
Exact Algorithms for Kayles

Hans L. Bodlaender

Dieter Kratsch

Sjoerd T. Timmer

Technical Report UU-CS-2012-001

January 2012

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Exact Algorithms for Kayles ∗

Hans L. Bodlaender † Dieter Kratsch ‡ Sjoerd T. Timmer §

Abstract

In the game of Kayles, two players select alternatingly a vertex from a given
graph G, but may never choose a vertex that is adjacent or equal to an already
chosen vertex. The last player that can select a vertex wins the game. In this paper,
we give an exact algorithm to determine which player has a winning strategy in this
game. To analyze the running time of the algorithm, we introduce the notion of a
K-set: a nonempty set of vertices W ⊆ V is a K-set in a graph G = (V,E), if G[W]
is connected and there exists an independent set X such that W = V −N [X]. The
running time of the algorithm is bounded by a polynomial factor times the number
of K-sets in G. We prove that the number of K-sets in a graph with n vertices and m
edges is bounded by O(1.6052n). A computer generated case analysis improves this
bound to O(1.6031n) K-sets, and thus we have an upper bound of O(1.6031n) on the
running time of the algorithm for Kayles. We also show that the number of K-sets in
a tree is bounded by n · 3n/3 and thus Kayles can be solved on trees in O(1.4423n)
time. We show that apart from a polynomial factor, the number of K-sets in a tree
is sharp.

Keywords: Graph algorithms; exact algorithms; combinatorial games; analysis
of algorithms; moderately exponential time algorithms; Kayles; independent sets

1 Introduction

When a problem is computationally hard, then there still are many situations in which
the need can arise to solve it exactly. This motivates the field of exact algorithms, where
exact, exponential time algorithms whose running time is as small as possible are sought.
Many such exact algorithms have been designed and analyzed for problems that are NP-
complete or #P -complete, see [8]. Of course, also problems that are complete for a ’harder’

∗The work of the second author was supported by the ANR project AGAPE. An earlier version [4] of
this paper appeared in the proceedings of the 37th International Workshop on Graph-Theoretic Concepts
in Computer Science, WG 2011. That version has one case missing in the proof of the upper bound for
general graphs. The current paper has a corrected proof, and gives in addition an improved computer
generated bound.
†Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, the Netherlands. h.l.bodlaender@uu.nl
‡Université Paul Verlaine – Metz, LITA, 57045 Metz Cedex 01, France. kratsch@univ-metz.fr
§Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, the Netherlands. s.t.timmer@uu.nl

1

complexity class, e.g., PSPACE-complete often ask for exact solutions. Many PSPACE-
complete problems arrive from the question which player has a winning strategy for a
given position in a combinatorial game. Exact algorithms are of great relevance here, e.g.,
a program could use a heuristic to find a move, but once a position is simple enough, it
switches to an exact algorithm to give optimal play in the endgame.

In this paper, we study exact algorithms for one such PSPACE-complete problem,
namely the problem to determine which player has a winning strategy in an given instance
of the game Kayles. Kayles is a two-player game that is played on a graph G = (V,E).
Alternatingly, the players choose a vertex from the graph, but players are not allowed to
choose a vertex that already has been chosen or is adjacent to a vertex that already has
been chosen. Thus, the player build together an independent set in G. The last player
that chooses a vertex (i.e., turns the independent set into a maximal independent set) wins
the game. Alternatively, one can describe the game as follows: the chosen vertex and its
neighbors are removed and a player wins when his move empties the graph. The problem
to determine the winning player for a given instance of the game is also called Kayles.
This problem was shown to be PSPACE-complete by Schaefer [13]. In an earlier paper [3],
we showed that by exploiting Sprague-Grundy theory, Kayles can be solved in polynomial
time on several special graph classes, in particular graphs with a bounded asteroidal number
(which includes well known classes of graphs like interval graphs, cocomparability graphs
and cographs). Fleischer and Trippen [6] showed that Kayles can be solved in polynomial
time on stars of bounded degree, and also analyzed this special case experimentally. For
general trees, the complexity of Kayles is a long standing open problem. Variants of the
game on paths were studied and shown to be linear time solvable by Guignard and Sopena
[9]. For more background, the reader can consult [1, 2, 5].

It is not hard to find an algorithm that solves Kayles in O∗(2n) time, by tabulating
for each induced subgraph of G which player has a winning strategy from that position.
In this paper, we improve upon this trivial algorithm, and give an algorithm that uses
O(1.6031n) time. The algorithm uses ideas from [3], exploiting results from Sprague-
Grundy theory (also known as the theory of nimbers). To analyze the running time of the
algorithm, we introduce the notion of K-set: a set of nonempty vertices W ⊆ V is a K-set
in a graph G = (V,E), if G[W] is connected and there exists an independent set X such
that W = V − N [X]. In this paper, we give two upper bounds on the number of K-sets
of a graph. For the first one, an upper bound of O(1.6052n), we give a proof based on a
nontrivial case analysis. We then obtained a much more extensive With help of a computer
generated case analysis, we obtained an improved bound of O(1.6031n) for the number of
K-sets in a graph. We also show that if G is a tree, then G has at most n · 3n/3 K-sets, and
thus, Kayles can be solved in O∗(3n/3) = O(1.4423n) time on trees (and forests). 1 We
also give lower bounds for the number of K-sets. In particular, our bound of 3n/3 K-sets
for trees is sharp except for polynomial terms.

This paper is organized as follows. In Section 2, some preliminary notions and results

1We use the so called O∗ notation: f(n) = O∗(g(n)) if f(n) = O(g(n)p(n)) for some polynomial p(n).
See also [8].

2

from graph theory and Sprague-Grundy theory are given. In Section 3, we give an algorithm
for determining the winning player for Kayles played on a given graph G, and show that
the running time is bounded by a polynomial in the number of vertices n times the number
of K-sets in G. In Section 4, we present the proof that the number of K-sets in a graph is
bounded by O(1.6052n). We explain how the computer generated bound of O(1.6031n) is
obtained in Section 5. In Section 6, we give an upper bound on the number of K-sets in a
tree; these match up to a constant multiplicative term. Section 7 discusses lower bounds
for the number of K-sets in graphs; our bounds for trees are sharp up to a polynomial
factor. Some final remarks are made in Section 8.

2 Preliminaries

Graph terminology Throughout this paper all graphs G = (V,E) are undirected and
simple. Let S ⊆ V . Then N [S] = ∪s∈SN [s] is the closed neighborhood of S, N(S) =
N [S] \ S is the open neighborhood of S, and G[S] denotes the subgraph of G induced by S.

A nonempty set of vertices W ⊆ V of a graph G = (V,E) is called a K-set (Kayles set)
of G, if it fulfills each of the following criteria:

• G[W] is connected

• there exists an independent set X ⊆ V such that W = V −N [X]

Sprague-Grundy theory Next, we review some notions and results from Sprague-
Grundy theory, and give some preliminary results on how this theory can be used for
Kayles. For a good introduction to Sprague-Grundy theory, the reader is referred to [1, 5].

A nimber is an integer belonging to N = {0, 1, 2, . . .}. For a finite set of nimbers S ⊆ N,
define the minimum excluded nimber of S as mex(S) = min{i ∈ N | i 6∈ S}.

To each position in a two player game that is finite, deterministic, full-information,
impartial, and with ‘last player wins rule’, one can associate a nimber in the following
way. If no move is possible in the position (and hence the player that must move loses the
game), the position gets nimber 0. Otherwise the nimber is the minimum excluded nimber
of the set of nimbers of positions that can be reached in one move.

Theorem 1 [1, 5] There is a winning strategy for player 1 from a position, if and only if
the nimber of that position is at least 1.

Denote the nimber of a position p by nb(p). Given two (finite, deterministic, impartial,
. . .) games G1, G2, the sum of G1 and G2, denoted G1+G2 is the game where a move consists
of choosing G1 or G2 and then making a move in that game. A player that cannot make
a move in G1 nor in G2 looses the game G1 + G2. With (p1, p2) we denote the position in
G1 + G2, where the position in Gi is pi (i = 1, 2).

The binary XOR operation is denoted by⊕, i.e., for nimbers i1, i2, i1⊕i2 =
∑
{2j | (bi1/2jc

is odd)⇔ (bi2/2jc is even)}.

3

Theorem 2 [1, 5] Let p1 be a position in G1, p2 a position in G2. The nimber of position
(p1, p2) in G1 + G2 equals nb((p1, p2)) = nb(p1)⊕ nb(p2).

As Kayles is an impartial, deterministic, finite, full-information, two-player game with
the rule that the last player that moves wins the game, we can apply Sprague-Grundy
theory to Kayles, and we can associate with every graph G the nimber of the start position
of the game Kayles, played on G. We denote this nimber nb(G), and call it the nimber of
G.

An important observation is the following: when G = G1 ∪ G2 for disjoint graphs G1

and G2, then the game Kayles, played on G is the sum of the game Kayles, played on G1,
and the game Kayles, played on G2. Hence, by Theorem 2, we have the following result.

Lemma 3 nb(G1 ∪G2) = nb(G1)⊕ nb(G2).

Note that G1 and G2 might be disconnected graphs.
Our second observation shows how to express the nimber of a graph G in the nimbers of

some subgraphs of G. Consider Kayles, played on G = (V,E), and suppose that a vertex
v ∈ V is played. Then, the nimber of the resulting position is the same as the nimber
of G − N [v], as the effect of playing on v is the same as the effect of removing v and its
neighbors from the graph. As the nimber of a position is the minimum nimber that is not
in the set of nimbers of positions that can be reached in one move, we have:

Lemma 4 (i) If G = (V,E) is the empty graph, then nb(G) = 0.
(ii) If G = (V,E) is not the empty graph, then nb(G) = mex(nb({G−N [v] | v ∈ V }).

3 An Exact Algorithm for Kayles

In this section we present our exact exponential time algorithm solving Kayles. The
algorithm starts with a call to the procedure compute nimber shown in Figure 1, with
input G = (V,E). If it returns a nimber that is at least one, then Player 1 has a winning
strategy on G; if it otherwise returns nimber zero, then Player 2 has a winning strategy.
Correctness of the procedure directly follows from the discussion in Section 2.

Note that the procedure compute nimber(G[W]) is only called for K-sets, and thus
G[W] is always connected, with one possible exception: if G is not connected, then the
first call to the procedure is for G[V] with V not a K-set. As the overhead per recursive
call is polynomial, the running time is a polynomial factor times the number of K-sets in
G. The procedure computes the nimber nb(W) of G[W] for all K-sets W of G and stores
the value in a table using Memoisation, i.e., computed values are stored in a table, and by
look-up no value nb(W) is computed more than once. It follows that the running time of
the algorithm is O∗(|K(G)|) where K(G) is the set of K-sets of G.

In Section 4, we give a combinatorial proof that the number of K-sets in a graph with
n vertices is bounded by O(1.6052n). With a computer generated analysis, this bound can
be brought back to O(1.6031n), as discussed in Section 5. In Section 6, we show that the

4

Procedure compute nimber(G[W]).

if nb(W) already computed then
return nb(W)

else
M := ∅;
for all v ∈W do

let Z1, Z2, . . . , Zr (r ≥ 1) be the components of G−N [w];
nim := 0;
for i← 1 to r do

nim := nim ⊕ compute nimber(G[Zi]);
M := M ∪ {nim}

answer := mex(M);

nb(W) := answer;
return answer

Figure 1: Procedure compute nimber

number of K-sets in a tree with n vertices is bounded by O(1.4423n). If we combine these
bounds with the algorithm of this section, we establish the following result. (The result
for forests follows directly from the result for trees, as each K-set in a forest belongs to one
connected component.)

Theorem 5 Kayles can be solved in time O(1.6031n) for graphs on n vertices. Kayles
can be solved in time O(1.4423n) for trees and forests on n nodes.

4 An Upper Bound on the Number of K-sets

In this section, we give an explicit proof for an upper bound on the number of K-sets in
a graph. Note that we give a slightly better, but computer generated bound in Section 5.
As discussed in Section 3, this bound gives an upper bound on the running time of our
algorithm for Kayles on arbitrary graphs.

Theorem 6 Let G be a graph with n vertices. Then G has O(1.6052n) K-sets.

The proof of Theorem 6 is algorithmic: we give a branching procedure that generates all
K-sets. By distinguishing different types of vertices, assigning these different weights, and
considering the different branching vectors, we obtain a set of recurrences, whose solution
gives us the desired bound. For information on branching algorithms and their analysis,
in particular branching vectors and the corresponding recurrences we refer to [8].

We say that a K-set is nontrivial, if it has at least three vertices; otherwise we call it
trivial. As each trivial set either consists of a single vertex or the two endpoints of an edge,
the number of trivial K-sets is at most n+m, where m is the number of edges of the graph.

5

During our branching process, we decide at some points to put some vertices in an
independent set X and forbid for some vertices to put them in the independent set. When
placing a vertex in X, we say we select the vertex. The vertices in G are of four types:

• White or free vertices. Originally all vertices in G are white. We have not made
any decision yet for a white vertex. All white vertices have weight one.

• Red vertices. Red vertices may not be placed in the independent set X: i.e., we
already decided this during the branching. It still is possible that a red vertex
becomes deleted later, however. Red vertices have a weight α = 0.5685.

• Green vertices. A green vertex is ‘safe’: it never will be removed. I.e., we cannot
place the green vertex nor any of its neighbors in the independent set X. Green
vertices have weight zero.

• Removed vertices: these are either placed in the independent set or are a neighbor
of a vertex in the independent set. All removed vertices have weight zero. Removed
vertices are considered not existing, i.e., when discussing the neighbors of a vertex,
these neighbors will be white, red, or green.

The measure of an instance G is the total weight of all vertices, and the difference in the
measure from an instance to one of a subproblem often called gain is used to analyse the
branching algorithm via branching vectors. Our branching process may be overcounting
the number of K-sets (in particular, in some cases, we will not detect that a generated set
is not connected), but the obtained bound nevertheless is valid as an upper bound.

The semantics of the colors implies that we can always perform the following actions:

• Rule 1: If a red vertex v has no white neighbors, we can color it green. This is valid,
as we can no longer place a neighbor of v in X.

• Rule 2: If a green vertex v has a white neighbor w, we can color w red. This is valid,
as placing w in X would remove v, which we are not allowed by the green color of v.

Rules 1 and 2 will always decrease the measure. They ensure that each red vertex will
have a white neighbor, and that white vertices have no green neighbors.

The following action also can always be performed; the removed vertices can no longer
be part of a nontrivial K-set.

• Rule 3: If W ⊆ V is a set of white vertices that are not incident to nondeleted
vertices not in W , and |W | ≤ 2, then remove all vertices of W .

Before starting the main recursive branching, we first fix one vertex v0 ∈ V , of which
we will assume that it is an element of the K-set. In terms of colors, this means that we
color v0 green and all neighbors of v0 red. Clearly, the total number of K-sets will be at
most n times the bound on the number of K-sets that contain a specific vertex.

We obtain a fourth rule.

6

• Rule 4: If G has more than one connected component, then remove all vertices from
components that do not contain v0.

As a consequence, we have that when no rule can be applied and there is at least one
white vertex, then there exists a white vertex that is adjacent to a red vertex.

We consider two main types of branching. The first type of branching is a vertex branch.
Let v ∈ V be a white vertex. We consider two cases: v is placed in X (called select v),
and v is not placed in X. In the former case, we remove and decrease the measure by the
total weight of all white and red vertices in the closed neighborhood of v. In the latter
case, we color v red and have a measure decrease of 1 − α. In some cases, we gain more
by applications of Rules 1, 2, and 3.

In the second type of branching, we consider a number of cases, of which one must
apply. Again, in some cases, we can gain more by applications of Rules 1, 2, and 3.

In the sequel we present all branching rules in a preference order. Hence when Case i
branching is applied to an instance all earlier cases do not apply.

Case 1: There is a white vertex with at least three white neighbors If v has
three white neighbors, we can perform a vertex branch on v. The branching vector in this
case will be (4, 1 − α), i.e., in one case, we decrease the measure by at least four, and in
the other case, we decrease the measure by 1− α.

Case 2: There is a white vertex with two white neighbors and at least one
red neighbor If v has two white neighbors and at least one red neighbor, then a vertex
branch on v gives a branching vector of (3 + α, 1− α).

Suppose Cases 1 and 2 cannot be applied anymore. Then all white vertices have at
most two white neighbors. Moreover, there cannot be a cycle of white vertices, as such
a cycle would either be removed by Rule 4 or contains a vertex to which Case 2 applies.
Similar for white vertices forming paths. Only the endpoints of such a path can be adjacent
to a red vertex, and at least one endpoint is adjacent to a red vertex.

Case 3: The subgraph induced by white vertices contains a path of length at
least two, with both endpoints incident to at least one red vertex Suppose now
we have a path of white vertices v1, . . . , vr, r ≥ 2, with v1 and vr incident to a red vertex.
As Case 2 no longer applies, we can assume that v2, . . . , vr−1 have no nondeleted neighbors
outside the path.

Let R be the set of red vertices that are adjacent to v1 and/or vr.

Case 3.1: r = 2 We must either select v1, or select v2, or select neither v1 nor v2. In the
latter case, both v1 and v2 can be colored green, so the measure decreases by two in this
case. Hence, we have a branching vector (2 + α, 2 + α, 2).

7

Case 3.2: r = 3 and |R| ≥ 2 We consider all cases of placing vertices from {v1, v2, v3}
in X:

• Select v1 and v3: we decrease the measure by 3 + 2 · α.

• Select v1: we decrease the measure by 3 + α.

• Select v2: we decrease the measure by 3.

• Select v3: we decrease the measure by 3 + α.

• Choose none: we decrease the measure by 3. (All three vertices can be colored green.)

So, in this case, we obtain a branching vector (3 + 2 · α, 3 + α, 3, 3 + α, 3).

Case 3.3: r = 3 and |R| = 1 The vertices v1 and v3 have a common red neighbor. Now,
we can perform a vertex branch on v1. If we select v1, then v3 becomes an isolated vertex,
and thus we have a branching vector of (3 + α, 1− α).

Case 3.4: r = 4 and |R| ≥ 2 Like in Case 3.2, we consider all cases of placing vertices
from {v1, v2, v3, v4} in X, and obtain a somewhat tedious case analysis. In each case, each
vertex in {v1, v2, v3, v4} either is removed or is green. If v1 or v4 is placed in X, we gain
an additional α for the removal of the red neighbor of this vertex. In case we select both
v1 and v4, we gain 2 · α; here we use that |R| ≥ 2. This gives a branching vector of
(4 + α, 4 + 2 · α, 4 + α, 4 + α, 4, 4, 4 + α, 4), corresponding to selecting {v1, v3}, {v1, v4},
{v2, v4}, {v1}, {v2}, {v3}, {v4} or no vertex from this path for inclusion in X.

Case 3.5: r = 4 and |R| = 1 We do a vertex branch on v1: if we select v1, then Rule 3
will remove v3 and v4. So the branching vector is (4 + α, 1− α).

Case 3.6: r ≥ 5 We branch as follows:

• v1 is placed in X: we decrease the measure by 2 + α.

• v2 is placed in X: we decrease the measure by 3.

• v3 is placed in X and v1 is not placed in X. v1 can be colored green, and thus we
decrease the measure by 4.

• v4 is placed in X and v1 and v2 are not placed in X. v1 and v2 can be colored green,
and thus we decrease the measure by 5.

• None of v1, v2, v3, v4 is placed in X. v1, v2, v3 become green, and v4 becomes red: a
measure decrease of 4− α.

Thus, the branching vector is (2 + α, 3, 4, 5, 4− α).

8

Case 4: v1 is a white vertex with no white but at least two red neighbors We
do a vertex branch on v1. If we do not select v1, it can be colored green, by Rule 1. So we
obtain a branching vector (1 + 2 · α, 1).

Case 5: v1 is a white vertex with exactly one neighbor, which is red Let w be
the red neighbor of v1.

Case 5.1: w has a white neighbor x 6= v1 If a white neighbor of w has at least two
red neighbors, then we can deal with it as in Case 4, and obtain a branching vector of
(1 + 2 · α, 1). So suppose all white neighbors of w have degree one, and thus w is their
unique neighbor. We now have the following branch:

• w is a vertex in the K-set. In this case, w and all white neighbors of w are colored
green. So, the measure decreases by at least 2 + α.

• w is not a vertex in the K-set. In this case, we must place all white neighbors of w
in the independent set X. Again, the measure decreases by at least 2 + α.

So, we obtain a (2 + α, 2 + α) branching vector.

Case 5.2: v1 is the unique white neighbor of w In this case, we do a vertex branch
on v1. If we do not place v1 in the independent set, then both v1 and w can be colored
green. So, the branching vector is (1 + α, 1 + α).

If Cases 1 to 3 cannot be applied, then there is no white vertex with two or more
white neighbors. If Cases 4 and 5 can also not be applied then there is no white vertex
without white neighbors. Thus we may assume that each white vertex has exactly one
white neighbor.

Case 6: The subgraph induced by white vertices contains a path of length at
least two, with exactly one endpoint incident to a red vertex Suppose v1, . . . , vr
is a path of white vertices, and suppose r ≥ 2 is maximal. Assume without loss of generality
that v1 has a red neighbor, say w.

Case 6.1: r ≥ 3 We do a vertex branch on vr−2. If we select vr−2 then we gain at least
3 + α: if r ≥ 4, then vr−2 has two white neighbors, and if r = 3, then vr−2 has the white
neighbor vr−1 and the red neighbor w. Moreover, vr becomes an isolated vertex after vr−2
is placed in the independent set, and thus is removed by Rule 3. If we do not select vr−2,
we gain 1− α, and thus we have a branching vector of (3 + α, 1− α).

Case 6.2: r = 2 There is a number of possibilities:

9

v

(a) Case 6.2.4: ba-
sic structure of the re-
maining graph

v

(b) Case 6.2.4.2: both the red ver-
tices could have external neighbors

u v

w

x ?

(c) Case 6.2.4.3: the cycle could be longer,
but v could also be adjacent to x

Figure 2: Overview of the possibilities of Case 6.2.4. Red vertices are hatched.

Case 6.2.1: w is the unique red neighbor of v1 and has at least one other white
neighbor that we will call x We can now perform a vertex branch on x. If we place
x in the independent set, then w and x are removed, but also v1 and v2 as Rule 3 can be
applied: they form a connected component of at most two white vertices. So, the measure
is decreased by at least 3 + α. If we do not select x, we color x red to obtain a measure
decrease of 1− α. So, this case gives a (3 + α, 1− α) branching vector.

Case 6.2.2: w is the unique red neighbor of v1 and has no other white neighbor
We either select v1, or we select v2, or we select neither v1 nor v2. If we select v2, then w
can be colored green, as its only white neighbor v1 is removed. If we select neither v1 nor
v2, then w, v1 and v2 can be colored green, so we decrease the measure 2 + α in this case.
So we obtain a branching vector of (2 + α, 2 + α, 2 + α).

Case 6.2.3: v1 has ≥ 3 red neighbors We can do a vertex branch on v1. If we select
v, the measure is reduced by 2 + 3α. So this case gives a (2 + 3α, 1− α) branching.

Case 6.2.4: Each white vertex has exactly one white neighbor; each path of
two white vertices consists of one white vertex without red neighbors and
one white vertex with exactly two red neighbors When none of the above cases
applies, there is only one very specific structure for the white vertices. This structure is
shown in Figure 2(a). We now distinguish the following three possibilities. Throughout
the analysis of Case 6.2.4, we denote with v a white vertex with two red neighbors.

10

Case 6.2.4.1: One (or both) of the red vertices has no other white neighbors
We perform a vertex branch on v. If v is selected, then the measure is reduced by 2 + 2α.
If v is not selected, we can color it red. The red neighbors of v that do not have white
neighbors can then be colored green by Rule 1. We obtain a measure decrease of at least
1. The branching vector for this case becomes (2 + 2α, 1).

If the above case does not apply, then all red vertices have at least two white neighbors.
The structures thus must form cycles of alternating red and white vertices. The smallest
possible cycle is of length four, when two of these structures are connected.

Case 6.2.4.2: Two of the described structures share the same pair of red neigh-
bors This situation is depicted in Figure 2(b). In this case selecting v removes both of
its red neighbors and therefore changes the two vertices on the other side into a connected
component. Rule 3 will remove this connected component and therefore selecting v results
in a measure decrease of 4 + 2α. If v is not placed in the independent set X then the
measure decreases by 1−α. The branching vector is therefore (4 + 2α, 1−α) in this case.

Case 6.2.4.3: There is no cycle of length four Since there must be a cycle, it has
length at least six. Part of the graph is drawn in Figure 2(c). Note that v may or may
not be could adjacent to x. For the branching we distinguish four possibilities; note that
at least one of these cases must apply:

Select u and v: the remaining white vertices are disconnected and removed by Rule 3,
so the measure decreases by 6 + 3 · α

Select u but do not select v: the measure decreases by 3 + α

Select v but do not select u: the measure decreases by 2

Select neither u nor w: both u and w are first colored red, but then they can be removed
by Rule 1. Thus the measure decreases by 2.

The branching vector for this case amounts to (6 + 3 · α, 3 + α, 2, 2).

If no case applies, then there are no white, and hence also no red vertices left, so
we found one (or zero, in case the green vertices are not connected) K-set. Our choice
of α = 0.5685 gives the best value for the base of the exponent for the given branching
vectors, namely the claimed 1.6052. The tight branching vectors are (4 + α, 4 + 2 · α, 4 +
α, 4 +α, 4, 4, 4 +α, 4) (from Case 3.4) and (3+α, 1−α). The latter one occurs in all of the
Cases 2, 3.3, 6.1 and 6.2.1. From the above, it follows that there are O(1.6052n) nontrivial
K-sets that contain v0. As the value 1.6052 is obtained by rounding, and there are at most
n+m trivial K-sets, the result follows.

11

5 A Bound Obtained with an Automated Analysis

The case analysis that was presented in Section 4 can be extended further to reach a
branching number of 1.6031. As the number of cases to consider becomes very large, we
did not carry out this case analysis by hand, but instead used a computer generated proof.
The code of our program that was used for this automated case analysis can be downloaded
from https://bitbucket.org/sjoerdtimmer/kayles. We will now outline the followed
procedure.

The main idea is to maintain a collection of objects, where each of these objects cor-
responds to a ’case’ in the case analysis. The program computes branching vectors for
these cases, and from these the corresponding bound on the number of K-sets. At runtime,
the algorithm will ‘expand’ a case: a case is replaced by a larger collection of cases, that
together cover the replaced case. More precise details are given below.

red: [0−∞]
white: [0-2]

red: [0−∞]
white: [0-0]

red: [0−∞]
white: [0-2]

red: [0−∞]
white: [0−∞]

Figure 3: Example of a configuration

Modeling a case Every case can be described by a ‘configuration’ or ‘pattern’ in the
input graph. A configuration is modeled with an incomplete graph. I.e. we have a colored
graph that is assumed to be a subgraph of the input graph; vertices are not only labeled
with a color, but also with intervals. These intervals describe how many white and how
many red neighbors the vertex has outside the subgraph. The neighbors of a vertex outside
of the configuration will be called its ‘external’ neighbors. In general a vertex starts with
zero to infinite external white neighbors and zero to infinite external red neighbors, but
during the branching this could change. An example configuration is drawn in Figure 3.
This particular configuration corresponds to Case 2. Since Case 1 no longer applies, each
white vertex has at most two white neighbors.

Modeling a proof The analysis given in Section 4 is already three levels deep, but we
can go even further. We have created a mechanism to automatically explore a certain

12

https://bitbucket.org/sjoerdtimmer/kayles

configuration and generate a set of new configurations that covers all possibilities in which
the old case could occur. The generation of these subcases will from here on be referred to
as ‘expansion’.

A very important aspect of the case analysis is the fact that some of these cases rely
on the fact that all earlier cases do not apply. More specifically, Cases 1 and 2 are used in
the analysis of the other cases, Case 4 is used in the analysis of Case 5 and Case 6.2 relies
on the fact that all other cases have been removed. To use or infer these dependencies
automatically is generally hard. But in this case we did not need to do so, since we could
just start the automated analysis from the point where these cases are present.

Expansion strategies There are two ways to automatically expand a case: we can
either look at the red neighborhood, or at the white neighborhood. When we look for
instance at the white neighborhood of a vertex that can still have zero to infinity external
white neighbors, we can split this into one configuration where it has exactly zero, one
where it has exactly one and one configuration where it has two or more white neighbors.
It is then guaranteed that the original case is covered, and we can ignore it in the analysis
from that point onwards. The same argument holds however for the expansion of the red
neighborhood of the vertex. This means the algorithm has to make an automated decision
with respect to the vertex and the type of neighborhood to expand on. We will introduce
a very efficient heuristic for this purpose later on.

Analysis After the generation of a new configuration we recalculate the branching num-
ber. When doing a branching by hand there was always a good intuition for the vertex to
branch on, but now that we automate the process it is not that easy to know which vertex
this is. The solution is to branch on all vertices that do not have external white neighbors
(we will call these ‘inner vertices’ from now on). We simply test all possible selections of
these inner vertices, and determine the reduction that would follow from selecting those
vertices. When two or more selections result in the same coloring afterward, we only have
to consider it once for the branching vector.

Each branching vector results in a lower bound on the base of the exponent. This is
however still depending on the choice of α. Every branching vector can thus be seen as
a constraint on x (the base of the exponent) given the value of α. We can use a Golden
Ratio Search (see [11]) to efficiently determine the value of α which minimizes the base x
of the exponential upper bound xn on the number of K-sets.

Choosing the right expansion We have seen that there are always multiple options for
the expansion. The question that arises is: “How do you choose the vertex to expand and
the neighborhood to expand on?” In order to make progress (improve the branching vector)
it is import to choose the right expansion, since choosing a disadvantageous expansion
might lead to a lot more work later on, or even to a worse solution. One approach would
be to expand in all possible directions and use a backtracking technique to find the optimum

13

sequence of expansions. This is however a lot of work and there is a good heuristic for
making the choice.

To understand this heuristic, we should take a look at the four possible kinds of expan-
sions that we could perform:

1. Expand the white neighborhood of a white vertex; this is a perfectly fine expansion,
because afterwards this vertex has become an inner vertex. Any white neighbor
that this inner vertex now has is removed when we select the inner vertex, thus
contributing to a higher branching vector. If the new inner vertex has enough white
neighbors this will result in a good branching vector. If, on the other hand, it has
only a few white neighbors, then the number of branches becomes smaller which also
makes the branching number better.

2. Expand the red neighborhood of a white vertex; this is also good to do, but less
advantageous because you only win α for each neighbor if you select the vertex, and
you do not win anything if this is not an inner vertex, so the above expansion should
be preferred.

3. Expand the white neighborhood of a red vertex; we call this ’jumping over’ the red
vertex. If both of the above expansions cannot be applied and there is one red vertex
with external white neighbors, selecting any of those white vertex disconnects the
graph on this side and might even make the whole graph disconnected. This is a
trick that was also applied manually in the paper to gain some measure in cases 5
and 6. This is of course mainly a good expansion if the above two expansions cannot
be applied.

4. Expand the red neighborhood of a red vertex; this is a very disadvantageous expan-
sion because you do not gain anything in the resulting configurations.

From the above reasoning we deduce a very effective heuristic for this problem:

• If there is a white vertex with external white neighbors, branch on that vertex.

• If not, but there is a white vertex with external red neighbors, branch on the red
neighborhood of that vertex.

• If not, branch on the white neighborhood of a red vertex.

• repeat

Note that in our experiment the third case occurred only very rarely, and only if it was
really necessary in order to make progress.

14

Automated result We applied our program to the case analysis given in Section 4.
This helped us to identify a missing case in the original proof (given in [4]), and helped to
obtain the corrected proof, given here in Section 4. In addition, the program showed that
Case 3.4 of the proof given in Section 4 can be replaced by a collection of 95 new cases.
This new case analysis is twelve expansions deep; the new collection of cases (all cases from
Section 4 except Case 3.4 and the 95 new cases) lead to an upper bound of of O(1.6031n)
on the number of K-sets in graphs.

All sources of the automated analysis can be downloaded from https://bitbucket.

org/sjoerdtimmer/kayles. Due to space constraints, we do not give the full case analysis
here; the reader can however reproduce the results from the program.

6 A Bound on the Number of K-sets in Trees

In this section, we establish an upper bound on the number of K-sets in a tree. This bound
was used in Section 3 to show a bound on the running time of our algorithm, when the
input graph is a tree or a forest.

Theorem 7 Let T (n) be the maximum number of K-sets in a tree on n nodes. Then
T (n) ≤ n · 3n/3.

Proof. We denote as a rooted K-set of a rooted tree T any K-set of T containing r, where
r denotes the root of T . Let R(n) be the maximum number of rooted K-sets in any rooted
tree on n nodes. We claim that R(n) ≤ 3n/3 − 1 for all n ≥ 2.

We are going to prove this claim by induction. To see that the claim is true for the
base case n = 2, note that the only K-set containing r is the one containing both nodes of
the tree, and that 32/3 − 1 > 1.08.

As induction hypothesis let us assume that the claim is true for all n′ < n and consider
any rooted tree T on n > 2 nodes. Let r be the root of the tree and u1, u2, . . . , up be the
children of v. For every i = 1, 2, . . . , p, let Ti be the subtree of T rooted at ui. Furthermore
for all i = 1, 2, . . . , p, we denote by ni the number of nodes of Ti.

Let W be any K-set of T containing its root r. Then for every i, the intersection of W
with Ti is either empty or a K-set of Ti containing its root ui. Note that ni = 1 implies
that W also contains ui since r ∈ W (and thus r cannot be taken into the independent set
X generating W). Using the induction hypothesis and

∑p
i=1 ni = n − 1, we establish the

following upper bound for the number of rooted K-sets of a rooted tree on n nodes

R(n) ≤
∏

i:ni≥2

(R(ni) + 1) ≤
∏

i:ni≥2

3ni/3

≤
∏

3(n−1)/3 ≤ 3n/3 − 1.

This completes the proof of our claim.

15

https://bitbucket.org/sjoerdtimmer/kayles
https://bitbucket.org/sjoerdtimmer/kayles

To complete the proof of the theorem simply note that any K-set is counted at least
once as a rooted K-set for some vertex v chosen to be the root, and thus T (n) ≤ n ·R(n).

�

The above proof can be used to obtain an algorithm to enumerate all K-sets of a tree in
time O∗(3n/3). This algorithm chooses any vertex r of maximum degree and branches into
two subproblems: in one r is taken into W and in the other one r is I suggest to mention
the tight recurrences when summarizing the result. This way readers can at least get an
impression what has to be improved to achieve a better bound. ed from W and thus all
neighbors of r are discarded from S.

7 Lower Bounds

In this section we present graphs on n vertices having Θ(3n/3) different K-sets. This implies
a lower bound on the maximum number of K-sets of any graph on n vertices as well as
a lower bound on the running time of any exact algorithm solving Kayles by using all
K-sets of the input graph.

Theorem 8 There are graphs on n vertices with 3n/3 + 2n/3 different K-sets.

Proof. Consider the following family of (chordal) graphs Gn for all positive integers n
on the vertex set {1, 2, . . . , 3n}. The edge set of Gn is constructed as follows:

• {3i : i = 1, 2, . . . , n} is a clique of Gn, and

• for all i = 1, 2, . . . , n, the vertex set {3i− 2, 3i− 1, 3i} induces a path.

Figure 4: Example of the construction of Theorem 8, with n = 5

Let us count the K-sets W of Gn.
Case 1: W ∩{3i : i = 1, 2, . . . , n} = ∅, which implies |S∩{3i : i = 1, 2, . . . , n}| = 1. Say
S ∩ {3i : i = 1, 2, . . . , n} = {3i0}. Hence W ⊆ {3i− 1, 3i− 2} for some i. Thus if i 6= i0
then W = {3i − 1, 3i − 2}; and if i = i0 then W = {3i − 2}. thus there are 2n different
K-sets in this case.
Case 2: W ∩ {3i : i = 1, 2, . . . , n} 6= ∅, which implies S ∩ {3i : i = 1, 2, . . . , n} = ∅.
Then W ⊆ {3i− 2, 3i− 1, 3i} may be any of the following sets {3i− 2, 3i− 1, 3i}, {3i}, ∅.
Thus there are 3n − 1 different K-sets W in this case.

In total the graph Gn has at least 3n + 2n K-sets. �

16

Theorem 9 There are trees on n nodes with 3(n−1)/3 + 4(n− 1)/3 different K-sets.

Proof. Consider the following family of trees Tn for all positive integers n. The node set
of Tn is the set {0, 1, 2, . . . , 3n+ 1}. The edgeset is constructed as follows:

• For all i = 1, 2, . . . , n, the vertex set {3i− 2, 3i− 1, 3i} induces a path, and

• the node 0 is adjacent to all nodes in the set {3i : i = 1, 2, . . . , n} and no others.

Figure 5: Example of the construction of Theorem 9, with n = 5

To count the K-sets W of Tn we distinguish two cases.
Case 1: 0 /∈ W . Then S ∩ {0, 3, 6, . . . , 3n} 6= ∅. Hence W ⊆ {3i, 3i− 1, 3i− 2} for some i.
Thus W = {3i, 3i− 1, 3i− 2}, W = {3i, 3i− 2}, W = {3i}, W = {3i− 2}. thus there are
4n different K-sets.
Case 2: 0 ∈ W . Then S∩{0, 3, 6, . . . , 3n} = ∅. For every i, consider W ∩{3i−2, 3i−1, 3i}.
By connectedness of G[W] and 0 ∈ W , we obtain that W ∩{3i− 2, 3i− 1, 3i} is any of the
following sets {3i− 2, 3i− 1, 3i}, {3i}, ∅. Thus there are 3n − 1 different K-sets W in this
case.

Summarizing, the tree Tn has at least 3n + 4n K-sets. �

8 Conclusions

In this paper, we gave an algorithm to determine which player has a winning strategy for
the game Kayles. To analyse the running time, we introduced the notion of K-sets, and
obtained upper and lower bounds on the maximum number of K-sets that a graph can
have. We also obtained such bounds for trees; up to a polynomial factor, the bounds are
sharp for trees. We obtained an upper bound with a hand-made proof, but also a somewhat
better upper bound with a computer generated proof. We expect that for a even better
bound, a different method of analysis should be used, e.g., it would be interesting to see
if the bound can be improved using a measure and conquer analysis with a larger number
of different vertex weights [7], or with the new potential method by Iwata [10].

A number of other interesting directions for further research remain. The complexity
of Kayles on trees remains a long standing open problem. But one can also ask if there
exists a subexponential time algorithm for Kayles on trees, e.g., with running time of the
form O(c

√
n).

Our algorithm uses exponential memory. It also is open if there exists a polynomial
space algorithm with a running time of O∗(2n), and this may well be hard to obtain.

17

Our paper is a first example of exact algorithms for problems that are PSPACE-
complete. It would be interesting to study such algorithms for other PSPACE-complete
problems, e.g., for other combinatorial games, or for a problem like Quantified 3-
Satisfiability [12]. An algorithm that solves Quantified (3-)Satisfiability inO∗(2n)
time is not hard to find, but it seems very hard (or impossible) to find an algorithm with
a running time O∗(cn) with c < 2 for this problem.

References

[1] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for your mathematical plays,
Volume 1: Games in General. Academic Press, New York, 1982.

[2] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for your mathematical plays,
Volume 2: Games in Particular. Academic Press, New York, 1982.

[3] H. L. Bodlaender and D. Kratsch. Kayles and nimbers. Journal of Algorithms, 43:106–119,
2002.

[4] H. L. Bodlaender and D. Kratsch. On exact algorithms for Kayles. In P. Kolman and
J. Kratochvil, editors, Proceedings of the 37th International Workshop on Graph-Theoretic
Concepts in Computer Science, WG 2011, volume 6986 of Lecture Notes in Computer Sci-
ence, pages 59–70. Springer Verlag, 2011.

[5] J. H. Conway. On Numbers and Games. Academic Press, London, 1976.

[6] R. Fleischer and G. Trippen. Kayles on the way to the stars. In H. J. van den Herik,
Y. Björnsson, and N. S. Netanyahu, editors, Proceedings of the 4th International Conference
on Computers and Games, CG 2004, volume 3846 of Lecture Notes in Computer Science,
pages 232–245. Springer Verlag, 2006.

[7] F. V. Fomin, F. Grandoni, and D. Kratsch. A measure & conquer approach for the analysis
of exact algorithms. Journal of the ACM, 56(5), 2009.

[8] F. V. Fomin and D. Kratsch. Exact Exponential Algorithms. Springer, 2010.

[9] A. Guignard and Éric Sopena. Compound Node-Kayles on paths. Theoretical Computer
Science, 410:2033–2044, 2009.

[10] Y. Iwata. A faster algorithm for dominating set analyzed by the potential method. To
appear in Proceedings IPEC 2011, 2011.

[11] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in
C (2nd ed.): The Art of Scientific Computing. 1992.

[12] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th Annual
Symposium on Theory of Computing, STOC’78, pages 216–226, 1978.

[13] T. J. Schaefer. On the complexity of some two-person perfect-information games. Journal
of Computer and System Sciences, 16:185–225, 1978.

18

	Introduction
	Preliminaries
	An Exact Algorithm for Kayles
	An Upper Bound on the Number of K-sets
	A Bound Obtained with an Automated Analysis
	A Bound on the Number of K-sets in Trees
	Lower Bounds
	Conclusions

