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Abstract

Sensitivity analysis in hidden Markov models (HMMs) is ugugerformed by means of a pertur-
bation analysis where a small change is applied to the matahpeters, upon which the output of
interest is re-computed. Recently it was shown that a sirmaitnematical function describes the re-
lation between HMM parameters and an output probabilityntériest; this result was established by
representing the HMM as a (dynamic) Bayesian network. Umdiv, however, no special purpose
algorithms existed for determining this function. In thisper we present a new and efficient algo-
rithm for computing sensitivity functions in HMMs; it is tHist algorithm to this end which exploits
the recursive properties of an HMM, while not relying on a Bsian network representation.

1 Introduction

Hidden Markov models (HMMs) are frequently applied statetmodels for describing processes that
evolve over time. Applications of hidden Markov models averfd in areas such as speech recogni-
tion, machine translation and bioinformatics (see [1] faraverview). An HMM can be represented
by the simplest type of dynamic Bayesian netwark[[2, 3], whéntails that in addition to the algo-
rithms associated with HMMS, all sorts of algorithms avaliéefor (dynamic) Bayesian networks can be
straightforwardly applied to HMMs as well.

HMMs specify a number of parameter probabilities, which loeind to be inaccurate to at least
some degree. Sensitivity analysis is a standard technimjustidying the effects of parameter inaccu-
racies on the output of a model. In the context of HMMs, seitsitanalysis is usually performed by
means of a perturbation analysis where a small change isedpigl the parameters, upon which the
output of interest is re-computed| [4, 5]. For Bayesian néksioa simple mathematical function exists
that describes the relation between one or more networlopeteas and an output probability of inter-
est. Various algorithms are available for computing thestants of this so-called sensitivity function.
Recently, it was shown that similar functions describe thation between model parameters and output
probabilities in HMMs([6]. For computing the constants aésle functions, it was suggested to represent
the HMM as a dynamic Bayesian network, unrolled for a fixed bhanof time slices, and to use the
aforementioned algorithms for computing the constantdefensitivity function. The drawback of this
approach is that the repetitive character of the HMM, with $hhme parameters occurring for each time
step, is not exploited in the computation of the constantsséch, using standard Bayesian network
algorithms may not be the most efficient approach to detengisensitivity functions for HMMs. In a



previous workshop paperl[7], we introduced the ideas behinéw algorithm for computing the con-
stants of the sensitivity function in HMMs. In this paper wegent the details of this efficient algorithm,
which exploits the recursive properties of an HMM. To thetled®ur knowledge, it is the first algorithm
for computing HMM sensitivity functions that does not rely @ Bayesian network representation.

This paper is organised as follows. In Secfion 2, we presemespreliminaries concerning HMMs,
Bayesian networks and sensitivity functions. In Sectibwé discuss how to compute sensitivity func-
tions that describe the effects of variation in the initiatgmeters of an HMM. For variation in transition
and observation parameters we need a more complex pro¢edergeneral idea behind this procedure
is described in Sectidn 4, whereas details are provided étic®g3. We discuss relevant related work in
Sectiori 6 and conclude the paper with directions for futesearch in Sectidn 7.

2 Preliminaries

In this section we present some preliminaries concerningeBian networks, hidden Markov models,
and sensitivity analysis. Throughout this paper, varighl@l be denoted by capital letters, and their
values by lower case.

2.1 Bayesian networks

A Bayesian networis a discrete, static statistical model for representing) r@asoning about a domain
of application. In essence, a Bayesian network is a cone@@sentation of the joint probability distri-
bution on the set of statistical variables relevant to theliaation domain([8, 9]. A Bayesian network
B combines an acyclic directed gragh = (V, Ag), representing the statistical variables and their
dependencies by means of nodgs and arcsAg, with a set of conditional probability distributions
© = {p(V | my) | V € Viz} that describe the strengths of the various dependenceeéetavnodé”
and its immediate predecessafs in the graph. More formally, the Bayesian network defineauthigue
distribution

p(Ve) = [] »(v | 7v)

VeVa

onVg, that respects the probabilistic independences read frerdigraphz by means of the d-separation
criterion [9]. As such, the network provides for computingygprior or posterior probability over its
variables. Computing probabilities from Bayesian netvgordso known as inference, is in general NP-
hard [10]. However, inference in a Bayesian network whosectied graph takes the form of a tree, where
every node has at most one parent, requires a number of catigng which is linear in the number of
nodes|[9].

A dynamic Bayesian netwodan cope with discrete-time evolving processes by repgaitita con-
necting a Bayesian network for a number of time stepstiroe slices[2]. The relations among the
variables within a time slice are taken to be instantanewhgreas the relationships across time slices
are considered temporal.

2.2 Hidden Markov models

In this section we review the necessary background on hititlkov models (HMMSs), their relation to
dynamic Bayesian networks and the recursive propertigsitiderlie inference in HMMs.



(b)

Figure 1: A hidden Markov model representation (a) and itsasiyic Bayesian network representation,
unrolled for three time slices (b).

2.2.1 Definition

A hidden Markov model[[11], 12] consists of a discrete time kéarchain, repeating a single hidden
variable X with a finite number of states. The chain is stationary, he. probability of transitioning
from one state to another is time-invariant. The state ofhildelen variable in each time step can be
indirectly observed by some memoryless test or seisdrhe uncertainty in the discrete test or sensor
output is captured by a set of observation probabilitiesictvlare also time-invariant. Generalisations
of HMMs with continuous variables exist, but are not consédehere. More formally, an HMM is a
statistical modeH = (X,Y, A,O,T"), where

e variableX hasn > 2 states, denoted hy;, 1 <1i < n;

¢ variableY hasm > 2 states, denoted hy;, 1 < j < m;

e transition matrixA has entries; ; = p(z; | z;), 1 <i,5 <mn;

e observation matrixD has entrie®; ; = p(y; | 2;),1 <i<n,1 < j <m;
e initial vectorI" has entriesy; = p(z;), 1 <i < n.

Figure[1(a) shows an example HMM wheXehas two states, and three.

An HMM can be seen as a special case of a dynamic Bayesiannkaiwmlled for a number of time
slices (see for details [2] 3]). The time slice under comsitien is explicitly indicated by a superscript for
the variables and their values. More specifically, an HMM (dymamic) Bayesian netwofk = (G, ©),
where

e Vo = {X*Y* | 1 <k < t} captures the two HMM variableX andY repeated ovet time
steps;

e Ag ={XF - YF |1 <k <tju{XF1! - XF|2<k <t} captures the Markov property of
the chain and the independence of the observations;

e O, the set of conditional probability distributions, is a cmiof

{p(ak |2} ") = aij |2 <k <t,1<4,j<n},
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pyf|zF) =0, |1 <k<t1<i<n,1<j<m}, and
J K3 5]
{p(z}) =~ [1<i<n}

Figure[1(b) shows a dynamic Bayesian network representatiothe HMM from Figurd 1(a), unrolled
for three time slices.

In the remainder of this paper we use the notagdrto indicate actual evidence for variabtéin
time slicet, andy’ i to denote a sequence of observatighs...,y&.

2.2.2 Inference

Inference in temporal models typically amounts to computime marginal distribution ovek at time
t, given the evidence up to and including tirfiethat isp(X* | y&7). If T' = t, this inference task is
known asfiltering, 7" < ¢ concerngpredictionof a future state, andmoothings the task of inferring
the past, that i§" > t. For exact inference in an HMM, the efficiehrbrward-Backward algorithms
available (see for details [13, chapter 15]). This algonittomputes for all hidden statést timet < T,
the following two probabilities:

o forward probabilityF (i, t) = p(z}, y&'t), and

e backward probabilityB (i, t) = p(y&tT | xt)

resulting in
(2t | yIiT) = plaf, ye') _ plal,ye™) (i) B(i,t) )
> oo, y&) D F(1)-B(jt)
7j=1 7=1

For T < t, the algorithm can be applied by takirigy(i,t) = 1 and adopting the convention that the
configuration of an empty set of observations®JE, i.e yI ' = TRUE, resulting in

F(i,t) = p(a}, ya') = p(af, y&"', TRUE) = p(af, ya'")

The three standard inference tasks of filtering, predictind smoothing in hidden Markov models
are all concerned with inferring the probability of a hidd&ate from a sequence of observations. Two
other interesting tasks are the prediction of future obstoms, i.ep(yé | y&7) for T < t, and finding
the most probable explanation, thatdsg max,1+ p(z}t | y&*). We will disregard the latter and briefly

discuss the former. We note that the probabilify | y&T), T < t, can be computed as the fraction of
the two probabilitiep(yiye?T), T < t, andp(yéT); these, in turn, can be straightforwardly computed
from forward probabilities:

plys’) =) plaiys’) =D F(i,t)
=1 =1

Note that ift > T + 1 thenp(yéyd?) can be computed by setting all inbetween observatighs
T < k < t,to TRUE as above.

The Forward-Backward algorithm hag¥n?-max{t, T'}) computational complexity, whereis the
number of hidden states df. Alternatively, the HMM can be represented as a dynamic Biayenet-
work unrolled formax{t, T’} time slices, upon which standard Bayesian network infexeaigorithms
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can be used. In fact, Smyth, Heckerman and Jordan [3] hawensti@mt the Forward-Backward algo-
rithm can be seen as a special case of Pearl's Belief prapagalgorithm for inference in Bayesian
networks [[9].

2.2.3 Recursive probability expressions

In this paper we present an algorithm for computing the cdiefits of sensitivity functions for HMMs.
This algorithm resembles the Forward-Backward algoritbnirfference in HMMs and similarly exploits
the repetitive character of the model parameters of an HMivthis section we review the recursive
expressions upon which the Forward-Backward algorithmagseld (see e.d. [13, chapter 15]) and which
are important for understanding the remainder of the paper.

¢ y&t) for a specific state of X, which we will call a
filter probability. Note that this probability is the same as the forward prdlhakF' (v, ¢) in the Forward-
Backward algorithm.

For time slicet = 1 we simply have that

Filtering We first consider a probability(z!

Py, ye) = p(Ye | £,)-p(xy) = 0ver Yo
wheree®* corresponds to the state ®f that is actually observed at tinle For time slicest > 1 we
exploit the fact that, giverX?, Y is independent of %, ..., Y1 writtenY? 1L Y11 | X, and find

p(ah, y&') = plat, y&' ', yé) = plyb|al)-p(al, y&')
The first factor in the above product corresponds to an obsiervparameter; conditioning the second
factor on then states ofX*~! and exploiting the independendg | Y!#~! | X*~1 we find

n n
p(ah, ye ') = Y plal 2 (el vy =) asep(al ye )
z=1 z=1

Taken together, we find faf (v, t) = p(z!, yd't) the recursive expression

Oy,et " Vv if t=1

Fv,t) = (2)

n
Opet Y Q- Flzt—1) if t>1
z=1

L y&T) with t > T. In Section 2.22 we noted that
the Forward-Backward algorithm can be applied to computd prediction probabilities basically by
prolonged filtering, i.e. computing'(v,t) with an empty set of evidence faf+1, This absence of
evidence can be implemented by replacing,tfor " in Equatiori 2, the term,, .« by 1.

A special case of the prediction task, with = 0, is the computation of a prior margina(z!).
This probability can be computed as a filter probability wathsence of evidence for all':*. Since the
prediction task can thus be seen as a special case of tha{jlteisk, we will refrain from explicitly
considering prediction as a separate task in the remairfdbisqgpaper.

Prediction We now consider a probability(z!



1.T . . . .
v Ye o ) With t < T, which we will call asmoothing
probability. By exploiting the independenaé'+ 7 | Y | X*, we have that

Smoothing Finally, we consider a probability(x!

t 1:t t+1:T t+1:T t

Lye ) =p(at, yo, y&™T) = ply&tHT | 2t)-p(at, y&t) 3)

(e, Ye

The second term in this product is again a filter probabi¥¥g now further focus on the first term, which
is the same as the backward probabiliyv, t) in the Forward-Backward algorithm. By conditioning
this term onX**! and exploiting the independenc&d | V1T | X+l andyt+t | yi+2T | xi+!
forT > ¢t + 1, we find that

n
pEET [ty = 3 plyb | att) plyEtET | et p(att | o)
z=1

n
- Z Oz,et+2 -awz'p(y?_QZT ‘ $i+1)
z=1
Fort 4+ 1 = T, this results in

n

n
pye™ oy ) => plyd [al)-pGl |2l = o, cr-ay.
z=1

z=1
Taken together, we find faB(v,t) = p(y&:7 | 2!) the recursive expression
n
ZOZ,eT‘av,z if t=T-1
B(v,t)=¢ ! (4)
Zoz7et+1 ‘ay Bz, t4+1) if t<T -1
z=1

2.3 Sensitivity analysis

The value of any probability of interest in a statistical rebdepends on the probability parameters
specified for the model. To study the robustness of the coadbatitput to possible inaccuracies in these
parameters, aensitivity analysisan be performed.

2.3.1 Sensitivity analysis in Bayesian networks

In the context of Bayesian networks, sensitivity analysis been studied extensively [14, 15] [16], 17,
18,(19,20; 21]. In a Bayesian network, a simple functionkdtienship exists between any parameter
and any output probability of interest. This functionabt@nship is called theensitivity functionMore
specifically, anV-way sensitivity functiondescribing the effect of simultaneously varyiNgparameters,

is either an/V-variate polynomial or arV-variate rational function, where each variable has degtee
most one. For example, tl3eway sensitivity function relating a joint or marginal outgprobabilityp(v)

for a (set of) variable(sy to three network parametefis, i = 1,2, 3, has the following form:

p(v)(01,02,03) = c'M03-05-01 4+ cM10-05-05 + 1V -03-0, + 1050, +

4 (1009, 4 (010.9, 4 001 g 4 000



wherec* are constants with respect to the parameters. This formshaoider the standard assumption
of proportional co-variation of the other parameters fréva $ame (conditional) distribution. That is, if a
parametef = p(v; | 7) for a variableV is varied, then for each= j, p(v; | 7)(8) = p(v; | ﬂ-)‘#@f‘“)'
For binary-valued/, co-variation simplifies tg(v; | 7)(6) =1 — 6.

A sensitivity function for a posterior probability of inest is a quotient of two polynomials, since
p(v | e) =p(ve)/p(e), and hence a rational function.

To determine arV-variate sensitivity function, an exponential numbegdf coefficients need to be
computed. This can be either done by computing the outpiiigiitity of interest for2™V different com-
binations of values for th&/ parameters, and solving the resulting systera’bflinear equations [18].
Note that this approach requires us to perform inferencexaoreential number of times, and returns
nothing more than the sensitivity function for the givenlpability of interest. A more efficient approach
is to use specially tailored versions of the junction treference algorithm( [17, 20]. Approaches that
assume allN parameters are taken from the same conditional probaldigiribution are even more

efficient [16], but irrelevant for this paper.

2.3.2 Sensitivity analysis in Hidden Markov models

In the context of HMMSs, sensitivity analysis is usually merhed by means of a perturbation analysis
where a small change is applied to the parameters, upon wigabutput of interest is re-computed|[4, 5].
The main difference between sensitivity analysis in Bagesietworks and that in hidden Markov mod-
els in essence is, that a single parameter in an HMM may ocaliiphe times when multiple time slices
are considered. A one-way sensitivity analysis in an HMMréfiore, amounts to al-way analysis in
its Bayesian network representation, whéfequals the number of time slices under consideration. It is
therefore no surprise that for HMMs sensitivity functiome aimilar to those for Bayesian networks [6].
The difference with the genera@¥-way function for Bayesian networks is that thé parameters are
constrained to all be equal, which reduces the number oinedjgonstants from exponential to polyno-
mial in V. For example, if the above mentioned paramefigrs = 1, 2, 3, represent a single transition
parametef = 6; = 6, = 65 in time slicesl, 2, and3, then the sensitivity function for output probability
p(v) reduces to

p(v)(0) = 303 + 202 + 10+ ¢

for constants;, i =0, ..., 3.

We now summarise the known results for sensitivity fundionHMMs [6,/22]. For the joint prob-
ability of a hidden state and evidence as a function of a mpdedmeterd, we have the following
univariate polynomial sensitivity function:

N
p(at, yET)(0) = 3 i (5)
i=0
where
t—1 if §=a,;andt>T
T if 6=o.5andv=r
N=< T—-1if §=orsandv#r, or § =a,st<Tandv=r
T-2 if 0=ap, t<Tandv#r
1 if 0=n,



and the coefficients; are constant with respect to the various parameters. Cieaffse; do depend on
the hidden state and time slicet under consideration; therefore we will often wrifg; rather tharr; in
the remainder of this paper.

For prior marginal®(z!,) over X as a function of a model parametemwe have the above form with
N =0forf =o,5, N=t—1forf = a,s, andN = 1 for § = ~,. For the probability of evidence
p(y&T), we have thatv = T for observation parameters) = T — 1 for transition parameters, and
againN = 1 for initial parameters.

3 Sensitivity of HMM output to initial parameter variation

We saw in the previous section that one-way sensitivity fions for HMMs are polynomial in the
parameter under consideration; in addition, we know theakegf the functions. However, we have yet
to establish what the coefficients of these polynomials adenaw to compute them. We will demonstrate
in this section that since initial parameters are only usedtié first time slice, it is quite straightforward
to compute the coefficients of a sensitivity function for rebdarametef., = ~,.. We will consider the
sensitivity functions for the inference tasks mentione8&éctiori 2.2.2.

For ease of exposition concerning the co-variation of patens, we assume in the remainder of this
section that all variables are binary-valued, ie= m = 2. Note thaty,, the initial parameter associated
with the state of interest for X, now corresponds to eithér, (if v = r) or its complement — 6., (if

v #£ ).

Filtering From the recursive expression for the filter probability iguation 2 it follows that fofl’ =
t=1,

Oper -0, +0 if v=r
p(xy, ya)(6y) = { -

—0per 0y +0per If vFET

and forT =t > 1,

2
plat, y&N(6,) = oy et-azp-plal!, ya' 1) (6y)

z=1

v

Since each initial parameter is used only in time slice 1hasabove expressions demonstrate, the coef-
ficients forT = ¢ > 1 can be established through a simple recursion for ééch 0, 1:
2

t _ t—1
Co,N = Z Oy,et "Azp Cy N
z=1

From Equation 5 we have that the polynomjglk!,, ys")(6,) requires two coefficients:, ; andc/ .

with ¢} o = 0if v = 7, andc;, ; = 0y, Otherwise; in additior, ; = oyex if v =7, andc) | = —0y s
otherwise.

Smoothing In caseT > t, we have from Equation| 3 for the smoothing probability that meed to
multiply the functionsp(z?,, y&*)(60,) andp(y&ttT | 2t)(6,). SinceY 1T | X1 | Xtfor1 <t < T,
the probabilityp(yitH7 | 2!) is not affected by changes in the initial parameters. Hehedunction
p(y&HT | 21)(6,) is simply a constant probability, which can be computedgistandard inference.
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Predicting future observations In Sectionl 2.2.2 we mentioned the prediction of future obesions
as another interesting inference task. We showed that thigapility of a certain observation at time
t can be computed straightforwardly by using forward (filgerdbabilities for time sliced throught.
The coefficients for the sensitivity functign(y’ | y&7)(6,), T < t, can therefore be established by
computing the coefficients of the functiop&z!, y&*)(6,) for all n hidden states, and summing the

v

coefficients corresponding to terms of the same degree.

For determining sensitivity of output probabilities to hions in transition parameters or observation
parameters, we need a more complex procedure, which iglinteml in the next section.

4 The Coefficient-Matrix-Fill procedure

To compute the coefficients of the polynomial sensitivitgdtion in Equatiof 5 for transition and obser-
vation parameters, we designed a procedure which basmafigtructs a set of matrices containing these
coefficients for each hidden state and each time slice. Wehisiprocedure th€oefficient-Matrix-Fill
procedure. In this section we describe the basic idea oftheegure, the operations it uses and discuss
its complexity.

4.1 The basic idea

For sensitivity functiong(zf, y&*)(0) related to a filter probability, we have from Equatidn 5 tha w
need to establish coefficiertt§j,j =0,...,N,whereN = t—1 for a transition parameteéy, andN =

T for an observation parametés. To compute these coefficients, we construct a series ofwiat’
matricesF*, k = 1,..., N + 1, with the following properties:

e each matrixF* has sizen x k for 6 = 0,, or sizen x (k + 1) for 0 = 0,;
e arows in F* contains exactly the coefficients for the functiefx!, y&*)(8);
e acolumnj in F* contains all coefficients of thg — 1)th-order terms of the: polynomials.

More specifically, entryff; equals the coefficient{; , of the sensitivity functiop(z}, y&*)(6). The
Coefficient-Matrix-Fill procedure therefore in fact comps the coefficients for the sensitivity functions
for all n hidden states anal time slices up to and including

From Equation 3 we have that for sensitivity functions rethtio a smoothing probability, we require
the computation of a series of “Backward” matricBS, in addition to the forward matrices for the
filter component. More specifically, matricés® will serve to compute the coefficients of the function

p(y& T | 21)(0). This function is again a univariate polynomial for each reithramete@.

Proposition 4.1. Let H = (X,Y, A,0,T") be an HMM as before. Consider a probability of interest
p(y&tT | ot ) with T > ¢, and letd be a parameter from, O, or I' in H. Then, the one-way sensitivity
functionp(y&HtT | 21)(6) equals

ply&™ T | 2l)(0) = di 0N + ... +d, 10+ d}

!Note that this may seem counter-intuitive as it concerndithetion for aconditionalprobability and should therefore be a

quotient of polynomials; sinc&* is an ancestor of "™ ... Y7, however, the factorisation @f(ys™7, «!) includesp(z?),

which cancels out the denominator.



where coefficientdtv’ Ny ,dijo are constants with respect & and

T—-t if 0=o0,50r0=a,,
N_{O if 0=,

Proof. The fact that the function under consideration is a univarolynomial iné, follows directly
from the recursive expression for the backward probabilitfEquationl 4. Moreover, from Equation 3
we have that the degree pfz!, y&7)(0) equals the sum of the degreesdfys 7 | z!)(#) and
p(z, y&t)(0). The degrees of both(z!, y&1) () andp(zf, y&?)(#) are given in Equation]5; the de-
gree ofp(y&t 7 | 2f) () can be directly established as their difference. O

For matricesB¥, the Coefficient-Matrix-Fill procedure should again e$isibthe coefficients of a
univariate polynomial function id; we assume that is either a transition parameter or an observation
parameter, since initial parameters were already discuiss&ectiorf 8. To compute these coefficients
d,j=0,...,N,weconstructV + 1 = T'— t + 1 matricesB", k = t,...,T. Each matrixB* has
sizen x (T — k + 1), where entryb} ; equals the coefficient; ; , of the functlonp( LT | 2R (9).

4.2 Initialisation and fill operations

The Coefficient-Matrix-Fill procedure starts by filling tleatries of matrixf'! in accordance with the

t = 1 case in the recursive expression for filter probabilitiegu@&ion 2); matrixB” is filled with all
1's. All other matricesF'™*, k > 1, andB*, t < k < T, are initialised with zeroes and subsequently filled
with their correct contents by the procedure.

In Sectior 5 it will become clear that the matricE% for & > 1 are built solely from the entries in
F*=1 the transition matrixd and the observation matri®; a similar observation applies to matrices
BF for k < T. We will now discuss the basic operations required to fill thatrices. We focus on
the “Forward” matricesF*, with similar observations applying to the “Backward” niedss B*. The
Coefficient-Matrix-Fill procedure basically implementsetrecursive steps in the various formulas from
Sectior] 2.2.8 by transitioning from matri* to F**1. To illustrate this transition, consider an arbitrary
(k — 1)th-degree polynomial if,

p(0) = h_1-0F 1+ 4+ e0+ ¢
and let the coefficients of this polynomial be representadun; of matrix F*, i.e. ff = (co, ..., cx—1).
In transitioning from matrixf'* to F*+1, three types of operation (or combinations thereof) can be
applied top(6):
(I) summation with another polynomigal(6) of the same degree;
(I1) multiplication with a constand;
(1) multiplication with 6.

Case (I) just requires summing the coefficients of the sarderpi.e. adding entries with the same
column number. In case (11), the resulting polynomial isresgented in row of matrix F**1 by fffl =

(d-cg,...,d-cx_1,0); note thatF**+! has an additional columh + 1, which is unaffected by this
operation. In case (lIl) the resultingh-degree polynomial is represented in rowf matrix F¥+1 by
f’€+l (0, co, ...,cr_1); this operation basically amounts to shifting entries frBfhone column to the

rlght The global idea behind the Coefficient-Matrix-Fitiogedure is illustrated in Figufe 2.

10



Figure 2: An example of transitioning from matriX! to F? in the Coefficient-Matrix-Fill procedure;
here constants of the sensitivity function relating a fifiesbability to a transition parametéy = a,. s
are computed.

4.3 Posterior probabilities

Recall that the inference tasks of filtering, prediction anwbothing actually concern the computation
of posterior probabilities. Since a posterior probabilitiyr! | y&7) can be immediately established
from p(z}, y&") andp(ys™) = Y7, p(a}, y&™) (see Equation]1), the matrices constructed by the
Coefficient-Matrix-Fill procedure contain all informatidor establishing the sensitivity function for the
probability of evidence, and hence for the sensitivity fime for a posterior probability.

4.4 Complexity

In casel” < t, the Coefficient-Matrix-Fill procedure fills at most- 1 matrices of increasing sizesx k,
k = 1,...,t + 1. Each matrix contains the coefficients for the functigiis?, y&*)(¢) for all 4, so
the procedure computes the coefficients for the sensitfuitgtions forall hidden states andll time
slices up to and including If we are interested in dnly one specific time slic¢ghen we can exploit the
fact that each matri¥’* only requires information stored in matrix*—!, and therefore save space by
storing only two matrices at all times. In cage> ¢, the Coefficient-Matrix-Fill procedure in addition
fills T'— t 4+ 1 matrices of increasing sizesx k,k=1,..., T —t + 1.

The runtime complexity for a straightforward implemengatof the algorithm i€ (n?-max{t, T'}?),
which ismax{¢, T} times that of the Forward-Backward algorithm. This is duthfact that per hidden
state we need to computenumbers per time step rather than a single one.

5 Sensitivity to transition and observation parameters

In this section we describe in detail how the Coefficient-fi%afEill procedure computes the coefficients
of one-way sensitivity functions for transition paramstand for observation parameters. For ease of
exposition concerning the co-variation of parameters, garaassume in the remainder of this section
that all variables are binary-valued, ire= m = 2.
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5.1 Sensitivity of filtering to transition parameter variation

In this section we consider sensitivity functiopér!, y&*)(6,) for a filter probability andtransition
parameted, = a, . From the recursive expression for filter probabilities (&tion[2), it follows that
for t = 1 we have a constant:

p(len yé)(ea) = Oyp,er " Yv (6)
and fort > 1,
2
p(xf,, Ye a = Oyet” Zaz,v 1) Yét 1)((9(1)
z=1

Recall tha¥, = a, ,; therefore, in the above formula,. . (6,) equalsd, for v = s and1 — 6, for v # s;
a., for z # ris independent of,. As a result we conclude that for> 1,

p(y, ye')(0a) = (7)

0U7et~9a~p(ac Ly dit=1(6,) + o, et (T f Ly dt=1)(6,) if v=3s

Oy.et” (1*9)1)( vYét 1)(9 )+ Oyp,et"Arv* p( fn 13Yét 1)(0a) if v#s

wherer denotes the state 6f other thanr.

From Equatiori 5, we have that the polynomjiék!, y&*)(6,) requirest coefficients:c! NN =
0,...,t— 1. To compute these coefficients, the Coefficient-Matrix{sibcedure builds upon Equations
I andl]’ above to fill its matrices. We will now describe the dletaf the fill contents of the matrices.

Fill contents: initialisation ~ Then x 1 matrix F'! is initialised by setting, fof = 1,2, f!; = 0 e 7.
The remaining matriceg8* of sizen x k, 2 < k < t, are initialised by filling them with zeroes.

Fill contents: F* k= 2,...,t Columnj of matrix F* should be filled using elements from thith
column of ¥~ that are summed or multiplied with a constant, and elemeats the ( — 1)th column
of F"“—1 that are multiplied wittf,,. More specifically, following Equatidnl 7, positigrin row i of matrix
F*, ”, is filled with

oiek-(fkj11+amfk_-1) ifi=sandl <j<k

T 7,

O er (I + [T Hapae fE7Y) ifi# sandl <j <k

For j = 1, these general cases are simplified by set)‘iqul1 = 0. This boundary condition captures
the property that entries in the first column correspond teffaients of the zero-order terms of the
polynomials and can therefore never result from a multgtiam withéd,. Similarly, since the coefficients
for columnj = k, k > 1, canonly result from multiplication byd,,, we setf.’fjfl = 0 in that case.

Example 5.1. Consider an HMM with binary-valued hidden stateand binary-valued evidence vari-
ableY. LetI’ = [0.20,0.80] be the initial vector forX!, and let transition matrix4A and observation
matrix O be as follows:

0.95 0.05 0.75 0.25
A= [0.15 0.85} ando = [0.90 0.10}
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Suppose we are interested in the sensitivity functionshitwo states ak'3 as a function of transition
parameterd, = as1 = p(z} | 571) = 0.15, for all t > 1. Suppose the following sequence of observa-
tions is obtainedy., 2 andy3. To compute the coefficients for the sensitivity functitims following
matrices are constructed by the Coefficient-Matrix-Filbpedure:

Pl '01,2-71] _ [0.25-0.20} B [0.05]

02,272 0.10-0.80 0.08
2 [ 01,1'a1,1'f1171 01,1 f31 ]
(021 (fa1 +aip-fly) —o021-f3,
_ [ 0.75-0.95-0.05 0.75-0.08| _ [0.03563 0.060
o _0.90~(0.08 —{—0.05'0.05) —0.90-0.08| ~ 10.07425 —0.072
and finally,
3 [ oL1-a1,1-f{4 o1 (fE1+ a1 f75) 01,135 ] _
02,1-(f31+ar2-fi1) o (—f31+ fEa+ara-fia) —021-f39

~10.02538  0.09844 —0.0540
~10.06843 —0.12893  0.0648

We now find for example frof® that

p(23, y&)(0a) = 0.02538 + 0.09844 -6, — 0.054-62
and fromF? that

p(z2, y&?)(6,) = 0.07425 — 0.072-6,

Likewise, by summing column entries, we can establish tbfficients for the probability of evidence
functions:

p(ye®)(6a) = (f13,1 + fg,l) + (fiz + fg,z)'ea + (fi3 + f§,3)‘92

and

p(ye?)(0a) = (fi1 + f31) + (fF2+ f32)-0a
Together these give the following sensitivity functiomgvio filtering tasks:

_ —0.054-62 + 0.09844-6, + 0.02538
~0.0108-62 — 0.03049-6, + 0.09381

p(2} | ye)(0a)

and
. —0.072-0, + 0.07425
2 1:2 _ a
p(xz [ ye™)(0a) = =55759. 570, 10088
which are displayed in Figurel 3. O
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@) (b)

Figure 3: Sensitivity functiong(X? | y2)(6,) for both states of(? (a), andp(X? | y&'3)(6,) for both
states ofX 3 (b).

5.2 Sensitivity of filtering to observation parameter variaion

In this section we consider sensitivity functiop&e!, yd*)(6,) for afilter probability andobservation

v

parameted, = o, ;. From the recursive expression for filter probabilities (&tion[2), it follows that
fort =1,

Ov,er Vo if v#r
p(ay, ye)(lo) = { borr if v=rande*=s ®)
(1 —=0,) if v=rande*#s
and fort > 1,
2
p($§17 yé:t)(eo) = Oy et (QO)'Zazy”‘p(xi_la yé:t—l)(eo) (9)
z=1

where,o, .t(6,) equalso, .t for v # r, 8, for v = r ande® = s, andl — 6, for v = r ande® # s, as
above.

From Equation 5 we have that the polynomial functign?, yi*)(6,) requirest + 1 coefficients:
c ni N =0,...,t To compute these coefficients, the Coefficient-Matrix-pibcedure builds upon
Eé]uations[B and]9 above to fill its matrices. We will now ddsetihe details of the fill contents of the

matrices.

Fill contents: initialisation Then x 2 matrix F'! is initialised in accordance with Equatibh 8, i.e. row
f} is filled with

(0p.er Y0, 0) (fisT
(0, vr) if i = r ande* = s
<’77“a _’Yr> if - =7 ande* 75 s

The remaining matrice§”, 2 < k < ¢, aren x (k + 1) matrices, which are initialised by filling them
with zeroes.
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Fill contents: F*,k = 2,...,¢ Following Equatiori B, positior in row i of matrix F*, ¥, is filled
with the following forl < j < k + 1:

2
Zaz,i‘ff’j_'_ll if i =r ande® = s
z=1

2
Y ani-(fi =) ifi=rander # s
z=1

2
k—1 o
OF ek * E azrf;; ifi#£r
z=1

Forj = 1 andj = k 4+ 1 we again simplify the above formulas where necessary, te italo account
boundary conditions. More specifically, fpr= 1 we setf* ., = 0, and forj = k + 1 we setf*! = 0.

5.3 Sensitivity of smoothing to transition parameter varidion

In this section we consider the sensitivity functipf!, y&7)(6,), T > t, for asmoothingprobability
and transition parameter,. ;. From Equatiori 3 we have that the coefficients of this polyiabrwan
be established by standard polynomial multiplication @& polynomial functiong (!, yd)(6,) and
p(y& T | 2t)(6,). Since the former is again a sensitivity function for a filkeobability, we will further
focus on the latter.

Consider the recursive expression for backward probasli(Equation ) and,, . (6,) with 6, =
ars. If v = rthena, .(6,) equalsd, for z = s, andl — ¢, for = # s; otherwisea,, .(6,) is constant. We
now have that fot = T — 1,

2
' "y, if
p(yg.T | xf)(ea) = ; 0,eT "Qy, v ?g r (10)

05T 0+ 057 (1—0,) if v=r
wheres denotes the state of other thans. Fort < T — 1 we find

p(y&tT | al)(0a) = (11)

2
S 0 et -aus pyEt T | 2t (60) it v#r
z=1

Os,et+1 Bo-p(y&™T | i) (0a) + O et+ (1 — 0u)-p(ye™>T | wyl)(ea) if v=r
From Propositioh 4]1 we have that the polynomigté™=7 | 2f)(0,), t < T, requires’ —t + 1 co-
efficients. To compute these coefficients, the CoefficieatrM-Fill procedure builds upon Equations| 10
and[11 above to fill its matrices. Note the similarity betwéles equations: ip(yit27 | 2L71)(6,) in
Equatiori 11 is replaced hl, the expressions in Equation|10 result. We will now descifiteedetails of
the fill contents of the matrices, where the similarity beewé&quations 10 add l11 is exploited by using
an additional matrix3”".
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Fill contents: initialisation Then x 1 matrix B” is initialised with1’s. The remaining matrice8”,
t<k<T-1,aren x (T — k + 1) matrices which are initialised with zeroes.

Fill contents: B* k =T — 1downtot Following Equations 10 arid 11, positigrin row i of matrix
BF, bl is filled with the following forl < j < T — k + 1:

PEEL Bt ifi=r

k41
O ek+1 bg i1 + O gha ( 5.1

D 0, ehraai L bEE if i 47

z=1
We again have to take into account boundary conditions,ishdibr ; = 1 we setbﬁj}l = 0 and for
j=T—k+1weseth"! =o.

5.4 Sensitivity of smoothing to observation parameter vaation

In this section we consider the sensitivity functipfx!, y&7)(6,), T > t, for asmoothingprobability

v

andobservationparametep, ;. For reasons explained above, we will to this end focus orfuhetion
p(y&™T | 2)(6,).

Consider the recursive expression for backward prob@slEquation ¥) and, .:+. (6,) with 6, =
ors: if 2 =1 theno, .1+ (0,) equals, for et™* = s, andl — 6§, for e*** =£ s; otherwiseo, ce+1 (6,) is
constant. We now have that foe= T — 1,

0oy + 05 o1 Uy 7 if

(1 - 90) Ay, + OF T "Qy 7 if (12)

Py | 2T)(0,) = {

wherer denotes the state &f other than- ands denotes the state af other thans. Fort < 7' — 1 we
find,

py&T | b)) (0.) = (13)

Oo- vy p(yE™>T | ) (0,) + 05 etes -aur-p(y&™2T | 2E)(6,) if etti=3s
(1= 00)-apr-p(y&t3T | 271)(00) + 05 g+2 - aur-p(yE 2T | 2Lt (0,) if ettr =3

From Propositioh 411, we have that the polynomigti ™" | z£)(6,),t < T, requiresl’ —t + 1 co-
efficients. To compute these coefficients, the CoefficieatrM-Fill procedure builds upon Equations| 12
and 13 above to fill its matrices. We will now describe the ietat the fill contents of the matrices.

Fill contents: initialisation Then x 1 matrix BT is again initialised with’s. All B t<k<T-1,
aren x (T'— k + 1) matrices which are initialised with zeroes.
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Fill contents: B¥, k. =T — 1down tot Following Equation§ 12 arid 1.3, positigrin row i of matrix

BF, bﬁj, is filled with the following forl < j < T — k + 1:

k+1 k41 k1

iy i~y + OF ekta Qi b7 if et =35
k41 k+1 k+1 ik

~ iUy A iUy S+ O gk raipebp i €FTY £

We again take into account the boundary conditions by a;:pbﬁ;ﬁ_ll =0forj=1 andbffj+1 = ( for
j=T—k+1.

5.5 Sensitivity of predicted future observations

Sensitivity functions of the form(y& | y&7)(6), T < t, that describe the effects of parameter variation
on the probability of a future observation can be straightfodly established with the Coefficient-
Matrix-Fill procedure fo® = 6, or8 = 6,. This can be verified by observing that the coefficients ohsuc
functions follow directly from the coefficients of functisrior filter probabilities (see Section 2.2.2), and
that the Coefficient-Matrix-Fill procedure provides thecassary information for the filter probabilities
for all times slices under consideration.

6 Related Work

As mentioned before, in the area of hidden Markov modelsitghsanalysis is typically implemented
as a perturbation analysis where a small change is applietid¢oor more parameters and the output
of interest re-computed. Since perturbation requiresr@rfee for each alteration of parameters, this is
an inefficient way of performing a reliable sensitivity aysis. Using a (dynamic) Bayesian network
representation of a hidden Markov model in essence allow® @xploit the available Bayesian net-
work algorithms for establishing sensitivity functionsick functions give a complete description of the
relation between parameters and output probabilities.

As argued in Section 2.3.2, varying a transition or obséwugbarameter in an HMM corresponds to
varying multiple parameters in its Bayesian network repnéation, one for each time slice under consid-
eration. For Bayesian network8/-way sensitivity analysis, with parameters fratifferentconditional
probability distributions, has been studied by only fewe(sgl7] for an overview and comparison of
research). For computing the coefficients/éfway sensitivity functions roughly three approaches, or
combinations thereof, are known: symbolic propagatiotyisg systems of linear equations, and propa-
gation of tables with coefficients. Symbolic propagatioB][Zields an algebraic expression for a single
probability of interestp(z | e) in terms of all network parameters; by filling in the estinsafer the
parameters that are not varied, a sensitivity function éndried parameters results. This method can be
used to compute the exponential number of coefficients oMheay sensitivity function in the dynamic
Bayesian network representation of an HMM; it does not afiermdirectly exploiting the repetitive char-
acter of parameters in an HMM. A major disadvantage of symlpobpagation is, however, that it is very
time-consuming, since it does not build on standard infegealgorithms. Standard inference algorithms
can be straightforwardly applied in methods that build upolving a system of linear equations [14]: if
N coefficients are required, then the parameters under cenagidn are perturbed’ times, upon which
the output of interest is re-computed; this results in assypstf NV linear equations. This approach, using
inferenceN times, can be used to directly compute the linear number effic@ents for the sensitivity
functionsp(X | e) for a single output variable of interest in an HMM.
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Two other algorithms forV-way sensitivity analysis in Bayesian networks consistaiibted ver-
sions of the standard junction-tree algoritim|[24] for neiece. The algorithm by Kjeerulff and Van der
Gaag[[20] requiregiV - 2N=1 propagations for afV-way sensitivity analysis, returning the coefficients
for the sensitivity functione(X | e) for a single output variable of interest. The algorithm canap-
plied in the context of HMMs, but as with symbolic propagatiit does not allow for exploiting the
repetitive character of HMM parameters. As a result, the Inemnof coefficients computed is exponen-
tial in IV, whereas ultimately only a linear number is required. Theraach taken by Cougpet al. [17]
resembles our Coefficient-Matrix-Fill procedure in the seithat a table or matrix of coefficients is
constructed; their approach extends the junction-trebitacture to propagate vector tables rather than
potential functions and defines operations on vectors ®dhd. Each vector table contains (partially
computed) coefficients of the corresponding potential fiomcin terms of the parameters under study.
After accumulating the local coefficients, the coefficienttshe V-way sensitivity function for a single
output probability of interest(z | e) are returned.

We conclude that our approach differs from the approachetioreed above in the sense that our
approach

e does not depend on a specific computational architecture;
e does not require a Bayesian network representation of th&HM
o exploits the fact that we have a polynomial function in a Erngarameter;

e serves to establish the coefficients for the sensitivitycfioms forp(X* | e) for all time slicesl
throught and all hidden states, rather than just for the single outatiable X* or a single output
value.

7 Conclusions and Further Research

In this paper we introduced a new and efficient algorithm fmmputing the coefficients of sensitivity
functions in hidden Markov Models, for all three types of mbdarameter. Earlier work on this topic
suggested to use the Bayesian network representation of sidMid associated algorithms for sensitivity
analysis. In this paper we have shown that exploiting thetityge character of HMMs results in a simple
algorithm that computes the coefficients of the sensitiuityctions for all hidden states and all time steps.
Our procedure basically mimics the Forward-Backward iefee algorithm, but computes coefficients
rather than probabilities. Various improvements of theward-Backward algorithm for HMMs exist
that exploit the matrix formulatiori [13, Section 15.3]; theer research is required to investigate if our
procedure can be improved in similar or different ways.

In Sectiori 2.2.2 we mentioned the robustness of the mosaptelexplanation (MPE) to parameter
variation as another interesting sensitivity question. IMMs the Viterbi algorithm rather than the
Forward-Backward algorithm is used to compute MPEs; oursglie therefore that the Coefficient-
Matrix-Fill procedure will not be directly suitable for edilishing sensitivity functions that describe
changes in MPE as a function of changes in HMM parametersat@&kwork on robustness of MPEs
in Bayesian networks [25] could be used as a basis for furésszarch. Another challenge will be to
extend current research to sensitivity analysis in whidfedint types of model parameter are varied
simultaneously, and to extensions of HMMs.
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Finally, future research efforts can be put in the study ofegel properties of sensitivity functions in
HMMs. For example, perturbation bounds have been derivetifllen Markov models, which suggest
that HMMs are considerably more sensitive to variationshsasvation parameters than to variations
in transition or initial parameters [5]; it would be inteties to see if similar insights follow from the
general form of an HMM sensitivity function.
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