
UUAG Meets AspectAG
How to make Attribute Grammars First-Class

Marcos Viera

S. Doaitse Swierstra

Arie Middelkoop

Technical Report UU-CS-2011-029

Oct 2011

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

UUAG Meets AspectAG: How to make Attribute Grammars

First-Class

Marcos Viera∗1, S. Doaitse Swierstra†2 and Arie Middelkoop‡2

1Instituto de Computación , Universidad de la República, Montevideo, Uruguay
2Department of Computer Science, Utrecht University, Utrecht, The Netherlands

October 12, 2011

Abstract

The Utrecht University Attribute Grammar Compiler (UUAGC) takes attribute grammar
declarations from multiple source files and generates an attribute grammar evaluator consist-
ing of a single Haskell source text. A problem with this generative approach is that, once
the code is generated and compiled, neither new attributes can be introduced nor existing
ones can be modified without providing access to all the source code and without having to
regenerate and recompile the entire program.

In contrast to this textual approach we recently constructed the Haskell combinator library
AspectAG with which one can construct attribute grammar fragments as a Haskell value.
Such descriptions can be individually type-checked, compiled, distributed and composed to
construct a compiler. This method however results in rather inefficient compilers, due to the
cost of composition.

In this paper we show how we can combine the two approaches by generating the AspectAG
code fragments from original UUAGC sources, making it possible to trade between efficiency
and flexibility. This both enables a couple of optimizations for AspectAG resulting in a
considerable speed improvement and makes that existing UUAGC code can be reused in a
flexible environment.

1 Introduction

The key advantage of using attribute grammar systems is that they allow us to describe the
semantics of a programming language in a modular way. A complete evaluator can be assembled
from a large collection of attribute grammar fragments, each describing a specific aspect of the
language at hand. As such, attribute grammars provide a solution to the so-called expression
problem.

The solutions to the quest for modular language description can be found at the textual level, as
in most attribute grammar systems, or at the semantic level, where we define language descriptions
as first class values, which can be linked together to form a complete language description.

The first approach is supported by, amongst many others, the Utrecht Attribute Grammar
System [DS04], which reads in a complete language definition from a large collection of files,
each describing a separate aspect of the language. These fragments are assembled and analyzed
together. From the result a large monolithic compiler is generated. This approach leads to efficient
compilers, which can however not easily be changed once generated and compiled. Thus, adding
something like a syntax-macro mechanism becomes cumbersome.

∗mviera@fing.edu.uy
†doaitse@swierstra.net
‡ariem@cs.uu.nl

1

At the other extreme we find the attempts to assemble the semantics from individual fragments,
which, in case of Haskell, use monad transformers to stack a large collection of relatively indepen-
dent computations over the syntax tree, each taking care of one of the aspects that together make
up a complete compiler [Jon99, SO11]. Unfortunately the monad-based approach comes with its
own problems: one gets easily lost in the stack of monads, one is sometimes obliged to impose an
order which does not really make sense, and the type system makes it hard to e.g. compose state
out of a number of individual states which probably carry the same type. Furthermore the implicit
order in which attributes have to be evaluated becomes very explicit in the way the monads are
composed.

Recently we have designed a completely different way of constructing first-class language defi-
nition fragments, by designing a collection of combinators (the AspectAG Haskell package) which
make it possible to formulate attribute grammars using an Embedded Domain Specific Language
in Haskell [VSS09]. Albeit easy to use for the experienced Haskell programmer, it has a steep
learning curve for the uninitiated. A second disadvantage is that the approach is relatively expen-
sive: in order to be able to redefine attributes or to add new attributes later, we encode the lists of
inherited and synthesized attributes of a non-terminal as an HList-encoded [KLS04] value, indexed
by types using the Haskell class mechanism. In this way the checking for the well-formedness of
the attribute grammar is realized through the Haskell class system. Once the language gets com-
plicated (in our Haskell compiler UHC [DFS09] some non-terminals have over 20 attributes), the
cost of accessing attributes overshadows the cost of the actual computations.

In this paper we seek to alleviate the aforementioned two problems by using the original
UUAGC input code to generate the AspectAG code from. We furthermore take the opportunity
here to group collections of attributes which are not likely to change, so the HList values are
shortened considerably, thus relieving the costs of the extra available expressibility. Only the
attributes which are likely to be adapted in other language fragments have to be made part of
these HList values at the top level; hence we only pay for the extra flexibility where needed.

In section 2 we describe the way the UUAGC represents grammars and our running example,
which consists of an initial language fragment and a small extension. In section 3 we describe
how to generate AspectAG code out of the UUAGC sources, whereas in section 4 we describe how
some optimizations to the generated code can be performed, and show some figures showing the
performance gain achieved in this way.

2 Attribute Grammars

2.1 Initial Attribute Grammars

As running example we use a small expression language with declarations, of which the semantics
boils down to the evaluation of the main expression. In Figure 1 we show an implementation of the
semantics in terms of attribute grammars, using the syntax of the Haskell preprocessor Utrecht
University Attribute Grammar Compiler (UUAGC).

An Attribute Grammar is a context-free grammar where the nodes in the parse tree are deco-
rated with (a usually quite large) a number of values, called attributes. The grammar describing
the abstract syntax trees of the language is introduced by the DATA definitions Root , Expr and
Decls. Attributes define semantics for the language in terms of the grammar and in their defining
expression may refer to other attributes. A tree-walk evaluator generated from the AG computes
values for these attributes, and thus provides implementations for the language’s semantics in the
form of compilers and interpreters. There are two kinds of attributes: synthesized, and inherited
attributes. For each production we distinguish two sets of attributes: the input-family, which
contains the inherited attribute of the parent node and the synthesized attributes of the children
nodes, and the output-family, consisting of the inherited attributes of the children nodes and the
synthesized attributes of the parent node. For each rule and for each member of the output family
of that rule, we define how it is to be computed in terms of the members of the input family. 1

1We use the following naming convention for attributes: all synthesized attributes start with ’s’ and all inherited

2

LangDef.ag

DATA Root
| Root decls : Decls main : Expr

DATA Decls
| Decl name : String val : Expr rest : Decls
| NoDecl

DATA Expr
| Add left : Expr right : Expr
| Val value : Int
| Var var : String

ATTR Root Expr SYN sval : Int

SEM Root
| Root lhs.sval = main.sval

SEM Expr
| Add lhs.sval = left .sval + right .sval
| Val lhs.sval = value
| Var lhs.sval = case lookup var lhs.ienv of

Just v → v
Nothing → 0

ATTR Decls Expr INH ienv : [(String , Int)]

SEM Root
| Root decls.ienv = []

main.ienv = decls.senv

SEM Expr
| Add left .ienv = lhs.ienv

right .ienv = lhs.ienv

SEM Decls
| Decl val .ienv = []

rest .ienv = (name, val .sval) : lhs.ienv

ATTR Decls SYN senv : [(String , Int)]

SEM Decls
| Decl lhs.senv = rest .senv
| NoDecl lhs.senv = lhs.ienv

Figure 1: AG specification of the language semantics

In our example (Figure 1) we use three attributes: one attribute (SYN sval) holding the result
value, one attribute (INH ienv) in which we assemble the environment from the declarations
(ienv) and one atribute (SYN senv) for passing the final environment back to the Root so it can
be used in the main expression.

In a SEM block we specify how attributes from the output family are to be computed out of
attributes from the input family. The defining expressions at the right hand side of the =-signs
are almost plain Haskell code, using minimal syntactic extensions to refer to attributes from the
input family. We refer to a synthesized attribute of a child using the notation child .attribute and

attributes start with ’i’.

3

to an inherited attribute of the production itself (the left-hand side) as lhs.attribute. Terminals
are referred to by the name introduced in the DATA declaration. For example, the rule for the
attribute ienv for the child rest of the production Decl extends the inherited list ienv by a pair
composed of the name used in the declaration and the value sval of the child with name val
(val .sval).

When the UUAGC compiler generates a Haskell program out of a collection of SEM blocks
the rules’ expressions are copied almost verbatim into the generated program: only the attribute
references are replaced by references to values defined by the generated program. The UUAGC
compiler checks whether a definition has been given for each attribute; whereas type checking of
the defining expressions is left to the Haskell compiler when compiling the generated program.

2.2 Attribute Grammar Extensions

LangExt.ag

ATTR Root Decls Expr SYN serr : [String]

SEM Root
| Root lhs.serr = decls.serr ++ main.serr

SEM Decls
| Decl lhs.serr

= (case lookup name lhs.ienv of
Just → [name ++ " duplicated"]
Nothing → []) ++ val .serr ++ rest .serr

| NoDecl lhs.serr = []

SEM Expr
| Add lhs.serr = left .serr ++ right .serr
| Val lhs.serr = []
| Var lhs.serr

= case lookup var lhs.ienv of
Just → []
Nothing → [var ++ " undefined"]

Figure 2: Semantics extended with an attribute that collects errors

In this subsection we now show how we can extend the given language, without touching the
code written. The use of variables and declarations in the example language can be erroneous.
Computing error messages describing such situations is straightforward (Figure 2); we introduce
an extra synthesized attribute (serr) in which we collect the error messages corresponding to dual
declarations (name is already an element of the ienv) and to absent declarations (name is not an
element of ienv).

To compile this code using UUAGC and ghc we have to follow the process described in Figure 3;
i. e. use UUAGC to generate a completely fresh Haskell file out of the two related attribute
grammar sources, and compile and link it with ghc. Keep in mind that by doing that we are only
generating the semantics part of the compiler, which has to be completed with a few lines of main
program containing the parsers and referring to these semantics.

With our solution almost the same code has to be written but, by passing some extra flags to
UUAGC , the compilation process is completely different (Figure 4). This approach enables us have
a compiled definition of the semantics of a core language and to introduce relative small extensions
to it later, without neither the need to reconstruct the whole compiler, nor even requiring the
sources of the core language to be available! Thus, for example, a core language compiler and a
set of optional extensions can be distributed (without sources), such that the user can link his
own extended compiler together.

4

Figure 3: Compilation Process with UUAGC

Figure 4: Compilation Process with our extension of UUAGC

To allow this extension in UUAGC the flag --aspectag has to be passed in the following way:

uuagc -a --aspectag LangDef

uuagc -a --aspectag LangExt

With --aspectag we make UUAGC generate AspectAG code out of a set of .ag files and their
corresponding .agi files, as we show in the following sections.

An .agi file includes the declaration of a grammar and its attributes (the interface), while
the SEM blocks specifying the computation of these attributes are included in the .ag file (the
implementation). Figure 5 shows the attribute grammar specification of Figure 1 adapted to our
approach. Notice that the code is exactly the same, although distributed over a file Langdef.agi

containing DATA and ATTR declarations, and a file Langdef.ag with the rules.
In Figure 6 we adapt the extension of Figure 2. In this case a new keyword EXTENDS is

used to indicate which attribute grammar is being extended. Extensions are incremental. Thus,
if we define yet another extension (Figure 7) which adds a new production representing negating
expressions to the attribute grammar resulting from the previous extension LangExt , the rules for
the attributes sval , ienv and serr have to be defined.

3 From UUAG to AspectAG

Before describing the internal workings of AspectAG we show how UUAGC compiles attribute
grammars into Haskell based evaluators using the code in Figure 1 as an example. It consists
of the data types declarations for Root , Decls and Expr , corresponding to the non-terminals of
the grammar, and functions sem Root , sem Decls and sem Expr to compute the values of the
attributes.

The generation of the data types out of the DATA declarations is straightforward, representing
each production by a constructor of the type corresponding to the non-terminal:

data Root = Root Decls Expr

data Decls = Decl String Expr Decls | NoDecl

data Expr = Add Expr Expr | Val Int | Var String

5

LangDef.agi

DATA Root
| Root decls : Decls main : Expr

DATA Decls
| Decl name : String val : Expr rest : Decls
| NoDecl

DATA Expr
| Add left : Expr right : Expr
| Val value : Int
| Var var : String

ATTR Root Expr SYN sval : Int
ATTR Decls Expr INH ienv : [(String , Int)]
ATTR Decls SYN senv : [(String , Int)]

LangDef.ag

SEM Root
| Root lhs.sval = main.sval

SEM Expr
| Add lhs.sval = left .sval + right .sval
| Val lhs.sval = value
| Var lhs.sval = case lookup var lhs.ienv of

Just v → v
Nothing → 0

SEM Root
| Root decls.ienv = []

main.ienv = decls.senv

SEM Expr
| Add left .ienv = lhs.ienv

right .ienv = lhs.ienv

SEM Decls
| Decl val .ienv = []

rest .ienv = (name, val .sval) : lhs.ienv

SEM Decls
| Decl lhs.senv = rest .senv
| NoDecl lhs.senv = lhs.ienv

Figure 5: Language semantics

The semantic function for a non-terminal is a function that takes an abstract syntax tree and
builds the function that maps the inherited attributes of the root of this tree to its synthesized
attributes. The body of semantic functions is defined using the rules for the output attributes of
the production and by calling the semantic functions on the children of the root node with their
inherited attribute values as parameters, and returning the values of their synthesized attributes.
The following is the code of the “tree-walk evaluator” for the productions of the non-terminal

6

LangExt.agi

EXTENDS "LangDef"

ATTR Root Decls Expr SYN serr : [String]

LangExt.ag

SEM Root
| Root lhs.serr = decls.serr ++ main.serr

SEM Decls
| Decl lhs.serr

= (case lookup name lhs.ienv of
Just → [name ++ " duplicated"]
Nothing → []) ++ val .serr ++ rest .serr

| NoDecl lhs.serr = []

SEM Expr
| Add lhs.serr = left .serr ++ right .serr
| Val lhs.serr = []
| Var lhs.serr

= case lookup var lhs.ienv of
Just → []
Nothing → [var ++ " undefined"]

Figure 6: Language Extension: Errors

Decls:2

sem Decls (Decl name val rest)
= λ(ienv)→ let (vres) = (sem Expr val)

([])
(renv) = (sem Decls rest)

((name, vres) : ienv)
in (renv)

sem Decls (NoDecl)
= λ(ienv)→ (ienv)

In the case of the production Decl , the inherited attribute ienv is the input of the function. The
semantic functions of the children val and res are invoked, applied to the code defined in Figure 1
for their inherited attributes, to obtain their synthesized attributes vres and renv . The resulting
synthesized attribute is renv (in Figure 1 rest .senv).

If we add a new attribute, like the one in Figure 2, we have to inspect the whole grammar and
modify all the semantic functions which will refer to this attribute. We then generate entirely new
code and the new sem Decls becomes:

sem Decls (Decl name val rest)
= λ(ienv)→

let (vres, verr) = (sem Expr val)
([])

(renv , rerr) = (sem Decls rest)
((name, vres) : ienv)

in (restsenv , (case lookup name ienv of
Just → [name ++

2A superfluous pair of parentheses shows where in principle Cartesian products are generated.

7

LangExt2.agi

EXTENDS "LangExt"

DATA Expr
| Neg expr : Expr

LangExt2.ag

SEM Expr
| Neg lhs.sval = −expr .sval

SEM Expr
| Neg expr .ienv = lhs.ienv

SEM Expr
| Neg lhs.serr = expr .serr

Figure 7: Language Extension: Negation

" duplicated"]
Nothing → []) ++ verr ++ rerr)

sem Decls (NoDecl)
= λ(ienv)→

(ienv , [])

In the following subsections we introduce AspectAG [VSS09], a strongly-typed Haskell library
for attribute grammars, where our individual language fragments become first-class values which
can be compiled, stored, redefined and combined. While introducing AspectAG concepts we will
also show how we automatically may generate this code out of a UUAGC based description.

3.1 Record-based Approach

AspectAG is based on the idea of de Moor et al. [dMBS00, dMPJW00] of splitting the semantic
functions into the rules determining the computation of the attributes and their application to
the semantics of the children, in such a way that attribute computations can be manipulated and
combined before being applied.

When computing the attribute values for a production instance in the abstract syntax tree,
information flows from the inherited attributes of the parent (or left-hand side) and the synthesized
attributes of each of the children (together called the input family from now on) to the synthesized
attributes of the parent and the inherited attributes of the children (henceforth called in the output
family).

In AspectAG families are represented with a type:

data Fam parent children = Fam parent children

where both parent and children are extensible records, which are implemented using HList [KLS04]
typeful heterogeneous collections. The record parent represents the set of attributes for the parent
and the record children is a collection of records, each one containing the attributes for a child.
Notice that the labels of the fields in children determine the production for which a family is
defined.

In order to make attribute computation composable we define a rule as a mapping from the
attributes in the input family to a function which extends a family of output attributes with the
new elements defined by this rule:

8

type Rule sc ip ic sp ic′ sp′

= Fam sc ip → (Fam ic sp → Fam ic′ sp′)

Thus, the type Rule states that a rule takes as input the synthesized attributes of the children
sc and the inherited attributes of the parent ip and returns a function from the output family
constructed thus far (inherited attributes of the children ic and synthesized attributes of the parent
sp) to the extended output, which in principle may contain more attributes as indicated by the
new types ic′ and sp′. Note that a rule does not change the input family.

3.2 Grammar

Since we use extendible records, labels have to be generated to refer to the children of the produc-
tions of the grammar. A elements in an HList is referred to by a plain Haskell value of a singleton
type, where such types are used to represent type-level values, and classes are used to represent
type-level types and functions [Hal01, McB02]. The children labels generated out of the .agi files
of the example are:

• From Figure 5: ch decls Root Root , ch main Root Root , ch name Decls Decl ,
ch val Decls Decl , ch rest Decls Decl , ch left Add Expr , ch right Add Expr ,
ch value Val Expr and ch var Var Expr .

• From Figure 7: ch expr Neg Expr .

3.3 Attribute Definition

A collection of synthesized or inherited attributes is represented by an Hlist value too, thus for each
ATTR declaration a label has to be generated to refer to the defined attribute. By convention we
use the name of the attribute prefixed by att for attribute labels. For example, the declaration
ATTR Decls SYN senv : { [(String , Int)]} generates the label att senv .

The AspectAG function syndef adds the definition of a synthesized attribute. It takes a label
att representing the name of the new attribute and a monadic computation (that “reads” from the
input family Fam sc ip) resulting in the value (of type a) to be assigned to the attribute, and it
builds a function which updates the record sp containing the synthesized attributes of the family
output constructed thus far.

syndef :: HExtend (Att att a) sp sp′

⇒ att → Reader (Fam sc ip) a
→ Rule sc ip ic sp ic sp′

The constraint HExtend (Att att a) sp sp′ is a “type-level function” that extends the record sp
with a field with label att and a value with type a.

We use syndef to generate the code for the rules for the synthesized attributes, like:

SEM Decls
| Decl lhs.senv = rest .senv

Resulting in the code:

senv Decls Decl = syndef att senv $
do

rest ← at ch rest Decls Decl
return $ rest # att senv

where at ch rest Decls Decl locates the rest child using the label ch rest Decls Decl in the record
sc of the environment with type Fam sc ip. Having this record bound to rest the HList lookup
operator # is used to locate the value of the attribute att senv . The uses of such calls to at will

9

inform the type system that the input family Fam sc ip has to have a child ch rest Decls Decl
with a defined attribute att senv . Such constraints turn up as class constraints, to be checked by
the Haskell type checker.

The same procedure is followed to generate code for the inherited attributes, but using the
function inhdef :

inhdef :: Defs att nts a ic ic′

⇒ att → nts → Reader (Fam sc ip) a
→ Rule sc ip ic sp ic′ sp

Here the type a is a record with the computations for the children of the production, nts is a
list of labels representing the non-terminals for which the attribute is defined (generated out of
the ATTR declarations), and Defs is a “type-level function” that iterates over a extending the
corresponding records in ic. Thus, for the declarations:

SEM Decls
| Decl val .ienv = []

rest .ienv = (name, val .sval) : lhs.ienv

The following code is generated:

ienv Decls Decl = inhdef att ienv nts ienv $
do
lhs ← at lhs
name ← at ch name Decls Decl
val ← at ch val Decls Decl
return
{{ ch val Decls Decl .=. []
, ch rest Decls Decl .=.

(name, val # att sval) : lhs# att ienv }}

Where lhs returns the record ip (inherited attributes of the parent) from the input family Fam sc ip
and the {{...}} notation is just syntactic sugar for HList extensible records, equivalent to the list
notation [...].

3.4 Generating the Semantic Functions

The composition of two rules is the composition of the two functions after applying each of them
to the input family:

ext :: Rule sc ip ic′ sp′ ic′′ sp′′

→ Rule sc ip ic sp ic′ sp′

→ Rule sc ip ic sp ic′′ sp′′

(f ‘ext ‘ g) input = f input .g input

Thus, when generating AspectAG code, all the rules for the attributes of each production are
composed. In the example of Figure 5 the following composition is generated for the production
Decl :

atts Decls Decl = ienv Decls Decl ‘ext ‘
senv Decls Decl

Once the computations are composed, the semantic functions corresponding to each production
can be generated by applying them to the semantic functions of the children of the production;
i. e. connecting the components of the DGG. This is the job of AspectAG ’s function knit , which
takes a (composite) rule and a record containing the semantic functions of the children, and builds
a function from the inherited attributes of the parent to its synthesized attributes.

10

knit :: (Kn fc ic sc,Empties fc ec)
⇒ Rule sc ip ec (Record HNil) ic sp
→ fc → (ip → sp)

Since a rule returns a function which extends an output family, the function knit also has to
produce an appropriate empty output family to apply to the rule. The semantic function of the
non-terminal Decl is:

sem Decls Decl = knit atts Decls Decl
sem Decls NoDecl = knit atts Decls NoDecl

sem Decls (Decls Decl name val rest)
= sem Decls Decl

{{ ch name Decls Decl .=. (sem Term name)
, ch val Decls Decl .=. (sem Expr val)
, ch rest Decls Decl .=. (sem Decls rest) }}

sem Decls (Decls NoDecl)
= sem Decls NoDecl {{ }}

Note that the definition of the sem functions only depends on the shape (names and types of the
children) of each production. Thus, this code is generated out of the DATA declarations.

3.5 Extensions

The keyword EXTENDS indicates that an attribute grammar declaration extends an existing
attribute grammar. In an extension we can both add new attributes or productions or redefine
the computation of existing attributes.

When the code of an extension is generated, the names of context-free grammar and the
previously defined attributes have to be imported from the code generated for the system to
extend. We take this information from the (chain of) .agi file(s) of the extended module. Thus,
for the example of Figure 6 we generate the import:

import LangDef
(nt Root ,nt Decls,nt Expr
, ch decls Root Root , ch main Root Root
, ch name Decls Decl , ch val Decls Decl
, ch rest Decls Decl
, ch left Add Expr , ch right Add Expr
, ch value Val Expr , ch var Var Expr
, sval , ienv , senv)

We also generate a qualified import of the whole module, so we can refer to already defined
rules without name clashes:

import qualified LangDef

So, when introducing new attributes, we can perform the composition for each production where
the attribute is defined, and knit it again. For example:

atts Decls Decl = serr Decls Decl ‘ext ‘
LangDef .atts Decls Decl

sem Decls Decl = knit atts Decls Decl

By building on top of the AspectAG library, we can both add new attributes, and overwrite
existing ones. If we want to extend the example language in such a way that an expression in
a declaration may refer to sibling declarations, we can do so by redefining the definition for the

11

LangExt3.agi

EXTENDS "LangExt2"

LangExt3.ag

SEM Decls
| Decl val .ienv := rest .senv

Figure 8: Language Extension: Attribute ienv redefined to allow the use of variables in declarations

environment we pass to such right-hand side expressions. In Figure 8 we show how this can be
done using := instead of =, an extension to UUAGC syntax for declaring attribute redefinitions.
When an attribute is overwritten using := a similar approach as when defining new attributes is
taken. Instead of using syndef and inhdef to define attributes, the functions synmod and inhmod
are used, which are almost identical to their respective def functions, with the difference that
instead of extending a record with a new attribute, the value of an existing attribute is updated
in the record.

4 Optimizations

The flexibility provided by the use of list-like structures to represent collections of attributes (and
children) of productions has its consequences in terms of performance. In this section we propose a
couple of optimizations, based on changing some of the extensible records we use by normal records
(Cartesian products). Both optimizations can be performed automatically by the transformation.

4.1 Grouping Attributes

If the number of attributes is fixed and the attributes won’t be redefined, the use of extensible
records is not necessary. Thus, in those cases we can group all the synthesized attributes of a
non-terminal into a single attribute att syn and the inherited attributes into an attribute att inh.
The type of a grouping attribute is a (non extensible) record containing the grouped attributes.

Attributes defined in extensions cannot be grouped with the original attributes. Thus in our
running example applying grouping does not make much sense, since every group will have only
one attribute. But if the specifications in Figures 5 and 6 were joined in the generation process
we will have the attributes att inh and att syn for Decls with types:

data Inh Decls = Inh Decls
{ienv Inh Decls :: [(String , Int)]}

data Syn Decls = Syn Decls
{senv Syn Decls :: [(String , Int)]
, serr Syn Decls :: [String]}

To define and access to the grouped attributes, one more level of indirection is added. Thus,
the definition of att syn for the production Decl is:

syn Decls Decl = syndef att syn $
do

rest ← at ch rest Decls Decl
return

Syn Decls {senv Syn Decls =
(senv Syn Decls (rest # att syn))}

12

By default, all the attributes of every production are grouped, but grouped attributes cannot
be redefined without having to make changes to the entire group. The flag --nogroup lets us
specify the list of attributes we do not want to include in the grouping. For example, the following
call to uuagc generates the AspectAG code for the example with all the attributes grouped but
ienv , which will be redefined in the extensions:

uuagc -a --aspectag --nogroup=ienv LangDef.ag

4.2 Static Productions

If we do not need the possibility to change the definition of already existing productions (i. e .
we will never add or remove children to some productions), a less flexible approach to represent
productions can be taken. The flag --static activates an optimization where the collection of
children attributions are represented as records instead of extensible records. Thus, instead of
defining the labels for the children of the productions, we define for each production a record with
the children as fields. For example:

data Ch Decls Decl name val rest
= Ch Decls Decl {ch name :: name

, ch val :: val , ch rest :: rest }

In this case, the generic knit function cannot be used anymore and thus a specific knit function is
generated for each production:

knit Decls Decl rule fc ip =
let ec = Ch Decls Decl {{ }} {{ }} {{ }}

(Fam ic sp) = rule (Fam sc ip) (Fam ec {{ }})
sc = Ch Decls Decl

((ch name fc) (ch name ic))
((ch val fc) (ch val ic))
((ch rest fc) (ch rest ic))

in sp

Then, the semantic functions are also a bit different:

sem Decls Decl sn sv sr
= knit Decls Decl atts Decls Decl

(Ch Decls Decl sn sv sr)

We cannot use the generic type-level function Defs to define inherited attributes. We must
define a specific instance of Defs for each production:

instance (HExtend (LVPair att v2) ic2 ic′2
,HExtend (LVPair att v3) ic3 ic′3)

⇒ Defs att nts
(Ch Decls Decl v1 v2 v3)
(Ch Decls Decl (Record HNil) ic2 ic3)
(Ch Decls Decl (Record HNil) ic′2 ic′3)

where defs att nts vals ic
= Ch Decls Decl (ch name ic)

(att .=. ch val vals .∗. ch val ic)
(att .=. ch rest vals .∗. ch rest ic)

and adapt the rule definitions to the use of records. For example:

ienv Decls Decl = inhdef att ienv nts ienv $
do

13

lhs ← at lhs
name ← at ch name Decls Decl
val ← at ch val Decls Decl
return Ch Decls Decl
{ch val Decls Decl = []
, ch rest Decls Decl = (name, val # att sval)

: lhs# att ienv }

4.3 Benchmarks

We benchmarked our optimizations against AspectAG and UUAGC , in order to analyze their
performance impact. 3 Figures 9 and 10 show the effect of grouping attributes in a simple
grammar represented by a binary tree. The y-axis represents the execution time (in seconds)
and the x-axis the number of grouped attributes in a full tree with 15 levels. In Figure 9 we
show the results for a system with twenty synthesized attributes. Figure 10 shows the results
for twenty inherited attributes and one synthesized attribute to collect them. In both cases the
effect of grouping attributes becomes clear; for a relative large number of attributes the grouping
optimization achieves good speedups.

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

Figure 9: Grouping Synthesized Attributes

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

Figure 10: Grouping Inherited Attributes

In figures 11 and 12 we show the performance impact of the “static productions” optimization,
as the number of children of the nodes increases. We tested with complete trees with depth 5; the
x-axis represents the arity of the tree. Figure 11 shows the results for one synthesized attribute,
while the results of Figure 12 include one synthesized and one inherited attribute. Thus, the
optimization helps, and has a big impact on productions with many children.

In figures 13 and 14 we compared the performance of both optimizations and AspectAG in
a simple grammar represented by a binary tree. In this case the x-axis represents the number

3Information avaliable at: http://www.cs.uu.nl/wiki/bin/view/Center/Benchmarks

14

AspectAG

static

2 4 6 8 10 12 14
0

10
20
30
40
50
60
70
80
90

Figure 11: Static: Synthesized Attribute

AspectAG

static

2 4 6 8 10 12
0

10

20

30

40

50

60

70

Figure 12: Static: Synthesized and Inherited Attribute

of (synthesized or inherited) attributes. As the number of attributes increases, the grouping
optimization has a bigger performance impact. If we apply both optimizations together (figures
15 and 16) we obtain better times, although we are still quite far from the performance of UUAGC .

AspectAG

static

grouped

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

Figure 13: Static vs Grouped: Synthesized Attributes

If we apply both optimizations together (figures 15 and 16) we obtain better times, although
we are still quite far from the performance of UUAGC .

5 Conclusions

We have shown how to generate flexible compilers, which can be easily extended by taking a hybrid
approach to the architecture of a compiler: the core part is generated as a single monolithic part,
which is evaluated efficiently, whereas extensions can be plugged in to this fixed part, albeit at a

15

AspectAG

static

grouped

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

Figure 14: Static vs Grouped: Inherited Attributes

grouped

static+grouped

UUAGC

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

Figure 15: Static + Grouped: Synthesized Attributes

certain cost; we have constructed e.g. a syntax macro mechanism which makes it quite easy to
extend the core compiler (parser and semantics) with new language constructs.

Summarizing, it can be seen that flexibility still has its cost, but the application of the opti-
mizations is a good option as the number of attributes and/or children of the productions increases.
One should keep in mind that the actual computations done in our examples in the rule functions
is trivial. Hence in a real compiler, where most of the work is actually done in the rules, the
overhead coming with the extra flexibility will be less burdening.

All code is available through the Hackage Haskell libraries.

References

[DFS09] Atze Dijkstra, Jeroen Fokker, and S. Doaitse Swierstra. The architecture of the
Utrecht Haskell compiler. In Proc. of the 2nd ACM SIGPLAN symposium on Haskell,
pages 93–104. ACM, 2009.

[dMBS00] Oege de Moor, Kevin Backhouse, and S. Doaitse Swierstra. First-class attribute
grammars. Informatica (Slovenia), 24(3), 2000.

[dMPJW00] Oege de Moor, L. Peyton Jones, Simon, and Van Wyk, Eric. Aspect-oriented compil-
ers. In Proc. of the 1st International Symposium on Generative and Component-Based
Software Engineering, London, UK, 2000. Springer-Verlag.

[DS04] Atze Dijkstra and S. Doaitse Swierstra. Typing Haskell with an Attribute Gram-
mar. In Advanced Functional Programming Summerschool, number 3622 in LNCS.
Springer-Verlag, 2004.

[Hal01] Thomas Hallgren. Fun with functional dependencies or (draft) types as values in
static computations in haskell. In Proc. of the Joint CS/CE Winter Meeting, 2001.

16

grouped

static+grouped

UUAGC

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

Figure 16: Static + Grouped: Inherited Attributes

[Jon99] Mark P. Jones. Typing Haskell in Haskell. In Haskell Workshop, 1999.

[KLS04] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heterogeneous
collections. In Haskell ’04: Proc. of the ACM SIGPLAN workshop on Haskell. ACM
Press, 2004.

[McB02] Conor McBride. Faking it simulating dependent types in haskell. J. Funct. Program.,
12(5):375–392, 2002.

[SO11] Tom Schrijvers and Bruno C.d.S. Oliveira. Monads, zippers and views: virtualizing
the monad stack. In Proc. of the 16th ACM SIGPLAN international conference on
Functional programming, pages 32–44. ACM, 2011.

[VSS09] Marcos Viera, S. Doaitse Swierstra, and Wouter Swierstra. Attribute grammars fly
first-class: how to do aspect oriented programming in Haskell. In Proc. of the 14th
ACM SIGPLAN international conference on Functional programming. ACM, 2009.

17

