clause true;

(iii) uc(x) = 2 if c plays f and there exists v ∈ N (c) such that v plays u;

(iv) uc(x) = 1 in all other cases.

For each player v ∈ Pv, her utility function uv is such that

(v) uv(x) = 3 if v plays an action in {t, f} and all of her neighbors play

an action in {t, f};

(vi) uv(x) = 2 if v plays u and there exists c ∈ N (v) such that c plays u;

(vii) uv(x) = 1 in all other cases.

Claim 2. Φ is satisfiable if and only if G admits a pure Nash equilibrium.

Let σ be a satisfying truth assignment of formula Φ. Consider the global

strategy x of G where each v ∈ Pv chooses the action according to σ and

each c ∈ Pc chooses t. Then, all players receive payoff 3 according to rules (i)

and (v) above. Since 3 is the maximum payoff, x is a pure Nash equilibrium.

Let x be a global configuration that is a pure Nash equilibrium. Us-

ing a series of properties, we will prove that x corresponds to a satisfying

assignment of Φ.

P1: A strategy x in which a player v ∈ Pv plays u cannot be a pure Nash

equilibrium. For the sake of contradiction assume that x is a PNE.

Then, all c ∈ N (v) will have the incentive to play f and receive payoff

2 from rule (iii) and v would receive 1 from rule (vii). However, v
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would prefer to play an action in {t, f} and increase her payoff to 3

according to rule (v). Thus, x cannot be a PNE.

P2: A strategy x in which a player c ∈ Pc plays u cannot be a pure Nash

equilibrium. Indeed, if there is such a player c ∈ Pc then each player

v ∈ N (c) would choose to play u in order to get payoff 2 according to

rule (vi). Thus, x cannot be a PNE by property P1.

P3: A strategy x in which all players play an action in {t, f} and the

corresponding truth assignment makes a clause c false cannot be a

pure Nash equilibrium. In that case c would have an incentive to play

u and receive 2 for payoff according to rule (ii). Therefore, x cannot

be a PNE by property P2.

P4: A strategy x in which all players play an action in {t, f} and there

exists a player c ∈ Pc that plays f cannot be a pure Nash equilibrium.

Since x is a PNE and all players play an action in {t, f}, by property

P3 the truth assignment that corresponds to x satisfies each clause c.

Then, if a player c chooses to play f it contradicts x being a PNE

because c could play t and increase her payoff to 3 according to rule

(i).

It follows from properties P1 to P4 that every pure Nash equilibrium of G
should be a strategy where all players v ∈ Pv play an action in {t, f} and

all players c ∈ Pc play t receive a payoff of 3. This concludes the proof of

the claim.

Finally, observe that the matrices representing the entries of the utility

functions (rules (i)-(vii) above) can be built in polynomial time from Φ. The

assumptions about the structure of Φ result in a game where each player

depends on at most 3 other players and therefore each matrix Mv, for v ∈ Pv,
and Mc, for c ∈ Pc, has at most a constant number of entries (specifically,

34). Thus, the reduction takes at most time polynomial in the size of the

input.

6.2.2 PNE via Constraint Satisfaction Problems

The first attempt to identify classes of instances of graphical games that

allow for efficient computation of pure Nash equilibria was also reported by

Gottlob et al. in [20]. In their paper, they prove with a series of theorems
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that the question of existence of a pure Nash equilibrium in a graphical game

can be answered in polynomial time for graphs of bounded treewidth. The

first step in the sequence of results is to fix a fundamental relationship be-

tween PNE of graphical games and Constraint Satisfaction Problems (CSP

for short).

A CSP instance is a triple I = (V ar, U,C), where V ar is a finite set

of variables, U is a finite domain of values and C = {C1, C2, . . . , Cq} is a

finite set of constraints. A constraint Ci consists of a pair (Si, ri), where Si

-called the constraint scope- is a list of variables of length mi and ri is an

mi-ary relation over U . In other words, the tuples of ri indicate the allowed

combinations of simultaneous values for the variables Si. A solution of such

a problem is an assignment θ : V ar → U , such that for each 1 ≤ i ≤ q,

Siθ ∈ ri.
Following, we will review a mapping from a graphical game to a CSP

instance, that was demonstrated in [20], such that a solution of the latter

implies a PNE of the former and vice versa. In CSPs associated with games

the variables of the CSP instance correspond to the players of the game.

Let G = (G,M) be a graphical game and p ∈ P a player. Define the Nash

constraint NC(p) = (Sp, rp) as follows: The scope Sp consists of players

in p ∪ N (p) and the relation rp contains exactly all combined strategies

x ∈ St(p∪N (p)), such that there is no ap ∈ St(p) with up(x) < up(x−p[ap]).

Therefore, for each pure Nash equilibrium x ∈ St(P ) of G, x ∩ St(Sp) is in

rp.

The CSP instance that corresponds to game G is denoted by CSP (G)

and is the triple (V ar, U,C), where V ar = P , the domain U contains all

the possible actions of all players, St(P ), and C is the set of Nash con-

straints for the players of G, C = {NC(p)|p ∈ P}. The following theorem,

which is a merge of two theorems presented in [20], explains the fundamental

relationship between graphical games and Constraint Satisfaction instances.

Theorem 8 (Merge of Theorems 4.3, 4.4 [20]). Given a graphical game

G, CSP (G) can be computed in polynomial time. In addition, a strategy

x ∈ St(P ) is a PNE for game G if and only if it is a solution of CSP (G).
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The structure of a CSP instance I = (V ar, U,C) is represented by a

hypergraph H(I) = (V,HE), where V = V ar, HE = {var(S)|(S, r) ∈ C},
and var(S) is the set of variables in scope S of constraint (S, r). It fol-

lows from the construction of CSP (G) that the hypergraph of G is exactly

the same as the hypergraph of CSP (G). Furthermore, let hwd(H(G)) and

twd(G(G)) denote the hypertree width and the treewidth of game G, respec-

tively. A basic relationship is revealed between the two notions. Essentially,

it is shown that we can map a game of bounded treewidth to one of bounded

hypertreewidth [20].

Theorem 9. For each game G, hwd(H(G)) ≤ twd(G(G)) + 1.

Therefore, a game G of bounded treewidth also has bounded hypertree

width. In turn this is mapped to a CSP whose corresponding hypergraph is

of bounded hypertree width. The latter can be solved in polynomial time

using results by Gottlob et al. [22].

Theorem 10. Given a CSP instance I and a hypertree decomposition of

HI of width w, I is solvable in O(||I||w+1 log ||I||) time.

The theorem above indicates that a CSP of bounded hypertree width

can be solved in polynomial time; to achieve this a hypertree decomposition

is exploitted, in order to obtain an equivalent acyclic CSP. This concludes

the series of theorems used in the approach of [20] to show that pure Nash

equilibria of graphical games can be decided in polynomial time. To recapit-

ulate, a graphical game G of bounded treewidth w is known to have bounded

hypertree width also w, which is then mapped to a CSP whose hypergraph

is the same as G and thus of bounded hypertree width and can be solved in

polynomial time. The solution of the CSP has a one-to-one correspondence

with the PNE of G.

On the other hand, the time complexity of the result, Theorem 10, does

not imply a fixed-parameter algorithm with respect to the treewidth, since

the base of the exponent depends on the size of the instant. In addition,

Marx shows that this algorithm is essentially optimal [32]. The following

result assumes the Exponential Time Hypothesis (ETH), which asserts that
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there is no 2o(n)-time algorithm for 3SAT with n variables. Observe that

this assumption is stronger than FPT 6= W [1] [32].

Theorem 11 (Short version [32]). If CSP can be solved in time f(G) ·
||I||o(w/ logw) then ETH fails.

The theorem above shows that the nO(w)-time algorithm is essentially

optimal for every class of graphs, up to an O(logw) factor in the exponent.

Thus, there is no other structural information besides treewidth that can

be exploited algorithmically. In our context, it means that it is not possible

to improve the time complexity bounds of the problem using the method of

[20].

6.2.3 PNE via Markov Random Fields

A different approach was introduced in Daskalakis & Papadimitriou [12]. In

their paper a new class of algorithms for finding pure Nash equilibria was

presented, by mapping graphical games to Markov Random Fields (MRF),

such that finding a maximum a−posteriori configuration of the MRF decides

also the existence of PNE. The resulting MRF is over an undirected graph

G and is a probability distribution that factorizes according to functions

defined on a set of cliques of G. MRFs are not going to be discussed in

detail here since they are not of interest for this thesis. They are well-known

models in the statistics literature. An extensive analysis can be found, for

example, in [31].

The approach of this section, uses the primal graph of the game hy-

pergraph as the graph of the MRF. The primal graph G′ = (V ′, E′) of a

hypergraph H = (V,E) has V ′ = V and two nodes v1, v2 ∈ V ′ are con-

nected if and only if there is a hyperedge h ∈ E such that v1, v2 ∈ h. It

is proved in [12] that if a graphical game G has treewidth bounded by w

then its primal graph has treewidth bounded by (w+1) ·maxp∈P |N (p)|−1.

Moreover, given a tree decomposition of G, one for G′ can be constructed in

polynomial time. Subsequently, the junction tree algorithm, one of the most

celebrated algorithms for statistical inference, is run to compute a maximum

a posteriori configuration. For a detailed description of this algorithm the
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interested reader is referred to [24]. Analytically, Algorithm 1 is separated

in four steps:

Algorithm 1 [12]

Input: G = (G,M)

1: First check if the input graph G has treewidth bounded by w. If so, find

a tree decomposition, say T , of width at most w using the algorithm of

[4].

2: From T we get T ′, a tree decomposition of the primal graph of the game

having width at most (w + 1) ·maxp∈P |N (p)| − 1

3: Reduce the input instance to the corresponding MRF. The primal graph

of the game is the graph of the MRF.

4: Run the junction tree algorithm on T ′ to compute the marginal prob-

abilities distributions of the bags of T ′. These answer the question of

whether G has a pure Nash equilibrium.

The correctness of the reduction and the above algorithm is out of the

scope of this thesis and thus we will focus on its time complexity, which

is of direct interest. In the MRF created at step 3 of Algorithm 1, let

Xv be the finite set of values available for the random variable associated

with node v. The junction tree algorithm runs in time exponential to the

width of T ′: If Xv = χ, ∀v ∈ V then the running time is O(n · χwidth(T )).

Since the aforementioned reduction sets Xp = Sp where Sp is the set of

strategies of player p, we conclude that the running time of the algorithm is

O(n · αwidth(T ′)).

Theorem 12. Deciding whether a graphical game has a pure Nash equilib-

rium is in P for all classes of games with bounded treewidth.

Proof. The proof consists of a time analysis of Algorithm 1. The algorithm

at step 2, transforms a tree decomposition of the input graph of width w

to one of the primal graph of the game with width (w + 1) ·∆, where ∆ is

the maximum degree over the vertices of the input graph. Then the running

time is of Algorithm 1 is O(n · α∆·(w+1)) which can re-written as

O(n · |Mp|w+1)

where p is such that degree(p) = ∆, since |Mp| = α∆+1.
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The running time of this section’s algorithm is polynomial for bounded

treewidth. However, it is not fixed-parameter tractable and thus not linear

for bounded treewidth. Further, in [12] was introduced a method to derive

polynomial time algorithms for pure Nash equilibria of games with O(log n)

treewidth. The methodology is described in the proof of the following the-

orem and will be used in our algorithms presented in the next chapter to

attain similar, improved results.

Theorem 13. Deciding whether a graphical game has a pure Nash equi-

librium is in P for all classes of games with O(log n) treewidth, bounded

number of strategies, and bounded neighborhood size.

Proof. Given a graph of treewidth c · log n the first step is to obtain a tree

decomposition of width 3.67·c·log n by using a slightly modified version of the

algorithm presented in [1]. Similarly, this tree decomposition is transformed

to one of the primal graph of the input game, with size (3.67 ·c · log n+1) ·∆,

on which the junction tree algorithm is run. With similar rationale as the

proof of Theorem 12 we obtain the following time bound:

O(n · α(3.67·c·logn+1)·∆) = O(n · α3.67·c·logn·∆+∆)

= O(n · αlogn·3.67·c·∆ · α∆)

= O(n · n3.67·c·∆ · α∆)

which is can be written as O(n∆). That is, assuming α,∆ are constants and

the base of the logarithm is α.

The algorithm suggested by Theorem 13 is polynomial to n. Note that

the assumption that the degree of the graph is bounded is necessary for the

description of the input game to be polynomial in the number of players.

Finally, let us note that the result of Theorem 13 can be combined with a

reduction of the problem of finding approximate mixed Nash equilbria to

the problem of finding pure Nash equilibria. This reduction was implicit

in the approximation algorithm part of [28]. The combination leads to the

following result (PTAS).

Theorem 14. An ε-approximate mixed Nash equilibrium of any graphical

game with O(log n) treewidth, bounded neighborhood size and bounded num-

ber of strategies per player can be found in time polynomial in n and 1
ε .
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6.2.4 Another characterization of Hard and Easy games

A quite different approach is provided by Jiang and Safari [27], who prove

that deciding the existence of a PNE is tractable for all classes of graphs

that are recursively enumerable and have bounded treewidth. Their result

shows that there is no class of problems in that domain that is in FPT

but not in P . For the FPT part, the parameter is the representational size

of the graph. In the case of undirected graphs the representation size is

p = |G| = |V |+ |E|. The next theorem summarizes the results.

Theorem 15 ([27]). Assume FPT 6= W [1]. Then for every recursively

enumerable class C of graphs with bounded treewidth the following statements

are equivalent:

1. PNE-GG is in polynomial time for any graph in C.

2. p-PNE-GG is fixed parameter tractable for any graph in C.

This theorem for undirected graphs follows as a corollary from similar

results for directed graphs. In other words, in this domain there is no class

of problems that is FPT but not in P. As a final note, we mention a strange

relation: Theorem 15 is based on the homeomorphism part of Grohe’s cele-

brated theorem [23], while Theorem 11 is based on the Constraint Satisfac-

tion part of the same theorem. This interrelation of PNE and CSPs can also

be witnessed in the results of Gottlob et al. [20], presented in Section 6.2.2.

6.2.5 W[1]-Hardness

Since treewidth plays an important role in the computation of pure Nash

equilibria for graphical games, we will consider the problem from the view-

point of parameterized complexity. To the best of our knowledge, none of

the previous results implies the existence of a fixed-parameter tractable al-

gorithm with respect to the treewidth of the input graph. Here we argue

that this is not surprising; consider the parameterized problem:
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w-PNE-GG

Input : G = (G,M), T tree decomposition of G.

Parameter : w - the width of T .

Question: Is there a PNE in G?

In this section we will prove that deciding a pure Nash equilibrium is

W [1]-Hard with regard to the parameter treewidth. For this, a reduction

from the W [1]-Hard problem k-Multicolor Clique will be used. The

hardness of the problem, which follows easily by reduction from k-Clique

together with a general reduction technique was originally described in [18].

The statement of the problem is as follows:

k-Multicolor Clique

Input : A graph G = (V,E) and a vertex coloring c : V → {1, . . . , k}.

Parameter : k - the number of colors.

Question: Does G contain a clique containing vertices of all k colors?

Before preceding to the reduction, let us introduce some useful notation.

Let G be the input graph given along with k-coloring c : V → {1, . . . , k}. We

let Vc denote the vertices colored c, i.e. Vc = {v ∈ V |c(v) = c}, and Eci,cj

be the set of edges such that if (u, v) ∈ Eci,cj , then {c(u), c(v)} = {ci, cj}.
In addition, observe that it can be assumed w.l.o.g. that the input coloring

is proper, i.e. for any color c, Ec,c = ∅. Any such edge can be removed from

G [18]. We can also assume that the color classes of G, and the edge sets

between them, have uniform sizes, i.e |Vc| = N for all c and |Eci,cj | = M

for all ci < cj . A simple justification of this assumption is given in [17],

by reducing the Multicolor Clique problem to itself: Let Sk be the set

of permutations of {1, . . . , k}. Given a k-colored graph and a permutation

σ ∈ Sk, with Gσ we denote the graph where the color class c is colored

with σ(c). Given an instance of Multicolor Clique, we take the union

of k! disjoint copies of G, one of each permutation of the set of colors, i.e.

G′ =
⋃
σ∈Sk Gσ. It is evident that G has a multicolor clique if and only if G′

has one, while G′ has uniform sizes both for the color classes and the edge

sets between different color classes.
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(a) Multicolor Clique

1 2
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4

{a, e} {b, f}

{d, g}

{c, h}

(b) PNE-GG

Figure 5: An example of the reduction where the numbers correspond to

different colors. In (b) the strategy sets are shown in curly brackets (omitting

NA) and the auxiliary players are represented as black vertices.

Theorem 16. w-PNE-GG is W [1]-Hard.

Proof. Given an instance of Multicolor Clique, graph G with k-coloring

c, we construct an instance G = (G′ = (P,E′),M) of PNE-GG as follows:

The players of G are separated in two distinct sets, the colorful Pc and the

auxiliary Pa players, P = Pc∪Pa. Every c ∈ Pc is connected to all the other

colorful players c′ ∈ Pc, through an auxiliary vertex a ∈ Pa. In other words,

G′ is the graph that arises by taking a k-clique and adding one auxiliary

player on each edge. It is obvious that the treewidth of G′ is exactly k and

thus the parameter is preserved.

The strategy sets are defined in the following manner: For a player

c ∈ Pc, the possible actions are all the vertices of G that are colored c plus

an extra action NA, that stands for non-adjacent. Formally, St(c) = {v ∈
V |c(v) = c} ∪ {NA}. An auxiliary player a ∈ Pa has only two possible

actions, St(p) = {A,NA}, that stand for adjacent and non-adjacent respec-

tively. Observe that G′ is built such that all colorful vertices neighbor only

with auxiliary vertices and each auxiliary vertex is neighbor to exactly 2

colorful ones. An example reduction can be found in Figure 5.

Let x be a global configuration. For an auxiliary player a ∈ Pa let i, j

be the two neighboring colorful players, i.e. i, j ∈ N (a). Then, the utility

function ua is such that:

(i) ua(x) = 1 if a plays A and i, j play actions v, u such that (v, u) ∈ E
or at least one of i, j plays NA;
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(ii) ua(x) = 1 if a plays NA and i, j play actions v, u such that (v, u) /∈ E
and neither of i, j plays NA;

(iii) ua(x) = 0 in all other cases.

For each player c ∈ Pc, her utility function uc is such that

(iv) uc(x) = 1 if c plays an action in St(c)\{NA}, and all of her neighbors

play action A;

(v) uc(x) = 1 if c plays NA and at least one of her neighbors plays NA;

(vi) uc(x) = 0 in all other cases.

Intuitively, game G is built such that in a pure Nash equilibrium every

colorful vertex c ∈ Pc plays an action that corresponds to a vertex v ∈ V
with c(v) = c and every auxiliary player chooses A, indicating that her

neighbors are adjacent in G. If the neighbors of an auxiliary vertex a play

actions that correspond to non-adjacent vertices, then a will play NA and

her neighbors will have the incentive to play NA. Then a would have the

incentive to play A and thus such a configuration cannot be a pure Nash

equilibrium.

Claim 3. G has a clique including all k colors if and only if G has a pure

Nash equilibrium.

Proof. Let (v1, . . . , vk) be a k-clique of G that contains all k colors. Con-

sider the global strategy x where each player c ∈ Pc plays the action that

corresponds to vertex vc (the vertex from the clique that is colored c) and

each auxiliary vertex plays A. Observe that in this case all players receive

payoff 1 which is the maximum they can receive and thus x is a pure Nash

equilibrium.

To prove the opposite direction of the claim we will first argue that there

is no pure Nash equilibrium of G where there is an auxiliary vertex that plays

NA. Assume that x is a PNE and ∃a ∈ Pa, with neighbor j ∈ N (a), that

plays NA. Then, j would have an incentive to play NA and get payoff 1

rather than an action in St(j)\{NA}. Consequently, a would prefer A over

NA which contradicts our assumption that x is a PNE.

Now, let x be a global configuration and a pure Nash equilibrium of

G. From the previous paragraph, every a ∈ Pa plays A and thus every
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c ∈ Pc plays an action in St(j)\{NA}. Consider the set of vertices K =

(v1, . . . , vk) where each vc corresponds to the strategy of player c ∈ Pc. Since

each auxiliary vertex plays A, it means that all vertices in K are pairwise

connected to each other and therefore form a clique. In addition, they all

belong to a different color class because of the construction of G. Therefore,

K is a multicolored k-clique of G.

To conclude our proof we need to show that the reduction takes at most

time of the form f(k) ·p(|G|, k) for some computable function f and polyno-

mial p(X). The time of the construction is dominated by the computation

of the matrix collection M, whose size is the summation of the sizes of the

individual matrices

|M| =
∑
c∈Pc

|Mc|+
∑
a∈Pa

|Ma|

As mentioned earlier, we assume that the color classes of the Multicolor

Clique instance have uniform size N and thus N = n
k and for c ∈ Pc,

|St(c)| = N + 1. In addition, observe that |Pc| = k and that |Pa| = k(k−1)
2

since we have one auxiliary vertex for each edge of the k-clique. Then the

above summation can be rewritten as

k · ((N + 1) · 2k−1) +
k(k − 1)

2
2 · (N + 1)2 ≤

2k−1 · (n+ k) + k2 · (N + 1)2 ≤

2k · n+ 4n2

Therefore, the time we need for the whole reduction is at most f(k) · p(|G|)
which concludes our proof.

We conclude that w-PNE-GG does not admit a Fixed-Parameter-Tractable

algorithm, unless FPT = W [1]. Nevertheless, in the next chapter we will

demonstrate an algorithm that becomes FPT for games with a bounded

number of available strategies per player.

7 A Fixed-Parameter-Tractable algorithm

Following, we will present in detail a new approach for computing pure Nash

equilibria of graphical games. First, we describe a linear-time algorithm for
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instances where the input graph is a tree. Then we generalize this algorithm

to a tree decomposition. For the sake of simplicity, our approach is analyzed

in terms of a nice tree decomposition. We argue that our algorithm runs in

time O(αw ·w·|M|) which is fixed-parameter tractable for graphical game in-

stances with bounded cardinality strategy sets. Subsequently, we argue that

w-PNE-GG does not admit a polynomial kernel, even when the number of

available strategies is bounded. In, addition we exploit techniques from [12]

to show that our algorithm is polynomial for graphs of O(log n) treewidth.

We improve on the known result by dropping the bounded neighborhood

assumption. Finally, we argue that the output of our algorithm constitutes

a succinct description of the set of all PNE and we describe how to construct

a sample, or maximum-payoff, PNE using a linear-time algorithm.

7.1 Tree Algorithm

In this section we present a simple algorithm that answers the question of

existence of a PNE of a graphical game, when the input graph is a tree.

The idea is that every vertex is able to compute the best response(s) for

each configuration of its children, while ignoring its parent. Then, visiting

the vertices in a bottom-up manner the parent will be taken into account in

the subsequent step. Given a graphical game (T,M), where T = (V,E) is a

tree, we proceed as follows. First, we take an arbitrary vertex and consider

it as the root r of the tree. For each v ∈ V , by Tv we denote the subtree with

v as root and by pv the parent of v. Moreover, for each vertex v ∈ V and

action i ∈ St(v): Ai(v) denotes what is the maximum number of players in

PNE in Tv when v plays action i; Bi(v) denotes the strategy pv has to play

to achieve PNE state for Ai(v)+1 nodes in the tree Tv∪{pv}. Namely, Bi(v)

contains the set of strategies that pv has to play such that for C ∈ St(N (v))

with Cpv ∈ Bi(v) and Ai(C) = |Tv|, i ∈ βv(C). Consequently, a dynamic

programming approach is used to fill in the tables, which count to α · |St(v)|
for each player v ∈ V . An Ai table has only one value and a Bi table for

player v ∈ V has at most |St(pv)| values.

For each vertex/player v ∈ V we perform a single column-by-column

scan of Mv to indicate βv(C) ⊆ St(v), the set of best response strategies for
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Figure 6: An illustration of a tree graph is given, in order to help the reader

visualize the algorithm.

each configuration C ∈ St(N (v)). Now, we can compute the tables A, B in

a bottom-up order, starting with the leaves of G. Initially tables Ai(v) = 0

and Bi(v) = ∅, ∀v ∈ V . We distinguish three different cases:

v is a leaf : For each action i ∈ St(v), if ∃C ∈ St(N (v)) such that

i ∈ βv(C) we set Ai(v) = 1 and Bi(v) = Cpv Otherwise the tables

preserve the default values (as above). The corresponding B tables

will contain the action(s) of pv which result in both v, pv being in

PNE from v’s perspective.

v has children x1, x2, . . . , xm:

1. Iterate through the matrix Mv row by row: ∀i ∈ St(v) and for

every configuration C ∈ St(N (v)) such that i ∈ βv(C) compute∑
u∈N (v)ACu(u).

2. For every C ∈ St(N (v)) such that∑
u∈N (v)

ACu(u) = |Tv| − 1 (1)

if also

i ∈ BCu(u), ∀u ∈ N (v)\{pv} (2)

then set Ai(v) = |Tv| and otherwise Ai(v) = |Tv| − 1.

3. For each configuration C ∈ St(N (v)) satisfying conditions (4.1),

(4.2) put strategy Cpv in Bi(v).
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v is the root : Perform steps 1, 2 as above and set Bi(v) = ∅.

Then, game (T,M) has a PNE if and only if , for root r, ∃i ∈ St(r) such

that Ai(r) = |V |. Note that at any point if we find a player v ∈ V such that

∀i ∈ St(v), Ai(v) < |Tv| we can stop the execution of the algorithm and

return NO. In the proposed procedure for each player v ∈ V we perform two

iterations through the matrix Mv, one at the initialization step to compute

βv and one at step 1 of the procedure above. The values of tables A and

B are computed once and are used once by the parent of that vertex at the

computations of step (4.1),(4.2) above. Observe that evaluating condition

(4.1) needs only to be performed once for each configuration found in matrix

Mv. To evaluate condition (4.2) we are only interested in the existence of

a single action in the B tables of all children of v. Since configurations are

order lexicographically in each matrix Mv, each of the tables Ai, Bi of the

descendants of v needs to be looked up once. Thus, the total time needed

to compute the answer is bounded by O(|M|).

Theorem 17. Given a graphical game (T,M), where T is a tree, we can

compute a PNE in time O(|M|).

7.2 From Tree to Treewidth

In this section we generalize the tree algorithm to tree decompositions. For

this, we will follow an approach native in the field of parameterized complex-

ity and thoroughly described in [5]. The treewidth of the input graph will

be treated as the parameter of the problem; thus the problem under con-

sideration is w-PNE-GG as defined in the previous section. By Theorem 7,

the unparameterized version of this problem is NP-Complete.

Our goal is to obtain a novel algorithm with improved time complexity

upper bounds by attacking the combinatorics of the problem directly. The

general idea is to go through all possible configurations for each bag of the

tree, which count to αw. Then, put together this information on the tree

decomposition in polynomial time. The analysis we provide, for the sake of

simplicity, is based on a nice tree decomposition. In such a decomposition,

one node in T is considered to be the root and each node i ∈ I is one of the

following four types:
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• Leaf: node i is a leaf of T and |Xi| = 1;

• Join: node i has exactly two children, say j1, j2 and Xi = Xj1 = Xj2 ;

• Introduce: node i has exactly one child, say j, and ∃v ∈ V with

Xi = Xj ∪ {v};

• Forget: node i has exactly one child, say j, and ∃v ∈ V with Xj =

Xi ∪ {v}.

It is known that if a graph G has a tree decomposition with width at most w,

then it also has a nice tree decomposition of width at most w and O(n) tree

nodes. Such a decomposition can be built in linear time, given a not-nice

one [30]. The approach presented below, consists of a dynamic programming

algorithm which is executed on the tree decomposition. A table is computed

for each node of the tree decomposition; for the decision problem the answer

lies in the table of the root of the tree.

a, b, c

a, b, c,d

Xj

Xi

(a) Introduce

a, b, c,d

a, b, c

Xj

Xi

(b) Forget

a, b, c a, b, c

a, b, c

Xj1 Xj2

Xi

(c) Join

Figure 7: An illustration of the different node types of a nice tree decompo-

sition.

7.3 A dynamic programming approach

Suppose we are given an instance of the problem described above; a graph

G = (V,E), a collection of matrices M -one matrix Mp for each node p ∈
V - and a tree decomposition T . We assume that the tree decomposition

({Xi|i ∈ I}, T = (I, F )) is nice. Each node i ∈ I is associated to a graph

Gi = (Vi, Ei). Vi is the union of all bags Xj , with j = i or a descendant of i
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in T , and Ei = E∩(Vi×Vi). In other words, Gi is the subgraph of G induced

by Vi. A table Ai is to be computed for each node i ∈ I and contains an

integer value for each possible configuration C ∈ St(Xi). Therefore, when

the treewidth is w, table Ai contains at most α|Xi| ≤ αw values. Given

configuration C ∈ St(Xi), the value of the table Ai(C) corresponds to the

maximum number of players in PNE in Gi, such that every player p ∈ Xi

plays according to C. Note that the strategy for the players in Vi−Xi is not

explicitly mentioned at this point (where the algorithm is treating bag Xi)

but has been treated at an earlier time of the execution of the algorithm.

Table Ai is computed for all nodes i ∈ I in bottom-up order; for each non-

leaf node we use the tables of its children to compute table Ai. We perform

a case analysis based on the type of the node under examination.

Leaf nodes.

Suppose node i is a leaf of T with Xi = {p}. Then, table Ai has only |St(p)|
entries. The value 1 will be attributed to these entries since we assume that

a single player can be in PNE, no matter what strategy it follows, when

there is no other player to compete with. Hence, for each configuration C

over the vertices of Xi (in this case St(Xi) = St(p)) we set Ai(C) = 1.

Introduce nodes.

Suppose i is an introduce node of T with child j and that Xi = Xj ∪ {p}.
It is known that there is no vertex u ∈ Vj − Xj such that {p, u} ∈ E [5].

Hence, Gi is formed from Gj by adding p and zero or more edges from p to

vertices in Xj .

Lemma 2. Let C ∈ St(Xj).If ∀u ∈ Xj, {p, u} /∈ E, then Ai(C ∪ {ap}) =

Aj(C) + 1 for all actions ap ∈ St(p).

In the case above, p is not connected to any vertex in Gi and therefore

we consider it as in PNE. For the other case we have to be more elaborate.

Assume that there is u ∈ Xj such that {p, u} ∈ E. We use Algorithm 2 which

proceeds in the following manner: Given a strategy ap of player p ∈ Xi−Xj ,

for each player u ∈ Xj that is adjacent to p it checks if u is in PNE with
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respect to configuration C∪{ap}. In the positive case it adds player u to the

set Pi. In the end of the iteration if all players in N (p)∩Xj are also in Pi it

means that all players in Gi connected to p are in PNE with respect to the

current configuration. Hence, for Ai(C ∪{ap}) we take the value Aj(C) + 1.

Algorithm 2 IntroNode

Input: C ∈ St(Xj), p ∈ Xi −Xj , ap ∈ βp(C)

Output: Ai(C ∪ {av})
1: Initiate set Pi = ∅
2: for u ∈ N (p) ∩Xj do

3: if Cu ∈ βu(C ∪ {ap}) then

4: Pi ← Pi ∪ {u}
5: end if

6: end for

7: if Pi = N (p) ∩Xj then

8: Ai(C ∪ {ap})← Aj(C) + 1

9: else

10: Ai(C ∪ {ap})← Aj(C)

11: end if

Lemma 3. Given an introduce node i ∈ T with child j such that p ∈ Xi−Xj,

we can compute Ai(C) for all configurations C in at most

α|Xi| · (|Mv|+
∑

u∈N (p)∩Xj

|Mu|)

computational steps.

Proof. Before we start the procedure we compute the set N (p) ∩ Xj in at

most |Xj | steps. This happens only once for each introduce node. In the

case @u ∈ Xj such that {p, u} ∈ E we compute the table value for each

configuration in constant time and thus the total time needed is O(α|Xi|).

In the other case, we use Algorithm 2 for each configuration C ∈ St(Xj).

Computing βp(C) takes at most
|Mp|

minu∈N (p)∩Xj
|St(u)| steps. The loop at lines

2-6 is through all vertices u ∈ N (p)∩Xj and for each vertex u, βu(C∪{ap})
is computed once at line 3 in at most |Mu|

|St(p)| steps. The operation at line 7

takes one step. For each of the α|Xj | = α|Xi|−1, configurations Algorithm 2
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has to be run at most α times (for each ap ∈ St(p)). Note that for the

computation of the best response function, we ignore the division since it

does not improve our upper bounds. The lemma follows.

The simple algorithm and the lemma above, show us how to compute

the table for an introduce node using information found in the table of the

child node. For the introduced vertex p, we have that the matrix Mp and at

most other w − 1 matrices are read once for each configuration. Note that

adjacency is only checked once since it does not change for different entries.

Forget nodes.

Suppose i is a forget node of T with child j. In this case, Gi and Gj is

the same graph but Xi and Xj differ by one vertex. Suppose this vertex is

p ∈ Xj −Xi. To compute the tables of a forget node we use the procedure

suggested by Lemma 4. For each of the α|Xi| possible configurations we

perform a number of α steps for a total of O(α|Xi|+1).

Lemma 4. Let C ∈ St(Xi), Ai(C) = maxap∈St(p)Aj(C ∪ {ap}).

Proof. Simply observe that in the case of a forget node the number of players

in PNE in graph Gi (value Ai) is the same as the number of players in PNE

in Gj . Thus, we only have to find which of the available strategies of p gives

the maximum for Aj .

Since Xi is a forget node we have |Xi| < w and thus the time needed for

this operation is O(αw).

Join nodes.

Suppose i is a join node of T with children j1 and j2. Remember that

Xi = Xj1 = Xj2 . Then, Gi can be interpreted as a union of Gj1 and Gj2 .

The following lemma provides useful insight on this kind of nodes and will

be significant in computing the table of a join node.

Lemma 5 ([5]). Let i, j1, j2 as above. If v ∈ Vj1 , w ∈ Vj2 and v, w /∈ Xi,

then {v, w} /∈ E.
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What we need to capture here, is that a configuration C for the players

of Xi may be part of a PNE for Gi if and only if it also is for both Gj1 and

Gj2 . Given a configuration C the computation of Ai(C) for a join node takes

only constant time as described by Lemma 6. Therefore, the computation

of the whole table for a join node takes place in time O(αw).

Lemma 6. Let C ∈ St(Xi), Ai(C) = Aj1(C) +Aj2(C)− |Xi|.

Proof. By adding the values of the two subtrees we add the vertices found in

Xi two times and thus we have to subtract |Xi| from the total sum. Because

of Lemma 5, we know that vertices in Xi do not connect to vertices not in

Xi. Assuming every vertex not in Xi is in PNE, all the vertices in Xi have

to be in PNE in both subtrees in order to have PNE for the whole graph

Gi.

7.4 Putting the tables together

The algorithm proposed in this section is a simple bottom-up tree walk

that finds partial configurations for each bag of the tree decomposition, that

could be part of a global PNE configuration. Then, these configurations are

synthesized together on every step of the tree walk and an answer can be

achieved when the root of the tree decomposition is reached.

Lemma 7. Graphical game (G,M) has a PNE if and only if ∃C ∈ St(Xr)

such that Ar(C) = |V |.

Proof. Observe that Gr is the input graph. Then Ar(C) = |V | can be

interpreted as all players in G are in PNE state under (global) configuration

C.

In addition, note that while computing the tables for each bag of the tree

decomposition it is possible to stop before reaching the root when there is

no PNE. During the bottom-up tree walk if there exists a bag Xi such that

∀C ∈ St(Xi), Ai(C) < |Vi| then we can stop the execution of the algorithm

and reply NO. The tables of all bags of the tree decomposition have to

be computed to verify a YES instance since any partial PNE configuration

might be jeopardized by a newly introduced vertex.
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The theorem below provides upper bounds to the computational com-

plexity of the algorithm suggested in this section. Intuitively, for each player

p ∈ V that is introduced in T the matrix Mp is read and at most w− 1 ma-

trices that belong to its neighbors. Thus, for each node we iterate through

at most w local matrices and since the nodes of T is O(n) the summation

over the local matrices can be bounded by the size of the matrix collection

M given in the input description.

Theorem 18. Given a graphical game (G,M) and a tree decomposition T
of width w, there is an algorithm that determines the existence of a PNE in

O(αw · w · |M|) time.

Proof. The time spent to compute the table of each non introduce node

Xj is bounded by O(α|Xj |) as discussed in the previous section. Introduce

nodes are computationally more expensive and therefore define the worst

case complexity of the problem. Assuming every node i ∈ T is an introduce

node1 with child j and vertex p ∈ Xi − Xj we derive the following upper

bound:

αw ·
∑
i∈T

|Mp|+
∑

u∈N (p)∩Xj

|Mu|

 ≤ αw · (|M|+ (w − 1)|M|) (3)

Since T is a nice tree decomposition it consists of O(n) vertices and therefore

the first summation is over O(n) elements. The summation over all matrices

|Mv| gives |M|. In addition, the second summation is over at most w −
1 elements which in turn are upper bounded by |M| because of the first

summation. The theorem follows.

Furthermore, it is known from Theorem 9 that for a game G, hwd ≤ w+1,

where hwd and w is the hypertree width and the treewidth of G, respec-

tively. This fundamental relationship between the two width notions was

shown in [20] and exploitted in order to show tractability of games with

bounded treewidth. Combining this result with Theorem 18, we obtain as

a corollary the fixed-parameter tractability of computing a PNE for graph-

ical games with bounded cardinality strategy sets when the parameter is

hypertreewidth.

1Observe that in the case of a clique all the nodes of T but one are introduce nodes.

46



Corollary 1. Given a graphical game (G,M) and a tree decomposition T
of width hwd, there is an algorithm that computes a succinct desciption of

all PNE in O(2hwd · hwd · |M|) time.

Our algorithm improves significantly on the previous known bounds,

since the base of the exponent is only the number of possible actions and not

the whole description of the game. In addition, if we assume that the number

of available strategies is bounded by a constant, our algorithm becomes fixed-

parameter tractable. To the best of our knowledge, this is the first FPT

algorithm for computing pure Nash equilibria. Summing up, for computing

PNE of graphical games the time bound of Theorem 18 implies:

• A fixed-parameter algorithm when strategy sets are of bounded cardi-

nality and the parameter is either treewidth or hypertreewidth.

• A polynomial algorithm with improved bounds for graphical games of

bounded treewidth.

• A linear algorithm for games of bounded treewidth and bounded car-

dinality strategy sets.

Note that determining whether the treewidth of a given graph G is at

most w, and if so, find a tree decomposition of width at most w is FPT

when the parameter is the treewidth [5]. On the contrary, deciding whether

the hypertreewidth of a given hypergraph H is at most hwd is W [2]-Hard

and thus unlikely to be FPT [21].

7.5 Kernelization

Since the algorithm suggested in this section is fixed-parameter tractable for

games with bounded cardinality strategy sets (α is a constant), the question

of the existence of a kernelization algorithm arises. A polynomial kernel

means that given an instance of w-PNE-GG, we would obtain in polynomial

time an equivalent instance whose size is bounded polynomially to w. In this

section we will argue that the existence of such a kernel is rather unlikely.

The proof of NP-Completeness for the unparameterized version of the

problem, described by Theorem 7, consists of a reduction from 3-CNF-SAT
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[20]. The resulting game is a played on the incidence graph of the SAT

instance. Then, the treewidth of the resulting game is exactly the incidence

treewidth of the SAT instance and this is a polynomial time and parameter

transformation [6] from w-3-CNF-SAT, where w is the treewidth of the

incidence graph, to w-PNE-GG. In addition, each player has only 3 available

strategies and thus α is bounded. Since, w-SAT is fixed parameter tractable

[39] and can be shown trivially and-compositional, the theorem below follows

from the method described in [6].

Lemma 8. SAT is and-compositional with respect to the treewidth of the

incidence graph.

Proof. Given m instances (x1, w), (x2, w), . . . , (xm, w) of SAT we construct

instance X to be
∧

1≤i≤m xi. W.l.o.g. we assume that there is no variable

that occurs in two different input instances (even if there is one can trivially

rename). The treewidth the incidence graph of X is w since there is no clause

vertex with an edge to a variable that does not belong to the same original

instance. X is a YES instance if and only if all instances x1, x2, . . . , xm are

YES instances.

Theorem 19. w-PNE-GG does not admit a polynomial kernel, unless the

and-distillation conjecture does not hold.

It remains open if we can come to the same result by using or-compositionality,

which is essentially stronger. If the or-distillation conjecture does not hold

then coNP ⊆ NP/poly [19] but no relevant result is known for and-compositionality.

7.6 O(log n)-Treewidth

In their paper, Daskalakis and Papadimitriou, proved that deciding the ex-

istence of a PNE is in P for all classes of games with O(log n) treewidth,

bounded number of strategies and bounded neighborhood size [12]. In this

section we follow their approach and argue that our algorithm implies slight

improvements on their results. First, we obtain a polynomial algorithm for

graphical games of O(log n) treewidth and bounded number of strategies,

dropping the bounded neighborhood size assumption.
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Theorem 20. Given a graphical game with O(log n) treewidth and bounded

number of strategies, there is an algorithm that decides the existence of a

PNE in time polynomial in the description of the game.

Proof. Suppose that the treewidth of the input graphical game is w =

O(log n); we use a modified version of the algorithm presented by Becker and

Geiger in [1] as discussed in [12]. This algorithm runs in time poly(n)·24.67·k,

when the input graph consists of n vertices, and either outputs a legitimate

tree decomposition T of width 3.67w or outputs that the treewidth is larger

than w; for w = c log n, where c is a constant, the algorithm either returns T
of width 3.67c log n or outputs that the treewidth of G is larger than c log n.

Assuming the positive case, we have a tree decomposition T of the input

graph of size 3.67c log n. When T is fed to our algorithm presented in the

previous sections it results in an upper bound of

α3.67·c·logn · 3.67 · c · log n · |M| =

n3.67·c · 3.67 · c · log n · |M|

computational steps, which is poly(|M|).

Note that if the degree of the graph is bounded, then the description

of the graphical game is polynomial in the number of players. Therefore, if

we apply the additional assumption of bounded neighborhood we achieve an

upper bound that is polynomial in n. Our bound improves on the time com-

plexity of the algorithm presented in [12] by removing ∆ = maxp∈V |N (p)|
from the exponent.

Corollary 2. Given a graphical game with O(log n) treewidth, bounded num-

ber of strategies and bounded neighborhood size, there is an algorithm that

decides the existence of a PNE in time polynomial in the number of players.

Proof. We follow the same rationale as above. Since |M| ≤ n · |M∆| = n ·α∆

we have that our algorithm runs in at most

n3.67·c · 3.67 · c · log n · n · α∆

computational steps. This can be rewritten as O(n3.67c+2).

Finally, in [12] an algorithm is suggested for computing an ε-approximate

mixed Nash equilibrium of a graphical game withO(log n) treewidth, bounded
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neighborhood size and bounded number of strategies per player. The ap-

proach is based on a reduction, implicit in [28], of the problem of finding

mixed Nash equilibria to the problem of finding pure Nash equilibria. Our

approach improves on the time complexity, again, by removing ∆ from the

exponent. The algorithm implied is polynomial in n and 1
ε (PTAS).

7.7 Constructing pure Nash equilibria

When a PNE exists all tables Ai, ∀i ∈ T are computed; we are able to use

these tables to construct a configuration that corresponds to a PNE. Note

that the collection of tables A = {Ai|i ∈ T } contains information about

all the PNE of the game instance. Since all PNE can be exponentially

many to the input size, it should suffice to have a structure that is bounded

polynomially to the input size. Consider the following definition.

Definition 17. Given a game G = (G,M), let SG be the set of all PNE. A

succinct description of SG is a string y such that |y| is polynomial in |G| and

SG = f(y) for some function f computable in time polynomial to |G|+ |y|.

We notice that A constitutes a succinct description of all pure Nash

equilibria (|A| is polynomial to the size of the game and the set of all PNE

can be computed in time polynomial in |G|+ |A|).
To construct a sample PNE, we perform a breadth-first iteration of the

bags beginning from the root. The key observation is that for each player

p ∈ V the action(s) that are part of a PNE configuration, are the ones that

maximize the table Ai of node i ∈ I such that p ∈ Xi and i has the minimum

distance from the root. The iteration ends when all vertices p ∈ V have been

encountered at least once. For each bag Xi ∈ T we need the configurations

C ∈ St(Xi) such that Ai(C) = |Vi|. These configurations can be marked

while computing the tables, so the algorithm does not have to iterate again

through the αw different elements. Then, a PNE is constructed by filling

in a table S, with |S| = |V |, the action suggested by the configuration that

maximizes the table Ai. While the algorithm proceeds lower, the table is

expanded by using the configurations that match with the current state

of the table. When this finishes, table S will consist of a configuration
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corresponding to a PNE. Observe that in the above procedure we do not

need to read any information from the players’ matrices Mp ∈M.

Theorem 21. Given a graphical game (G,M) and a tree decomposition

T of width w, there is an algorithm that constructs a PNE, if one exists,

or answers NO otherwise, in O(αw · w · |M|) time. Moreover, the same

algorithm computes a succinct description of all PNE.

Proof. We will describe a simple algorithm that, given the collection of tables

A after the execution of the algorithm, constructs a PNE in O(n) time. For

this, we use a table S, with |S| = n to represent the solution of the problem.

With Sp we denote the position of the table that is indexed by player p.

Begin at the root r of T and choose an arbitrary configuration C ∈ St(Xr)

such that Ar(C) = |V |. For each player p ∈ Xr we set Sp = Cp. Then

we iterate through the vertices of the tree decomposition in a breadth first

manner. This top-down iteration terminates when all vertices p ∈ V have

been visited at least once. Let Xj be the bag under consideration. Observe

that Xj possibly contains an unvisited vertex only if its parent Xi is a forget

node. Let this player be p ∈ Xj − Xi. We find configuration C ∈ St(Xj)

such that ∀u ∈ Xi, Cu = Su and Aj(C) = Ai(C\{Cp}) (remember that

Gi = Gj) and set Sp = Cp.

We assume that the maximizing configurations have been marked when

computing the values of the tables Ai and thus the enumeration at the root

does not need to go through all αw possible configurations. The procedure

at the children of forget nodes does not increase the time complexity: the

configuration C ∈ St(Xj) that intersects with S and contains additionally

action ap such that Aj(C) = Ai(C\{Cp}) can be found in a constant number

of steps (this can be arranged, e.g. by ordering the configurations that

maximize Aj lexicographically while the algorithm is executed). Therefore

the whole algorithm takes at most O(n) steps.

7.7.1 Max Payoff Pure Nash Equilibrium

Finally, we will consider the problem of computing a max payoff pure Nash

equilibrium. That is, a PNE where each individual receives the maximum

possible payoff. Consider the following parameterized problem:

w-MP-PNE-GG
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Input : G = (G,M), T tree decomposition of G, integer k.

Parameter : w - the treewidth of G.

Question: Is there a PNE C in G s.t. up(C) ≥ k, ∀p ∈ P?

It is shown here that this problem can also be solved by a fixed-parameter

algorithm when the number of available strategies is bounded by a constant.

This problem is only slightly harder than deciding the existence of a PNE; it

is dealt with by keeping payoff information for each vertex. This is achieved

by introducing a new family of tables that have one entry per player per

node of the tree decomposition. A table contains the maximum payoff a

player can receive in a PNE state. We denote this table as B〈i,p〉, where i is

a node of T with p ∈ Xi. We assume that all payoffs are integer to avoid

arithmetic precision difficulties that arise by treating real numbers. It is

obvious that in the case of leaf nodes we do not need to have any B table.

Let Xi be an introduce node, with child Xj and player p ∈ Xi − Xj .

Using the method presented in previous section we use Algorithm 2 for

each configuration C ∈ St(Xj), after we have computed βp(C). Then, for

C ∈ St(Xj) and ap ∈ βp(C) we take B〈i,p〉(C ∪ {ap}) to be the maximum

payoff for p with respect to Cp. This can be found during the computation

of βp(C). For a vertex u 6= p we take B〈i,u〉(C ∪ {ap}) to be the maximum

payoff of u when she plays Cu with respect to C ∪ {ap}. This value can be

found while βu(C ∪ {ap}) is computed at line 3 of Algorithm 2. For any

configuration such that Ai(C ∪{ap}) < |Vi| we take B〈i,u〉(C ∪{ap}) = −∞.

Note that here arises the following difficulty: nodes in Xj should take into

account their neighbors that are forgot, since probably not all strategies

from these players can be taken into account while looking for the value of

the maximum payoff. This will be tackled with at forget nodes.

Let Xi be a forget node, with child Xj and player p ∈ Xj − Xi. Let

StC(p) = {ap|ap ∈ St(p) and Aj(C ∪ {ap}) = |Vj |}. For u ∈ Xi and C ∈
St(Xi), we take B〈i,u〉(C) = maxap∈StC(p)B〈j,u〉(C ∪ {ap}). To tackle with

the problem of remembering the best reply strategies of forgotten players

we will use a simple coloring of the matrix Mu, using |St(u)| colors, for
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each player u ∈ Xi. When p is forgot, she colors the matrices of players in

N (p)∩Xj in the following way: Assume each player u of the game can color

the cells of their matrices corresponding to the available configurations over

their neighborhoods (headers of the columns) with |St(u)| different colors.

For configuration C ∈ St(Xi) and a player u ∈ Xi, let color ca correspond

to a ∈ St(u). Then, when p is forgot the columns corresponding to actions

in StC(p) are colored ca where a = Cu. This way, at introduce nodes, player

u takes into account the possible actions of her forgotten neighbors before

updating her maximum possible payoff. Note that more than one color is

allowed per column.

Let Xi be a join node, with children Xj1 and Xj2 . For p ∈ Xi we take

B〈i,p〉(C) = min{B〈j1,p〉(C), B〈j2,p〉(C)}. It is obvious that each player’s

maximum payoff is the minimum it may receive in each of the subgraphs

Gj1 , Gj2 .

Time complexity. At introduce nodes, extra steps are needed to compute

each table B〈i,u〉 for node Xi and player u ∈ Xi. These count to one step

per player since the values can be computed while executing Algorithm 2

and thus the complexity at introduce nodes does not increase. The same

argument holds for join nodes.

At forget nodes the algorithm might have to update the colors of the

matrix for every player in Xi. In the worst case, this would take
∑

u∈Xi
|Mu|.

Therefore, forget nodes have a worst case complexity that is similar to that

of introduce nodes. Even though more computational steps than the decision

algorithm is needed in this case, the general worst-case complexity remains

the same.

Finally, the construct algorithm can be modified to follow the maximiz-

ing B values for each player while computing a PNE. Before the execution

of the algorithm the available actions for each player p ∈ V should be or-

dered according to the value in the table B〈i,p〉 where i is either the root or

the node where p is forgot (in other words, the last node in the bottom-up
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iteration where p appears). Of course, this counts only for configurations

C ∈ St(Xi) such that Ai(C) = |Vi|.

Theorem 22. Given a graphical game (G,M) and a tree decomposition T
of width w, there is an algorithm that constructs a maximum payoff PNE,

if one exists, or answers NO otherwise, in O(αw · w · |M|) time.

8 Conclusions

We provide a novel approach for computing pure Nash equilibria of a graph-

ical game that is polynomial for games of bounded treewidth. Our method

is based directly on the combinatorics of the problem, in contrast to pre-

vious results. When compared to the algorithm of [12], it improves the

time bound by a removing a factor of maxp∈P |N (p)| from the exponent.

Even though we prove that the problem is W [1]-Hard in the general case,

our algorithm is fixed-parameter tractable when the available strategies per

player are bounded. In addition, we describe how to solve the problem in

polynomial time for games of O(log n) treewidth, improving on the previous

results, first by dropping the bounded neighborhood assumption and second

by improving the time complexity in the bounded case. Finally, construct-

ing a sample, or the maximum payoff, pure Nash equilibrium is also possible

without additional computational effort.

8.1 Graphical vs action-graph games

After presenting our algorithm in Section 7, a fruitful criterion for com-

parison of the two succinct game representations arises. The relation of

treewidth to the computation of pure Nash equilibria is different for each

model and thus there appears to be an interesting dichotomy. From Theo-

rem 2, AGGs are intractable in the general case, even if the treewidth of the

input graph is 1. Note that in the proof of the theorem each player has only

two (constant) available strategies. However, our results imply differently

for graphical games.

In the light of Theorem 18, computing a PNE can be accomplished in

linear time for classes of games with bounded treewidth and a bounded

54



number of available actions per player. This implies a linear algorithm for

these restricted cases and thus graphical games of constant treewidth allow

for efficient PNE computation. On the other hand, we remind that the

computation of mixed Nash equilibria for both models is PPAD-Hard [11,

13]. The computational properties of these models rely on the way, and thus

the size, of representation. In conclusion, one might say that graphical games

are computationally more attractive than action-graph games (especially

when the target solution is pure Nash equilibria).

8.2 Future directions

There are several interesting problems that remain open. We outline a few

as an epilogue to this thesis.

• Is computing a PNE of a symmetric action-graph game fixed-parameter

tractable (perhaps for restricted classes with some value bounded)?

Would it be efficient to use an approach similar to the one used in this

thesis?

• When there is no PNE for the input game, is our algorithm able to

find the maximum subgraph that admits a PNE? If not, how is the

computation of this subgraph possible?

• Could the time complexity of the suggested algorithm be improved, or

is it tight?

• Does the fixed-parameter tractability of deciding a PNE help to attain

FPT results for other problems by modeling them as PNE computa-

tions of graphical games? Note that in such a reduction the number

of available strategies per player should be bounded. In addition, the

max payoff PNE computation can also be used and might be more

suitable for optimization problems. Of course having a proof that

social welfare optimizing PNE is FPT would give more value to the

explained procedure. In any case, such a methodology has to deal with

a number of non-trivial matters, such that the size of the matrices of
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a graphical game should be exponential only in treewidth, a difficulty

we also dealt with for the proof of Theorem 16.
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