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Abstract

Sensitivity analysis in hidden Markov models (HMMs) is usually performed by means of a pertur-
bation analysis where a small change is applied to the model parameters, upon which the output of
interest is re-computed. Recently it was shown that a simplemathematical function describes the re-
lation between HMM parameters and an output probability of interest; this result was established by
representing the HMM as a (dynamic) Bayesian network. Up till now, however, no special purpose
algorithms existed for determining this function. In this paper we present a new and efficient algo-
rithm for computing sensitivity functions in HMMs; it is thefirst algorithm to this end which exploits
the recursive properties of an HMM, while not relying on a Bayesian network representation.

1 Introduction

Hidden Markov models (HMMs) are frequently applied statistical models for describing processes that
evolve over time. Applications of hidden Markov models are found in areas such as speech recogni-
tion, machine translation and bioinformatics (see [1] for an overview). An HMM can be represented
by the simplest type of dynamic Bayesian network [2, 3], which entails that in addition to the algo-
rithms associated with HMMS, all sorts of algorithms available for (dynamic) Bayesian networks can be
straightforwardly applied to HMMs as well.

HMMs specify a number of parameter probabilities, which arebound to be inaccurate to at least
some degree. Sensitivity analysis is a standard technique for studying the effects of parameter inaccu-
racies on the output of a model. In the context of HMMs, sensitivity analysis is usually performed by
means of a perturbation analysis where a small change is applied to the parameters, upon which the
output of interest is re-computed [4, 5]. For Bayesian networks, a simple mathematical function exists
that describes the relation between one or more network parameters and an output probability of inter-
est. Various algorithms are available for computing the constants of this so-called sensitivity function.
Recently, it was shown that similar functions describe the relation between model parameters and output
probabilities in HMMs [6]. For computing the constants of these functions, it was suggested to represent
the HMM as a dynamic Bayesian network, unrolled for a fixed number of time slices, and to use the
aforementioned algorithms for computing the constants of the sensitivity function. The drawback of this
approach is that the repetitive character of the HMM, with the same parameters occurring for each time
step, is not exploited in the computation of the constants. As such, using standard Bayesian network
algorithms may not be the most efficient approach to determining sensitivity functions for HMMs. In a
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previous workshop paper [7], we introduced the ideas behinda new algorithm for computing the con-
stants of the sensitivity function in HMMs. In this paper we present the details of this efficient algorithm,
which exploits the recursive properties of an HMM. To the best of our knowledge, it is the first algorithm
for computing HMM sensitivity functions that does not rely on a Bayesian network representation.

This paper is organised as follows. In Section 2, we present some preliminaries concerning HMMs,
Bayesian networks and sensitivity functions. In Section 3,we discuss how to compute sensitivity func-
tions that describe the effects of variation in the initial parameters of an HMM. For variation in transition
and observation parameters we need a more complex procedure; the general idea behind this procedure
is described in Section 4, whereas details are provided in Section 5. We discuss relevant related work in
Section 6 and conclude the paper with directions for future research in Section 7.

2 Preliminaries

In this section we present some preliminaries concerning Bayesian networks, hidden Markov models,
and sensitivity analysis. Throughout this paper, variables will be denoted by capital letters, and their
values by lower case.

2.1 Bayesian networks

A Bayesian networkis a discrete, static statistical model for representing and reasoning about a domain
of application. In essence, a Bayesian network is a concise representation of the joint probability distri-
bution on the set of statistical variables relevant to the application domain [8, 9]. A Bayesian network
B combines an acyclic directed graphG = (VG, AG), representing the statistical variables and their
dependencies by means of nodesVG and arcsAG, with a set of conditional probability distributions
Θ = {p(V | πV ) | V ∈ VG} that describe the strengths of the various dependences between a nodeV
and its immediate predecessorsπV in the graph. More formally, the Bayesian network defines theunique
distribution

p(VG) =
∏

V ∈VG

p(V | πV )

onVG, that respects the probabilistic independences read from the digraphG by means of the d-separation
criterion [9]. As such, the network provides for computing any prior or posterior probability over its
variables. Computing probabilities from Bayesian networks, also known as inference, is in general NP-
hard [10]. However, inference in a Bayesian network whose directed graph takes the form of a tree, where
every node has at most one parent, requires a number of computations which is linear in the number of
nodes [9].

A dynamic Bayesian networkcan cope with discrete-time evolving processes by repeating and con-
necting a Bayesian network for a number of time steps, ortime slices[2]. The relations among the
variables within a time slice are taken to be instantaneous,whereas the relationships across time slices
are considered temporal.

2.2 Hidden Markov models

In this section we review the necessary background on hiddenMarkov models (HMMs), their relation to
dynamic Bayesian networks and the recursive properties that underlie inference in HMMs.
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Figure 1: A hidden Markov model representation (a) and its dynamic Bayesian network representation,
unrolled for three time slices (b).

2.2.1 Definition

A hidden Markov model [11, 12] consists of a discrete time Markov chain, repeating a single hidden
variableX with a finite number of states. The chain is stationary, i.e. the probability of transitioning
from one state to another is time-invariant. The state of thehidden variable in each time step can be
indirectly observed by some memoryless test or sensorY . The uncertainty in the discrete test or sensor
output is captured by a set of observation probabilities, which are also time-invariant. Generalisations
of HMMs with continuous variables exist, but are not considered here. More formally, an HMM is a
statistical modelH = (X,Y,A,O,Γ), where

• variableX hasn ≥ 2 states, denoted byxi, 1 ≤ i ≤ n;

• variableY hasm ≥ 2 states, denoted byyj , 1 ≤ j ≤ m;

• transition matrixA has entriesai,j = p(xj | xi), 1 ≤ i, j ≤ n;

• observation matrixO has entriesoi,j = p(yj | xi), 1 ≤ i ≤ n, 1 ≤ j ≤ m;

• initial vectorΓ has entriesγi = p(xi), 1 ≤ i ≤ n.

Figure 1(a) shows an example HMM whereX has two states, andY three.
An HMM can be seen as a special case of a dynamic Bayesian network unrolled for a number of time

slices (see for details [2, 3]). The time slice under consideration is explicitly indicated by a superscript for
the variables and their values. More specifically, an HMM is a(dynamic) Bayesian networkH = (G,Θ),
where

• VG = {Xk, Y k | 1 ≤ k ≤ t} captures the two HMM variablesX andY repeated overt time
steps;

• AG = {Xk → Y k | 1 ≤ k ≤ t} ∪ {Xk−1 → Xk | 2 ≤ k ≤ t} captures the Markov property of
the chain and the independence of the observations;

• Θ, the set of conditional probability distributions, is a union of

{p(xk
j | xk−1

i ) = ai,j | 2 ≤ k ≤ t, 1 ≤ i, j ≤ n},
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{p(yk
j | xk

i ) = oi,j | 1 ≤ k ≤ t, 1 ≤ i ≤ n, 1 ≤ j ≤ m}, and

{p(x1
i ) = γi | 1 ≤ i ≤ n}

Figure 1(b) shows a dynamic Bayesian network representation of the HMM from Figure 1(a), unrolled
for three time slices.

In the remainder of this paper we use the notationye

t to indicate actual evidence for variableY in
time slicet, andye

ti:tj to denote a sequence of observationsye

ti , . . . ,ye

tj .

2.2.2 Inference

Inference in temporal models typically amounts to computing the marginal distribution overX at time
t, given the evidence up to and including timeT , that isp(Xt | ye

1:T ). If T = t, this inference task is
known asfiltering, T < t concernspredictionof a future state, andsmoothingis the task of inferring
the past, that isT > t. For exact inference in an HMM, the efficientForward-Backward algorithmis
available (see for details [13, chapter 15]). This algorithm computes for all hidden statesi at timet ≤ T ,
the following two probabilities:

• forward probabilityF (i, t) = p(xt
i, ye

1:t), and

• backward probabilityB(i, t) = p(ye

t+1:T | xt
i)

resulting in

p(xt
i | ye

1:T ) =
p(xt

i, ye

1:T )

p(ye

1:T )
=

p(xt
i, ye

1:T )
n

∑

j=1

p(xt
j , ye

1:T )

=
F (i, t)·B(i, t)

n
∑

j=1

F (j, t)·B(j, t)

(1)

For T < t, the algorithm can be applied by takingB(i, t) = 1 and adopting the convention that the
configuration of an empty set of observations isTRUE, i.eye

T+1:t ≡ TRUE, resulting in

F (i, t) = p(xt
i, ye

1:t) = p(xt
i, ye

1:T , TRUE) = p(xt
i, ye

1:T )

The three standard inference tasks of filtering, predictionand smoothing in hidden Markov models
are all concerned with inferring the probability of a hiddenstate from a sequence of observations. Two
other interesting tasks are the prediction of future observations, i.e.p(ye

t | ye

1:T ) for T < t, and finding
the most probable explanation, that is,arg maxx1:t

i
p(x1:t

i | ye

1:t). We will disregard the latter and briefly

discuss the former. We note that the probabilityp(ye

t | ye

1:T ), T < t, can be computed as the fraction of
the two probabilitiesp(ye

t ye

1:T ), T < t, andp(ye

1:T ); these, in turn, can be straightforwardly computed
from forward probabilities:

p(ye

1:t) =

n
∑

i=1

p(xt
i ye

1:t) =

n
∑

i=1

F (i, t)

Note that if t > T + 1 then p(ye

t ye

1:T ) can be computed by setting all inbetween observationsye

k,
T < k < t, to TRUE as above.

The Forward-Backward algorithm has aO(n2 ·max{t, T}) computational complexity, wheren is the
number of hidden states ofX. Alternatively, the HMM can be represented as a dynamic Bayesian net-
work unrolled formax{t, T} time slices, upon which standard Bayesian network inference algorithms
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can be used. In fact, Smyth, Heckerman and Jordan [3] have shown that the Forward-Backward algo-
rithm can be seen as a special case of Pearl’s Belief propagation algorithm for inference in Bayesian
networks [9].

2.2.3 Recursive probability expressions

In this paper we present an algorithm for computing the coefficients of sensitivity functions for HMMs.
This algorithm resembles the Forward-Backward algorithm for inference in HMMs and similarly exploits
the repetitive character of the model parameters of an HMM. In this section we review the recursive
expressions upon which the Forward-Backward algorithm is based (see e.g. [13, chapter 15]) and which
are important for understanding the remainder of the paper.

Filtering We first consider a probabilityp(xt
v, ye

1:t) for a specific statev of X, which we will call a
filter probability. Note that this probability is the same as the forward probability F (v, t) in the Forward-
Backward algorithm.

For time slicet = 1 we simply have that

p(x1
v, ye

1) = p(ye

1 | x1
v)·p(x1

v) = ov,e ·γv

wheree
 corresponds to the state ofY that is actually observed at time1. For time slicest > 1 we

exploit the fact that, givenXt, Y t is independent ofY 1, . . . , Y t−1, writtenY t ⊥ Y 1:t−1 | Xt, and find

p(xt
v, ye

1:t) = p(xt
v, ye

1:t−1, ye

t) = p(ye

t | xt
v)·p(xt

v, ye

1:t−1)

The first factor in the above product corresponds to an observation parameter; conditioning the second
factor on then states ofXt−1 and exploiting the independenceXt ⊥ Y 1:t−1 | Xt−1, we find

p(xt
v, ye

1:t−1) =

n
∑

z=1

p(xt
v | xt−1

z )·p(xt−1
z , ye

1:t−1) =

n
∑

z=1

az,v ·p(xt−1
z , ye

1:t−1)

Taken together, we find forF (v, t) = p(xt
v, ye

1:t) the recursive expression

F (v, t) =















ov,e ·γv if t = 1

ov,et ·
n

∑

z=1

az,v ·F (z, t − 1) if t > 1
(2)

Prediction We now consider a probabilityp(xt
v, ye

1:T ) with t > T . In Section 2.2.2 we noted that
the Forward-Backward algorithm can be applied to compute such prediction probabilities, basically by
prolonged filtering, i.e. computingF (v, t) with an empty set of evidence forY T+1:t. This absence of
evidence can be implemented by replacing, fort > T in Equation 2, the termov,et by 1.

A special case of the prediction task, withT = 0, is the computation of a prior marginalp(xt
v).

This probability can be computed as a filter probability withabsence of evidence for allY 1:t. Since the
prediction task can thus be seen as a special case of the filtering task, we will refrain from explicitly
considering prediction as a separate task in the remainder of this paper.
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Smoothing Finally, we consider a probabilityp(xt
v, ye

1:T ) with t < T , which we will call asmoothing
probability. By exploiting the independenceY t+1:T ⊥ Y 1:t | Xt, we have that

p(xt
v, ye

1:T ) = p(xt
v, ye

1:t, ye

t+1:T ) = p(ye

t+1:T | xt
v)·p(xt

v, ye

1:t) (3)

The second term in this product is again a filter probability.We now further focus on the first term, which
is the same as the backward probabilityB(v, t) in the Forward-Backward algorithm. By conditioning
this term onXt+1 and exploiting the independencesXt ⊥ Y t+1:T | Xt+1 andY t+1 ⊥ Y t+2:T | Xt+1

for T > t + 1, we find that

p(ye

t+1:T | xt
v) =

n
∑

z=1

p(ye

t+1 | xt+1
z )·p(ye

t+2:T | xt+1
z )·p(xt+1

z | xt
v)

=
n

∑

z=1

oz,et+ ·av,z ·p(ye

t+2:T | xt+1
z )

For t + 1 = T , this results in

p(ye

T :T | xT−1
v ) =

n
∑

z=1

p(ye

T | xT
z )·p(xT

z | xT−1
v ) =

n
∑

z=1

oz,eT ·av,z

Taken together, we find forB(v, t) = p(ye

t+1:T | xt
v) the recursive expression

B(v, t) =























n
∑

z=1

oz,eT ·av,z if t = T − 1

n
∑

z=1

oz,et+ ·av,z ·B(z, t + 1) if t < T − 1

(4)

2.3 Sensitivity analysis

The value of any probability of interest in a statistical model depends on the probability parameters
specified for the model. To study the robustness of the computed output to possible inaccuracies in these
parameters, asensitivity analysiscan be performed.

2.3.1 Sensitivity analysis in Bayesian networks

In the context of Bayesian networks, sensitivity analysis has been studied extensively [14, 15, 16, 17,
18, 19, 20, 21]. In a Bayesian network, a simple functional relationship exists between any parameter
and any output probability of interest. This functional relationship is called thesensitivity function. More
specifically, anN -waysensitivity function, describing the effect of simultaneously varyingN parameters,
is either anN -variate polynomial or anN -variate rational function, where each variable has degreeat
most one. For example, the3-way sensitivity function relating a joint or marginal output probabilityp(v)
for a (set of) variable(s)V to three network parametersθi, i = 1, 2, 3, has the following form:

p(v)(θ1, θ2, θ3) = c111 ·θ3 ·θ2 ·θ1 + c110 ·θ3 ·θ2 + c101 ·θ3 ·θ1 + c011 ·θ2 ·θ1 +

+ c100 ·θ3 + c010 ·θ2 + c001 ·θ1 + c000
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wherecijk are constants with respect to the parameters. This form holds under the standard assumption
of proportional co-variation of the other parameters from the same (conditional) distribution. That is, if a
parameterθ = p(vj | π) for a variableV is varied, then for eachi 6= j, p(vi | π)(θ) = p(vi | π)· 1−θ

1−p(vj |π) .

For binary-valuedV, co-variation simplifies top(vi | π)(θ) = 1 − θ.
A sensitivity function for a posterior probability of interest is a quotient of two polynomials, since

p(v | e) = p(v e)/p(e), and hence a rational function.
To determine anN -variate sensitivity function, an exponential number of2N coefficients need to be

computed. This can be either done by computing the output probability of interest for2N different com-
binations of values for theN parameters, and solving the resulting system of2N linear equations [18].
Note that this approach requires us to perform inference an exponential number of times, and returns
nothing more than the sensitivity function for the given probability of interest. A more efficient approach
is to use specially tailored versions of the junction tree inference algorithm [17, 20]. Approaches that
assume allN parameters are taken from the same conditional probabilitydistribution are even more
efficient [16], but irrelevant for this paper.

2.3.2 Sensitivity analysis in Hidden Markov models

In the context of HMMs, sensitivity analysis is usually performed by means of a perturbation analysis
where a small change is applied to the parameters, upon whichthe output of interest is re-computed [4, 5].
The main difference between sensitivity analysis in Bayesian networks and that in hidden Markov mod-
els in essence is, that a single parameter in an HMM may occur multiple times when multiple time slices
are considered. A one-way sensitivity analysis in an HMM, therefore, amounts to anN -way analysis in
its Bayesian network representation, whereN equals the number of time slices under consideration. It is
therefore no surprise that for HMMs sensitivity functions are similar to those for Bayesian networks [6].
The difference with the generalN -way function for Bayesian networks is that theN parameters are
constrained to all be equal, which reduces the number of required constants from exponential to polyno-
mial in N . For example, if the above mentioned parametersθi, i = 1, 2, 3, represent a single transition
parameterθ ≡ θ1 = θ2 = θ3 in time slices1, 2, and3, then the sensitivity function for output probability
p(v) reduces to

p(v)(θ) = c3 ·θ
3 + c2 ·θ

2 + c1 ·θ + c0

for constantsci, i = 0, . . . , 3.
We now summarise the known results for sensitivity functions in HMMs [6, 22]. For the joint prob-

ability of a hidden state and evidence as a function of a modelparameterθ, we have the following
univariate polynomial sensitivity function:

p(xt
v, ye

1:T )(θ) =

N
∑

i=0

ci ·θ
i (5)

where

N =























t − 1 if θ = ar,s andt ≥ T
T if θ = or,s andv = r
T − 1 if θ = or,s andv 6= r, or θ = ar,s, t < T andv = r
T − 2 if θ = ar,s, t < T andv 6= r
1 if θ = γr
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and the coefficientsci are constant with respect to the various parameters. Coefficientsci do depend on
the hidden statev and time slicet under consideration; therefore we will often writect

v,i rather thanci in
the remainder of this paper.

For prior marginalsp(xt
v) overX as a function of a model parameterθ, we have the above form with

N = 0 for θ = or,s, N = t − 1 for θ = ar,s, andN = 1 for θ = γr. For the probability of evidence
p(ye

1:T ), we have thatN = T for observation parameters,N = T − 1 for transition parameters, and
againN = 1 for initial parameters.

3 Sensitivity of HMM output to initial parameter variation

We saw in the previous section that one-way sensitivity functions for HMMs are polynomial in the
parameter under consideration; in addition, we know the degree of the functions. However, we have yet
to establish what the coefficients of these polynomials are and how to compute them. We will demonstrate
in this section that since initial parameters are only used in the first time slice, it is quite straightforward
to compute the coefficients of a sensitivity function for model parameterθγ = γr. We will consider the
sensitivity functions for the inference tasks mentioned inSection 2.2.2.

For ease of exposition concerning the co-variation of parameters, we assume in the remainder of this
section that all variables are binary-valued, i.e.n = m = 2. Note thatγv, the initial parameter associated
with the state of interestv for Xt, now corresponds to eitherθγ (if v = r) or its complement1 − θγ (if
v 6= r).

Filtering From the recursive expression for the filter probability in Equation 2 it follows that forT =
t = 1,

p(x1
v, ye

1)(θγ) =

{

ov,e ·θγ + 0 if v = r

−ov,e ·θγ + ov,e if v 6= r

and forT = t > 1,

p(xt
v, ye

1:t)(θγ) =
2

∑

z=1

ov,et ·az,v ·p(xt−1
z , ye

1:t−1)(θγ)

From Equation 5 we have that the polynomialp(xt
v, ye

1:t)(θγ) requires two coefficients:ct
v,1 andct

v,0.
Since each initial parameter is used only in time slice 1, as the above expressions demonstrate, the coef-
ficients forT = t > 1 can be established through a simple recursion for eachN = 0, 1:

ct
v,N =

2
∑

z=1

ov,et ·az,v ·c
t−1
z,N

with c1
v,0 = 0 if v = r, andc1

v,0 = ov,e otherwise; in additionc1
v,1 = ov,e if v = r, andc1

v,1 = −ov,e

otherwise.

Smoothing In caseT > t, we have from Equation 3 for the smoothing probability that we need to
multiply the functionsp(xt

v, ye

1:t)(θγ) andp(ye

t+1:T | xt
v)(θγ). SinceY t+1:T ⊥ X1 | Xt for 1 ≤ t < T ,

the probabilityp(ye

t+1:T | xt
v) is not affected by changes in the initial parameters. Hence the function

p(ye

t+1:T | xt
v)(θγ) is simply a constant probability, which can be computed using standard inference.
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Predicting future observations In Section 2.2.2 we mentioned the prediction of future observations
as another interesting inference task. We showed that the probability of a certain observation at time
t can be computed straightforwardly by using forward (filter)probabilities for time slices1 throught.
The coefficients for the sensitivity functionp(ye

t | ye

1:T )(θγ), T < t, can therefore be established by
computing the coefficients of the functionsp(xt

v, ye

1:t)(θγ) for all n hidden statesv, and summing the
coefficients corresponding to terms of the same degree.

For determining sensitivity of output probabilities to variations in transition parameters or observation
parameters, we need a more complex procedure, which is introduced in the next section.

4 The Coefficient-Matrix-Fill procedure

To compute the coefficients of the polynomial sensitivity function in Equation 5 for transition and obser-
vation parameters, we designed a procedure which basicallyconstructs a set of matrices containing these
coefficients for each hidden state and each time slice. We call this procedure theCoefficient-Matrix-Fill
procedure. In this section we describe the basic idea of the procedure, the operations it uses and discuss
its complexity.

4.1 The basic idea

For sensitivity functionsp(xt
v, ye

1:t)(θ) related to a filter probability, we have from Equation 5 that we
need to establish coefficientsct

v,j , j = 0, . . . , N , whereN = t−1 for a transition parameterθa andN =
T for an observation parameterθo. To compute these coefficients, we construct a series of “Forward”
matricesF k, k = 1, . . . , N + 1, with the following properties:

• each matrixF k has sizen × k for θ = θa, or sizen × (k + 1) for θ = θo;

• a rowi in F k contains exactly the coefficients for the functionp(xt
i, ye

1:t)(θ);

• a columnj in F k contains all coefficients of the(j − 1)th-order terms of then polynomials.

More specifically, entryfk
i,j equals the coefficientck

i,j−1 of the sensitivity functionp(xk
i , ye

1:k)(θ). The
Coefficient-Matrix-Fill procedure therefore in fact computes the coefficients for the sensitivity functions
for all n hidden states andall time slices up to and includingt.

From Equation 3 we have that for sensitivity functions related to a smoothing probability, we require
the computation of a series of “Backward” matricesBk, in addition to the forward matrices for the
filter component. More specifically, matricesBk will serve to compute the coefficients of the function
p(ye

t+1:T | xt
v)(θ). This function is again a univariate polynomial for each model parameter.1

Proposition 4.1. Let H = (X,Y,A,O,Γ) be an HMM as before. Consider a probability of interest
p(ye

t+1:T | xt
v) with T > t, and letθ be a parameter fromA, O, or Γ in H . Then, the one-way sensitivity

functionp(ye

t+1:T | xt
v)(θ) equals

p(ye

t+1:T | xt
v)(θ) = dt

v,N ·θN + . . . + dt
v,1 ·θ + dt

v,0

1Note that this may seem counter-intuitive as it concerns thefunction for aconditionalprobability and should therefore be a
quotient of polynomials; sinceXt is an ancestor ofY t+1 . . . Y T , however, the factorisation ofp(ye

t+1:T , xt
v) includesp(xt

v),
which cancels out the denominator.
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where coefficientsdt
v,N , . . . ,dt

v,0 are constants with respect toθ, and

N =

{

T − t if θ = or,s or θ = ar,s

0 if θ = γr

Proof. The fact that the function under consideration is a univariate polynomial inθ, follows directly
from the recursive expression for the backward probabilityin Equation 4. Moreover, from Equation 3
we have that the degree ofp(xt

v, ye

1:T )(θ) equals the sum of the degrees ofp(ye

t+1:T | xt
v)(θ) and

p(xt
v, ye

1:t)(θ). The degrees of bothp(xt
v, ye

1:T )(θ) andp(xt
v, ye

1:t)(θ) are given in Equation 5; the de-
gree ofp(ye

t+1:T | xt
v)(θ) can be directly established as their difference.

For matricesBk, the Coefficient-Matrix-Fill procedure should again establish the coefficients of a
univariate polynomial function inθ; we assume thatθ is either a transition parameter or an observation
parameter, since initial parameters were already discussed in Section 3. To compute these coefficients
dt

v,j , j = 0, . . . , N , we constructN + 1 = T − t + 1 matricesBk, k = t, . . . , T . Each matrixBk has
sizen × (T − k + 1), where entrybk

i,j equals the coefficientdk
i,j−1 of the functionp(ye

k+1:T | xk
v)(θ).

4.2 Initialisation and fill operations

The Coefficient-Matrix-Fill procedure starts by filling theentries of matrixF 1 in accordance with the
t = 1 case in the recursive expression for filter probabilities (Equation 2); matrixBT is filled with all
1’s. All other matricesF k, k > 1, andBk, t ≤ k < T , are initialised with zeroes and subsequently filled
with their correct contents by the procedure.

In Section 5 it will become clear that the matricesF k for k > 1 are built solely from the entries in
F k−1, the transition matrixA and the observation matrixO; a similar observation applies to matrices
Bk for k < T . We will now discuss the basic operations required to fill thematrices. We focus on
the “Forward” matricesF k, with similar observations applying to the “Backward” matricesBk. The
Coefficient-Matrix-Fill procedure basically implements the recursive steps in the various formulas from
Section 2.2.3 by transitioning from matrixF k to F k+1. To illustrate this transition, consider an arbitrary
(k − 1)th-degree polynomial inθ,

p(θ) = ck−1 ·θ
k−1 + . . . + c1 ·θ + c0

and let the coefficients of this polynomial be represented inrow i of matrixF k, i.e.fk
i,. = 〈c0, . . . , ck−1〉.

In transitioning from matrixF k to F k+1, three types of operation (or combinations thereof) can be
applied top(θ):

(I) summation with another polynomialp′(θ) of the same degree;

(II) multiplication with a constantd;

(III) multiplication with θ.

Case (I) just requires summing the coefficients of the same order, i.e. adding entries with the same
column number. In case (II), the resulting polynomial is represented in rowi of matrixF k+1 by fk+1

i,. =

〈d · c0, . . . , d · ck−1, 0〉; note thatF k+1 has an additional columnk + 1, which is unaffected by this
operation. In case (III) the resultingkth-degree polynomial is represented in rowi of matrix F k+1 by
fk+1

i,. = 〈0, c0, . . . , ck−1〉; this operation basically amounts to shifting entries fromF k one column to the
right. The global idea behind the Coefficient-Matrix-Fill procedure is illustrated in Figure 2.
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· or,e

· − or,e

· or,e ·as,r

· os,e ·as,s
· os,e

(

1 c1

v,0

r or,e · γr

s os,e · γs

) (

2 c2

v,0 c2

v,1

r +
s

)

. . .

(

t ct
v,0 ct

v,1 . . . ct
v,t−1

r 0 0 . . . 0
s 0 0 . . . 0

)

1

Figure 2: An example of transitioning from matrixF 1 to F 2 in the Coefficient-Matrix-Fill procedure;
here constants of the sensitivity function relating a filterprobability to a transition parameterθa = ar,s

are computed.

4.3 Posterior probabilities

Recall that the inference tasks of filtering, prediction andsmoothing actually concern the computation
of posterior probabilities. Since a posterior probabilityp(xt

i | ye

1:T ) can be immediately established
from p(xt

i, ye

1:T ) andp(ye

1:T ) =
∑n

j=1 p(xt
j , ye

1:T ) (see Equation 1), the matrices constructed by the
Coefficient-Matrix-Fill procedure contain all information for establishing the sensitivity function for the
probability of evidence, and hence for the sensitivity function for a posterior probability.

4.4 Complexity

In caseT ≤ t, the Coefficient-Matrix-Fill procedure fills at mostt+1 matrices of increasing sizesn×k,
k = 1, . . . , t + 1. Each matrix contains the coefficients for the functionsp(xk

i , ye

1:k)(θ) for all i, so
the procedure computes the coefficients for the sensitivityfunctions forall hidden states andall time
slices up to and includingt. If we are interested in only one specific time slicet, then we can exploit the
fact that each matrixF k only requires information stored in matrixF k−1, and therefore save space by
storing only two matrices at all times. In caseT > t, the Coefficient-Matrix-Fill procedure in addition
fills T − t + 1 matrices of increasing sizesn × k, k = 1, . . . , T − t + 1.

The runtime complexity for a straightforward implementation of the algorithm isO(n2 ·max{t, T}2),
which ismax{t, T} times that of the Forward-Backward algorithm. This is due tothe fact that per hidden
state we need to computek numbers per time step rather than a single one.

5 Sensitivity to transition and observation parameters

In this section we describe in detail how the Coefficient-Matrix-Fill procedure computes the coefficients
of one-way sensitivity functions for transition parameters and for observation parameters. For ease of
exposition concerning the co-variation of parameters, we again assume in the remainder of this section
that all variables are binary-valued, i.e.n = m = 2.
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5.1 Sensitivity of filtering to transition parameter variat ion

In this section we consider sensitivity functionsp(xt
v, ye

1:t)(θa) for a filter probability andtransition
parameterθa = ar,s. From the recursive expression for filter probabilities (Equation 2), it follows that
for t = 1 we have a constant:

p(x1
v, ye

1)(θa) = ov,e ·γv (6)

and fort > 1,

p(xt
v, ye

1:t)(θa) = ov,et ·

2
∑

z=1

az,v(θa)·p(xt−1
z , ye

1:t−1)(θa)

Recall thatθa = ar,s; therefore, in the above formula,ar,v(θa) equalsθa for v = s and1− θa for v 6= s;
az,v for z 6= r is independent ofθa. As a result we conclude that fort > 1,

p(xt
v, ye

1:t)(θa) = (7)






ov,et ·θa ·p(xt−1
r , ye

1:t−1)(θa) + ov,et ·ar,v ·p(xt−1
r , ye

1:t−1)(θa) if v = s

ov,et ·(1 − θa)·p(xt−1
r , ye

1:t−1)(θa) + ov,et ·ar,v ·p(xt−1
r , ye

1:t−1)(θa) if v 6= s

wherer denotes the state ofX other thanr.
From Equation 5, we have that the polynomialp(xt

v, ye

1:t)(θa) requirest coefficients:ct
v,N , N =

0, . . . , t− 1. To compute these coefficients, the Coefficient-Matrix-Fill procedure builds upon Equations
6 and 7 above to fill its matrices. We will now describe the details of the fill contents of the matrices.

Fill contents: initialisation Then × 1 matrix F 1 is initialised by setting, fori = 1, 2, f1
i,1 = oi,e ·γi.

The remaining matricesF k of sizen × k, 2 ≤ k ≤ t, are initialised by filling them with zeroes.

Fill contents: F k, k = 2, . . . , t Columnj of matrix F k should be filled using elements from thejth
column ofF k−1 that are summed or multiplied with a constant, and elements from the (j − 1)th column
of F k−1 that are multiplied withθa. More specifically, following Equation 7, positionj in row i of matrix
F k, fk

i,j , is filled with

oi,ek ·(fk−1
r,j−1 + ar,i ·f

k−1
r,j ) if i = s and1 < j < k

oi,ek ·(−fk−1
r,j−1 + fk−1

r,j + ar,i ·f
k−1
r,j ) if i 6= s and1 < j < k

For j = 1, these general cases are simplified by settingfk−1
r,j−1 = 0. This boundary condition captures

the property that entries in the first column correspond to coefficients of the zero-order terms of the
polynomials and can therefore never result from a multiplication withθa. Similarly, since the coefficients
for columnj = k, k > 1, canonly result from multiplication byθa, we setfk−1

. ,j = 0 in that case.

Example 5.1. Consider an HMM with binary-valued hidden stateX and binary-valued evidence vari-
ableY . Let Γ = [0.20, 0.80] be the initial vector forX1, and let transition matrixA and observation
matrixO be as follows:

A =

[

0.95 0.05
0.15 0.85

]

andO =

[

0.75 0.25
0.90 0.10

]
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Suppose we are interested in the sensitivity functions for the two states ofX3 as a function of transition
parameterθa = a2,1 = p(xt

1 | xt−1
2 ) = 0.15, for all t > 1. Suppose the following sequence of observa-

tions is obtained:y1
, y2

 andy3
. To compute the coefficients for the sensitivity functions,the following

matrices are constructed by the Coefficient-Matrix-Fill procedure:

F 1 =

[

o1,2 ·γ1

o2,2 ·γ2

]

=

[

0.25·0.20
0.10·0.80

]

=

[

0.05
0.08

]

F 2 =

[

o1,1 ·a1,1 ·f
1
1,1 o1,1 ·f

1
2,1

o2,1 ·(f
1
2,1 + a1,2 ·f

1
1,1) −o2,1 ·f

1
2,1

]

=

=

[

0.75·0.95·0.05 0.75·0.08
0.90·(0.08 + 0.05·0.05) −0.90·0.08

]

=

[

0.03563 0.060
0.07425 −0.072

]

and finally,

F 3 =

[

o1,1 ·a1,1 ·f
2

1,1 o1,1 ·(f
2

2,1 + a1,1 ·f
2

1,2) o1,1 ·f
2

2,2

o2,1 ·(f
2

2,1 + a1,2 ·f
2

1,1) o2,1 ·(−f2

2,1 + f2

2,2 + a1,2 ·f
2

1,2) −o2,1 ·f
2

2,2

]

=

=

[

0.02538 0.09844 −0.0540
0.06843 −0.12893 0.0648

]

We now find for example fromF 3 that

p(x3
1, ye

1:3)(θa) = 0.02538 + 0.09844·θa − 0.054·θ2
a

and fromF 2 that

p(x2
2, ye

1:2)(θa) = 0.07425 − 0.072·θa

Likewise, by summing column entries, we can establish the coefficients for the probability of evidence
functions:

p(ye

1:3)(θa) = (f3
1,1 + f3

2,1) + (f3
1,2 + f3

2,2)·θa + (f3
1,3 + f3

2,3)·θ
2
a

and

p(ye

1:2)(θa) = (f2
1,1 + f2

2,1) + (f2
1,2 + f2

2,2)·θa

Together these give the following sensitivity functions for two filtering tasks:

p(x3
1 | ye

1:3)(θa) =
−0.054·θ2

a + 0.09844·θa + 0.02538

0.0108·θ2
a − 0.03049·θa + 0.09381

and

p(x2
2 | ye

1:2)(θa) =
−0.072·θa + 0.07425

−0.012·θa + 0.10988

which are displayed in Figure 3. �
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Figure 3: Sensitivity functionsp(X2 | ye

1:2)(θa) for both states ofX2 (a), andp(X3 | ye

1:3)(θa) for both
states ofX3 (b).

5.2 Sensitivity of filtering to observation parameter variation

In this section we consider sensitivity functionsp(xt
v, ye

1:t)(θo) for a filter probability andobservation
parameterθo = or,s. From the recursive expression for filter probabilities (Equation 2), it follows that
for t = 1,

p(x1
v, ye

1)(θo) =







ov,e ·γv if v 6= r
θo ·γr if v = r ande

 = s
(1 − θo)·γr if v = r ande

 6= s
(8)

and fort > 1,

p(xt
v, ye

1:t)(θo) = ov,et (θo)·
2

∑

z=1

az,v ·p(xt−1
z , ye

1:t−1)(θo) (9)

where,ov,et (θo) equalsov,et for v 6= r, θo for v = r ande
t = s, and1 − θo for v = r ande

t 6= s, as
above.

From Equation 5 we have that the polynomial functionp(xt
v, ye

1:t)(θo) requirest + 1 coefficients:
ct
v,N , N = 0, . . . , t. To compute these coefficients, the Coefficient-Matrix-Fill procedure builds upon

Equations 8 and 9 above to fill its matrices. We will now describe the details of the fill contents of the
matrices.

Fill contents: initialisation Then× 2 matrixF 1 is initialised in accordance with Equation 8, i.e. row
f1

i,. is filled with

〈ov,e ·γv, 0〉 if i 6= r

〈0, γr〉 if i = r ande
 = s

〈γr,−γr〉 if i = r ande
 6= s

The remaining matricesF k, 2 ≤ k ≤ t, aren × (k + 1) matrices, which are initialised by filling them
with zeroes.
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Fill contents: F k, k = 2, . . . , t Following Equation 9, positionj in row i of matrix F k, fk
i,j , is filled

with the following for1 < j < k + 1:

2
∑

z=1

az,i ·f
k−1
z,j−1 if i = r ande

k = s

2
∑

z=1

az,i ·(f
k−1
z,j − fk−1

z,j−1) if i = r ande
k 6= s

or,ek ·
2

∑

z=1

az,r ·f
k−1
z,j if i 6= r

For j = 1 andj = k + 1 we again simplify the above formulas where necessary, to take into account
boundary conditions. More specifically, forj = 1 we setfk−1

.,j−1 = 0, and forj = k + 1 we setfk−1
.,j = 0.

5.3 Sensitivity of smoothing to transition parameter variation

In this section we consider the sensitivity functionp(xt
v, ye

1:T )(θa), T > t, for a smoothingprobability
and transition parameterar,s. From Equation 3 we have that the coefficients of this polynomial can
be established by standard polynomial multiplication of the polynomial functionsp(xt

v, ye

1:t)(θa) and
p(ye

t+1:T | xt
v)(θa). Since the former is again a sensitivity function for a filterprobability, we will further

focus on the latter.
Consider the recursive expression for backward probabilities (Equation 4) andav,z(θa) with θa =

ar,s. If v = r thenav,z(θa) equalsθa for z = s, and1− θa for z 6= s; otherwiseav,z(θa) is constant. We
now have that fort = T − 1,

p(ye

T :T | xT
v )(θa) =











2
∑

z=1

oz,eT ·av,z if v 6= r

os,eT ·θa + os,eT ·(1 − θa) if v = r

(10)

wheres denotes the state ofX other thans. For t < T − 1 we find

p(ye

t+1:T | xt
v)(θa) = (11)















2
∑

z=1

oz,et+ ·av,z ·p(ye

t+2:T | xt+1
z )(θa) if v 6= r

os,et+ ·θa ·p(ye

t+2:T | xt+1
s )(θa) + os,et+ ·(1 − θa)·p(ye

t+2:T | xt+1
s )(θa) if v = r

From Proposition 4.1 we have that the polynomialp(ye

t+1:T | xt
v)(θa), t < T , requiresT − t + 1 co-

efficients. To compute these coefficients, the Coefficient-Matrix-Fill procedure builds upon Equations 10
and 11 above to fill its matrices. Note the similarity betweenthe equations: ifp(ye

t+2:T | xt+1
z )(θa) in

Equation 11 is replaced by1, the expressions in Equation 10 result. We will now describethe details of
the fill contents of the matrices, where the similarity between Equations 10 and 11 is exploited by using
an additional matrixBT .
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Fill contents: initialisation Then × 1 matrix BT is initialised with1’s. The remaining matricesBk,
t ≤ k ≤ T − 1, aren × (T − k + 1) matrices which are initialised with zeroes.

Fill contents: Bk, k = T − 1 down to t Following Equations 10 and 11, positionj in row i of matrix
Bk, bk

i,j , is filled with the following for1 < j < T − k + 1:

os,ek+ ·bk+1
s,j−1 + os̄,ek+ ·

(

bk+1
s,j − bk+1

s,j−1

)

if i = r

2
∑

z=1

oz,ek+ ·ai,z ·b
k+1
z,j if i 6= r

We again have to take into account boundary conditions, thatis, for j = 1 we setbk+1
.,j−1 = 0 and for

j = T − k + 1 we setbk+1
.,j = 0.

5.4 Sensitivity of smoothing to observation parameter variation

In this section we consider the sensitivity functionp(xt
v, ye

1:T )(θo), T > t, for a smoothingprobability
andobservationparameteror,s. For reasons explained above, we will to this end focus on thefunction
p(ye

t+1:T | xt
v)(θo).

Consider the recursive expression for backward probabilities (Equation 4) andoz,et+ (θo) with θo =
or,s: if z = r thenoz,et+ (θo) equalsθo for e

t+ = s, and1 − θa for e
t+ 6= s; otherwiseoz,et+ (θo) is

constant. We now have that fort = T − 1,

p(ye

T :T | xT
v )(θo) =

{

θo ·av,r + or,eT ·av,r if e
T = s

(1 − θo)·av,r + or,eT ·av,r if e
T = s

(12)

wherer denotes the state ofX other thanr ands denotes the state ofY other thans. For t < T − 1 we
find,

p(ye

t+1:T | xt
v)(θa) = (13)

=







θo ·av,r ·p(ye

t+2:T | xt+1
r )(θo) + or,et+ ·av,r ·p(ye

t+2:T | xt+1
r )(θo) if e

t+ = s

(1 − θo)·av,r ·p(ye

t+2:T | xt+1
r )(θo) + or,et+ ·av,r ·p(ye

t+2:T | xt+1
r )(θo) if e

t+ = s

From Proposition 4.1, we have that the polynomialp(ye

t+1:T | xt
v)(θo), t < T , requiresT − t+1 co-

efficients. To compute these coefficients, the Coefficient-Matrix-Fill procedure builds upon Equations 12
and 13 above to fill its matrices. We will now describe the details of the fill contents of the matrices.

Fill contents: initialisation Then× 1 matrixBT is again initialised with1’s. All Bk, t ≤ k ≤ T − 1,
aren × (T − k + 1) matrices which are initialised with zeroes.
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Fill contents: Bk, k = T − 1 down to t Following Equations 12 and 13, positionj in row i of matrix
Bk, bk

i,j , is filled with the following for1 < j < T − k + 1:

ai,r ·b
k+1
r,j−1 + or,ek+ ·ai,r ·b

k+1
r,j if e

k+ = s

−ai,r ·b
k+1
r,j−1 + ai,r ·b

k+1
r,j + or,ek+ ·ai,r ·b

k+1
r,j if e

k+ 6= s

We again take into account the boundary conditions by setting bk+1
.,j−1 = 0 for j = 1 andbk+1

.,j = 0 for
j = T − k + 1.

5.5 Sensitivity of predicted future observations

Sensitivity functions of the formp(ye

t | ye

1:T )(θ), T < t, that describe the effects of parameter variation
on the probability of a future observation can be straightforwardly established with the Coefficient-
Matrix-Fill procedure forθ = θa or θ = θo. This can be verified by observing that the coefficients of such
functions follow directly from the coefficients of functions for filter probabilities (see Section 2.2.2), and
that the Coefficient-Matrix-Fill procedure provides the necessary information for the filter probabilities
for all times slices under consideration.

6 Related Work

As mentioned before, in the area of hidden Markov models sensitivity analysis is typically implemented
as a perturbation analysis where a small change is applied toone or more parameters and the output
of interest re-computed. Since perturbation requires inference for each alteration of parameters, this is
an inefficient way of performing a reliable sensitivity analysis. Using a (dynamic) Bayesian network
representation of a hidden Markov model in essence allows usto exploit the available Bayesian net-
work algorithms for establishing sensitivity functions; such functions give a complete description of the
relation between parameters and output probabilities.

As argued in Section 2.3.2, varying a transition or observation parameter in an HMM corresponds to
varying multiple parameters in its Bayesian network representation, one for each time slice under consid-
eration. For Bayesian networks,N -way sensitivity analysis, with parameters fromdifferentconditional
probability distributions, has been studied by only few (see [17] for an overview and comparison of
research). For computing the coefficients ofN -way sensitivity functions roughly three approaches, or
combinations thereof, are known: symbolic propagation, solving systems of linear equations, and propa-
gation of tables with coefficients. Symbolic propagation [23] yields an algebraic expression for a single
probability of interestp(x | e) in terms of all network parameters; by filling in the estimates for the
parameters that are not varied, a sensitivity function in the varied parameters results. This method can be
used to compute the exponential number of coefficients of theN -way sensitivity function in the dynamic
Bayesian network representation of an HMM; it does not allowfor directly exploiting the repetitive char-
acter of parameters in an HMM. A major disadvantage of symbolic propagation is, however, that it is very
time-consuming, since it does not build on standard inference algorithms. Standard inference algorithms
can be straightforwardly applied in methods that build uponsolving a system of linear equations [14]: if
N coefficients are required, then the parameters under consideration are perturbedN times, upon which
the output of interest is re-computed; this results in a system ofN linear equations. This approach, using
inferenceN times, can be used to directly compute the linear number of coefficients for the sensitivity
functionsp(X | e) for a single output variable of interest in an HMM.
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Two other algorithms forN -way sensitivity analysis in Bayesian networks consist of tailored ver-
sions of the standard junction-tree algorithm [24] for inference. The algorithm by Kjærulff and Van der
Gaag [20] requires1

N
· 2N−1 propagations for anN -way sensitivity analysis, returning the coefficients

for the sensitivity functionsp(X | e) for a single output variable of interest. The algorithm can be ap-
plied in the context of HMMs, but as with symbolic propagation, it does not allow for exploiting the
repetitive character of HMM parameters. As a result, the number of coefficients computed is exponen-
tial in N , whereas ultimately only a linear number is required. The approach taken by Coupé et al. [17]
resembles our Coefficient-Matrix-Fill procedure in the sense that a table or matrix of coefficients is
constructed; their approach extends the junction-tree architecture to propagate vector tables rather than
potential functions and defines operations on vectors to this end. Each vector table contains (partially
computed) coefficients of the corresponding potential function in terms of the parameters under study.
After accumulating the local coefficients, the coefficientsof theN -way sensitivity function for a single
output probability of interestp(x | e) are returned.

We conclude that our approach differs from the approaches mentioned above in the sense that our
approach

• does not depend on a specific computational architecture;

• does not require a Bayesian network representation of the HMM;

• exploits the fact that we have a polynomial function in a single parameter;

• serves to establish the coefficients for the sensitivity functions forp(Xt | e) for all time slices1
throught and all hidden states, rather than just for the single outputvariableXt or a single output
value.

7 Conclusions and Further Research

In this paper we introduced a new and efficient algorithm for computing the coefficients of sensitivity
functions in hidden Markov Models, for all three types of model parameter. Earlier work on this topic
suggested to use the Bayesian network representation of HMMs and associated algorithms for sensitivity
analysis. In this paper we have shown that exploiting the repetitive character of HMMs results in a simple
algorithm that computes the coefficients of the sensitivityfunctions for all hidden states and all time steps.
Our procedure basically mimics the Forward-Backward inference algorithm, but computes coefficients
rather than probabilities. Various improvements of the Forward-Backward algorithm for HMMs exist
that exploit the matrix formulation [13, Section 15.3]; further research is required to investigate if our
procedure can be improved in similar or different ways.

In Section 2.2.2 we mentioned the robustness of the most probable explanation (MPE) to parameter
variation as another interesting sensitivity question. Iin HMMs the Viterbi algorithm rather than the
Forward-Backward algorithm is used to compute MPEs; our guess is therefore that the Coefficient-
Matrix-Fill procedure will not be directly suitable for establishing sensitivity functions that describe
changes in MPE as a function of changes in HMM parameters. Related work on robustness of MPEs
in Bayesian networks [25] could be used as a basis for furtherresearch. Another challenge will be to
extend current research to sensitivity analysis in which different types of model parameter are varied
simultaneously, and to extensions of HMMs.
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Finally, future research efforts can be put in the study of general properties of sensitivity functions in
HMMs. For example, perturbation bounds have been derived for hidden Markov models, which suggest
that HMMs are considerably more sensitive to variations in observation parameters than to variations
in transition or initial parameters [5]; it would be interesting to see if similar insights follow from the
general form of an HMM sensitivity function.
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