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Abstract
We present type-and-transform systems, an approach to type-safe,
semantics-preserving, automatic program transformation. A type-
and-transform system maps a source program using one type to a
target program using another type. The core of the system, prop-
agation, is derived directly from the object language type system.
The transformation itself is defined with simple typed rewrite rules.

In this paper, we describe the theory of type-and-transform
systems and give an implementation. We illustrate the concept with
several realistic examples from the literature, and we establish the
correctness properties of type-and-transform systems.

1. Introduction
Program improvement often involves changing a program in a
regular and methodical way, for example when updating a program
to use a new version of a library. This monotonous work is often
very boring—and thus error-prone—and should be automated.

As programmers in functional languages such as Haskell, ML,
F#, Scala, and Typed Racket, we rely on strong, static, and expres-
sive type systems to give a program an automatically checked spec-
ification. Types are proof that programs do not have certain errors
or “go wrong” [21].

Some automatic program improvement techniques give no guar-
antees that type correctness is preserved. For example, HLint, a
tool for suggesting possible improvements to Haskell code, has in-
cluded the following warning in its manual [22]:

Disclaimer: While these hints are meant to be correct, they
aren’t guaranteed to be. Please report any non-equivalent
hints [...]

HLint is a very useful and well-tested tool. It supports a significant
number of hints and can be customized with more hints, though it
does not transform a program directly.

In this paper, we present a technique for automatic program
transformation that preserves both the type-correctness and the se-
mantics of a program. We focus on transformations that map a
source program using one type to a target program using another
type, where there is a clear relationship between the source and tar-
get types. A common example of this is a change in a library’s API
between releases. This well-known problem has prompted various
solutions. Recently, Google created a special tool, Gofix [4], for
their programming language Go. Gofix automatically updates Go
programs with the API changes for each release of Go, allowing the
standard library and compiler developers more freedom to evolve
user-visible features while reducing the upgrade difficulty faced by
programmers.

Interesting potential applications of our transformation system
often arise in the Haskell community. One recent example that
garnered some discussion was described by Johan Tibell as 1:

Friends don’t let friends use String.

1 https://plus.google.com/115504368969270249241/posts/
PNoyWzwJJ9y

It is often better to use the text [12] and bytestring [3] libraries,
even though String is more common in the standard libraries. In
order to make Haskell programs more efficient, Tibell and others
promote migration away from String to these other libraries.

In general, suppose we have a program that uses a library with
functions involving some type A , and we wish to migrate our
program to another library using some type R instead of A . Perhaps
the library evolved, meaning A and R are the same type, but the
available functions are different. Or perhaps the new library has
a more efficient implementation than the old one. Either way, we
do not want to break our program during migration, whether that
happens by introducing a type error or by changing the program’s
semantics.

We present type-and-transform systems as a solution to type-
changing program migration. A type-and-transform system de-
scribes a type-safe, semantics-preserving, automatic program trans-
formation. Type-and-transform systems infer program transforma-
tions through a combination of propagating type changes and typed
rewriting to transform terms. Transformations do not change the se-
mantics of a program, though they can alter the types and semantics
of subterms within the program.

We see type-and-transform systems as tools for refactoring or
code generation. In refactoring, a programmer transforms her own
code and continues to work with the result. In a compiler, a type-
and-transform system serves as an optimization phase, perhaps
performing some of the inlining duties.

1.1 Contributions
The contributions of this paper are the following:

• We introduce type-and-transform systems for the simply typed
lambda calculus and the polymorphic lambda calculus.
• We describe several practical examples from the literature to

motivate the need for a system that safely and automatically
migrates programs from using one type to using another. We
define type-and-transform systems for these examples.
• We define the correctness properties of type-and-transform sys-

tems.
• We give an implementation of a type-and-transform system, in-

cluding how we deal with nondeterminism and potential non-
termination.

1.2 Overview
This paper is organized as follows. In Section 2, we describe two
examples of transformations that motivate type-and-transform sys-
tems. We then introduce type-and-transform systems for the simply
typed lambda calculus in Section 3. In Section 4, we present an
implementation of a type-and-transform system, including back-
ground on constraint-based type inference and descriptions of
typed rewriting and the propagation algorithm. In Section 5, we
explain the modifications needed for type-and-transform systems
with let-polymorphism and type constructors. In Section 6, we
revisit the examples from Section 2 and formulate them as type-
and-transform systems. We discuss related work in Section 7, share
some future work plans in Section 8, and conclude in Section 9.

2. Examples
To get an intuition of what type-and-transform systems are capable
of, we introduce several examples.

2.1 Hughes’ Lists
Hughes [15] represents lists as first-class functions. A Haskell
expression e :: [a] is represented by an expression e′ :: [a]→ [a].
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The benefit of this representation is that it improves the overall
efficiency of using the “append” operation:

(++) :: [a]→ [a]→ [a]
(++) [ ] ys = ys
(++) (x : xs) ys = x : xs ++ ys
infixr 5 ++

Rewriting one’s code to make use of functions instead of strings
amounts to replacing occurrences of ++ by function composition
and turning lists into functions. In the end, however, a programmer
usually needs a list and not a function on lists, so we use the
following two functions to convert between the abstract type (used
in programs) and the representation type (desired, but perhaps not
as easy to use):

rep :: [a]→ ([a]→ [a])
rep = (++)
abs :: ([a]→ [a])→ [a]
abs f = f [ ]

Note that abs (rep x) ≡ x ++ [ ] ≡ x (Hughes’ first law) and hence
abs ◦ rep ≡ id :: [a]→ [a]. A simple example of using abs and rep
is the following rewrite2:

[0,1,1] ++ [2,4,9] abs (rep [0,1,1]◦ rep [2,4,9])

We use the following three transformations at particular points in
the expressions to arrive at the target from the source.

1. Apply rep to list expressions

2. Apply abs to a result of an application of rep

3. Rename ++ to ◦

Note that we can apply these transformations at different places and
in a different order. We later discuss how we arrive at this particular
combination of applications of transformation rules.

The functions ++ and ◦ are related. The type of composition,
(b→ c)→ (a→ b)→ (a→ c), specialized to functions on lists (of
some type a), juxtaposed with the type of ++, looks as follows:

(++) :: [a] → [a] → [a]
(◦) :: ([a]→ [a])→ ([a]→ [a])→ ([a]→ [a])

For transformation 3 above, we need to show that ◦ correctly “im-
plements” ++ in the representation. That is, abs (e1 ◦e2) ≡ abs e1 ++
abs e2 (Hughes’ second law). The proof is given by Hughes. Re-
turning to the example, we can see that the transformation produces
exactly the desired result:

abs (rep [0,1,1]◦ rep [2,4,9])
≡ ((++) [0,1,1]◦ (++) [2,4,9]) [ ]
≡ [0,1,1] ++ [2,4,9] ++ [ ]
≡ [0,1,1] ++ [2,4,9]

2.2 Streams
Coutts et al. [2, 3] describe stream fusion, a deforestation technique
that eliminates superfluous intermediate values. The constructor
of the datatype Stream a embeds both a seed value (initially, the
list) and a nonrecursive continuation that represents one step in the
processing of the value. To convert lists to and from streams, we
use the functions:

stream :: [a]→Stream a
unstream :: Stream a→ [a]

2 For now, we use informally to mean the source program on the left is
transformed to the target program on the right. Later, we describe a formal
mechanism of transformation.

The stream function (along with every other Stream-producing
function) is nonrecursive. The unstream function unfolds the
stream by recursively applying the continuation. The continuation
used in unstream effectively becomes the composition of all con-
tinuations in the Stream functions between stream and unstream.

Consider this simple composition of list functions (given some
functions f , c, and g):

map f ◦filter c◦map g

When compiled without optimization, evaluation of this expression
would produce two intermediate structures, one for each composi-
tion. For stream fusion, we define the following functions:

maps :: (a→b)→Stream a→Stream b
f ilters :: (a→Bool)→Stream a→Stream a

We add these GHC rewrite rules [16] to the stream library:

map f  unstream◦maps f ◦ stream

filter f  unstream◦ f ilters f ◦ stream

Then, the above example transforms to:

unstream◦maps f ◦ stream◦unstream
◦ f ilters c◦ stream◦unstream
◦maps g ◦ stream

We also define a rule for stream and unstream that removes these
intermediate functions.

stream (unstream e) e

This leaves us with:

unstream◦maps f ◦ f ilters c◦maps g◦ stream

The only recursive function left is unstream, and the remaining
intermediate structures can be fused by compiler optimizations
such as inlining.

Consider the slightly more complicated example:

let (h, j) = {- complex code that produces (map f ,map g) -}
in h◦filter c◦ j

If GHC decides to not inline h and j, then we might end up with the
following:

let (h, j) = {- complex code that produces (map f ,map g) -}
in h◦unstream◦ f ilters c◦ stream◦ j

At this point, we cannot fuse anything. However, with a transfor-
mation system that can pass type changes through locally bound
variables and arbitrary code (regardless of complexity), we end up
with this:

let (h, j) = {- complex code that produces (maps f ,maps g) -}
in unstream◦h◦ f ilters c◦ j◦ stream

The idea of stream transformations is the same as described
in Section 2.1: rep is analogous to stream, and abs is analogous
to unstream. Our approach differs from stream fusion in that we
are not rewriting certain combinations of functions. We are in-
stead creating a boundary between types (here, between [a] and
Stream a), and we are using transformations such as map maps
and filter f ilters to spread the Stream throughout the program
until we reach the limits of all possible transformations.

3. A Type-and-Transform System
A type-and-transform system transforms a well-typed source pro-
gram to a well-typed target program, ensuring that the whole-
program semantics remains unchanged. In the following sections,
we introduce the underlying language of programs, the concepts
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(a) τ F b | τ→τ

Γ F ε | Γ,x :τ
(b) τ̊ F b | τ̊→ τ̊ | ι

Γ̊ F ε | Γ̊,x : τ̊

Figure 1. Grammar for the STLC (a) types and typing environ-
ment and (b) type functors and type functor environment

needed for type-and-transform systems, the relation that forms a
type-and-transform system, and the properties that determine cor-
rectness of a transformation.

3.1 The Object Language
Type-and-transform systems can be built for many programming
languages based on the lambda calculus. We call the underlying
language the object language. We describe some requirements nec-
essary for an object language to support a type-and-transform sys-
tem.

The language should have a strong type system. We derive a
type-and-transform system from the object language’s type system.
The type system of the object language should satisfy subject
reduction: evaluating a well-typed program results in a well-typed
program. The safety of a transformation depends on the safety of
the type system.

To relate the semantics of the source and target programs in a
transformation, we use equational reasoning and βη-equivalence.
This implies that imperative languages and other languages which
present difficulties for term rewriting may require a different ap-
proach.

We introduce type-and-transform systems using the simply
typed lambda calculus (STLC) as our object language. We discuss
the admittedly more complicated type-and-transform systems for
the lambda calculus with let-polymorphism in Section 5 and show
how the examples from Section 2, which require the lambda calcu-
lus with let-polymorphism and type constructors, are implemented
in Section 6.

We use the following expression syntax:

e F x | e e | λx.e | fix e | let x = e in e

Expressions include variables, function application, lambda ab-
stractions, the recursion primitive fix, and let-bindings.

The syntax for types is given in Figure 1(a). Types include base
types such as Int and String and the arrow type for functions. The
type system is defined by the standard judgment Γ ` e : τ with the
inference rules in Figure 2(a). The typing environment Γ is either
empty or extended by a binding x : τ in which any previous x-
mapping in Γ is hidden in the usual way.

As a running example in the following sections, we use a ver-
sion of the Hughes’ lists transformation simplified to strings. We
delimit string literals with "". We also assume the availability of
functions such as ++, ◦, and showString (defined as ++) for strings.
For visual appeal, we make liberal use of infix binary operators (as
found in Haskell). All examples can easily be translated to prefix
notation.

3.2 Transformations
To motivate the design of type-and-transform systems, let us first
consider some potential transformations. Not all of them are de-
sired, and we discuss the validity of each. Consider the following,
where abs = λf .f "" and rep = (++):

42 42 (1)
"right" "wrong" (2)

upper "a" rep (abs upper) "a" (3)
"a"++"b" rep "a"◦ rep "b" (4)

length ("a"++"b") length (abs (rep "a"◦ rep "b")) (5)
(λx.x ++"b") "a" abs (λx.rep x◦ rep "b") "a" (6)
(λx.x ++"b") "a" abs ((λx.x◦ rep "b") (rep "a")) (7)

A transformation that does not change the source term, such as (1),
is trivially correct. A transformation such as (2), which changes the
meaning of a program, is trivially incorrect. In (3), abs is applied
to the function upper : String→String that changes every character
in a string to its uppercase form. The source reduces to "A" while
the target reduces to "a", and thus the transformation is incorrect.
In (4), we see appropriate applications of rep and ◦ (according to
the transformations described in Section 2.1); however, the trans-
formation is not yet “complete,” since the types are different. If
this source term were embedded in a program, then (4) would be
correct: this is shown in (5). Another way to complete the transfor-
mation of (4) is to apply abs to the target. At a glance, (6) appears
correct, but the source reduces to "ab" and the target to "ba". A
correct transformation for this source program is (7).

A type-and-transform system cannot allow the transformations
in (2), (3), (4), and (6) but should allow (1), (5), and (7). From these
examples we observe:

• A transformation cannot change the type of a program, but it
can change the type of a term within the program. We distin-
guish the notion of term transformation, a correct but possibly
incomplete transformation, from that of program transforma-
tion, the transformation of a whole program. Note that a term
transformation may still involve multiple rewriting steps.
• A transformation cannot arbitrarily change the meaning of an

expression. There should be a relation between every trans-
formed source and target term establishing that the semantics
is preserved (even if the type changes).
• The types of locally bound variables can change through a

transformation.
• If we use the inferred types of rep and abs, we can get trans-

formations such as (6). We specialize the types of these func-
tions, e.g. abs : (String→String)→String, to avoid these incor-
rect transformations.
• While abs ◦ rep ≡ id, we see in (3) that rep ◦ abs ≡ id does not

hold in general.

In the next section, we introduce the concept of a type functor,
which expresses many of the above requirements.

3.3 Type Functors
The pair of types mentioned in previous sections have a special
relationship. These types, A and R , form a retract, A /R , with the
pair of functions abs : R →A and rep : A→ R . A retract has the
property that abs is a left-inverse of rep or:

abs◦ rep ≡ id : A→A

In Sections 2.1 and 2.2, we saw the retracts [a] / [a]→ [a] and
[a] /Stream a. Our running example is the retract String /String→
String.

In Section 3.2, we saw that a term transformation can result
in a target term with a different type from the source term. The
relationship between the types is defined precisely with the type
functor τ̊ defined in Figure 1(b). We define a distinguished type ι
not found in the object language types. A transformation is typed
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(a) Γ ` e :τ (b) Γ̊ ` e e : τ̊

T-Var
x :τ ∈ Γ

Γ ` x :τ
TT-Var

x : τ̊ ∈ Γ̊

Γ̊ ` x x : τ̊

T-App
Γ ` e1 :τ1→τ2 Γ ` e2 :τ1

Γ ` e1 e2 :τ2
TT-App

Γ̊ ` e1 e′1 : τ̊1→ τ̊2 Γ̊ ` e2 e′2 : τ̊1

Γ̊ ` e1 e2 e′1 e′2 : τ̊2

T-Lam
Γ,x :τ1 ` e :τ2

Γ ` λx.e :τ1→τ2
TT-Lam

Γ̊,x : τ̊1 ` e e′ : τ̊2

Γ̊ ` λx.e λx.e′ : τ̊1→ τ̊2

T-Fix
Γ ` e :τ→τ

Γ ` fix e :τ
TT-Fix

Γ̊ ` e e′ : τ̊→ τ̊

Γ̊ ` fix e fix e′ : τ̊

T-Let
Γ ` e1 :τ1 Γ,x :τ1 ` e2 :τ

Γ ` let x = e1 in e2 :τ
TT-Let

Γ̊ ` e1 e′1 : τ̊1 Γ̊,x : τ̊1 ` e2 e′2 : τ̊

Γ̊ ` let x = e1 in e2 let x = e′1 in e′2 : τ̊

Figure 2. (a) Inference rules for the type system. (b) Propagation inference rules for the type-and-transform relation.

by a type functor, where the differences between the source and
target types are replaced by the “hole” ι. Here are a few examples:

"a" rep "a" : ι
(++) (◦) : ι→ ι→ ι

λx.x ++"b" λx.x◦ rep "b" : ι→ ι (8)
"a" abs (rep "a") : String

The holes occur only in the positions where the source has the type
A (String) and the target has the type R (String→String).

The type functor is determined from the source and target types
as follows:

mgtf A R = ι
mgtf b1 b2 | b1 ≡ b2 = b1
mgtf (τ1→τ2) (τ3→τ4) = mgtf τ1 τ3→mgtf τ2 τ4

mgtf is a partial function: any transformation of which the types do
not determine a type functor is not well-typed.

We recover the types by interpreting the type functor:

~b� τ = b
~ι� τ = τ
~τ̊1→ τ̊2� τ = ~τ̊1� τ→~τ̊1� τ

The interpretation replaces every ι with the type argument. For
the source, the argument is A and for the target, R . For example,
the types of the source and target in (8) are A→A and R → R ,
respectively.

For working with type functors, we also need the environment
defined in Figure 1(b). We use the following interpretation of the
type functor environment to retrieve the typing environment for a
given source or target:

~ε� τ = ε�
Γ̊,x : τ̊

�
τ =
�
Γ̊
�
τ,x :~τ̊� τ

In future sections, we use type and type functor interchangeably.
It should be clear from the context which is meant.

3.4 The Type-and-Transform Relation
Typing proves the judgment Γ ` e : τ with a derivation using in-
ference rules to relate a term e to a type τ within the context Γ.
Similarly, transforming proves the judgment Γ̊ ` e e′ : τ̊ to relate
a source term e to a target term e′ and a type functor τ̊ within the
context Γ̊.

The (core) type-and-transform inference rules, given in Fig-
ure 2(b), show a clear analogy with the type inference rules. Every
rule is immediately derived from its counterpart typing rule. This
system is actually a slight generalization of the type system where
terms are duplicated and typed with type functors. If no ι types are
used, derivations using the left and right systems of Figure 2 are
isomorphic.

The inference rules relate source and target terms with a type
functor. They also map variables to type functors instead of types.
This allows a variable’s type to change during transformation.

Figure 2(b) gives inference rules that are necessary for typing
but not sufficient for transformation. We extend the system with the
following two rules:

TT-Rep
Γ̊ ` e e′ : A rep : A→R ∈ Γ̊

Γ̊ ` e rep e′ : ι

TT-Abs
Γ̊ ` e e′ : ι abs : R →A ∈ Γ̊

Γ̊ ` e abs e′ : A

These rules define two particular transformations. In TT-Rep, we
assume a transformation with the type functor A . This implies that
both source and target have the type A since ~A�A ≡ ~A�R ≡ A .
We transform the target term by applying rep to it. We assign
the transformation the type functor mgtf A R ≡ ι. In TT-Abs, we
assume a transformation typed ι (thus e : A and e′ : R ). We apply
abs to the target. Since the source and target types are now both A ,
we assign the transformation the type mgtf A A ≡ A .

The system now relates a well-typed source program to a well-
typed, transformed target program. We call TT-Rep and TT-Abs
transformation rules, and we refer to the rules in Figure 2(b) as
propagation rules since they propagate type changes through but
do not transform a program. Propagation rules are derived from
the typing rules and are thus language-specific. Transformation
rules describe a particular transformation. The type-and-transform
relation is the union of these two rule sets.

The location of ι in TT-Rep and TT-Abs is significant. It deter-
mines the ordering of application for rep and abs. The function rep
is the only term producing “values” of the type ι, and the only con-
sumer of ι values is abs. Consequently, abs cannot be applied to
upper in example 3 from Section 3.2.

The type-and-transform system as described is of limited value,
since abs and rep can only be applied in limited ways. We increase
the utility of a type-and-transform system by extending it with
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more transformation rules. Every added rule gives the system more
possibilities to transform a program.

Continuing with the strings example, we extend our system with
the following rule:

TT-Comp
(++) : A→A→A ∈ Γ̊ (◦) : R →R →R ∈ Γ̊

Γ̊ ` (++) (◦) : ι→ ι→ ι

As with the previous transformation rules, the type functor of the
transformation and the source and target types are clearly related.
Again, the location of ι is significant. In this case, we are only
renaming a variable, but the type functor must indicate exactly
where the types change, both in the parameters and the results.

This brings us to our first property:

Theorem 1 (Transformation preserves typing) If Γ̊ ` e e′ : τ̊ is
a term transformation and A /R is the retract, then the source and
target terms are well-typed when the type functors are interpreted
under the types of the retract:�

Γ̊
�

A ` e :~τ̊�A
�
Γ̊
�

R ` e′ :~τ̊�R

The proof is by straightforward induction on the inference rules.
In the next section, we describe how a program transformation

is well-typed.

3.5 Completion
As indicated in Section 3.2, allowing for transformations to change
the type of a whole program is too permissive. A successful pro-
gram transformation should produce a target that is, for all intents
and purposes, no different from the source. Among other things, its
type should not change.

We describe a transformation as having the property of com-
pletion (not “completeness”) if it returns a target program with the
same type as the source program. To formally formulate the prop-
erty, we need a way to indicate that a type functor has no holes.
We do this by turning the type functor interpretation from a total
function into a partial function, that is, when a hole is encountered,
interpretation fails (returns ⊥): ~ι�⊥ ≡ ⊥.

Theorem 2 (Completion) If Γ̊ ` e e′ : τ̊ is a program transforma-
tion, then the source and target programs are well-typed and have
the same type when the type functors have no holes:�

Γ̊
�
⊥ ` e :~τ̊�⊥

�
Γ̊
�
⊥ ` e′ :~τ̊�⊥

The proof is by straightforward induction on the inference rules.
In the next section, we describe how a transformation preserves

the semantics of the source program in the target program.

3.6 Correctness
We would like to make the following statement: if Γ̊ ` e e′ : τ̊ is a
program transformation, then e ≡ e′, where ≡ is βη-equivalence on
terms. This property does not hold for every term transformation
(e.g. with "a" rep "a", "a" . rep "a"), but we can describe a
more general property for all term transformations and then use a
variant of that property for program transformations.

We use type functors to type transformations and indicate where
types change. If we consider type functors to be the type-level
mapping of objects, we can also define a term-level mapping of
morphisms. However, we cannot use normal (covariant) functors
because function types have negative occurrences. We need mixed-
variant functors or difunctors [20]. Whereas the typical difunctor
might look like F a b with a in the contravariant position and b
in the covariant position, we need only one parameter a in both
positions: ~τ̊�a. Together with the type constructor, the function
dimap implements a difunctor:

dimapτ̊ : (a→b)→ (b→a)→~τ̊�b→~τ̊�a
dimapb f g = id
dimapτ̊1→τ̊2

f g = λx→dimapτ̊2
f g◦ x◦dimapτ̊1

g f
dimapι f g = g

We define dimap as a type-indexed function. At base types, dimap
is the identity. At function types, dimap is the composition of the
parameter dimap, the function itself, and the result dimap. Note
that the arguments are swapped in the parameter dimap. At the hole
type, dimap is the covariant argument. Additionally, dimap obeys
the following laws of identity and distribution over composition:

dimapτ̊ id id ≡ id
dimapτ̊ (g◦h) (i◦ j) ≡ dimapτ̊ h i◦dimapτ̊ g j

When we apply dimapι rep abs to a term, we get the reverse trans-
formation of that term. For example, dimapι rep abs (rep "a") ≡
abs (rep "a") ≡ "a".

In addition to difunctors, we need capture-avoiding substitution.
A substitution maps variables to terms (or types as we will need
later), [x 7→ e], and can be the identity, id, or the composition of
other substitutions, θ1 ◦ θ2. Substitutions are applied by juxtaposi-
tion, θe, which has higher precedence than function application. A
term transformation may have free variables bound in a type func-
tor environment. To accurately describe a mapping between source
and target terms, we derive a substitution from the environment:

θε = id
θ

Γ̊,x:τ̊ = θ
Γ̊
◦ [x 7→ dimapτ̊ abs rep x]

Now, we can state the correctness property for term transforma-
tions:

Theorem 3 (Difunctors encode transformation) If Γ̊ ` e e′ : τ̊
is a term transformation and A /R is the retract with functions rep
and abs, then the source term is βη-equivalent to the dimap of the
target term:

e ≡ dimapτ̊ rep abs θ
Γ̊
e′

The proof is by induction on the inference rules. We show the
TT-App rule, repeated here for convenience:

TT-App
Γ̊ ` e1 e′1 : τ̊1→ τ̊2 Γ̊ ` e2 e′2 : τ̊1

Γ̊ ` e1 e2 e′1 e′2 : τ̊2

The goal of the proof is:

dimapτ̊2
rep abs θ

Γ̊
(e′1 e′2) ≡ e1 e2

From the premises, we know:

dimapτ̊1→τ̊2
rep abs θ

Γ̊
e′1 ≡ e1

dimapτ̊1
rep abs θ

Γ̊
e′2 ≡ e2

The proof:

dimapτ̊2
rep abs θ

Γ̊
(e′1 e′2)

≡ { Distribute substitution }
dimapτ̊2

rep abs (θ
Γ̊
e′1 θΓ̊

e′2)
≡ { Difunctor identity }

dimapτ̊2
rep abs (θ

Γ̊
e′1 (dimapτ̊1

id id θ
Γ̊
e′2))

≡ { rep◦abs ≡ id }
dimapτ̊2

rep abs (θ
Γ̊
e′1 (dimapτ̊1

(rep◦abs) (rep◦abs) θ
Γ̊
e′2))

≡ { Difunctor composition }
dimapτ̊2

rep abs
(θ

Γ̊
e′1 ((dimapτ̊1

abs rep◦dimapτ̊1
rep abs) θ

Γ̊
e′2))

≡ { Definition of dimapτ̊1→τ̊2
}

dimapτ̊1→τ̊2
rep abs (θ

Γ̊
e′1 (dimapτ̊1

rep abs θ
Γ̊
e′2))

≡ { Premises }
e1 e2
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It turns out that we need an additional property for the proof:
the inverse identity rep ◦ abs ≡ id : ι→ ι. As we pointed out in
Section 3.2, this does not hold in general. However, it does hold
during transformation thanks to type functors.

The basic idea is that terms of type ι can only be constructed by
transformations rules. In the rules given, that includes TT-Rep and
TT-Comp. So, we only have to show that rep ◦ abs ≡ id for terms
constructed from these rules. This is the lemma:

Lemma 1 (Normal form of ι) For every term transformation Γ̊ `
e e′ : ι, the target term is βη-equivalent to rep applied to the
source term:

e′ ≡ rep e

After βη-reduction of e′ to one of the normal forms of ι terms
(either rep e or e1 ◦ e2), the proof is by induction on those forms.
For rep, this is trivial. The proof for ◦ is found in Appendix A.2.

Now, the proof for rep◦abs ≡ id is straightforward:

rep (abs e′)
≡ { Lemma 1 }

rep (abs (rep e))
≡ { abs◦ rep ≡ id }

rep e
≡ { Lemma 1 }

e′

The remaining inference rule proofs are given in Appendix A.1.
The following property states how semantics is preserved in a

program transformation:

Theorem 4 (Transformation preserves semantics) If Γ̊ ` e e′ :
τ̊ is a program transformation and A /R is the retract with functions
rep and abs, then the source term is βη-equivalent to the target term:

e ≡ e′

For Theorem 4, we need the following lemmas:

Lemma 2 (dimap without holes) If ~τ̊�⊥ is a valid type, then
dimapτ̊ f g ≡ id.

The proof is by straightforward induction on the structure of τ̊.

Lemma 3 (Γ̊ without holes) If
�
Γ̊
�
⊥ is a valid environment, then

θ
Γ̊
≡ id.

The proof is by induction on the structure of Γ̊. In the Γ̊,x : τ̊ case,
we use Lemma 2 for dimapτ̊ abs rep ≡ id. Here is the proof of
Theorem 4:

e′

≡ { Theorem 3 }
dimapτ̊ rep abs θ

Γ̊
e

≡ { Theorem 2 and Lemma 2 }
θ

Γ̊
e

≡ { Theorem 2 and Lemma 3 }
e

This concludes the discussion on correctness. In the next sec-
tion, we describe an implementation of a type-and-transform sys-
tem.

4. Implementation
We describe an implementation of the type-and-transform system
described in the previous section. The implementation here uses

inference rules. For an executable implementation, download the
Haskell source 3.

One issue for type-and-transform systems is the nondetermin-
ism of transformation rules. In Figure 2, as with the type inference
rules, the propagation rules are syntax-directed. But some transfor-
mation rules such as TT-Abs and TT-Rep, can be applied to expres-
sions of almost arbitrary form. For a single source program, there
are numerous targets:

(λx.x) "a" (λx.x) (abs (rep "a"))
 (λx.abs x) (rep "a")
 abs (rep (λx.x) "a")
 abs (rep · · · (abs (rep (λx.x) "a")) · · · )

As the last example implies, the possibilities are infinite. A naive
type-and-transform algorithm would not terminate!

A second issue is that type changes “flow” through a program
(via the propagation rules and especially locally bound variables)
in unpredictable ways. Consider the following transformations:

(λx.x ++"b") "a" (λx.rep x◦ rep "b") "a"

 (λx.abs (x◦ rep "b")) (rep "a")

In the first case, we find a function of type String→ ι and an
argument of type String. We have transformed the function without
changing its parameter type, so the argument does not need to
change. In the second case, the function has the type ι→ String
and the argument has the type ι. Thus, we have transformed both
the function and the argument such that the parameter type unifies
with the argument type. At the application, we cannot necessarily
decide whether the function or the argument should be transformed.
The transformation “driver” (that which changes types) can come
from either (or neither), and the choice may be arbitrary. We could
always makes the same choice; however, we think this approach
rules out many desired transformations. In our experiments, we
often observed that a locally optimal choice does not produce a
global optimum. As a result, we prefer to leave the algorithm as
flexible as possible.

To solve the above issues, we give an algorithm in Section 4.3. It
is nondeterministic (produces multiple results) but can pick a “best”
result using simple heuristics. We avoid termination problems by
only applying a single transformation rule at each node (e.g. ap-
plication, let, etc.) in the program. Thus, we never have transfor-
mations such as "a" abs (rep "a") (or any other application of
abs directly after rep). To avoid flow issues, we use a bottom-up
algorithm derived from constraint-based type inference, which we
introduce in the next section.

4.1 Constraint-Based Type Inference
Many inference algorithms traverse the children in an application
node in a top-down way: visit one child (e.g. the function) first and
visit the sibling (e.g. the argument) second. In type-and-transform
systems, transformations can occur nondeterministically, and types
can change as a result. We wish to propagate the type change
throughout a program, and it can come from a function or an
argument. It is unclear how to do this by visiting the application
node children in the above fashion, because the type change of one
can result in the transformation of another, which may feed back
to the first (e.g. through a locally bound variable). A far simpler
solution is to transform both children in all possible ways and find
which combinations are successful. For this, we use a bottom-up
algorithm based on constraint-based type inference.

In constraint-based type inference [13], we collect type-equality
constraints from the children of each node and solve them with

3 http://www.staff.science.uu.nl/˜leath101/publications/
icfp2012/tts-0.3.tar.gz
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unification to determine types. For example, a function type τ1 and
argument type τ2 must be related by the constraint τ1 ≡ τ2→ β,
where β is a fresh type variable4. The solution to this constraint is
the standard most general unifier, mgu τ1 (τ2→β). The unifier is a
substitution θ that, when applied to one of the arguments, θτ1, gives
the principal type. When there is a set of constraints C to be solved,
we use the following function:

solve ε = id
solve ({τ1 ≡ τ2 }∪C) = let θ = mgu τ1 τ2 in θ ◦ solve θC

Since the algorithm is bottom-up, the types of variables may not
initially be known. We use an assumption environment, A, whose
form is the same as Γ, to track the known type of every variable
whose binding is still unknown. When a binding is found for a
variable v, we remove all mappings from A: A\v = {x : τ̊ | x : τ̊ ∈
A ∧ x . v}.

The judgment for our constraint-based type inference algorithm
is Γ,A ` e : τ, and the algorithm is shown in Figure 3(a). This
algorithm is adapted from [13] with a few minor differences. First,
we do not pass any constraints up from one node to the next. We
solve all constraints at the “earliest” possible point. This ensures
that the types are the most specific, a boon to efficiency in the type-
and-transform algorithm as we will see. Second, we include the
top-down environment Γ along with the bottom-up assumptions A.
As a consequence, we have two alternatives for the C-Var rule, one
when a variable is mapped by Γ and one when we assume it to
be typed by a fresh variable. The Γ is not strictly necessary, since
we can always ensure that the free variables of A map correctly to
some initial environment. Again, however, it is useful to have the
most specific types.

Note that both Γ ` e : τ and Γ,A ` e : τ define the same type
system [13]. Also, for an environment Γ and closed term e, both
Γ ` e :τ and Γ, ε ` e :τ give the same type τ.

In the next section, we describe how to do constraint-based
typed rewriting.

4.2 Typed Rewriting
Previously, we described both propagation and transformation rules
in the same relation. In the implementation, we have different roles
for these two components. Propagation serves as the algorithm
for constructing target terms: we discuss it in the next section.
Transformation rules are provided as input to the system. The
retract type pair A /R is also an input, and we assume it implicitly
throughout.

Recall the running example of Section 3. It involved the retract
String /String→String and the three transformation rules. We now
write these rules as follows:

m showString (m : String) : ι (9)
m (m : ι) "" : String (10)

(++) (◦) : ι→ ι→ ι (11)

Rather than define abs and rep, we directly use their definitions:
rep is showString and abs is application to the empty string. Rule 9
implements TT-Rep: the metavariable m has the same type as the
premise, String (equivalently: A), and the target type is ι as it is in
the conclusion of the rule. Rules 10 and 11 implement TT-Abs and
TT-Comp, respectively, in a similar fashion.

Transformation rules are given with the following syntax:

r F p π : τ̊
p F x | m | p p
π F x | m : τ̊ | π π

4 We now extend types with type variables α. We use β to mean a type
variable that is fresh for a given context.

A rule r is a triple with a source pattern, a target pattern, and a
type functor. A pattern may include variables, metavariables, and
application. In target patterns, each metavariable is annotated with
a type functor.

A rule set ρ is the set of transformation rules for one type-and-
transform system. Every type functor in each rule of a rule set is
interpreted using a retract for the rule set.

Rules need to satisfy a number of properties. First, they must be
well-typed according to Theorem 1. Typing is straightforward, and
we do not give the details here. Second, they must satisfy the dimap
equivalence from Theorem 3. Third, at most one unique metavari-
able may appear in the rule. If a rule contains a metavariable, it must
appear once in both the source and the target. The metavariable re-
striction exists because the propagation prevents the arbitrary com-
bination of terms in a transformation. For example, the following
rule will never work because the types of the function and argument
will not unify during propagation

m1 m2 (m2 : Int→String) (m1 : Int) : ι

To transform a term, we use typed rewriting. Typed rewriting
is an adaptation of term rewriting with pattern matching on typed
terms and typing the application of substitutions. We discuss each
of these in turn.

Typed pattern matching requires a special substitution θτ, that
maps each metavariable to a triple of an assumption set, a expres-
sion, and a type. The judgment for typed pattern matching takes an
environment, source pattern, and source term as input and produces
a substitution:

Γ̊ ` p@e⇒ θτ

Typed pattern matching is implemented with the following rules:

M-Var
Γ̊ ` x@x⇒ id

M-MVar
Γ̊,A ` e : τ̊

Γ̊ ` m@e⇒ [m 7→ (A,e, τ̊)]

M-App
Γ̊ ` p1@e1⇒ θτ1 Γ̊ ` p2@e2⇒ θτ2

Γ̊ ` p1 p2@e1 e2⇒ θτ1 ◦ θ
τ
2

Object variables (M-Var) match if the pattern variable and term
variable are equal. Metavariables (M-MVar) match arbitrary well-
typed terms and produces a singleton substitution. A pattern appli-
cation (M-App) matches a term application if the subpatterns match
the corresponding subterms.

In typed substitution application, we apply the special substitu-
tion to a pattern, resulting in a well-typed term:

Γ̊,A ` θτ@π⇒ e : τ̊

The inputs are the environment, the substitution, the target pattern,
and the outputs are the target term, its type, and its assumption set.
Typed substitution application is defined by the following rules:

A-Var
x : τ̊ ∈ Γ̊

Γ̊, ε ` θτ@x⇒ x : τ̊

A-MVar
(A,e, τ̊′) = θτm θ = solve { τ̊ ≡ τ̊′ }

Γ̊, θA ` θτ@m : τ̊⇒ e : θτ̊′

A-App

Γ̊,A1 ` θ
τ@π1⇒ e1 : τ̊1 Γ̊,A2 ` θ

τ@π2⇒ e2 : τ̊2
θ = solve { τ̊1 ≡ τ̊2→β}

Γ̊, θ(A1∪A2) ` θτ@π1 π2⇒ e1 e2 : θβ

Object variables (A-Var) are not affected by substitution. Substitu-
tion on a metavariable (A-MVar) produces a term, its assumptions,
and its type. Due to the rule properties mentioned earlier, the substi-
tution will always apply. The metavariable type annotation is used
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(a) Γ,A ` e :τ (b) Γ̊, [Ai]n
p̀r e ρ [ei : τ̊i]n

C-Var
x :τ ∈ Γ

Γ, ε ` x :τ
x :τ < Γ

Γ, {x :β} ` x :β
P-Var

x : τ̊ ∈ Γ̊

Γ̊, ε p̀r x ρ x : τ̊

x : τ̊ < Γ̊

Γ̊, {x :β} p̀r x ρ x :β

C-App

Γ,A1 ` e1 :τ1 Γ,A2 ` e2 :τ2
θ = solve {τ1 ≡ τ2→β}

Γ, θ(A1∪A2) ` e1 e2 : θβ
P-App

Γ̊, [Ai]m
t̀r e1 ρ [ei : τ̊i]m Γ̊, [Aj]n

t̀r e2 ρ [ej : τ̊j]n

[θij = solve { τ̊i ≡ τ̊j→βij }]mn

Γ̊, [θij(Ai∪Aj)]mn
p̀r e1 e2 ρ [ei ej : θijβij]mn

C-Lam
Γ\x,A ` e :τ θ = solve {β ≡ τx | x :τx ∈ A}

Γ, θ(A\x) ` λx.e : θ(β→τ)
P-Lam

Γ̊\x, [Ai]n
t̀r e ρ [ei : τ̊i]n [θi = solve {βi ≡ τ̊x | x : τ̊x ∈ Ai }]n

Γ̊, [θi(Ai\x)]n
p̀r λx.e ρ [λx.ei]n : θi(βi→ τ̊i)

C-Let

Γ,A1 ` e1 :τ1 Γ\x,A2 ` e2 :τ2
θ = solve {τ1 ≡ τx | x :τx ∈ A2 }

Γ, θ(A1∪A2\x) ` let x = e1 in e2 : θτ2
P-Let

Γ̊, [Ai]m
t̀r e1 ρ [ei : τ̊i]m Γ̊\x, [Aj]n

t̀r e2 ρ [ej : τ̊j]n

[θij = solve { τ̊i ≡ τ̊x | x : τ̊x ∈ Aj }]mn

Γ̊, [θij(Ai∪Aj\x)]mn
p̀r let x = e1 in e2 ρ [let x = ei in ej : θijτ̊j]mn

C-Fix
Γ,A ` e :τ θ = solve {τ ≡ β→β}

Γ, θA ` fix e : θβ
P-Fix

Γ̊, [Ai]n
t̀r e ρ [ei : τ̊i]n [θi = solve { τ̊i ≡ βi→βi }]n

Γ̊, [θiAi]n
p̀r fix e ρ [fix ei : θiβi]n

Figure 3. (a) Constraint-based type inference rules. (b) Propagation inference rules.

to update any unknown types. (Without this, we cannot transform
(λx.x) "a" to (λx.x "") (showString "a").) Substitution on a pattern
application (A-App) produces a term application if substitution on
the components succeeds and the application is well-typed.

Typed rewriting describes the relation between a source term
and a target term via the transformation rule:

Γ̊,A ` p π : τ̊@e⇒ e : τ̊

Given an environment Γ̊, a rule p π : τ̊, and a source term e,
produce the target term e′, target type τ̊′, and assumption set A.
Typed rewriting is implemented by the Rew rule:

Rew

Γ̊ ` p@e⇒ θτ Γ̊,A ` θτ@π⇒ e′ : τ̊
θ = solve {~τ̊�R ≡

�
τ̊′
�

R }

Γ̊,A ` p π : τ̊′@e⇒ e′ : θτ̊′

In the premises, we have typed pattern matching and typed substitu-
tion application with the special substitution. The (interpreted) sub-
stitution application type functor must unify with the (interpreted)
rule’s type functor. We use the latter in the conclusion since it has
the necessary holes. Rule 9 is an example where this is required.

In the next section, we build on typed rewriting of single terms
to transform terms into multiple targets and traverse those terms
with propagation.

4.3 Propagation
The algorithm for STLC type-and-transform systems takes as in-
puts a retract (a pair of types), a transformation rule set, a typing
environment and a source program. Its result is a set of triples: a tar-
get term, its type, and an assumption set. The assumption rule set
must be empty (i.e. the term must closed). To choose the best result,
we can include a weight along with each output set (thus making
it a quadruple); however, to avoid cluttering the presentation, we
omit the weight and discuss it in the next section.

One issue we need to solve is nontermination: transformation
rules might be applied ad infinitum. We avoid this by only allowing
one transformation per node of the syntax tree. Alternatively stated,
we alternate propagation and transformation. Propagation is the
mechanism for propagating type changes (and for preventing bad
transformations). Transformation is the mechanism for rewriting
terms. Since multiple transformations may apply at any one node,

there can be multiple possible results. In this sense, we are mapping
one source to many targets.

To transform a single source term to multiple target terms, we
first need a notation for expressing the one-to-many relationship:
e ρ [ei]n. This says that the source e can be transformed with
the rule set ρ into at most n targets, where a target is ei for i ∈
1 . . . n5. We use a similar notation for a premise iterated at most
n times. In [rj@ei⇒ eij :τij]n|ρ|, we are drawing from n terms
(indexed by i) and |ρ| rules (indexed by j) and finding the Cartesian
product (whose results are indexed by ij). Since this property may
not hold true for all n|ρ| combinations, we can only present the
maximum cardinality in the abstract. If the ijth premise fails, the
ijth conclusion naturally does not hold. Lastly, note that any index i
or cardinality n in an inference is the same i or n everywhere in the
rule.

Transformation with a rule set ρ is expressed as:

Γ̊, [Ai]n
t̀r e ρ [ei : τ̊i]n

This reads as: under an environment Γ̊, a rule set ρ transforms a
source e into n targets with each target ei having a type τ̊i and
an assumption set Ai. We define transformation inference with the
following rule:

Tra

Γ̊, [Ai]n
p̀r e ρ [ei : τ̊i]n [rj ∈ ρ]|ρ|

[Γ̊,Aij ` rj@ei⇒ eij : τ̊ij]
n|ρ|

Γ̊, [Aij]n|ρ|
t̀r e ρ [eij : τ̊ij]n|ρ|

We extract each rule rj from the rule set ρ and instantiate typed
rewriting with rj and a term ei. If rewriting succeeds, the target
triple (Aij,eij, τ̊ij) is the result that is carried through to the conclu-
sion.

In Tra, the rewriting source ei comes from propagation of
the original source e. Propagation is expressed with an identical
judgment as transformation:

Γ̊, [Ai]n
p̀r e ρ [ei : τ̊i]n

However, the role of propagation is different. Propagation does
not invoke the rule set ρ but merely passes it on to other trans-
formations. Propagation’s main purpose is to check the types of

5 For indexes, we use i and j. For target sizes, we use m, n, and the rule set
cardinality |ρ|
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transformed targets, keeping the well-typed terms and discarding
the ill-typed ones. The propagation rules in Figure 3(b) are im-
mediately derived from the constraint-based type inference rules
in Figure 3(a). In typing, the premises are naturally recursive, but
in propagation, the premises refer to transformation. This mutu-
ally recursive inference is the key to termination. Termination of
the type-and-transform system relies solely on termination of the
propagation algorithm, which, given its syntax-directed nature, is
straightforward to prove.

Since transformation inference produces multiple targets and
these multiple targets are combined in Cartesian products at P-App
and P-Let, propagation takes polynomial time, O(|ρ||e|), where |e| is
the size of the program e. To avoid this target program explosion,
we prune all results with type failures as early and often as possible.
Consequently, the use of solve in almost every propagation rule and
the use of the the environment Γ̊ are the primary differences with
constraint-based type inference in [13]

Programs are transformed using transformation inference:

Γ̊, [ε]n
t̀r e ρ [ei : τ̊i]n

Only if a target program has an empty assumption set (thus, having
no free variables) is that program considered.

We can describe the soundness of our implementation:

Theorem 5 (Soundness) For an environment Γ̊, rule set ρ, source
term e, and n target pairs (ei, τ̊i), transformation inference is sound
with respect to the type-and-transform relation:

Γ̊, [ε]n
t̀r e ρ [ei : τ̊i]n⇒ [Γ̊ ` e ei : τ̊i]

n

Transformation inference inherits soundness from [13] by deriving
propagation from constraint-based type inference.

The implementation clearly does not satisfy completeness. In
other words, we cannot prove this property:

Γ̊ ` e e′ : τ̊⇒ Γ̊, [ε]1
t̀r e ρ [e′ : τ̊′]1

The transformation rules can relate an infinite number of terms, and
we explicitly avoid this in propagation.

In the next section, we discuss how to find the best transforma-
tion.

4.4 Targeting the Best
When transforming programs, we generally prefer a single target,
not many different possibilities There are various approaches to
selecting a target, and we describe one that proved successful in
our experience.

The idea is that target programs can be sorted by the presence
of or absence of certain transformations. Some rules should fire
as much as possible and some as little as possible. For example,
consider the following transformations, each shown with two valid
targets:

"a"++"b"++"c"

 (showString "a"◦ showString "b"◦ showString "c") "" (12)
 (showString "a"◦ showString "b") ""++"c" (13)
(λx.x ++ x) "a"
 (λx.x◦ x) (showString "a") "" (14)
 (λx.showString x◦ showString x) "a" "" (15)

We prefer target 12 over 13 to maximize the use of rule 11, and we
prefer target 14 over 15 to minimize the use of rules 9 and 10.

We classify rules into two groups, the rename group and the
repair group. Rename rules (e.g. 11) involve renaming functions
from the A domain to equivalent functions in the R domain. These
rules often do not involve metavariables. They are aligned with the

goal of the transformation and thus their use is encouraged. Repair
rules (e.g. 9 and 10) lie at the barrier between the A and R domains.
They tend to use metavariables and have the form of m f m or
f m m for some function f . We want the barrier to be as “thin”
as possible, so we discourage their use.

Rename rules get a positive weight, depending on how desired
they are. For examples, we weight 11 with a 1. We might also add
the rules:

"" id : ι (16)
m◦ id (m : ι) : ι (17)

Rule 17 actually requires two other rename rules to precede it in
order to fire. We weight rule 16 with a 1 and 17 with a 3, indicating
that it is more desirable than both of the two other rename rules
alone.

We assign every target term a weight, a pair of numbers (m,n).
m is the negated sum of the weights of rename rules that have been
applied, and n is the count of repair rules. Sorting lexicographically,
the target program with the smallest weight is the best. It turns
out that (0,0) is the unaltered source. To reduce the number of
programs under consideration, we can filter out all programs with
a weight greater than (0,0).

As an aside, one might wonder if we can optimize the weighting
approach and pick the best target terms at each node instead of
waiting to the end of transformation to pick the best. It only takes a
few experiments to realize, however, that such a local solution will
result in globally poor transformations. What appears poor locally
can result in a global best and vice versa.

5. Polymorphism and Type Constructors
In our presentation of type-and-transform systems, we have leaned
on the simply typed lambda calculus for our object language. This
approach allowed us to focus more on our contribution and less on
the mechanics of the object language type system. A slightly more
complex language, the lambda calculus with let-polymorphism
(a.k.a. the Damas-Hindley-Milner [6, 21] type system), would de-
tract from the explanation with complications that are not funda-
mental to the problem. However, such a language is fundamentally
more useful, so it is important that we discuss type-and-transform
systems in its context.

The syntax for types and type functors is given below:

τ F b | α | τ→τ | c τ
Γ F ε | Γ,x :∀α.τ

τ̊ F b | α | τ̊→ τ̊ | c τ̊ | ιc τ̊
Γ̊ F ε | Γ̊,x :∀α.τ̊

We extend types and type functors with the application of base
type constructors c. We designate ιc as a type constructor hole.
(We might have holes for any kind of type, but the differences are
not fundamental.) The typing and type functor environments map
variables to type schemes, types with their variables quantified.

The changes to the inference rules of Figure 2 are standard and
well-studied. We generalize the type of the definition in TT-Let,
and we instantiate a variable’s type scheme in TT-Var. The corre-
lation between the type system and the type-and-transform system
for let-polymorphism is preserved.

The conversion to type functors becomes somewhat more com-
plicated, now that we deal with variables (mgtf is applied to instan-
tiated schemes):

mgtf τ1 τ2 = let (θ, τ̊) = mgtf ′ τ1 τ2 in θτ̊
mgtf ′ b1 b2 | b1 ≡ b2 = (id,b1)
mgtf ′ α τ = ([α 7→ τ], τ)
mgtf ′ τ α = ([α 7→ τ], τ)
mgtf ′ (τ1→τ2) (τ3→τ4) = let (θ1, τ̊1) = mgtf ′ τ1 τ3
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(θ2, τ̊2) = mgtf ′ τ2 τ4
in (θ1 ◦ θ2, τ̊1→ τ̊2)

mgtf ′ (c1 τ1) (c2 τ2) | c1 ≡ c2 = let (θ, τ̊) = mgtf ′ τ1 τ2
in (θ,c1 τ̊)

mgtf ′ (Ac τ1) (Rc τ2) = let (θ, τ̊) = mgtf ′ τ1 τ2
in (θ, ιc τ̊)

Note that Ac and Rc are type constructors. The interpretation of
a type functor into a type is still rather simple, except that the
argument is a type constructor c′ instead of a type:

~b� c′ = b
~α� c′ = α
~τ̊1→ τ̊2� c′ = ~τ̊1� c′→~τ̊1� c′

~c τ̊� c′ = c ~τ̊� c′

~ιc τ̊� c′ = c′ ~τ̊� c′

The proof of correctness is very similar to Section 3.6 with one
key difference: dimapτ̊ is indexed on type applications:

dimapτ̊ : (c1 a→ c2 a)→ (c2 a→ c1 a)→~τ̊� c2→~τ̊� c1

dimapb f g = id
dimapα f g = id
dimapτ̊1→τ̊2

f g = λx.dimapτ̊2
f g◦ x◦dimapτ̊1

g f
dimapc τ̊ f g = dimap′c (dimapτ̊ g f ) (dimapτ̊ f g)
dimapιc τ̊ f g = dimap′c1

(dimapτ̊ g f ) (dimapτ̊ f g)◦g

The auxiliary function dimap′c must be defined for each type con-
structor c. If the type constructor is a covariant functor F, then
dimap′F f g ≡ f mapF g. For example, dimap′[ ] f g ≡ map g.

The implementation is very similar to Section 4; however,
constraint-based type inference for let-polymorphism requires a
bit more work. Primarily, the constraints are more extensive. In
STLC, we only needed equality, τ1 ≡ τ2. With let-polymorphism,
we also need a constraint indicating that a type is an explicit in-
stance of a type scheme, τ1 � ∀α.τ2 and a constraint indicating that
one type is an implicit instance of another, τ1 6M τ2. An implicit
instance constraint reads as: τ1 should be an instance of the type
scheme obtained by generalizing τ2 without quantifying the type
variables that are free in M. The set of monomorphic type vari-
ables M is extended downwards through inference rules by adding
a fresh variable for the parameter type at abstractions. The bottom-
up traversal cannot always solve implicit constraints immediately,
so a constraint set C must be passed upwards (as with the assump-
tion set). We refer the reader to [13] for the details on polymorphic
constraint-based type inference.

Our constraint-based typing judgment for the polymorphic
lambda calculus is:

Γ,M,A,C ` e :τ

Naturally, this means the propagation judgment is:

Γ̊,M, [Ai]n, [Ci]n
p̀r e ρ [ei : τ̊i]n

For each target term ei, we have an associated type τ̊i, assumption
set Ai and constraint set Ci. The environment Γ̊ and monomorphic
type variables M are passed downwards and hold for all results at
a given node. We inherit soundness for transformation inference in
let-polymorphism from the constraint-based type inference.

In the next section, we describe several example transformations
implemented in the language described here.

6. Examples, Revisited
Now that we have explained type-and-transform systems, let us
revisit the examples presented in Section 2 and how to implement
them.

6.1 Hughes’ Lists
In Section 3, we used the running example of strings to demonstrate
a type-and-transform system. This is, of course, a specialization of
Hughes’ lists. In the more general case, the retract is [a] /DL a
where DL a = [a]→ [a] is the type also referred to as difference
lists. We might directly use the functions available to us such as
as we did in Section 4.2, but we prefer an abstract API such as
that of the Haskell library dlist6. Using a similar API (adapted
to distinguish names), we can implement the basic transformation
rules as follows:

m fromList (m : [a]) : ι a

m toList (m : ι a) : [a]
(++) (�) : ι a→ ι a→ ι a

The functions are defined as:

fromList = (++)
toList = λf .f [ ]
(�) = (◦)

The last is also the binary Monoid operator on DL.
There are plenty of other rules that would make this transfor-

mation more useful. Ideally, all operations are mapped from one
domain (lists) to the other (dlists). Here are a few more rules:

[ ] [ ]DL : ι a (18)
foldr f oldrDL : (a→b→b)→b→ ι a→b

With 18 and the list elimination function list : b→ (a→ [a]→b)→
[a]→b, we can perform are few more interesting transformations :

let reverse = fix (λr.list [ ] (λx.λxs.r xs ++ [x]))
in reverse [1,2]
 let reverse = fix (λr.list [ ]DL (λx.λxs.r xs� fromList [x]))

in toList (reverse [1,2])
let concat = fix (λr.list [ ] (λx.λxs.x ++ r xs))
in concat [[0]]
 let concat = fix (λr.list [ ]DL (λx.λxs.fromList x� r xs))

in toList (concat [[0]])

These examples (using Haskell list notation for brevity) are similar
to the worker/wrapper transformation [11].

6.2 Streams
The transformation rules for streams are straightforward:

m stream (m : [a]) : ι a

m unstream (m : ι a) : [a]
map maps : (a→b)→ ι a→ ι b

filter f ilters : (a→Bool)→ ι a→ ι a

Again, a “production” transformation should exhaustively cover the
stream library functions.

As an aside, we note that the implementations of the Stream
datatype typically involve existential quantification. Here, we as-
sume Stream is an abstract type constructor, so it does not affect
our example. It does appear in the correctness proof, but it does not
invalidate the streams type-and-transform system.

7. Related Work
Program transformation is studied in many contexts, and there is a
vast amount of related work. In this section, we identify the work
most closely related and compare it to type-and-transform systems.

6 http://hackage.haskell.org/package/dlist
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Term rewriting [1] is a technique that has been extensively ap-
plied to program transformation. Stratego [24] is a well-known
language and toolset for program transformation using rewriting.
It is representative of strategy languages in which basically any
transformation can be specified. One of our early approaches in-
volved term rewriting; however, we found that we could not define
a type-safe strategy that involved type changes coming from ar-
bitrary directions (e.g. from the function or the argument or both
in application). The combination of flexibility and safety of type-
and-transform systems is nontrivial in term rewriting systems. Of
course, our typed rewriting (Section 4.2) is inspired by term rewrit-
ing.

Another common technique for program transformation is
refactoring [9]. HaRe [18] is a Haskell refactoring tool that sup-
ports a number of of automatic refactorings. The kind of per-
vasive, type-changing transformations we want are not currently
provided by HaRe, and it is not clear how to modify HaRe to
do such transformations (without re-implementing the type-and-
transform infrastructure). Additionally, HaRe and other refactoring
tools require transformations to be expressed with operations on
the abstract syntax tree, which can complicate the definition of
transformations. Our transformation rules are simple and defined
in the concrete object syntax. Type-and-transform systems do not
support many of the refactorings of HaRe, most prominently the
ones involving scope updates.

One might see our approach as a sort of type-and-effect sys-
tem [10] if one views the transformation as a side effect of an ex-
tended type system. However, that analogy is stretched rather thin
since we do not modify how the type system works. Instead, we
derive from the type system a new relation between programs and
their types.

In the type-and-transform relation, transformation and propa-
gation rules are distinguishable only by their purpose. In the im-
plementation, we describe how to define transformation rules and
integrate them into the propagation system. Heeren, Hage, and
Swierstra [14] describe a similar idea for improving the quality
of type error messages, particularly for embedded domain-specific
languages. They define specialized type rules and verify that such
rules do not change the type system. We also verify that transfor-
mation rules do not change the type-and-transform system, which
means they should neither introduce type errors nor change the se-
mantics of a source program.

Cunha and Visser [5] developed a strongly typed rewriting
system for coupled software transformation. They calculate type-
safe, type-changing transformations with a strategic rewrite system.
They use a point-free program calculus and a type representation
for their embedded object language and transformations. It may
be possible to implement our examples with their approach, but it
would be limited to the point-free calculus. In contrast, our work
uses the syntax and types of a typed object language, including
locally bound variables. We also believe our transformation rules
are simpler to design. Further work is necessary to determine what
transformations can be implemented with each system and how
large the overlap is.

Erwig and Den [8] define a program update calculus for defining
well-typed updates. The capabilities of the update calculus include
simple rewrites, scope changes, composing updates, alternating
updates, and recursive updates. Their type-change system ensures
that an update preserves well-typedness even for type-changing
transformations. However, the update calculus does not encode
knowledge of type changes or of previous rewrites (in a first-class
sense). Beyond basic rewrites, the update calculus is more scope-
driven than type-driven. We were unable to specify any of our
examples in the update calculus. In addition, we found the update
calculus type system to be complex, necessarily so of course, due to

the nature of preserving the type correctness with updates. On the
other hand, a type-and-transform system is not much more complex
than the type system from which it is derived. In an email [7], Erwig
stated that they have moved beyond the idea of update programs
that guarantee type correctness because it affords a class of updates
too small to be relevant in practice. We hope to increase the the size
of that class with type-and-transform systems.

Coercions [17, 19, 23] extend the polymorphic type system wth
the notion that data of one type can be coerced to a subsuming type
by inserting functions between those types. The subtyping is simi-
lar to our retract, and the coercions are related to our transformation
rules. Coercion insertion is limited to only certain nodes in the syn-
tax (e.g. function application) while type-and-transform systems
can rewrite any subterm. Coercions seem to require an extended
term language. In our case, we extend the object language types to
type functors while leaving the object language untouched. Also,
while coercions serve a similar purpose to transformation rules, the
latter are more general.

In the next section, we discuss some future possibilities for our
work.

8. Future Work
We are currently expanding the system’s support for language fea-
tures. Being Haskell programmers ourselves, we wish to support all
of Haskell. With Haskell support, we can explore how well the sys-
tem works on large programs. Toward this end, we will investigate
a tool, such as HLint or HaRe, that can transform real-world pro-
grams. Programmers can define their own transformations on their
programs.

We believe type-and-transform systems are applicable to code
generation in compilers. We have done successful preliminary ex-
periments with System F, and we think supporting GHC’s System
FC is possible.

Supporting real languages allows for the study of more exam-
ples. We can look at how useful the different type-and-transform
systems are on real programs. We can, for example, compare our
streams transformation to stream fusion. There are many other ex-
amples we can try: newtype introduction, monad introduction, and
datatype-generic programming (DGP).

We are currently looking into how we can transform a program
to use a DGP library. For example, we transform a program from
lists to a generic representation type. After transformation, the
programmer can easily refactor the program to work with trees or
another datatype.

We are considering variations to the algorithm to improve effi-
ciency. In practice, the worst case does not occur, but the time can
still be improved.

We plan to explore how transformations can be combined. Can
we sequence and interleave transformations safely? How do we
deal with more types?

9. Conclusion
We have described type-and-transform systems, an approach to
type-safe, semantics-preserving, automatic program transforma-
tion. A system is specified by the type-and-transform relation,
which is the union of propagation rules and transformation rules.
A system is implemented by the propagation algorithm and typed
rewriting with a simple syntax for defining transformation rules.
We have shown that type-and-transform systems preserve types in
the simply typed and polymorphic lambda calculi. We have also
shown that our implementation is sound and naturally not com-
plete.

We have just touched the surface of type-and-transform sys-
tems. We plan on developing the theory to explore more expres-
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siveness and the implementation to validate our ideas in practical
settings.
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A. Proof of Correctness
This appendix contains the proofs for Theorem 3 and Lemma 1.

A.1 Difunctors Encode Transformation
In Theorem 3, we relate the source and target terms of each type-
and-transform inference rule via dimapτ̊. The proof of TT-App is
given in Section 3.4. The proofs of TT-Let and TT-Fix can be
implemented using TT-Lam and TT-App. In this section, we prove
TT-Var, TT-Lam, TT-Rep, TT-Abs, and TT-Comp.

TT-Var
x : τ̊ ∈ Γ̊

Γ̊ ` x x : τ̊

Proof of: dimapτ̊ rep abs θ
Γ̊
x ≡ x

dimapτ̊ rep abs θ
Γ̊
x

≡ { Premise: x : τ̊ ∈ Γ̊ so θ
Γ̊

= θ
Γ̊′
◦ [x 7→ dimapτ̊ abs rep x] }

dimapτ̊ rep abs [x 7→ dimapτ̊ abs rep x]x
≡ { Substitution }

dimapτ̊ rep abs (dimapτ̊ abs rep x)
≡ { Difunctor composition }

dimapτ̊ (abs◦ rep) (abs◦ rep) x
≡ { Retract }

dimapτ̊ id id x
≡ { Difunctor identity }

x

TT-Lam
Γ̊,x : τ̊1 ` e e′ : τ̊2

Γ̊ ` λx.e λx.e′ : τ̊1→ τ̊2

Proof of: dimapτ̊1→τ̊2
rep abs θ

Γ̊
(λx.e′) ≡ λx.e

dimapτ̊1→τ̊2
rep abs θ

Γ̊
(λx.e′)

≡ { Commute substitution: θ
Γ̊

= θ
Γ̊′
◦ [x 7→ dimapτ̊ abs rep x] }

dimapτ̊1→τ̊2
rep abs (λx.θ

Γ̊′
e′)

≡ { Definition of dimapτ̊1→τ̊2
}

dimapτ̊2
rep abs◦ (λx.θ

Γ̊′
e′)◦dimapτ̊1

abs rep
≡ { η-expansion }
λx.(dimapτ̊2

rep abs◦ (λx.θ
Γ̊′

e′)◦dimapτ̊1
abs rep) x

≡ { β-reduction }
λx.dimapτ̊2

rep abs (θ
Γ̊′
◦ [x 7→ dimapτ̊1

abs rep x])e′

≡ { Definition of θ
Γ̊
}

λx.dimapτ̊2
rep abs θ

Γ̊
e′

≡ { Shadowing }
λx.dimapτ̊2

rep abs (θ
Γ̊,x:τ̊1

e′)
≡ { Premise }
λx.e

TT-Rep
Γ̊ ` e e′ : A rep : A→R ∈ Γ̊

Γ̊ ` e rep e′ : ι

Proof of: dimapι rep abs θ
Γ̊
(rep e′) ≡ e

dimapι rep abs θ
Γ̊
(rep e′)

≡ { Definition of dimapι }
abs θ

Γ̊
(rep e′)

≡ { Commute substitution }
θ

Γ̊
(abs (rep e′))

≡ { Retract }
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θ
Γ̊
e′

≡ { Introduce id }
id θ

Γ̊
e′

≡ { Definition of dimapA }
dimapA rep abs (θ

Γ̊
e′)

≡ { Premise }
e

TT-Abs
Γ̊ ` e e′ : ι abs : R →A ∈ Γ̊

Γ̊ ` e abs e′ : A

Proof of: dimapA rep abs θ
Γ̊
(abs e′) ≡ e

dimapA rep abs θ
Γ̊
(abs e′)

≡ { Definition of dimapA }
θ

Γ̊
(abs e′)

≡ { Commute substitution }
abs θ

Γ̊
e′

≡ { Definition of dimapι }
dimapι rep abs θ

Γ̊
e′

≡ { Premise }
e

TT-Comp
(++) : A→A→A ∈ Γ̊ (◦) : R →R →R ∈ Γ̊

Γ̊ ` (++) (◦) : ι→ ι→ ι

Proof of: dimapι→ι→ι rep abs θ
Γ̊
(◦) ≡ (++)

dimapι→ι→ι rep abs θ
Γ̊
(◦)

≡ { Definition of θ
Γ̊

and substitution }
dimapι→ι→ι rep abs (◦)
≡ { Definition of dimapι→ι→ι and η-expansion }
λx.λy.abs (rep x◦ rep y)
≡ { Definitions and η-reduction }

(++)

A.2 Normal Form of ι
In Section 3.6, we also established normal forms for the type
functor ι in Lemma 1. For this, we need to show that e′ in Γ̊ `
e e′ : ι can be evaluated to any normal form established by the
transformation rules. These include all rules with ι in the result
position of the type functor: TT-Rep and TT-Comp. In the former,
rep e is the target term, so the proof is trivial. In the latter, we need
to prove that e′1 ◦ e′2 can be reduced to rep e:

e′1 ◦ e′2
≡ { Induction and η-expansion }
λx.rep e1 (rep e2 x)
≡ { Definitions }
λx.e1 ++ (e2 ++ x)
≡ { Associativity of ++ }

λx.(e1 ++ e2) ++ x
≡ { Definition of rep and η-reduction }

rep (e1 ++ e2)

As an aside, we note that rep is a homomorphism on the algebras
of the source and target transformation rules:

rep (x ++ y) ≡ rep x◦ rep y

This property is more general than the above and would also be
sufficient for the proof.
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