
Grammar Fragments Fly First-Class

Marcos Viera
S. Doaitse Swierstra
Atze Dijkstra

Technical Report UU-CS-2011-032

Nov 2011

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Grammar Fragments Fly First-Class

Marcos Viera∗, S. Doaitse Swierstra and Atze Dijkstra

December 14, 2011

Abstract

We present a Haskell library1 for describing grammars explicitly, using typed abstract
syntax with references. We can analyze, transform and finally generate parsers from this
representation. What makes our approach special is that we can combine grammar fragments
on the fly, i.e. after they have been compiled. Thus grammar fragments become real first-class
values.

We show how by using this technique we can extend an initial, more limited grammar
embedded in a compiler with extra syntactic constructs. Existing grammars can be freely
extended by both adding new non-terminals and by adding new productions to the existing
non-terminals, with no restrictions being imposed on the individual fragments, nor on the
structure as a whole.

1 Introduction

We have many different ways to represent grammars and grammatical structures: be it in implicit
form using conventional parser combinators which directly implement the parsing semantics or as
typed abstract syntax. Each approach comes with its own advantages and disadvantages. The for-
mer, being a domain specific embedded language, makes direct use of the abstraction and naming
system of the underlying host language. This implicit representation however also does have its
disadvantages: we can only perform a limited form of grammar analysis and transformation. The
latter approach, which does give us full access to the complete domain specific program, comes
with a more elaborate naming system and transforming such programs necessitates to provide
proofs (encoded in the Haskell type system) that the types remain correct during transformation.

There are several application areas for the latter approach. One of the cases where one wants
to be able to compose grammar fragments is when a user extends the syntax of the base language
with his own notation. In order to do so several steps have to be undertaken: he has to extend
the underlying context-free grammar and he has to give the semantics of these new constructs.
Once the extensions are given we have to construct the parser for the complete language, and
have to be sure that the newly defined or redefined semantics become part of the semantics of the
complete language. In a more limited way this is done by e.g. the quasi quoting mechanism of
Template Haskell [7, 13]. This approach however has its limitations, since here the separate pieces
are clearly separated from the host language, whereas we want to describe “invisible extensions”.

In an earlier paper [17] we have shown how to define the final semantics of a composed language
in terms of composible attribute grammar fragments and in [15] we have shown how to compose
grammar fragments for a limited class of grammars, i.e. those which describe Haskell data types.
These latter grammars have a convenient property: productions cannot derive the empty string,
which is a necessary pre-condition for the Left-Corner Transform (LCT) which is to be applied
later to remove potential left-recursion.

In general this restriction however does not hold and hence the questions remains how to
make sure that the final context-free grammar, which is thus composed of a potentially very large

∗Instituto de Computación, Universidad de la República, Montevideo, Uruguay
1The code of this paper is available as a package from http://hackage.haskell.org/package/SyntaxMacros

1

Grammar:

root ::= exp
exp ::= "let" var "=" exp "in" exp

| exp "+" term | term
term ::= term "*" factor | factor
factor ::= int | var

Haskell code:

prds = proc ()→ do
rec root ← addNT ≺ T semRoot exp U

exp ← addNT ≺ T semLet "let" var "=" exp
"in" exp U

<|> T semAdd term "+" exp U
<|> T id term U

term ← addNT ≺ T semMul term "*" factor U
<|> T id factor U

factor ← addNT ≺ T semCst int U
<|> T semVar var U

exportNTs ≺ exportList root $ export ntExp exp
. export ntTerm term
. export ntFactor factor

gram = closeGram prds

Figure 1: Initial language

number of smaller CFG fragments, is parseable. There should be no need to restrict the user from
abstaining from left-recursion, nor from the use of empty productions.

In this paper we describe an unrestricted, applicative interface for such grammar descriptions,
describe how they can be combined, and how they can be transformed so they fulfill the initial
requirements imposed by the Left-Corner Transform. After applying this transform, which we
have described elsewhere, one finally gets the required parser by interpreting the final structure
using a conventional combinator library.

In section 2 we describe the “user-interface” to our library, in section 3 we describe the
type structures used internally to represent our grammar fragments and its applicative inter-
face, whereas in section 4 we describe internal structures of the grammars which make it possible
to extend the grammars. In section 5 present a transformation to remove the empty productions
of a grammar fragment in order to be able to apply Left-Corner Transform. In section 6 we extend
our grammar representation with a fixpoint-like combinator. Finally in section 7 we conclude and
discuss some future work.

2 Context-Free Grammar

In this section we show how to express a part of a context free grammar. Our running example
will be a simple expression language, to which we will refer to as the initial grammar. Figure 1
shows this initial grammar, together with the almost isomorphic Haskell code corresponding to
this language fragment.

Note that this concrete grammar uses the syntactic categories root , exp, term and factor to
describe the operator precedences.

A language implementer has to provide the Haskell code, expressing himself using our combi-

2

nator library (of course one might generate this from the grammar description) and the arrow-
interface; in the structure of the code we immediately recognize the context-free grammar just
given. Each non-terminal of the CFG is introduced (using addNT) by defining a list of produc-
tions (alternatives) separated by <|> operators, where each production contains a sequence of
elements to be recognised. The alternatives are expressed in so-called applicative style, using the
idiomatic brackets T and U which delineate the description of a production from the rest of the
Haskell code. These brcakets are inspired by the idioms approach as introduced by Conor McBride
[9]2. We have made those definitions a bit more specific and have added extra instances which
deal with special cases, such as single characters (’*’) and strings ("let") in such definitions.
These symbols define parts of a parser which do not bear any meaning. The result of their parsing
is discarded and not taken into further account. The brackets T and U are syntactic sugar for iI
and Ii, respectively, where for example the production description:

T semMul term "*" factor U

is equivalent to:

pure semMul <*> sym term <* tr "*" <*> sym exp.

The operator (<*), applied in the case of terminals, is a sequence operator that ignores the value
of the second argument. A naive implementation of (<*) is:

a <* b = pure const <*> a <*> b

The functions starting with sem (e.g. semMul) describe how to combine the semantic values
of the non-terminals in the right-hand side of the production into the semantic value of the left
hand side of that production. We call them semantic functions, since they give a semantics to
the production. We will not go into the details of how to construct such semantic functions in
this paper. They have to be provided elsewhere, e.g. by writing plain Haskell code full of monad
transformers. We prefer to generate such functions from an attribute grammar using the uuagc-
system, or describe them directly in Haskell using attribute grammar descriptions embedded as a
domain specific language in Haskell as described in [17]. In all these cases the resulting meaning
of a parse tree is a function which can be seen as a mapping from the inherited to the synthesized
attributes. Thus, a production is defined by a semantic function and a sequence of non-terminals
and terminals ("*"), the latter corresponding to literals which are to be recognized.

As usual some of the elementary parsers return values which are constructed by the scanner.
For such terminals we have a couple of predefined special cases, such as int which returns the
integer value from the input and var which returns a recognised variable name.

An initial grammar is also an extensible grammar. It exports (with exportNTs) its starting
point (root) and a list of exportable non-terminals each consisting of a label (by convention of the
form nt ..., which is actually a single value of a specific type) and the collection of right hand sides.
These right hand sides can be used and modified in future extensions.

The function closeGram takes the list of productions, and converts it into a compiler; in our
case that is a parser integrated with the semantics for the language starting from the first non-
terminal, which in our case is root .

2.1 Language Extension

In this subsecion we show how to extend the language just defined with a couple extra productions;
we add conditional expressions, conditions and the possibility to use parentheses to influence the
way expressions are parsed:

exp ::= ...
| "if" cond "then" exp "else" exp

2http://www.haskell.org/haskellwiki/Idiom_brackets

3

cond ::= exp "==" exp
| exp ">" exp

factor ::= ...
| "(" exp ")"

This language extension prds ′ is defined as a closed Haskell value by itself, which accesses an
already existing set of productions (imported) and builds an extended set, as shown in Figure 2.

prds ′ = proc imported → do
let exp = getNT ntExp imported
let factor = getNT ntFactor imported

rec addProds ≺ (exp, T semIf "if" cond
"then" exp
"else" exp U)

cond ← addNT ≺ T semEq exp "==" exp U
<|> T semGr exp ">" exp U

addProds ≺ (factor ,T semPar "(" exp ")" U)

exportNTs ≺ extendExport imported
(export ntCond cond)

gram ′ = closeGram (prds +>> prds ′)

Figure 2: Language Extension

For each non-terminal to be extended we retrieve its list of productions (using getNT) from
the imported non-terminals, and add new productions to this list using addProds. For example,
for exp the new production for conditional is added by:

let exp = getNT ntExp imported
addProds ≺ (exp,T semIf "if" cond

"then" exp
"else" exp U)

This code shows how to combine the previously defined productions with the newly defined pro-
ductions into the extended grammar. New non-terminals can be added as well using addNT ; in
the example we add the non-terminal cond to represent some simple conditions:

cond ← addNT ≺ T semEq exp "==" exp U
<|> T semGr exp ">" exp U

Finally, we extend the list of exportable non-terminals with (some of) the newly added non-
terminals, so they can be extended by further fragments elsewhere:

exportNTs ≺ extendExport imported
(export ntCond cond)

Because both prds and prds ′ are proper Haskell values which are separately defined in different
modules which can be compiled separately we claim that the term first class grammar fragments
is justified here.

3 Grammar Representation

Having described how to define individual language fragments and how to combine them, in this
and the following sections we will embark on the description of the internals of our library itself.

4

Since we do not want to put severe constraints on the use of the libraries when composing a
context free grammar from a collection of individual fragments, we will have to cope with a large
class of grammars; we require from all individual components that they can be safely composed.
So we will have to deal with left-recursive grammars and grammars which are, once composed,
for example not LALR(1). In previous work [2, 1, 3, 15] we have developed a serie of techniques
to deal with such grammars, which are based on typed representation of grammars and typed
transformations of these grammars, for example to remove left recursion. In this section we
introduce a typed representation of grammars that provides an easy way to describe grammars
and allows the use of these techniques.

We represent grammars as typed abstract syntax, using Generalised Algebraic Data Types
[12]. The idea, proposed in [3], is to indirectly refer to non-terminals via references encoded
as types. Such references type-index into an environment holding the actual descriptions of the
non-terminals.

A Ref encodes a typed reference to an environment containing values of different types. It is
labeled with the type a of the referenced value and the type env of the environment (a nested
Cartesian product extending to the right) which contains the value.

data Ref a env where
Zero :: Ref a (env ′, a)
Suc :: Ref a env ′ → Ref a (env ′, b)

The constructor Zero expresses that the first element of the environment has to be of type a. The
constructor Suc remembers a position in the rest of the environment. It ignores the first element
in the environment by being polymorphic in the type b.

This encoding was introduced by Pasalic and Linger [10]. and was extended in [3] such that
environments Env consist of a collection of possibly mutually recursive definitions. Instead of
containing values of different types, an environment contains terms describing those values. These
terms can also contain typed references to other terms. Thus, the type of a term is t a use,
where the type parameter a is the type of the described value and use the environment into which
references to other terms occurring in the term may point.

data Env t use def where
Empty :: Env t use ()
Ext :: Env t use def ′ → t a use

→ Env t use (def ′, a)

The type parameter def contains the type labels a of the terms of type t a use defined by
the environment. When a term is added to the environment using Ext , its type label is included
as the first component of def . The type FinalEnv forces environments def and use to coincide,
thereby closing an environment and thus making sure that all references point to some definition,
and that those definitions describe values of the expected types.

To express that an environment is close we introduce the type FinalEnv whch guarantees that
the use anddef are the same.

type FinalEnv t usedef = Env t usedef usedef

A grammar consists of a closed environment, containing a list of alternative productions for
each non-terminal, and a reference (Ref a env) to one of these non-terminals which is the start
symbol. The type a is the type of the witness of a complete successful parse. The type env is
hidden using existential quantification, so changes to the structure of the grammar can be made,
by adding or removing non-terminals, without having to change the visible part of its type.

data EG
data CG

data Grammar s a

5

= ∀ env .Grammar (Ref a env)
(FinalEnv (Productions s) env)

newtype Productions s a env
= PS {unPS :: [Prod s a env]}

The type s represents the state of the grammar, that is: EC if the grammar can contain empty
productions and CG if the grammar does not contain empty productions.

We represent productions differently from [3] and [15], where a production is a sequence of
symbols terminated with a function representing the semantics. Here we represent productions
in an applicative-style; i.e. with a couple of constructors Pure and Star analogous to the pure
function and <*> operator of applicative functors:

data Prod s a env where
Pure :: a → Prod s a env
Star :: Prod s (a → b) env

→ Prod s a env → Prod s b env
Sym :: Symbol a t env → Prod s a env

FlipStar :: Prod CG a env
→ Prod CG (a → b) env → Prod CG b env

FlipStar is a variant of Star with its arguments in the reverse order. By imposing s to be CG , we
restrict FlipStar to be included only in grammars without empty productions. Sym is a special
case of pure that lifts a symbol to a production. A symbol is either a terminal or a non-terminal. A
non-terminal is encoded by a reference pointing to one of the elements of an environment labelled
with env . A normal terminal contains the literal string it represents. We define a category of
attributed terminals, which are not fixed by a literal string. Every attributed terminal refers to a
lexical structure. Although in the case of terminals the parsed value is ignored when evaluating
semantics, in attributed terminals the parsed values are used, so the type a instantiates to the
type of the parsed value.

data TTerm
data TNonT
data TAttT

data Symbol a t env where
Term :: String → Symbol String TTerm env

Nont :: Ref a env → Symbol a TNonT env

TermInt :: Symbol Int TAttT env
TermChar :: Symbol Char TAttT env
TermVarid :: Symbol String TAttT env
TermConid :: Symbol String TAttT env
TermOp :: Symbol String TAttT env

The type parameter t indicates, at the type-level, whether a Symbol is a terminal (type TTerm)
for which the result is (usually) discarded, a non-terminal (TNonT) or an attributed terminal
(TAttT) in the value of which we are interested.

In order to make our code more readable we introduce the following smart constructors for
terminals:

trm = Term

int = TermInt
char = TermChar
var = TermVarid
con = TermConid
op = TermOp

6

3.1 From Grammar to Parser

A grammar can be compiled into a parser, which can then be used to parse a String into a
ParseResult containing a semantic value of type a.

compile :: Grammar CG a → Parser a
parse :: Parser a → String → ParseResult a

We translate to the uu-parsinglib parser combinator library [14], that has an Applicative (and
Alternative) interface. Thus, compile translates a Productions list as a sequence of parsers com-
bined by <|>. The Prod constructors Star , FlipStar and Pure are translated to <*>, <**> and
pure, respectively. Terminals are translated to terminal parsers and non-terminal references are
looked-up into an environment containing the translated productions for each non-terminal.

newtype Const f a s = C {unC :: f a }
compile :: Grammar CG a → Parser a
compile (Grammar (start :: Ref a env) rules)

= unC (lookupEnv start result) where
result =

mapEnv
(λ(PS ps)→ C (foldr1 (<|>) [comp p | p ← ps]))
rules

comp :: ∀ t .Prod CG t env → Parser t

comp (Star x y) = comp x <*> comp y
comp (FlipStar x y) = comp x <**> comp y
comp (Pure x) = pure x

comp (Sym (Term t)) = pTerm t
comp (Sym (Nont n)) = unC (lookupEnv n result)

comp (Sym TermInt) = pInt
comp (Sym TermChar) = pChr
comp (Sym TermVarid) = pVar
comp (Sym TermConid) = pCon
comp (Sym TermOp) = pOp

mapEnv :: (∀ a.f a s → g a s)
→ Env f s env → Env g s env

mapEnv Empty = Empty
mapEnv f (Ext r v) = Ext (mapEnv f r) (f v)

Since the uu-parsinglib performs a breadth-first search it will parse a large class of gram-
mars without any further try or cut-like annotations; the only requirement it imposes is that the
grammar is not left-recursive (which holds since we will apply the LCT before compiling the gram-
mar into a parser) and that the grammar is unambiguous. This latter property is unfortunately
undecidable; fortunately it is trivial to generate a parser version which can handle ambiguous
grammars too, since the uu-parsinglib library contains provisions for this.

We define the relation equality under compilation (
c≡) as:

a
c≡ b ⇔ compile a ≡ compile b

Since Parser is an applicative functor, we can translate its laws to elements of type Prod under
compilation:

Pure id ‘Star ‘ v
c≡ v

Pure (.) ‘Star ‘ u ‘Star ‘ v ‘Star ‘ w
c≡ u ‘Star ‘ v ‘Star ‘ w

Pure f ‘Star ‘ Pure x
c≡ Pure (f x)

u ‘Star ‘ Pure y
c≡ Pure ($y) ‘Star ‘ u

7

3.2 Applicative Interface

We want the type Productions to be an instance of Applicative and Alternative, in order to have
an applicative interface to describe productions. However, this is impossible due to the order of its
type parameters; we need a to be the last parameter3. Thus, we define the type PreProductions
for descriptions of alternative productions. Notice that the productions cannot include FlipStars.

newtype PreProductions env a
= PP {unPP :: [Prod EG a env]}

The translation from PreProductions to Productions is trivial:

prod :: PreProductions env a → Productions EG a env
prod (PP ps) = PS ps

Now we can define the instances of Applicative and Alternative for (PreProductions env):

instance Applicative (PreProductions env) where
pure f = PP [Pure f]

(PP f) <*> (PP g) = PP [Star f ′ g ′ | f ′ ← f , g ′ ← g]

instance Alternative (PreProductions env) where
empty = PP []

(PP f) <|> (PP g) = PP (f ++ g)

Note that we are dealing with lists of alternative productions. Thus, the alternative operator (<|>)
takes two lists of alternatives and just appends them. In the case of sequential application (<*>)
a list of productions is generated with all the possible combinations of the operands joined with a
Star .

We also defined smart constructors for symbols: sym for the general case and tr for the special
case where the symbol is a terminal.

sym :: Symbol a t env → PreProductions env a
sym s = PP [Sym s]

tr :: String → PreProductions env String
tr s = PP [Sym (Term s)]

4 Extensible Grammars

In this section we present the library to define and combine extensible grammars (like the one in
Figure 1) and grammar extensions (Figure 2). The key idea is to see the definition, and possibly
future extensions, of a grammar as a typed transformation that introduces new non-terminals into
a typed grammar.

4.1 TTTAS

Grammar definitions and extensions are defined as typed transformations of values of type Grammar .
For example, both prds and prds ′ of Figures 1 and 2 are typed transformations: while prd starts
with an empty context-free grammar and transforms it by adding the non-terminals root , exp,
term and factor , the grammar extension prd ′ continues the transformation started by prd and
modifies some of the non-terminals. Notice that a Grammar is a collection of mutually recursive

3We cannot just redefine Productions with this order, because we need the original one for the transformations
we will introduce later.

8

typed structures; thus, performing transformations while maintaining the whole collection well-
typed is non-trivial. The rest of this sub-section is a short introduction to the API of TTTAS4

(Typed Transformations of Typed Abstract Syntax), the library we use to implement our trans-
formations. TTTAS is based on the Arrow type Trafo [5], which represents typed transformation
steps, (possibly) extending an environment Env .

data Trafo m t s a b

The arguments are the types of: the meta-data m (i.e., state other than the environment we are
constructing), the terms t stored in the environment, the final environment s, the arrow-input
a and arrow-output b. Thus, instances of the classes Category and Arrow are implemented for
(Trafo m t s), which provides a set of functions for constructing and combining Trafos. Some of
these functions which we will refer to are:

• Identity arrow (like return in monads)

returnA :: Arrow a ⇒ a b b

• Lifting a function to an arrow

arr :: Arrow a ⇒ (b → c)→ a b c

• Left-to-right composition

(>>>) :: Category cat ⇒ cat a b → cat b c → cat a c

The class ArrowLoop is instantiated to provide feedback loops with its member:

loop :: a (b, d) (c, d)→ a b c

There also exists a convenient notation [11] for Arrows, which is inspired by the do-notation for
Monads.

A transformation is run with runTrafo, starting with an empty environment and an initial
value of type a. The universal quantification over the type s ensures that transformation steps
cannot make any assumptions about the type of the (yet unknown) final environment.

runTrafo :: (∀ s.Trafo m t s a (b s))→ m ()→ a
→ Result m t b

The result of running a transformation is encoded by the type Result , containing the meta-data,
the output type and the final environment. It is existential in the final environment, because in
general we do not know how many definitions are introduced by a transformation and which are
their types. Note that the final environment has to be closed (hence the use of FinalEnv).

data Result m t b
= ∀ s.Result (m s) (b s) (FinalEnv t s)

New terms can be added to the environment by using the function newSRef . It takes the term of
type t a s to be added as input and yields as output a reference of type Ref a s that points to
this term in the final environment:

newSRef :: Trafo Unit t s (t a s) (Ref a s)
data Unit s = Unit

4http://hackage.haskell.org/package/TTTAS

9

The type Unit is used to represent that this transformation does not record any meta-information.
Functions (FinalEnv t s → FinalEnv t s) for updating the final environment of a transforma-

tion can be lifted into the Trafo and composed using updateFinalEnv . All functions lifted using
updateFinalEnv will be applied to the final environment once it is created.

updateFinalEnv :: Trafo m t s
(FinalEnv t s → FinalEnv t s) ()

If we have, for example:

proc ()→ do
...
updateFinalEnv ≺ upd1
...
updateFinalEnv ≺ upd2
...

the function (upd2 . upd1) will be applied to the final environment, produced by the transforma-
tion.

4.2 Grammar Extensions

In this subsection the API of the library to define and combine extensible grammars (like the one
in Figure 1) and grammar extensions (Figure 2) is presented. A grammar extension can be seen as
a serie of typed transformation steps that can add new non-terminals to a typed grammar and/or
modify the definition of already existing non-terminals.

We define an extensible grammar type (ExtGram) for constructing intitial grammars from
scratch and a grammar extension type (GramExt) as a typed transformation that extends a typed
extensible grammar. In both cases a Trafo uses the Productions as the type of terms defined in
the environment being carried.

type ExtGramTrafo = Trafo Unit (Productions EG)

type ExtGram env start ′ nts ′

= ExtGramTrafo env ()
(Export start ′ nts ′ env)

type GramExt env start nts start ′ nts ′

= ExtGramTrafo env (Export start nts env)
(Export start ′ nts ′ env)

4.2.1 Exportable non-terminals

Both extensible grammars and grammar extensions have to export the starting point start ′ and a
list of exportable non-terminals nts ′ to be used in future extensions. The only difference between
them is that a grammar extension has to import the elements (start and nts) exported by the
grammar it will extend, while an extensible grammar, given that it is an initial grammar, does
not import anything.

The exported (and imported, in the case of grammar extensions) elements have type Export start nts env ,
including the starting point (with type (Symbol start TNonT env), thus a non-terminal) and the
list of exportable non-terminals (nts env).

data Export start nts env
= Export (Symbol start TNonT env) (nts env)

The list of exportable non-terminals has to be passed in a NTRecord , which is an implementation
of extensible records very similar to the one in the HList library [6], with the difference that it

10

has a type parameter env for the environment where the non-terminals point into. So, we define
data types to represent a list-like structure both at the value and type level.

data NTCons nt v l env
= NTCons (LSPair nt v TNonT env) (l env)

data NTNil env = NTNil

Each element of the list is a field of type LSPair , that associates a label nt (a phantom type [4])
with a symbol of type (Symbol a t env).

newtype LSPair nt a t env
= LSPair {symLSPair :: (Symbol a t env)}

infixr 6 ∈
(∈) = LSPair

Labels are used as type-level values; note that when constructing a field using (∈) we just ignore
the real value. For each label we have to define a unique type and a ⊥ value to lift this type. The
labels of our example (Figure 1) are:

data NTRoot ; ntRoot = ⊥ :: NTRoot
data NTExp; ntExp = ⊥ :: NTExp
data NTTerm; ntTerm = ⊥ :: NTTerm
data NTFactor ; ntFactor = ⊥ :: NTFactor

We have defined some functions to construct Export values:

exportList r ext = Export r (ext ntNil)
export l nt = NTCons (l ∈ nt)

Thus, the export list in Figure 1:

exportList root $ export ntExp exp
. export ntTerm term
. export ntFactor factor

is equivalent to:

Export root (NTCons (ntExp ∈ exp)
(NTCons (ntTerm ∈ term)
(NTCons (ntFactor ∈ factor)
NTNil)))

Given that expr , term and factor in the example have types (Symbol AttExpr TNonT env),
(Symbol AttTerm TNonT env) and (Symbol AttFactor TNonT env), respectively, where each
AttNT is the semantic domain associated to the respective NT , the type of the list of exportable
non-terminals is:

NTCons NTExpr AttExpr
(NTCons NTTerm AttTerm

(NTCons NTFactor AttFactor
(NTNil env)
env)

env)
env

If we want this list to be a record, it should be ensured at compile time it does not contain two
elements with the same label. This is accomplished by the class NTRecord :

11

class NTRecord nts
instance NTRecord (NTNil env)
instance (NTRecord (nts env), IsNotElem nt (nts env))

⇒ NTRecord (NTCons nt v nts env)

A type r is a NTRecord if it is an empty list (NTNil env) or is a (NTCons nt v nts env) where
the rest of the list (nts env) is a NTRecord and the label nt does not belong to it:

class Fail err
data Duplicated nt

class IsNotElem nt nts
instance IsNotElem nt (NTNil env)
instance Fail (Duplicated nt)
⇒ IsNotElem nt (NTCons nt v nts env)

instance IsNotElem nt1 (l env)
⇒ IsNotElem nt1 (NTCons nt2 v nts env)

Overlapping instance detection5 is used to decide whether the IsNotElem check fails. Verification
of absence of duplicate labels proceeds recursively until it arrives at the empty list or at an instance
where the labels match. When that happens a message about duplicate labels is generated by
relying on the absence of an instance for class Fail : Fail doesn’t have any instances at all, hence
compilation terminates yielding an error message like:

No instance for (Fail (Duplicated nt)) ...

The class GetNT is used to lookup a non-terminal in a record.

class GetNT nt nts v | nt nts → v where
getNT :: nt → nts → v

data NotFound nt

instance Fail (NotFound nt)
⇒ GetNT nt (NTNil env) r
where getNT = ⊥

instance GetNT nt (NTCons nt v l env)
(Symbol v TNonT env)

where getNT (NTCons f) = symbolNTField f

instance GetNT nt1 (l env) r
⇒ GetNT nt1 (NTCons nt2 v l env) r
where getNT nt (NTCons l) = getNT nt l

We will not go into further details here, but its implementation is similar to the IsNotElem
case with the differences that GetNT fails when the label is not found (the search reaches NTNil),
and when the label is found the non-terminal is returned.

Since the exportable non-terminals are wrapped into an Export value, we include an instance
to lookup a non-terminal from its list of exportable non-terminals:

instance GetNT nt (nts env) r
⇒ GetNT nt (Export start nts env) r
where getNT nt (Export nts) = getNT nt nts

To be able to finally export the starting point and the exportable non-terminals we chain an
Export value through the transformation in order to return it as output.

exportNTs :: NTRecord (nts env)
⇒ ExtGramTrafo env (Export start nts env)

5We did it to keep the code as simple as possible, alternatives to avoid overlapping can be found in [6].

12

(Export start nts env)
exportNTs = returnA

Thus, the definition of an extensible grammar, like the one in Figure 1, has the following shape 6:

prds = proc ()→ do
...
exportNTs ≺ export

where export is a value of type Export .
The definition of a grammar extension, like the one in Figure 2, has the shape:

prds ′ = proc (imported)→ do
...
exportNTs ≺ export

where imported and export are both of type Export . We have defined a function to extend (im-
ported) exportable lists:

extendExport (Export r nts) ext = Export r (ext nts)

4.2.2 Adding Non-terminals

To add a new non-terminal to the grammar we add a new term to the environment.

addNT :: ExtGramTrafo env (PreProductions env a)
(Symbol a TNonT env)

addNT = proc p → do
r ← newSRef ≺ prod p
returnA ≺ Nont r

The input to addNT is the initial list of alternative productions (a PreProductions) for the non-
terminal and the output is a non-terminal symbol, i. e. a reference to the non-terminal in the
grammar. Thus, when in Figure 1 we write:

term ← addNT ≺ T semMul term "*" factor U
<|> T id factor U

we are adding the non-terminal term for terms, with the productions T semMul term "*" factor U
and T id factor U, and we bind to term a symbol holding the reference to the added non-terminal
which can be used in the definition of this or other non-terminals. Because Trafo instantiates
ArrowLoop, we can define mutually recursive non-terminals using the keyword rec.

4.2.3 Adding Productions

Adding new productions to an existing non-terminal translates into the concatenation of the new
productions to the existing list of productions of the non-terminal.

addProds :: ExtGramTrafo env
(Symbol a TNonT env
,PreProductions env a)
()

addProds = proc (nont , prds)→ do
updateFinalEnv ≺

updateEnv (λps → PS $ (unPP prds) ++ (unPS ps))
(getRefNT nont)

In Figure 2 we have seen examples of adding productions to the non-terminals exp and factor .

6Using arrow’s syntax [11]

13

4.2.4 Grammar Extension and Composition

To extend a grammar is to compose two transformations, the first one constructing an extensible
grammar and the second one representing a grammar extension.

(+>>) :: (NTRecord (nts env),NTRecord (nts ′ env))
⇒ ExtGram env start nts
→ GramExt env start nts start ′ nts ′

→ ExtGram env start ′ nts ′

g +>> sm = g >>> sm

We defined (+>>) to restrict the types of the composition. Two grammar extensions can be
composed just by using (>>>).

If we want to compose two extensible grammars g1 and g2 (their non-terminals sets are
disjoint), we have to sequence them, obtain their start points s1 and s2 , and finally add the
new starting point; a non-terminal s that references to s1 and s2 as its alternatives.

(<++>) :: (NTUnion nts1 nts2 nts)
⇒ ExtGram env start nts1
→ ExtGram env start nts2
→ ExtGram env start nts

g1 <++> g2 = proc ()→ do
(Export s1 ns1)← g1 ≺ ()
(Export s2 ns2)← g2 ≺ ()

s ← addNT ≺ sym s1 <|> sym s2

returnA ≺ Export s (ntUnion ns1 ns2)

5 Closed Grammars

To close a grammar we run the Trafo, in order to obtain the grammar to which we apply the Left-
Corner Transform. By applying leftcorner we prevent the resulting grammar to be left-recursive,
so it can be parsed by a top-down parser. Such a step is essential since we cannot expect from
a large collection of language fragments, that the resulting grammar will be e.g. LALR(1) or
non-left-recursive. The type of the start non-terminal a is the type of the resulting grammar.

closeGram :: (∀ env .ExtGram env a nts)
→ Grammar CG a

closeGram prds = case runTrafo prds Unit () of
Result (Export (Nont r)) gram
→ (leftCorner .removeEmpties) (Grammar r gram)

The leftcorner function is an adaptation of our representation of Prod of the transformation
proposed in [1]. The Left Corner transform does not accept grammars with either empty pro-
ductions or productions which start with a possibly empty element, since such production do not
have a well-defined collection of left-corner symbols, i.e., symbol which have be recognized first
before the left-hand side symbol can be recognized. Thus, we need to introduce a preprocessing
step which removes such empty productions.

removeEmpties :: Grammar EG a → Grammar CG a
leftCorner :: Grammar CG a → Grammar CG a

The function removeEmpties takes a grammar that can have empty productions (Grammar EG a)
and returns an equivalent grammar (Grammar CG a) without empty productions and without

14

left-most empty elements. Since this transformation does not introduce new non-terminals, we do
not need to use TTTAS to implement it.

First, the possibly empty production of each non-terminal is located using the function findEmpties,
that takes the environment with the productions of the grammar and returns an isomorphic en-
vironment with values of type HasEmpty . If a non-terminal has an empty production, then
the position of the resulting environment corresponding to this non-terminal contains a value
HasEmpty f , where f is the semantic value associated to this empty case. If a non-terminal does
not have empty productions then the environment contains a HasNotEmpty on its corresponding
position.

After locating the empty productions we remove them from the grammar using the function
removeEmptiesEnv , where the empty production of each non-terminal is removed and added to the
contexts where the non-terminal is referenced. Thus, if the root symbol has an empty production,
allowing the parsing of the empty string, this behavior will not be present after the removal. For
simplicity reasons we avoid this situation by disallowing empty productions for the root symbol
of the grammars we deal with, and yield an error message in this case. It is easy to remove this
constraint by adding a production (Pure f) to the start non-terminal of the grammar resulting
from the whole (leftCorner .removeEmpties) transformation, where (HasEmpty f) is the result of
looking-up the start point in the environment of empty productions. But in practice we do not
expect this to be necessary.

data HasEmpty a env = Unknown
| HasNotEmpty
| HasEmpty a

removeEmpties :: Grammar EG a → Grammar CG a
removeEmpties (Grammar start prds) =

let empties = findEmpties prds
in case lookupEnv start empties of

HasNotEmpty
→ Grammar start $

removeEmptiesEnv empties prds
→ error "Empty prod at start point"

In the following sub-sections we will explain the empty productions removal algorithm on more
detail. For that we will use the following example grammar:

A → pure fA <*> tr "a" <*> sym B
B → sym C <*> sym D <*> pure fB
C → pure fC1 <*> sym C <*> tr "c" <|> pure fC2
D → pure fD <|> tr "d"

5.1 Finding Empty Productions

The function findEmpties constructs an environment with values of type HasEmpty . It starts
with an initial environment of found empties without information, created by initEmpties, and
iterates updating this environment until a fixpoint is reached. The function stepFindEmpties
implements one step of this iteration, returning a triple with: the environment with the found
empty productions thus far, a Boolean value indicating whether this step introduced changes to
the environment, and a Boolean value that tells us whether the returned environment still has any
Unknown non-terminals.

type GramEnv s = Env (Productions s)

findEmpties :: GramEnv EG env env

15

→ Env HasEmpty env env
findEmpties prods

= findEmpties ′ prods (initEmpties prods)

findEmpties ′ prds empties =
case stepFindEmpties empties prds empties of

(empties ′,True,)→ findEmpties ′ prds empties ′

(empties ′,False,False)→ empties ′

(, False,True)→ error "Incorrect Grammar"

If we arrive at a fixpoint, and still have remaining Unknown non-terminals, then the grammar
is incorrect, so we get a soundness check for the grammar for free. Such non-terminals will not be
able to derive a finite sentence, as the following example shows:

A→ term "a" <*> sym A

The initial environment of the algorithm is an environment with an Unknown value for each
non-terminal of the grammar. In the example, the initial environment is the one of the Step 0 in
Figure 3.

initEmpties :: GramEnv EG use def
→ Env HasEmpty use def

initEmpties Empty = Empty
initEmpties (Ext nts) = Ext (initEmpties nts)

Unknown

On each step we take the actual environment of found empty productions and we go through
all the non-terminals of the grammar, trying to find out if the information about the existence of
empty productions for this non-terminal can be updated (updEmpty).

stepFindEmpties :: Env HasEmpty use use
→ GramEnv EG use def
→ Env HasEmpty use def
→ (Env HasEmpty use def ,Bool ,Bool)

stepFindEmpties Empty Empty
= (Empty ,False)

stepFindEmpties empties (Ext rprd prd) (Ext re e)
= let (re ′, rchg , runk)

= stepFindEmpties empties rprd re
(e ′, chg , unk)

= updEmpty empties prd e
in (Ext re ′ e ′, chg ∨ rchg , unk ∨ runk)

We only have to update the HasEmpty value associated with a non-terminal if in the actual
environment it is Unknown. In the other cases we already know whether this non-terminal has
any empty productions.

updEmpty :: Env HasEmpty use use
→ Productions EG a use
→ HasEmpty a use
→ (HasEmpty a use,Bool ,Bool)

updEmpty empties prds Unknown
= case hasEmpty empties prds of

Unknown → (Unknown,False,True)
e → (e, True, False)

updEmpty e = (e,False,False)

16

Step 0

A→ Unknown
B→ Unknown
C→ Unknown
D→ Unknown

Step 1

A→ HasNotEmpty
B→ Unknown
C→ HasEmpty fC2
D→ HasEmpty fD

Step 2

A→ HasNotEmpty
B→ HasEmpty (fC2 fD fB)
C→ HasEmpty fC2
D→ HasEmpty fD

Step 3

A→ HasNotEmpty
B→ HasEmpty (fC2 fD fB)
C→ HasEmpty fC2
D→ HasEmpty fD

Figure 3: Results of Finding Empties Steps for the Example

The new HasEmpty information for a non-terminal is computed out of the previous environ-
ment and the list of productions of the non-terminal. The HasEmpty information is retreived for
each production using isEmpty , and those results are combined. If any of the productions is empty
then we have found that the non-terminal may derive the empty string. If we find more than one
empty production the grammar is ambiguous. If all the productions are not empty, then we return
HasNotEmpty . In other cases, the information for this non-terminal remains still Unknown.

hasEmpty :: Env HasEmpty env env
→ Productions EG a env → HasEmpty a env

hasEmpty empties (PS ps)
= foldr (λp re → combine (isEmpty p empties) re)

HasNotEmpty ps

combine :: HasEmpty a env → HasEmpty a env
→ HasEmpty a env

combine (HasEmpty) (HasEmpty)
= error "Ambiguous Grammar"

combine (HasEmpty f) = HasEmpty f
combine (HasEmpty f) = HasEmpty f
combine HasNotEmpty HasNotEmpty = HasNotEmpty
combine = Unknown

An empty production is obtained from: a production (Pure a), a reference to a non-terminal
that has an empty production, or a sequence of two empty productions. In this case we construct a
HasEmpty a value with a the semantic action associated to this empty alternative; for a sequential
composition of actions f and x the associated semantic action is (f x), given that Pure f ‘Star ‘

Pure x
c≡ Pure (f x). If a production is a terminal symbol, a reference to a non-terminal that has

no empty production, or a sequence of two productions where at least one of them is not empty,
then this production is not empty and we return HasNotEmpty . We obtain the information of the
referenced non-terminals from the environment created thus far. Thus, it can happen that in a
certain step there is not enough information to take a decision about a production, remaining it
Unknown. This is the case of a reference to a non-terminal that is still Unknown and a sequence
of two productions where the first production is empty and the second Unknown or the first is
Unknown and the second not empty.

isEmpty :: Prod EG a env → Env HasEmpty env env
→ HasEmpty a env

isEmpty (Pure a) = HasEmpty a

17

isEmpty (Sym (Nont r)) empties = lookupEnv r empties

isEmpty (Sym) = HasNotEmpty

isEmpty (Star pl pr) empties
= case isEmpty pl empties of

HasNotEmpty → HasNotEmpty
HasEmpty f →

case isEmpty pr empties of
HasEmpty x → HasEmpty (f x)
e → e

Unknown →
case isEmpty pr empties of

HasNotEmpty → HasNotEmpty
→ Unknown

Let us look at our example grammar; in Figure 3 we show the results of the steps taken to find
the empty productions.

In Step 1 we find useful information for non-terminals A, C and D . In the case of A we have
only one production:

Pure fA ‘Star ‘ Sym (Term "a") ‘Star ‘ Sym B

looking at the left part of the sequence:

Pure fA ‘Star ‘ Sym (Term "a")

we have another sequence with an empty left part and a non-empty right part. Since one of its
components is not empty, the whole sequence is not empty; and the same applies to its containing
sequence.

In the cases of C and D , it can be seen that both have two productions. In both cases one
production is empty and the other is not empty; hence we have immediately located an empty
production for both non-terminals.

The non-terminal B has a single production:

Sym C ‘Star ‘ Sym D ‘Star ‘ Pure fB

if we look at the left part:

Sym C ‘Star ‘ Sym D

it is a sequence of two non-terminals. Thus we have to look for the information we have from the
previous step, in this case the Step 0 (the initial environment). For both C and D we still do not
have any information, thus the information of the left part of the production is Unknown. Since
the right part of the production is empty (Pure fB), we cannot assume anything yet about the
existence of empty productions for B .

In Step 2 we take another look at B . Now we know that C has an empty production with
semantic action fC2 and D has an empty production with semantic action fD . Therefore from the
left part of the sequence we can construct a HasEmpty (fC2 fD), having finally found the empty
production HasEmpty (fC2 fD fB).

The Step 3 does not perform any changes to the environment of found empty productions,
since no non-terminal is Unknown. Thus, we have found the empty productions of the grammar.

5.2 Removal of Empty Productions

Once the empty productions are found, we can proceed to remove them. The function removeEmptiesEnv
traverses the environment with the productions of the non-terminals, removing the empty pro-
ductions, transforming productions which start with an empty element into productions starting

18

with non-empty elements, and transforming the contexts where the non-terminals with empty
productions are referenced.

removeEmptiesEnv :: Env HasEmpty use use
→ GramEnv EG use def
→ GramEnv CG use def

removeEmptiesEnv Empty
= Empty

removeEmptiesEnv empties (Ext rprds prds)
= Ext (removeEmptiesEnv empties rprds)

(removeEmpty empties prds)

To remove the possibly empty production from a non-terminal, we apply the function splitEmpty
to every production, concatenating the resulting alternative productions.

removeEmpty :: Env HasEmpty env env
→ Productions EG a env
→ Productions CG a env

removeEmpty empties (PS prds)
= PS $ foldr ((++).remEmptyProd) [] prds

where remEmptyProd prd =
let (prd ′,) = splitEmpty empties prd
in prd ′

The function splitEmpty takes a production, and the environment of found empty productions,
and returns a pair with a list of alternative productions generated from removing the empty part
of the input production, and the possibly empty part of the production. While removing the
empty productions in removeEmpty we use the generated non-empty productions and ignore the
empty part.

splitEmpty :: Env HasEmpty env env → Prod EG a env
→ ([Prod CG a env],Maybe (Prod CG a env))

In the case of non-terminal symbols, the generated non-empty production is a refernce to
the symbol itself, since the algorithm will remove its possible empty production. The empty
production, if it exists, is looked-up in the environment of found empty productions.

splitEmpty empties (Sym (Nont r))
= case lookupEnv r empties of

HasEmpty f → ([Sym $ Nont r], Just (Pure f))
→ ([Sym $ Nont r],Nothing)

Terminal symbols are non-empty productions, thus the generated non-empty production is the
symbol itself, not having any empty part. On the other hand, a Pure a production is an empty
production without non-empty part.

splitEmpty (Sym s) = ([Sym s],Nothing)
splitEmpty (Pure a) = ([], Just (Pure a))

In the example, when removing the empty productions of D , splitEmpty is invoked for the al-
ternative productions (Pure fD) and (Sym (Term "d")), that result in the respective pairs
([Sym (Term "d")],Nothing) and ([], Just (Pure fD)). Thus, after the removal D only has
the production (Sym (Term "d")).
The non-empty productions generated by the transformation of a sequence f <*> g are:

• fne gne Sequences of the combination of the non-empty productions generated from f and
g .

19

• fne ge Sequences of the non-empty productions generated from f and the empty production
of g .

• fe gne Sequences of the empty production of f and the non-empty productions generated
from g . Here we introduce the FlipStar “reversed” sequence, translating (fe <*> gne) to
(gne <**> fe), in order to move the non-empty part of the sequence to the left. Thus we avoid
introducing left-most empty elements.

The possible empty production generated from f <*> g is fe ge, a production Pure (fv gv) where
fv and gv are the semantic actions associated to the empty productions of f and g , respectively.
Notice the use of the Maybe Monad .

splitEmpty empties (Star f g)
= let (fne, fe) = splitEmpty empties f

(gne, ge) = splitEmpty empties g

fne gne = [Star fv gv | fv ← fne, gv ← gne]
fne ge = case ge of

Nothing → []
Just gv → [Star fv gv | fv ← fne]

fe gne = case fe of
Nothing → []
Just fv → [FlipStar gv fv | gv ← gne]

fe ge = do
(Pure fv)← fe
(Pure gv)← ge
return $ Pure (fv gv)

in (fne gne ++ fne ge ++ fe gne, fe ge)

The function splitEmpty takes a production of type Prod EG a env as argument, and thus
productions of the form (FlipStar g f) are not possible as input. However, as we have seen before,
this kind of productions can be generated out of the transformation (case fe gne) because the
returned productions have type Prod CG a env . In the example, during the removal of the empty
production of B , we call splitEmpty for:

Sym C ‘Star ‘ Sym D ‘Star ‘ Pure fB

that calls splitEmpty for Sym C ‘Star ‘ Sym D and Pure fB . Let us see what happens in the
evaluation for the first sub-production. The function splitEmpty is again called for Sym C and
Sym D , resulting in:

fne ⇒ [Sym C]
fe ⇒ Just (Pure fC2)
gne ⇒ [Sym D]
ge ⇒ Just (Pure fD)

Thus, the empty part of the sub-production is (Pure (fC2 fD)), and the non-empty generated
productions are:

[Sym C ‘Star ‘ Sym D
,Sym C ‘Star ‘ Pure fD
,Sym D ‘FlipStar ‘ Pure fC2]

Finally, given that the result of splitEmpty for (Pure fB) is ([], Just (Pure fB)), the empty part
of B coincides with the one found with findEmpties and the transformed B is:

B → PS [Sym C ‘Star ‘ Sym D ‘Star ‘ Pure fB
,Sym C ‘Star ‘ Pure fD ‘Star ‘ Pure fB
,Sym D ‘FlipStar ‘ Pure fC2 ‘Star ‘ Pure fB]

20

Note that now B : does not contain any empty production, includes productions for the empty
and non-empty part of every referenced non-terminal, and has no left-most empty element.

The result of the transformation over the whole grammar example, using the smart constructors
to make it easier to read, is:

A → tr "a" <**> pure fA <*> sym B
<|> tr "a" <**> pure fA <*> pure (fC2 fD fB)

B → sym C <*> sym D <*> pure fB
<|> sym C <*> pure fD <*> pure fB
<|> sym D <**> pure fC2 <*> pure fB

C → sym C <**> pure fC1 <*> tr "c"

D → tr "d"

Notice how our brute-force approach generates grammars which have productions which start with
the same sequence of elements. These will be taken care of by the left-factoring which is done as
the last step of the Left Corner Transform. A slight different approach would be to extend our
formalism to allow for nested structures, where we have a special kind of non-terminals, i.e. those
which are only referenced once, and which we substitute directly in the grammar. This will lead
to a grammar with a rule:

A→ tr "a" <**> pure fA <*> (sym B
<|> pure (fC2 fD fB)

)

Unfortunately this will make the formulation of the Left Corner Transform more complicated.

6 Fixpoint Production

In order to be able to define recursive productions, we have added a sort of fixpoint combinator
to our productions representation. The data type Prod is extended with the constructors Fix , for
the fixpoint combinator, and Var , for references to the fixed point.

data FL a

data Prod s a env where
...

Fix :: Productions (FL a) a env
→ Prod EG a env

Var :: Prod (FL a) a env

The type parameter s is used to restrict: Fix to be used only at “top-level”, Var to be used only
at “fixpoint-level”, productions Var to have the same type of their containing Fix .

Thus, by defining some smart constructors:

varPrd :: PreProductions (FL a) env a
varPrd = PP [Var]
fixPrd :: PreProductions (FL a) env a

→ PreProductions EG env a
fixPrd p = PP [(Fix .prod) p]

we can, for example, represent the useful EBNF-like combinators pSome and pMany .

pSome :: PreProductions (FL [a]) env a
→ PreProductions EG env [a]

pSome p = fixPrd (one <|> more)
where one = (:[]) <$> p

21

more = (:) <$> p <*> varPrd

pMany :: PreProductions (FL [a]) env a
→ PreProductions EG env [a]

pMany p = fixPrd (none <|> more)
where none = pure []

more = (:) <$> p <*> varPrd

Another useful combinator is pFoldr , which is a generalized version of pMany , where the
semantic functions have to be passed as an argument.

pFoldr :: (a → b → b, b)
→ PreProductions (FL b) env a
→ PreProductions TL env b

pFoldr (c, e) p = fixPrd (none <|> more)
where none = pure e

more = c <$> p <*> varPrd

6.1 Fixpoint Removal

The semantics of Fix and Var are provided by a new transformation removeFix , that we add to
the grammar closing pipeline.

closeGram :: (∀ env .ExtGram env a nts)
→ Grammar CG a

closeGram prds = case runTrafo prds Unit () of
Result (Export (Nont r)) gram
→ (leftCorner .removeEmpties.removeFix)

(Grammar r gram)

The function removeFix takes a grammar which can have Fix and Var productions, and returns
a new grammar without them.

removeFix :: Grammar EG a → Grammar EG a

What we basically do is to traverse the input environment returning a copy of the productions in
every case but Fix . When a (Fix prds) is found, we use addNT to add a new non-terminal to the
grammar and return its reference. The productions we add to this non-terminal is the result of
replacing Var by the non-terminal reference in prds. Thus, doing for example:

rec A← addNT ≺ fixPrd
(pure fA1 <|> pure fA2 <* trm "a" <*> varPrd)

is equivalent to do:

rec R ← addNT ≺ pure fA1
<|> pure fA2 <* trm "a" <*> sym R

A← addNT ≺ sym R

7 Conclusions and Future Work

We have shown how we can use typed abstract syntax to represent grammar fragments, how to
analyze them and how to transform them using the TTTAS library. The algorithms we have shown

22

are well-known as such, but have never been formulated in such a fully typed way. By formulating
the transformations as we did we have given a partial correctness proof of the algorithms.

There are many places where, by making the representations a bit more involved, a more
efficient algorithm can be had. Unfortunately the resulting descriptions will become quite a bit
more involved too. It is part of our future work to find out whether such refinements will be
needed in practical situations.

It should not go unnoticed that for our approach to work one should rely on an underlying
combinator library which has a very general parsing strategy (as the uu-parsinglib has), and
which is preferably able to handle ambiguous grammars. It is our experience that being able
to handle such grammars, be it only to provide feedback to the language designer that the final
grammar is ambiguous, is indispensable. In our case this can be easily achieved by lifting all
semantic domains, by inserting amb combinators in the generated parsers, and lifting all semantic
functions to Kleisli-compositions. Our next step will be to integrate a whole collection of tech-
niques, of which this paper described only one, into the Utrecht Haskell Compiler (UHC); amongst
these other techniques are the generation of first-class attribute grammar fragments by the uuagc
compiler such that the first class language extensions can plug into them as described in [16], the
efficient handling of larger collections of attributes as described in [8].

References

[1] Arthur Baars, S. Doaitse Swierstra, and Marcos Viera. Typed transformations of typed
abstract syntax. In TLDI ’09: fourth ACM SIGPLAN Workshop on Types in Language
Design and Implementation, pages 15–26, New York, NY, USA, 2009. ACM.

[2] Arthur I. Baars and S. Doaitse Swierstra. Typing dynamic typing. In S. Peyton Jones,
editor, Proceedings of the seventh ACM SIGPLAN international conference on Functional
programming, pages 157–166. ACM Press, 2002.

[3] I. Baars, Arthur, Doaitse Swierstra, S., and Marcos Viera. Typed transformations of typed
grammars: The left corner transform. In Proceedings of the 9th Workshop on Language
Descriptions Tools and Applications, ENTCS, pages 18–33, 2009.

[4] Ralf Hinze. Fun with phantom types. In Jeremy Gibbons and Oege de Moor, editors, The
Fun of Programming, pages 245–262. Palgrave Macmillan, 2003.

[5] John Hughes. Generalising monads to arrows. Sci. Comput. Program., 37(1-3):67–111, 2000.

[6] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heterogeneous collections.
In Haskell ’04: Proceedings of the ACM SIGPLAN workshop on Haskell, pages 96–107.
ACM Press, 2004.

[7] Geoffrey Mainland. Why it’s nice to be quoted: quasiquoting for haskell. In Proceedings of
the ACM SIGPLAN workshop on Haskell workshop, Haskell ’07, pages 73–82, New York,
NY, USA, 2007. ACM.

[8] Bruno Mart́ınez, Marcos Viera, and Pardo Alberto. Just do it while compiling! fast
extensible records in haskell. Technical report, Instituto de Computación, Universidad de la
República, Montevideo, Uruguay, 2011.

[9] Conor McBride and Ross Paterson. Applicative programming with effects. Journal of
Functional Programming, 18(01):1–13, 2007.

[10] Emir Pasalic and Nathan Linger. Meta-programming with typed object-language
representations. In Generative Programming and Component Engineering (GPCE’04),
volume LNCS 3286, pages 136 – 167, October 2004.

23

[11] Ross Paterson. A new notation for arrows. In ICFP ’01: Proceedings of the sixth ACM
SIGPLAN international conference on Functional programming, pages 229–240, New York,
NY, USA, 2001. ACM.

[12] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Washburn.
Simple unification-based type inference for gadts. SIGPLAN Not., 41(9):50–61, 2006.

[13] Tim Sheard and Simon Peyton Jones. Template meta-programming for haskell. SIGPLAN
Not., 37:60–75, December 2002.

[14] S. Doaitse Swierstra. Combinator parsers: a short tutorial. In A. Bove, L. Barbosa,
A. Pardo, , and J. Sousa Pinto, editors, Language Engineering and Rigorous Software
Development, volume 5520 of LNCS, pages 252–300. Spinger, 2009.

[15] Marcos Viera, Doaitse Swierstra, S., and Eelco Lempsink. Haskell, do you read me?:
constructing and composing efficient top-down parsers at runtime. In Haskell ’08:
Proceedings of the first ACM SIGPLAN symposium on Haskell, pages 63–74, New York,
NY, USA, 2008. ACM.

[16] Marcos Viera, Doaitse Swierstra, S., and Arie Middelkoop. Uuag meets aspectag. Technical
report, Instituto de Computación, Universidad de la República, Montevideo, Uruguay, 2011.

[17] Marcos Viera, S. Doaitse Swierstra, and Wouter Swierstra. Attribute grammars fly
first-class: how to do aspect oriented programming in haskell. In ICFP ’09: Proceedings of
the 14th ACM SIGPLAN international conference on Functional programming, pages
245–256, New York, NY, USA, 2009. ACM.

24

