
Semantic Macros
Attribute Grammar Combinators

Marcos Viera

S. Doaitse Swierstra

Technical Report UU-CS-2011-028

Sept 2011

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Semantic Macros

Attribute Grammar Combinators

Marcos Viera1 and Doaitse Swierstra2

1 Instituto de Computación, Universidad de la República
Montevideo, Uruguay
mviera@fing.edu.uy

2 Department of Computer Science, Utrecht University
Utrecht, The Netherlands

doaitse@cs.uu.nl

Abstract. Having extensible languages is appealing but raises the question of how to con-
struct extensible compilers and how to compose compilers out of a collection of pre-compiled
components.
Being able to deal with attribute grammar fragments as first-class values makes it possible
to describe semantics in a compositional way; this leads naturally to a plug-in architecture,
in which a core compiler can be constructed as a (collection of) pre-compiled component(s),
and to which extra components can safely be added at will as need arises.
We present an Emddded Domain Specific language (EDSL), in the form of a Haskell com-
binator library, which makes the above possible in a typeful way ; both the check for the
well-definedness of the constructed attribute grammar and the well-definedness of attribute
computations is taken care of by the Haskell type checker.
With our combinators it is easy to describe semantics in terms of already existing semantics,
just as syntax macros extend language syntax. We also show how existing semantics can be
redefined, thus adapting some aspects from the behavior defined by the macros.

1 Introduction

Since the introduction of the very first programming languages, and the invention of grammatical
formalisms for describing them, people investigate how an initial language definition can be ex-
tended by someone else than the original language designer by including separate, pre-compiled
language-definition fragments.

The simplest approach starts from the compiler text corresponding to the base language. Just
before the compiler is compiled, several extra ingredients can be added textually. In this way
we get great flexibility and there is virtually no limit to the things we may add. The Utrecht
Haskell Compiler [5] has shown the effectiveness of this approach by composing attribute grammar
fragments textually into a complete compiler description. This approach however is not very
practical when defining relatively small language extensions; we do not want every individual
user to generate a completely new compiler for each small extension. Another problematic aspect
of this approach is that, by making the complete text of the compiler available for modification or
extension, we may also loose important guarantees provided by e.g. the type system; we definitely
do not want everyone to mess around with the delicate internals of a compiler for a complex
language.

So the question arises how we can reach the same effect but without opening up the whole
compiler source. The most commonly found approach is to introduce so-called syntax macros [9],
which enable the programmer add syntactic sugar to a language by defining new notation in terms
of already existing syntax.

In this paper we will focus in how to provide such mechanisms at the semantic level. As a
running example we take a minimal expression language described by:

data Root = Root {expr :: Expr }
data Expr = Cst {cv :: Int }

| Var {vnm :: String }
| Mul {me1 :: Expr , me2 :: Expr }
| Add {ae1 :: Expr , ae2 :: Expr }
| Let { lnm :: String , val :: Expr , body :: Expr }

Suppose we want to extend the language with one extra production for defining the square
of a value. A syntax macro aware compiler might be willing to accept definitions of the form
square (se :: Expr)⇒ Mul se se, translating new syntax into the core abstract syntax.

Despite the fact that this approach may be very effective, such transformational programming
[3] has severe shortcomings; as a consequence of mapping the new constructs onto existing con-
structs and performing any further processing such as type checking on this simpler, but often more
detailed program representation, feedback from later stages is given in terms of invisible interme-
diate program representations. For example, if we do not change the pretty printing phase of the
compiler square 2 might be printed as 2 ∗ 2. Hence the implementation details shine through, and
the produced error messages can be confusing or even incomprehensible. Similar problems show
up when defining embedded domain specific languages: the error messages are typically given in
terms of the underlying presentation [6].

In a previous paper [13] we introduced a Haskell library of first-class attribute grammars,
which can be used to implement a language semantics and its extensions in a safe way, i.e. by
constructing a core compiler as a (collection of) pre-compiled component(s), and to which extra
components can safely be added at will. In this paper we show how we can define the semantics
of the right hand side in terms of existing semantics, in the form of attribute grammar macros.

We also show how, by using first class attribute grammars, the already defined semantics can
be redefined at the places where it makes a difference, e.g. in pretty printing and generating error
messages.

In Section 2 we describe our approach to first-class attribute grammars, and Section 3 we show
how to define semantic macros and redefine attributes. We close by presenting our conclusions and
future work. Figures 2, 4 and 5 contain the code describing the semantics of our example language,
and code for the extension is given in figures 6 and 11.

2 AspectAG

In this section we describe AspectAG [13], a Haskell library3 for defining first-class attribute gram-
mars. The key technique uderlying our embedded approach lies in using the Hlist library [8] for
typed heterogeneous collections (extensible polymorphic records) for representing collections of
attributes, and expressing the AG well-formedness conditions by type-level predicates (i.e., type-
class constraints), thus mimicking dependently typed programming techniques in Haskell [10] by
using Haskell 98 extensions such as multi-parameter type classes and functional dependencies [7];
type-level programming uses types to represent type-level values, and class instances to represent
type-level functions.

Heterogeneous lists are constructed using the functions (.*.) and hNil , modeling the structure
of a normal list both at the value and type level. An extensible record is an heterogeneous list of
uniquely labeled fields marked with the type Record . A field (l .=. v) relates a (first-class) label l
with the value v . Extensible records can be constructed with the functions (.*.) and emptyRecord ;
where (.*.) is overloaded to not only extend the list both at type and value level, but also to
impose by (type class) constraints that elements in a record are uniquely labeled. In order to keep
our programs readable we will use the following syntactic sugar to denote lists and records in the
rest of the paper:

– { v1, ..., vn } for (v1 .*.*. vn .*. HNil)

– {{ v1, ..., vn }} for (v1 .*.*. vn .*. emptyRecord)

3 http://hackage.haskell.org/package/AspectAG

Thus, if label1 and label2 are labels, the following is the definition of a record (myR) with the
elements True and "bla":

myR = {{ label1 .=. True, label2 .=. "bla" }}

The operator (#) is used to retrieve the value part corresponding to a specific label from a record,
statically enforcing that the record indeed has a field with this label. The expression (myR#label2)
returns the string "bla", while, given a label label3, the expression (myR#label3) does not compile.

2.1 Rules

In this subsection we show how attributes and their defining rules are represented. An attribution
is a finite mapping from attribute names to attribute values, represented by a Record , in which
each field represents the name and value of an attribute.

When inspecting what happens at a production (a node of the abstract syntax tree) we see that
information flows from the inherited attribute of the parent (ip) and the synthesized attributes of
the children (sc) to the synthesized attributes (sp) of the parent and the inherited attributes of
the children (ic). Henceforth the attributes ip and sp together are called input family while the
attributes sp and ic are called output family, both represented by:

data Fam children parent = Fam children parent

A Fam contains a single attribution for the parent and a collection of attributions for the children.
Hence the type parent will always be a Record with fields labeled by attribute names; thus the
type children will be a Record with fields labeled by children names and attributions (Records) as
values.

In Figure 2 we start with the Template Haskell functions addNont and addProd , from AspectAG ,
which introduce the labels for the abstract syntax of our example. The calls to addNont generate
the labels nt Root and nt Expr so we can refer to the respective non-terminals, and the empty
types Root and Expr . The calls to addProd generate the labels of the children of the productions;
the type of each label encodes both the name and the type of the child. For example, for the Root
production a single label ch expr will be generated, indicating at the type level that this child is
of type Expr . Here we could have generated all this from the data type definition describing the
abstract syntax.

Attribute computations are defined in terms of rules. As defined by [4], a rule is a mapping
from an input family to an output family. In order to make rules composable we define a rule as
a mapping from input attributes to a function which extends a family of output attributes with
the new elements defined by this rule:

Fig. 1. Rule: black arrows represent input and grey arrows represent output; dotted grey arrows represent
the already constructed output which can be used to compute further output elements (hence the direction
of the arrow)

type Rule sc ip ic sp ic′ sp′ = Fam sc ip → (Fam ic sp → Fam ic′ sp′)

Thus, the type Rule states that a rule takes as input the synthesized attributes of the children
sc and the inherited attributes of the parent ip and returns a function from the output constructed
thus far (inherited attributes of the children ic and synthesized attributes of the parent sp) to the
extended output. Figure 1 shows a graphic representation of rules; each rule can be seen as a node
of a graph with an underlying three-shaped structure, determining the flow of the attributes.

2.2 Rule Definition

The functions syndefM and inhdefM are used to define a single rule defining a synthesized or an
inherited attribute respectively. Figure 2 lists all the rule definitions of the static semantics of our
running example. It defines two aspects: pretty printing, realized by a synthesized attribute spp,
which holds a pretty printed document of type PP Doc, and expression evaluation, realized by two
attributes: a synthesized sval of type Int , which holds the result of an expression, and an inherited
ienv which holds the environment ([(String , Int)]) in which an expression is to be evaluated. In
our naming convention a rule with name attProd defines the attribute att for the production Prod .
The rule sppLet for the attribute spp of the production Let combines the strings "let", lnm and
"=", the pretty printed child val , the string "in" and the pretty printed child body , using the
pretty printing combinator (>#<)for horizontal (beside) composition, from the uulib4 library. The
rule ienvLet specifies that the ienv value coming from the parent (lhs stands for “left-hand side”)
is copied to the ienv position of the child val ; the ienv attribute of the body is this environment
extended with a pair composed of the name (lnm) associated with the child and the value (the
sval attribute) of the child. The rule svalLet defines the attribute sval to be the attribute sval of
the body .

The functions syndefM and inhdefM are versions of syndef and inhdef , that use a Reader
monad to make definitions look somewhat “prettier”.

The function syndef adds the definition of a synthesized attribute. It takes a label att repre-
senting the name of the new attribute, a value val to be assigned to this attribute, and it builds
a function which updates the output for the father as constructed thus far.

syndef att val (Fam ic sp) = Fam ic (att .=. val .*. sp)

syndefM att mval inp = syndef att (runReader mval inp)

The record sp which holds the synthesized attributes of the parent is extended with a field with
name att and value val .
Let us take a look at how the rule definition sppAdd of the attribute spp for the production Add
is defined using syndef :

sppAdd (Fam sc ip)
= syndef spp $ ((sc # ch ae1) # spp) >#< "+" >#< ((sc # ch ae2) # spp)

The children ch ae1 and ch ae2 are retrieved from the input family so we can subsequently
retrieve the attribute spp from these attributions, and construct the computation of the synthesized
attribute spp.

The function inhdef introduces a new inherited attribute for a collection of non-terminals at
the same time.

inhdef :: Defs att nts vals ic ic′

⇒ att → nts → vals → (Fam ic sp → Fam ic′ sp)

It results in a function which updates the output constructed thus far and takes the following
parameters: the attribute att which is being defined, the list nts of non-terminals with which this
attribute is being associated, and a record vals labeled with child names and containing values,

4 http://hackage.haskell.org/package/uulib

-- Abstract Syntax
$ (addNont "Root")
$ (addNont "Expr")

$ (addProd "Root" [("expr", “Expr)])

$ (addProd "Cst" [("cv", “Int)])
$ (addProd "Var" [("vnm", “String)])
$ (addProd "Mul" [("me1", “Expr), ("me2", “Expr)])
$ (addProd "Add" [("ae1", “Expr), ("ae2", “Expr)])
$ (addProd "Let" [("lnm", “String), ("val", “Expr), ("body", “Expr)])

-- Pretty Printing
$ (attLabels ["spp"])

sppRoot = syndefM spp $ liftM (#spp) (at ch expr)
sppCst = syndefM spp $ liftM pp (at ch cv)
sppVar = syndefM spp $ liftM pp (at ch vnm)
sppMul = syndefM spp $ do e1 ← at ch me1

e2 ← at ch me2
return $ e1 # spp >#< "*" >#< e2 # spp

sppAdd = syndefM spp $ do e1 ← at ch ae1
e2 ← at ch ae2
return $ e1 # spp >#< "+" >#< e2 # spp

sppLet = syndefM spp $ do lnm ← at ch lnm
val ← at ch val
body ← at ch body
return $ "let" >#<

lnm >#< "=" >#< val # spp >#<

"in" >#< body # spp
-- Evaluation

$ (attLabels ["ienv", "sval"])

-- Environment
ienvRule = copy ienv { nt Expr }
ienvRoot = inhdefM ienv { nt Expr } $

do return {{ ch expr .=. ([] :: [(String , Int)]) }}
ienvMul = ienvRule
ienvAdd = ienvRule
ienvLet = inhdefM ienv { nt Expr } $

do lnm ← at ch lnm
val ← at ch val
lhs ← at lhs
return {{ ch val .=. lhs # ienv

, ch body .=. (lnm, val # sval) : lhs # ienv }}
-- Value

svalRule f = use sval { nt Root ,nt Expr } f (0 :: Int)
svalRoot = syndefM sval $ liftM (#sval) (at ch expr)
svalCst = syndefM sval $ liftM id (at ch cv)
svalVar = syndefM sval $ do vnm ← at ch vnm

lhs ← at lhs
return $ fromJust (lookup vnm (lhs # ienv))

svalMul = svalRule (∗)
svalAdd = svalRule (+)
svalLet = syndefM sval $ liftM (#sval) (at ch body)

Fig. 2. AspectAG specification

describing how to compute the attribute being defined at each of the applicable child positions.
The class Defs is a type-level function used to iterate over the record vals and to compute the
new record of inherited attributes ic′, extending the record ic with the inherited attributes defined
thus far.

Thus, in our example, ienvLet defines the computation of the attribute ienv (environment) for
the production Let . We give a definition for the attribute ienv for each child of which the semantic
category is in the list {{ nt Expr }}, and these are stored in an extensible record labeled by the
names of the children.

Explicitly giving all rules soon becomes cumbersome, so handy shortcuts are available: copy
rules and use rules. A copy rule copies an inherited attribute from a parent to all its children. The
function copy takes the name of the attribute and an heterogeneous list of the non-terminals for
which the attribute has to be defined, and generates copy rules for these. A copy rule is used for
example in the definition of ienvAdd , in Figure 2, instead of writing the explicit code:

ienvAdd = inhdefM ienv { nt Expr } $ do lhs ← at lhs
return {{ ch ae1 .=. lhs # ienv

, ch ae2 .=. lhs # ienv }}

A use rule introduces a synthesized attribute that collects information from some of the chil-
dren. The function use takes the following arguments: the attribute being defined, the list of
semantic categories for which the attribute is to be defined, a monoidal operator which combines
the attribute values, and a unit value to be used in those cases where none of the children has
such an attribute. Thus, the definition of svalAdd in Figure 2 is equivalent to:

svalAdd = syndefM sval $ do e1 ← at ch ae1
e2 ← at ch ae2
return $ (e1 # sval) + (e2 # sval)

2.3 Rules Composition

The composition of two rules is the composition of the two functions resulting from applying each
of them to the input family:

ext :: Rule sc ip ic′ sp′ ic′′ sp′′ → Rule sc ip ic sp ic′ sp′

→ Rule sc ip ic sp ic′′ sp′′

(rule1 ‘ext ‘ rule2) input = rule1 input .rule2 input

Fig. 3. Rules Composition: produces a new rule, represented by the external oval

Figure 3 represents a composition rule1 ‘ext ‘ rule2 , of rules with two children. By solving the
labyrinths of this figure, it can be seen how the inputs are shared and the outputs are combined
by using the outputs of rule2 as output constructed thus far of rule1 . In Figure 4 we show for
each production of the example how we combine its attributes using the function ext .

aspRoot = sppRoot ‘ext ‘ svalRoot ‘ext ‘ ienvRoot
aspCst = sppCst ‘ext ‘ svalCst
aspVar = sppVar ‘ext ‘ svalVar
aspMul = sppMul ‘ext ‘ svalMul ‘ext ‘ ienvMul
aspAdd = sppAdd ‘ext ‘ svalAdd ‘ext ‘ ienvAdd
aspLet = sppLet ‘ext ‘ svalLet ‘ext ‘ ienvLet

Fig. 4. Aspects

2.4 Semantic Functions

The semantics we associate with an abstract syntax tree is a function which maps the inherited
attributes of the root node to its synthesized attributes. So for each production we now construct
a function that takes the semantics of its children and maps it to the semantics of the resulting
tree rooted at the node where this production was applied. We will refer to such functions as
semantic functions. The hard work is done by the function knit , that “ties the knot”, combining
the attribute computations with the semantics of the children trees (describing the flow of data
from their inherited to their synthesized attributes) into the semantic function for the parent. In
Figure 5 we show the definition of the semantic functions of the example, where the function knit
is applied to the combined attributes for the production.

semRoot Root sexpr = knit aspRoot {{ ch expr .=. sexpr }}
semExpr Cst scv = knit aspCst {{ ch cv .=. scv }}
semExpr Var svnm = knit aspVar {{ ch vnm .=. svnm }}
semExpr Mul sme1 sme2 = knit aspMul {{ ch me1 .=. sme1 , ch me2 .=. sme2 }}
semExpr Add sae1 sae2 = knit aspAdd {{ ch ae1 .=. sae1 , ch ae2 .=. sae2 }}
semExpr Let slnm sval sbody = knit aspLet {{ ch lnm .=. slnm, ch val .=. sval

, ch body .=. sbody }}

Fig. 5. Semantic Functions

3 Attribute Grammar Combinators

Thus far we have described an EDSL that allows us to define the static semantics of a language.
The goal of this paper is to show how we can define new productions by combining existing
productions, while probably updating some of the aspects. We want to express the semantics of
new productions in terms of already existing semantics and by adapting parts of the semantics
resulting from such a composition.

3.1 Attribute Grammar Macros

In Figure 6 we extend the language of our example with some extra productions; one for defining
the square of a value, one for defining the sum of the squares of two values, and one for doubling
a value.

The square of a value is the multiplication of this value by itself. Thus, the semantics of
multiplication can be used as a basis, by passing to it the semantics of the only child (ch se) of
the square production both as ch me1 and ch me2 . We do so in the definition of aspSq in Figure 6;

$ (addProd "Sq" [("se", “Expr)])

aspSq = agMacro (aspMul , ch me1 ↪−→ ch se
<.> ch me2 ↪−→ ch se)

$ (addProd "Pyth" [("pe1", “Expr), ("pe2", “Expr)])

aspPyth = agMacro (aspAdd , ch ae1 =⇒ (aspSq , ch se ↪−→ ch pe1)
<.> ch ae2 =⇒ (aspSq , ch se ↪−→ ch pe2))

$ (addProd "Double" [("de", “Expr)])

aspDouble = agMacro (aspMul , ch me1 =⇒ (aspCst , ch cv − 2)
<.> ch me2 ↪−→ ch de)

Fig. 6. Language Extension

we declare an attribute grammar macro based on the attribute computations for the production
Mul , defined in aspMul , with its children (ch me1 and ch me2) mapped to the new child ch se.

Attribute macros can map children to other macros, and so on. For example, in the definition
of aspPyth (sum of the squares of ch pe1 and ch pe2) the children are mapped to macros based
on the semantics of square (aspSq).

When defining a macro based on the semantics of a production which has literal children,
these children can be mapped to literals. In the definition of aspDouble the child ch me1 of the
multiplication is mapped to a constant, which is mapped to the literal 2.

An attribute grammar macro is determined by a pair with the base rule (ruleb) of the macro
and the mapping (chMap) between the children of this rule and their newly defined semantics,
and returns a macro rule. As shown in Figure 7, chMap (rectangle) is an interface between the
children of the base rule (inner oval) and the children of the macro rule (outer oval). The number
of children of the macro rule (below chMap in the figure) does not need to be the same as the
number of children of the base rule.

Fig. 7. AG Macro

The function agMacro constructs the macro rule; it performs the “knitting” of ruleb, by ap-
plying this rule to its input and the output produced thus far. These elements have to be obtained
from the corresponding elements of the macro rule and the mapping chMap. To keep the code
clear, we will use the subindex b for the elements of the base rule and m for the elements of the
macro rule. Thus, the macro rule takes as input the family (Fam scm ipm) and updates the output
family constructed thus far (Fam icm spm) to a new output family (Fam ic′′m sp′m):

agMacro (ruleb, chMap) (Fam scm ipm) (Fam icm spm) =
let ipb = ipm

spb = spm

(Fam ic′b sp
′
b) = ruleb (Fam scb ipb) (Fam icb spb)

(ic′m, icb, scb) = chMap (scm, icm) (ic′b, emptyRecord , emptyRecord)
ic′′m = hRearrange (recordLabels icm) ic′m
sp′m = sp′b

in (Fam ic′′m sp′m)

The inherited and synthesized attributes of the parent of the base rule (ipb and spb) respectively
correspond to ipm and spm, the inherited and synthesized attributes of the parent of the macro
rule. The inherited and synthesized attributes of the children of the base rule (icb and scb), as
well as the updated inherited attributes of the children of the macro rule (ic′m), are generated
by the children mapping function chMap. The function chMap takes as input a pair (scm, icm)
with the synthesized attributes and the inherited attributes constructed thus far of the children of
the macro rule, an returns a function that updates a triple with the updated inherited attributes
(ic′m) of the children of the macro rule and the inherited (icb) and synthesized (scb) attributes of
the children of the base rule. We define as the “initial” triple to update, a triple composed by the
updated inherited attributes of the children of the base rule (ic′b), which with some changes will
be converted into ic′m, and two empty records (to be extended to icb and scb). Notice that the
attributes we pass to chMap are effectively the ones indicated by the incoming arrows in Figure 7.

The rearranging of ic′m is just a technical detail due to the use if HList ; by doing this we assure
that the children in icm and ic′m are in the same order, thus explaining to the type system that
both represent the same production. The synthesized attributes of the parent of the macro rule
(sp′m) are just sp′b, the synthesized attributes of the parent of the base rule.

A mapping function is similar to rules in the sense that they take an input and return a function
that updates its “output”, that in this case is the triple (ic′m, icb, scb) instead of an output family.
Thus, they can be combined in the same way rules are combined; the combinator (<.>), used in
Figure 6, is exactly the same as the ext function but with different types:5

(<.>) :: ((scm, icm)→ ((ic′1m, ic1b, sc1b)→ (ic′2m, ic2b, sc2b)))
→ ((scm, icm)→ ((ic′0m, ic0b, sc0b)→ (ic′1m, ic1b, sc1b)))
→ ((scm, icm)→ ((ic′0m, ic0b, sc0b)→ (ic′2m, ic2b, sc2b)))

(chMap1 <.> chMap2) inp = chMap1 inp.chMap2 inp

Fig. 8. aspSq

We use the combinator (↪−→) to map a child lchb of the base rule to a child lchm of the macro
rule.

lchb ↪−→ lchm = λ(scm, icm) (ic′0m, ic0b, sc0b)→
let ic′1m = hRenameLabel lchb lchm (hDeleteAtLabel lchm ic′0m)

ic1b = lchb .=. (icm # lchm) .*. ic0b

5 To avoid confusion with rule combination, instead of using apostrophes to denote updates we use numeric
suffixes

sc1b = lchb .=. (scm # lchm) .*. sc0b
in (ic′1m, ic1b, sc1b)

The updated inherited attributes for the child lchm correspond to the updated inherited attributes
of the child lchb. Thus, the new ic′m (ic′1m) is the original one with the field lchb renamed to lchm.
Since more than one child of the base rule can be mapped to a child of the macro rule, like in aspSq
of Figure 6, we have to avoid duplicates in the record by deleting a possible previous occurrence of
lchm. This decision fixes the semantics of multiple occurrences of a child in a macro: the child will
receive the inherited attributes of its left-most mapping. We represent this behavior in Figure 8
with the gray arrow, which corresponds to the inherited attributes of ch me2 , pointing nowhere
outside the mapping. In the cases of the initial inherited attributes and the synthesized attributes,
they have to be extended with a field corresponding to the child lchb with the attributions for the
child lchm from the inherited and synthesized attributes, respectively, of the macro rule.

Fig. 9. aspPyth Fig. 10. aspDouble

Inside a macro a child can be mapped to some other macro (rulec, chMap), where the subindex
c stands for child. This is the case of the definitions of aspPyth and aspDouble, graphically repre-
sented in Figure 9 and Figure 10.

lchb =⇒ (rulec, chMap) = λ(scm, icm) (ic′0m, ic0b, sc0b)→
let (Fam ic′c sp

′
c) = agMacro (rulec, chMap) (Fam scm (ic′0m # lchb))

(Fam icm emptyRecord)

ic′1m = hLeftUnion ic′c (hDeleteAtLabel lchb ic
′0m)

ic1b = lchb .=. emptyRecord .*. ic0b
sc1b = lchb .=. sp

′
c .*. sc0b

in (ic′0m, ic1b, sc1b)

In this case, the inner macro has to be evaluated using agMacro. The children of the inner macro
will be included in the children of the outer macro; thus the synthesized attributes of the inner
macro are included in scm, and the new inherited attributes of the children have to extend icm.
The inherited attributes of the parent of the inner macro are the inherited attributes of the child
lch b of the base rule of the outer macro. The synthesized attributes of the parent of the inner
macro are initialized with an empty attribution. The child lchb is removed from ic′0m, because the
macro rule will not include it. On the other hand, the inherited attributes of the children of the
inner macro (ic′c) have to be added to the inherited attributes of the children of the macro. With
the function hLeftUnion from HList we perform an union of records, choosing the elements of the
left record in case of duplication. We initialize the inherited attributes for lchb with an empty
attribution, since it cannot be seen “from the outside”. The synthesized attributes are initialized
with the resulting synthesized attributes of the inner rule.

With the combinator (−) we define a mapping from a child with label lch to a literal value
cst . For the base rule, the initial synthesized attributes of the child lchb are fixed to the literal cst .

lchb − cst = λ(,) (ic′0m, ic0b, sc0b)→
let ic′1m = hDeleteAtLabel lch ic′0m

ic1b = lchb .=. emptyRecord .*. ic0b
sc1b = lchb .=. cst .*. sc0b

in (ic′1m, ic1b, sc1b)

3.2 Attribute Redefinitions

We have now reached the point where we can use the described representations to show how we
can extend and change the semantics associated with productions by joining in new language
definitions. In the rest of this section we introduce some functions to redefine existing attributes.

In some cases we could want to introduce a specialized behavior to some specific attributes
of an aspect defined by a macro. For example, the pretty printing attribute spp of the macros
of Figure 6 currently is expressed in terms of the base rule. Thus when pretty printing square x ,
instead x ∗ x will be shown. Fortunately, given the nature of our approach, it turns out to be very
easy to redefine specific attributes: we just update an existing attribute instead of adding a new
one.

The function synmod (and its respective monadic version synmodM) modifies the definition of
an existing synthesized attribute:

synmod att val (Fam ic sp) = Fam ic (hUpdateAtLabel att val sp)

Note that the only difference between syndef , from subsection 2.2, and synmod , is that the latter
updates an existing field of the attribution sp, instead of adding a new field. With the use of the
HList ’s function hUpdateAtLabel we enforce (by type class constraints) the record sp, containing
the synthesized attributes of the parent constructed thus far, to have a field labeled att . Thus,
a rule created using synmod has to extend, using ext , some other rule that has already defined
the synthesized attribute this rule is redefining. In Figure 11 we show how the pretty printing
attributes of the language extensions we defined in Figure 6 can be redefined to reflect the input
program:

sppSq = synmodM spp $ do de ← at ch de
return $ "square" >#< de # spp

aspSq ′ = sppSq ‘ext ‘ aspSq

sppPyth = synmodM spp $ do pe1 ← at ch pe1
pe2 ← at ch pe2
return $ "pyth" >#< pe1 # spp >#< pe2 # spp

aspPyth ′ = sppPyth ‘ext ‘ aspPyth

sppDouble = synmodM spp $ do de ← at ch de
return $ "double" >#< de # spp

aspDouble ′ = sppDouble ‘ext ‘ aspDouble

Fig. 11. Redefiniton of the spp attribute

The AspectAG library also provides functions inhmodM and inhmod , analogous to inhdefM
and inhdef , that modify the definition of an inherited attribute for all children coming from a
specified collection of semantic categories.

4 Conclusions and Future Work

We have introduced a set of combinators to define extensions to semantics expressed as first class
attribute grammars. The programmer of the extensions does not need to know the details of the
implementation of every attribute. In order to implement a macro or a redefinition for a production
only the names of the children of the production are needed, which are provided in the definition
of the abstract syntax tree, and the names of the attributes used.

This work is part of a bigger plan, involving the development of a series of techniques [1, 2, 11,
12] to deal with the problems involved in both syntactic and semantic extensions of a compiler in
a type-safe way. We already think that the current approach is to be preferred over stacking more
and more monads when defining a compositional semantics.

References

1. Arthur Baars, S. Doaitse Swierstra, and Marcos Viera. Typed transformations of typed abstract
syntax. In Fourth ACM SIGPLAN Workshop on Types in Language Design and Implementation,
pages 15–26, New York, USA, 2009. ACM.

2. I. Baars, Arthur, Doaitse Swierstra, S., and Marcos Viera. Typed transformations of typed
grammars: The left corner transform. In Proceedings of the 9th Workshop on Language Descriptions
Tools and Applications, ENTCS, pages 18–33, 2009.

3. Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Stratego/XT 0.17. A
language and toolset for program transformation. Science of Computer Programming, 72(1-2):52–70,
June 2008.

4. Oege de Moor, Kevin Backhouse, and S. Doaitse Swierstra. First-class attribute grammars.
Informatica (Slovenia), 24(3), 2000.

5. Atze Dijkstra, Jeroen Fokker, and S. Doaitse Swierstra. The architecture of the Utrecht Haskell
compiler. In Haskell ’09: Proceedings of the 2nd ACM SIGPLAN symposium on Haskell, pages
93–104, New York, NY, USA, 2009. ACM.

6. Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra. Scripting the type inference process. In
Eighth ACM Sigplan International Conference on Functional Programming, pages 3 – 13, New York,
2003. ACM Press.

7. P. Jones, Mark. Type classes with functional dependencies. In ESOP ’00: Proceedings of the 9th
European Symposium on Programming Languages and Systems, pages 230–244, London, UK, 2000.
Springer-Verlag.

8. Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heterogeneous collections. In
Haskell ’04: Proceedings of the ACM SIGPLAN workshop on Haskell, pages 96–107. ACM Press,
2004.

9. B. M. Leavenworth. Syntax macros and extended translation. Commun. ACM, 9(11):790–793, 1966.
10. Conor McBride. Faking it simulating dependent types in haskell. J. Funct. Program., 12(5):375–392,

2002.
11. S. Doaitse Swierstra. Parser combinators: from toys to tools. In Graham Hutton, editor, Haskell

Workshop, 2000.
12. S. Doaitse Swierstra. Combinator parsing: A short tutorial. In LerNet ALFA Summer School, pages

252–300, 2008.
13. Marcos Viera, S. Doaitse Swierstra, and Wouter Swierstra. Attribute grammars fly first-class: how

to do aspect oriented programming in haskell. In ICFP ’09: Proceedings of the 14th ACM SIGPLAN
international conference on Functional programming, pages 245–256, New York, NY, USA, 2009.
ACM.

