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Abstract. In these lectures we will introduce an interactive system that
supports writing simple functional programs. Using this system, students
learning functional programming:

— develop their programs incrementally,

- receive feedback about whether or not they are on the right track,

— can ask for a hint when they are stuck,

— see how a complete program is stepwise constructed,

- get suggestions about how to refactor their program.
The system itself is implemented as a functional program, and uses funda-
mental concepts such as rewriting, parsing, strategies, program transfor-
mations and higher-order combinators such as the fold. We will introduce
these concepts, and show how they are used in the implementation of the
interactive functional programming tutor.

1 Introduction

How do you write a functional program? How can I learn it? Our answer to
these questions depends on who is asking. If it is a first-year bachelor computer
science student who just finished an introductory object-oriented programming
course, we would start with explaining the basic ideas of functional program-
ming, and set many small functional programming exercises for the student to
solve. If it is a starting computer science Ph.D. student with a basic knowledge
of functional programming, we would take a serious piece of software devel-
oped in a functional programming language, analyse it, discuss the advanced
concepts used in the implementation, and set a task in which the software is
extended or changed. These answers are based on our (and others) experience
as teachers: there is no final answer (yet) to the question how programming
is learned best, and what makes programming hard [Fincher and Petre, [2004].
We borrow from research that studies how complex cognitive skills are learned,
in which the importance of providing worked-out examples [Merriénboer and
Paas, 1990], giving hints, and giving immediate feedback on actions of stu-
dents [Hattie and Timperley), |2007] is emphasised.

These lecture notes address the question ‘How do you write a functional
program’ with the audience of advanced graduate students or starting Ph.D.
students in mind. The serious piece of software addresses the same question:



‘How do you write a functional program?’, but now with a first-year bache-
lor student computer science in mind. We will introduce an intelligent func-
tional programming tutoring system for Haskell [Peyton Jones et al., 2003], us-
ing which a student can:

develop a program incrementally,

receive feedback about whether or not she is on the right track,
ask for a hint when she is stuck,

can see how a complete program is stepwise constructed,

— get suggestions about how to refactor her program.

As far as we are aware, this is the first intelligent tutoring system for Haskell.

The implementation of the intelligent functional programming tutor uses
many advanced functional programming concepts. To support incremental de-
velopment of programs and refactoring, the tutor uses rewrite and refinement
rules. To give feedback about whether or not a student is on the right track the
tutor uses strategies to describe the various solutions, and parsing to follow the
student’s behaviour. To give hints to a student that is stuck, the system uses
several analysis functions on strategies, viewing a strategy as a context-free
grammar. These notes will introduce all of these concepts.

These notes are organised as follows. Section [2| introduces our intelligent
functional programming tutor by means of some example interactions. Sec-
tion 3| gives the architecture of the software for the tutor. Section {4] discusses
rewrite and refinement rules and shows how they are used in the tutor. Sec-
tion [5|introduces strategies for solving functional programming problems. Sec-
tiongintroduces our strategy language. Section[7]shows how we use techniques
from parsing to follow student behaviour, and to give hints to a student that is
stuck. Section [§|discusses related and future work, and concludes.

2 A programming tutor for Haskell

This section introduces our intelligent functional programming tutoring sys-
tem by means of some interactions of a hypothetical student with the tutor. The
functional programming tutor is an example of an intelligent tutoring system
for the domain of functional programming. An intelligent tutoring system is
an environment that sets tasks for a student, and offers support to the student
when solving these tasks, by means of hints, corrections, and worked-out so-
lutions [VanLehnl| 2006]. So the intelligent functional programming tutor sets
small functional programming tasks, and gives feedback in interactions with
the student.

2.1 Reverse

Elisa just started a course on functional programming, and has attended lec-
tures on how to write simple functional programs on lists. Her teacher has set
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Fig.1. The web-based functional programming tutor

a couple of exercises from H-99: Ninety-nine Haskell Problems EL in particular

problem 5: reverse a list.
We now show a couple of possible scenarios in which Elisa interacts with

the tutor to solve this problem. A screenshot of the tutor is shown in Figure
At the start of a tutoring session the tutor gives a problem description: Write a
function that reverses a list. For example:

Data.List) reverse "A man, a plan, a canal, panama!"
"lamanap ,lanac a ,nalp a ,nam A"

Data.List) reverse [1,2,3,4]

(4,3,2,1]

and displays the name of the function to be defined:

reverse = |

The task of a student is to refine the incomplete parts, denoted by _L, of the
program. The symbol L is used as a placeholder for a hole in a program that
needs to be refined to a complete program. A student can use such holes to
defer the refinement of parts of the program. After each refinement, a student
can ask the tutor whether or not the refinement is bringing him or her closer
to a correct solution, or, if the student doesn’t know how to proceed, ask the

1 http://www.haskell.org/haskellwiki/99_Haskell_exercises
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tutor for a hint. Besides holes, a student can also introduce new declarations,
function bindings, alternatives, and refine patterns.

Suppose Elisa has no idea where to start and asks the tutor for help. The
tutor offers several ways to help a student. For example, it can list all possible
ways to proceed solving an exercise. In this case, the tutor would respond with:

There are several ways you can proceed:
— Introduce a helper function that uses an accumulating parameter.
— Implement reverse using the foldl function.
— Use explicit recursion.

We assume here that a student has some means to obtain information about
concepts such as accumulated parameters that are mentioned in the feedback
texts given by the tutor. This information might be obtained via lectures, an
assistant, or lecture notes, or might even be included in the tutor at some later
stage. Among the different possibilities, the tutor can make a choice, so if Elisa
doesn’t want to choose, but just wants a single hint to proceed, she gets:

Introduce a helper function that uses an accumulating parameter.

Here we assume that the teacher has set up the tutor to prefer the solution that
uses a helper function with an accumulating parameter. Elisa can ask for more
detailed information at this point, and the tutor responds with increasing detail:

Define function reverse in terms of a function reverse’, which takes an
extra parameter in which the reversed list is accumulated.

with the final bottom-out hint:
Define:

reverse = reverse’ L
where reverse’ acc = L

At this point, Elisa can refine the function at multiple positions. In this exercise
we do not impose an order on the sequence of refinements. However, the tutor
offers a teacher the possibility to enforce a particular order of refinements. Sup-
pose that Elisa chooses to implement reverse’ by pattern matching on the second
argument, which is a list, starting with the empty list case:

reverse = reverse’ [ ]
where
reverse’ acc [] = L

Note that this step consists of two smaller steps: the argument to reverse’ has
been instantiated to [ ], and the definition of reverse’ got an extra argument. She
continues with:

reverse = reverse [ ]
where
reverse’ acc [] =[]

The tutor responds with:



Incorrect [] in the right hand side of reverse’ on line 3
Correcting the error, Elisa enters:

reverse = reverse’ ||
where
reverse’ acc [] = acc

which is accepted by the tutor. If Elisa now asks for a hint, the tutor responds
with:

Define the non-empty list case of reverse’

She continues with

reverse = reverse [ ]
where
reverse’ acc [] = acc
reverse’ acc (x:xs) = L

which is accepted, and then

reverse = reverse’ ||
where
reverse’ acc [] = acc
reverse’ acc (x:xs) = reverse’ (y:acc) L

which gives:
Error: undefined variable y

This is an error message generated by the compiler for the programming lan-
guage. Elisa continues with:

reverse = reverse [ ]
where
reverse’ acc |] = acc
reverse’ acc (x:xs) = reverse’ (x:acc) xs

Done! You have correctly solved the exercise.

The third model solution described at an abstract level in the hint at the start
of the exercise is the naive, quadratic time solution for reverse, implemented by
means of an explicit recursive definition:

reverse | | =]
reverse (x:xs) = reverse xs H [x]

If a student implements this version of reverse, the tutor can tell the student that
this is a correct definition of reverse, but that it is a quadratic time algorithm,
and that a linear-time algorithm is preferable.



2.2 Integers within a range

The next example we show is problem 22 from the Haskell 99 questions: Create
a list containing all integers within a given range. For example:

Data.List) range 49
(4,5,6,7,8,9]

The Haskell 99 questions mentions six solutions to this problem; here is one:
range x y = unfoldr (Ai — if i == succ y then Nothing else Just (i,succ i)) x
This solution uses the unfoldr function defined by:

unfoldr ~ :: (b — Maybe (a,b)) — b — [a]
unfoldr f b = case f b of
Just (a,new_b) — a: unfoldr f new_b
Nothing — ]

Our system prefers the solution using unfoldr. If a student asks for a worked-out
solution, the system would respond with the derivation given in Figure
These interactions show that our tutor can

— give hints about which step to take next, in various levels of detail,

— list all possible ways in which to proceed,

— point out that an error, such as a parse error, a dependency error (such as
using an unbound variable), or a type error has been made, and where the
error appears to be,

— show a complete worked-out example.

3 The architecture of the tutor

Our tutor can be accessed via a browseﬂ On the main page, a student selects
an exercise to work on (such as reverse). The tutor provides a starting point (L),
and the student can then start refining the L step-wise to a complete program
that implements reverse. While developing the program, a student can check
that (s)he is still on a path to a correct solution, ask for a single hint or all pos-
sible choices on how to proceed at a particular stage, or ask for a worked-out
solution.

The feedback that we offer, such as giving a hint, is derived from a strat-
egy. Strategies have a central role in our approach. We use strategies to cap-
ture the procedure of how to solve an exercise. A strategy describes which ba-
sic steps have to be taken, and how these steps are combined to arrive at a
solution. In case of a functional programming exercise, the strategy outlines
how to incrementally construct a program. We have developed an embedded

2hhttp://ideas.cs.uu.nl/ProgTutor/


http://ideas.cs.uu.nl/ProgTutor/

range = L
= { Introduce parameters }
range xy = L
= { Use unfoldr }
range x y = unfoldr 1. L
= {Startatx}
range x y = unfoldr L x
= {Introduce a lambda-abstraction }
range x y = unfoldr (Ai — L) x
= { Introduce an if-then-else to specify a stop criterion }
range x y = unfoldr (Ai — if L then L else L) x
= { Introduce the stop criterion }
range x y = unfoldr (Ai — if i == succ y then L else L) x
= { Return Nothing for the stop criterion }
range x y = unfoldr (Ai — if i == succ y then Nothing else L) x
= { Give the output value and the value for the next iteration }
range x y = unfoldr (Ai — if i == succ y then Nothing else Just (i,succ i)) x

Fig. 2. Derivation of the definition of range

domain-specific language for defining such strategies. Our strategy language is
described in detail in Section |l

The feedback functionality, which is based on strategies, is provided to ex-
ternal environments as a web-service. Each time a student clicks a button such
as Check or Hint, our programming environment (the front-end) sends a ser-
vice request [Gerdes et al., 2008] to our functional programming domain rea-
soner (the back-end). The domain reasoner is stateless: all information the do-
main reasoner needs is included in the service request. For example, a request
to check a program sends the strategy for solving the exercise (the strategy for
reverse), and the previous and new expression of the student to the diagnose
feedback-service. The following table describes the most relevant feedback ser-
vices:

allfirsts. The allfirsts service returns all next steps that are allowed by a strategy.

onefirst. The onefirst service returns a single possible next step that follows a
strategy. The functional programming domain reasoner offers the possibil-
ity to specify an order on steps, to select a single step among multiple pos-
sible steps.

derivation. The derivation service returns a worked-out solution of an exercise
starting with the current program.

finished. The finished service checks whether or not the program is accepted as
a final answer.

stepsremaining. The stepsremaining service returns the number of steps that
remain to be done according to the strategy. This is achieved by calculating
the length of the derivation returned by the derivation service.



diagnose. The diagnose service diagnoses a program submitted by a student.

The diagnose feedback-service (and all our other feedback-services) uses the
Helium compiler for Haskell to calculate feedback. The Helium compiler has
been developed to give better feedback to students on the level of syntax and
types [Heeren et al., 2003]. We reuse Helium’s error messages when a student
makes a syntax-mistake, or develops a wrongly typed program. If a student
submits a syntax- and type-correct program, we analyse the submitted program
using the diagnose-service.

The diagnose-service takes the strategy, the previous program, and the cur-
rent program as arguments. It determines if the current program can be de-
rived from the previous program using any of the rules that are allowed by the
strategy. The diagnose service is flexible in the sense that a student may use
different names for locally defined entities, and different syntactic constructs
for the same expression (let versus where, and many other equivalences). The
diagnose-service calculates a normal form of both the expected and the sub-
mitted programs, and checks that the submitted program appears in the set of
expected programs. If the submitted program appears in the set of expected
programs, the tutor accepts the step, and responds positively. If it doesn’t, the
tutor checks if the program can be recognised by any of the known wrong ap-
proaches (typical erroneous solutions that we have encountered in student so-
lutions), and if it can reports this to student. Finally, if the student program
cannot be recognised the student is asked to try agairﬂ

4 Rewriting and refining

As the examples in the Section[2]show, a student develops a program by making
small, incremental, changes to a previous version of the program. Other com-
mon scenarios in teaching programming are to give a student an incomplete
program, and ask him to complete the program, or to give a student a program,
and ask him to change the program at a particular point. In such assignments, a
student refines or rewrites a program. Rewriting preserves the semantics of a pro-
gram; refining possibly makes a program more precise. This section discusses
how students can refine and rewrite functional programs.

We offer a number of refinement rules to students. Section [2| already gives
some examples:

1l=Al—-_1 Introduce lambda abstraction
1 = if 1 then L else L Introduce if-then-else
1l=v Introduce variable v

A hole represents a value, and such values may have different types. For exam-
ple, a hole may represent an expression, as in all of the above examples, or a

3In Section on future work we explain how we intend to relax this restriction in the
future



declaration, as in
l=fl=1 Introduce function binding

A refinement rule replaces a hole with a value of its type, which possibly
contains holes again. Internally, such a value is represented by a value of the
datatype representing the abstract syntax of a type. For example, the abstract
syntax for expressions would typically contain the following constructors:

data Expr = Lambda Pattern Expr
| If Expr Expr Expr
| App Expr Expr
| Var String
| Hole

and more. A refinement rule takes the same number of arguments as its abstract
syntax constructor. So the refinement rule introducing an if-then-else expres-
sion takes three expression arguments. The arguments may be holes or terms
containing holes. As another example, the refinement rule that introduces a
lambda abstraction takes a pattern, and an expression (the body of the lambda
expression) as arguments. As a final example, the refinement rule that intro-
duces a variable takes the name of that variable (such as v in Figure(3) as an ar-
gument, and returns an expression that does not contain a hole anymore. Note
that the variable introduced might be bound or unbound; refinement rules are
unaware of the binding structure of the language. The refinement rules are kept
simple and basically encapsulate a constructor.

A refinement rule refines a program on the level of the context-free syntax,
and not on the level of tokens, so, for example, we don’t have a rule that says
thel = then.

Holes are the central concept in our refinement rules. Where can they ap-
pear? Refinement rules refine:

— expressions, such as the L in Ai — L,

— declarations (the second L in reverse = reverse’ | where 1),
- functionbindings (f [| =0=f[] =0; fL = 1),

— alternatives (case xs of [| - 0= casexsof [| = 0; L — 1),
- patterns (case xs of L — L = case xs of [| — L).

We do not introduce refinement rules for other syntactic categories such as
modules or classes, because these concepts hardly show up in our beginners’
programs. Of course, this might change when the range of applications of the
tutor is extended.

How do we come up with a set of refinement rules? A simple solution would
be to take the context-free description of Haskell, and turn all productions into
refinement rules. However, this general approach leads to all kinds of unneces-
sary and undesirable rules. For example, deriving a literal integer 4 using the
context-free grammar for Haskell takes many steps, but a student would only



Declarations

patBind: 1l = 1=1
funBinds: L = 1
L

Function bindings

funBind: L = fl=1
Expressions

var: 1l = v

lit: 1L =1

app: 1L = 11

lambda: 1l = AL—> L

case_: 1 = case L of L
Alternatives

alt: 1l = 1L—=_1
Patterns

pVar: 1L = v

pWildcard: L = _

Fig. 3. Some refinement rules for functional programming in Haskell

see 1. = 4. Our leading argument is that a refinement rule should be useful to
a student, in the sense that it changes the way a program looks. Furthermore,
the set of refinement rules should completely cover the programming language
constructs we want the students to use, so that any program can be constructed
using refinement rules. Complete coverage of a set of rewrite rules is verified
by checking that for every datatype containing holes in the abstract syntax of
programs (datatypes for expressions, declarations, function bindings, alterna-
tives, and patterns, in our case), there exist refinement rules from a hole to any
other constructor of the datatype. These refinement rules should be as ‘small’
as possible, in the sense that if we would further split such a rule, we cannot
represent the corresponding program anymore, since we cannot build an ab-
stract syntax tree for a program that is halfway completing an abstract-syntax
tree construction. For example, the if-then-else expression cannot be split into
an if-then and an else part in Haskell. Preferably, the refinement rules are de-
rived from looking at interactions of students in an editor, but lacking a tutor,
we use our experience as programmers and teachers as a first approximation
of the set of desirable refinement rules. We list some refinement rules that are
often used in Figure

Some refinement steps are performed silently, and are combined with one or
more other refinement steps in a hint. For example, introducing an application
in a Haskell program amounts to typing a space. We expect that few beginning
students will view an application introduction as a step on its own, but instead
always supply either a function or an argument name. Our domain reasoner
offers the possibility to annotate a rule that is performed silently, by declaring

10



it as a minor rule. We use these minor rules to increase the step size, and avoid
showing steps like | = L L. If application is declared to be a minor rule, a
user can refine a hole to an application of a particular function, such as unfoldr,
to one or more as yet unknown arguments. Minor rules are not only used for
increasing the step size, to avoid showing steps that make no sense to students,
but also to perform administrative tasks, such as modifying an environment
that we maintain next to the program.

At the moment, our tutor mainly supports the incremental construction of a
program by means of refinement. However, it can also be used to rewrite a pro-
gram, preserving its semantics, but changing some other aspects. For example,
we might want to ask a student to change her program from using an explicit
recursive definition of reverse to a definition using foldl, as in

reverse = reverse’ ||
where
reverse’ acc [] = acc
reverse’ acc (x:xs) = reverse’ (x:acc) xs
= { Definition of flip }
reverse = reverse’ ||
where
reverse’ acc [] = acc
reverse’ acc (x:xs) = reverse’ (flip (:) acc x) xs
= { Definition of foldl }
reverse = reverse [ ]
where
reverse’ acc = foldl (flip (:)) acc
= {Inline and B-reduce }

reverse = foldl (flip (3)) []

To support such an exercise, each of our rewrite rules works both ways: we can
remove flip (:) by applying the definition of flip, or we can introduce it as in the
above derivation.

In the code for the tutmﬂ rules are specified in the file Domain/FP/Rules.hs.
The rules are specified as functions taking terms, which may contain holes, as
arguments. The rule introCase looks as follows:

case_:: Expr — [Alt] — Rule Expr
case_e =
toReﬁnement "Introduce case" "case" o Casee

where Case is a constructor of the datatype Expr, and toRefinement turns a de-
scription ("Introduce case"), an identifier (“case”), and a value of some type
into a Rule of that type. The precise definitions of the Rule, Expr and Alt data-
types are not important for these notes.

4 Seehttp://ideas.cs.uu.nl/trac/wiki/Download.
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5 Strategies in functional programming

The basic steps for constructing a solution for a programming task are program
refinement rules introduced in the previous section. These rules typically re-
place an unknown part, a hole, by some term. A program refinement rule can
introduce one or more new unknown parts. We are finished with an exercise as
soon as all unknown parts have been completed. How do we guide a student
in making progress to a complete solution?

Whatever aspect of intelligence you attempt to model in a computer pro-
gram, the same needs arise over and over again [Bundy} 1983]:

— The need to have knowledge about the domain.
— The need to reason with that knowledge.
— The need for knowledge about how to direct or guide that reasoning.

Our tutor is built for the domain of functional programming. It supports rea-
soning about functional programs by means of refinement and rewrite rules.
The knowledge about how to guide this reasoning is often captured by a so-
called procedure or procedural skill. A procedure describes how basic steps
may be combined to solve a particular problem. A procedure is often called a
strategy (or meta-level reasoning, meta-level inference [Bundy) [1983], procedu-
ral nets [Brown and Burton, [1978], plans, tactics, etc.), and we have chosen to
use this term.

A strategy for a functional program describes how a student should con-
struct a functional program for a particular problem. Some well-known ap-
proaches to constructing correct programs are:

— specify a problem by means of pre- and post-conditions, and then calculate
a program from the specification, or provide an implementation and prove
that the implementation satisfies the specification [Hoare, 1969, Dijkstra,
1975],

- refine a specification by means of refinement rules until an executable pro-
gram is obtained [Back, 1987, Morgan, 1990],

— specify a problem by means of a simple but possibly very inefficient pro-
gram, and transform it to an efficient program using semantics-preserving
transformation rules [Bird} {1987, Meertens, [1986].

If we would use one of the first two approaches in a programming tutor that
can give hints to students on how to proceed, we would have to automati-
cally construct correctness proofs, a problem that is known to be hard. The last
approach has been studied extensively, and several program transformation
systems have been developed. However, our main goal is to refine instead of
transform programs, since this better reflects the activities of beginning pro-
grammers. To support program refinement in a tutor, we limit the solutions
that are accepted by the tutor.

Our tutor supports the incremental construction, in a top-down fashion, of
model solutions. It recognises incomplete versions of these solutions, together

12



with all kinds of syntactical variants. We support the refinement of programs,
but instead of showing that a program ensures a post-condition, we assume a
program to be correct if we can determine it to be equal to a model solution.

This section introduces strategies, and shows how we formulate strategies
for functional programming.

5.1 Strategies for procedural skills

A procedure often consists of multiple steps. For example, developing a func-
tion for reverse requires developing the complete program, which in the case
of an explicit recursive definition consists of a case distinction between the
empty list and the non-empty list, and a recursive call in the non-empty list
case, amongst others. A procedure may also contain a choice between different
(sequences of) steps. For example, we can choose to either use foldl, or an ex-
plicit recursive definition for reverse. Sometimes, the order in which the steps
are performed is not relevant, as long as they are performed at some point.

We have developed a strategy language for describing procedures as rewrite
strategies [Heeren et al., 2008|]. Our strategy language is domain independent,
and has been used to describe strategies for exercises in mathematics, logic,
biology, and programming. The basic elements of the strategy language are
rewrite rules or refinement rules. We use rewrite rules for exercises in math-
ematics, logic, and biology. Refinement rules are rewrite rules that may contain
holes, and are used in the programming domain. The strategy language sup-
ports combining strategies by means of strategy combinators. For example, if s
and ¢t are strategies, then so are:

s<[>t choice: do either s or ¢
s <>t sequence: do s before ¢
s <¥o>t interleave: steps from s and f are performed in some order

Furthermore, we have a strategy fail, which always fails (the unit of choice), and
a strategy succeed, which always succeeds (the unit of sequence). Section|6gives
a complete description of our strategy language and combinators. The contents
of this section is not necessary for understanding the contents of Section[6} and
readers interested in the strategy language only can skip this section.

5.2 Strategies for functional programs

For any programming problem, there are many solutions. Some of these solu-
tions are syntactical variants of each other, but other solutions implement dif-
ferent ideas to solve a problem. We specify a strategy for solving a functional
programming problem by means of model solutions for that problem. We can
automatically derive a strategy from a model solution. A model solution is com-
piled into a programming strategy by inspecting its abstract syntax tree (AST),
and matching the refinement rules with the AST. This is a standard tree match-
ing algorithm, which yields a strategy that can later be adapted by a teacher

13



for his own purposes. The strategies for the various model solutions are then
combined into a single strategy using the choice combinator. So, for the reverse
exercise from Section[2]we would get a single strategy combining the three strat-
egies for the model solutions. For example, here is a strategy that is compiled
from the definition of reverse in terms of foldl:

patBind
<> pVar "reverse"
<> app <> var "foldl"
<> ( (paren <s> app <> var "f1lip"
<> infixApp <> con " (:)"

<%> con "[1"
)

There are several things to note about this strategy. The ordering of the rules
by means of the sequence combinator <> indicates that this strategy for defin-
ing reverse recognises the top-down construction of reverse. Since we use the
interleave combinator <%> to separate the arguments to foldl, a student can
develop the arguments to foldl in any order. This strategy uses three rules we
did not introduce in the previous section, namely infixApp, which introduces an
infix application, con, which introduces a constructor of a datatype, and paren.
The rule paren ensures that the first argument of foldl is in between parentheses.
The hole introduced by this rule is filled by means of the strategy that intro-
duces flip (:). The rule paren is minor, so when we give a hint for this part of the
program, we don’t just introduce parentheses, but also the function flip (and the
invisible application operator, which is also introduced by a minor rule). Since
rules correspond to abstract syntax tree constructors, this shows that our ab-
stract syntax also contains constructors that represent parts of the program that
correspond to concrete syntax, such as parentheses. This way we can also guide
a student in the concrete syntax of a program. However, we might also leave
concrete syntax guidance to the parsing and type-checking phase of Helium.

If the above strategy would be the complete strategy for defining reverse,
then a student would only be allowed to construct exactly this definition. This
would almost always be too restrictive. Therefore, we would typically use a
strategy that combines a set of model solutions. However, our approach neces-
sarily limits the solutions accepted by the tutor: a solution that uses an approach
fundamentally different from the specified model solutions will not be recog-
nised by the tutor. Depending on the model solutions provided, this might be
a severe restriction. However, in experiments with lab exercises in a first-year
functional programming course [Gerdes et al., 2010], we found that our tutor
recognises almost 90% of the correct student programs by means of a limited set
of model solutions. The remaining 10% of correct solutions were solutions ‘with
a smell”: correct, but using constructs we would never use in a model solution.
We expect that restricting the possible solutions to programming problems is
feasible for beginning programmers. It is rather uncommon that a beginning
programmer develops a new model solution for a beginners’ problem.
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We discuss how to recognise as many variants of a solution as possible in the
next two subsections. Subsection [5.3|describes strategies for Haskell’s prelude,
and Subsection 5.4 discusses a canonical form of Haskell programs.

5.3 Strategies for Haskell’s prelude

To recognise as many syntactic variants as possible of (a part of) a solution to
a programming problem, we describe a strategy for functional programming
at a high abstraction level. For example, we define special strategies foldlS and
flip$ for recognising occurrences of foldl and flip in programs. The strategy flipS
not only recognises flip itself, but also its definition, which can be considered
an inlined and B-reduced version of flip. The strategy flipS takes a strategy as
argument, which recognises the argument of flip.

flipS fS = app <x> var "f1lip" <> fS
<[> lambda <s> pVar x <&> pVary
<> app <> fS <> (var y <%> var x)

The variable names x and y, used in the lambda-abstraction, are fresh and do
not appear free in fS, in order to avoid variable capturing. The flipS (con "(:)")
strategy recognises both flip (:) itself, and the B-reduced, infix constructor, form
Axs x — x:xs. The flipS strategy is used in a strategy reverseS for a model
solution for reverse as follows:

reverseS = foldlS (paren <x> flipS consS) nilS

where
consS = infixApp <> con "(:)"
nilS = con "[1"

It is important to specify model solutions for exercises using abstractions avail-
able in Haskell’s prelude like foldl, foldr, flip, etc, if applicable. In the reverseS
example we have for example used both foldlS and flipS. If a student would
use these abstractions in a solution, where a model solution wouldn’t, then the
student’s program wouldn’t be accepted. A large part of the Haskell prelude is
available in our strategy language. For any function in the prelude, a student
may either use the function name itself in her program, such as for example (o),
or its implementation, such as Af g x — f (g x). The strategies for functions in
the prelude also contain some conversions between abstractions, such as

foldl op e == foldr (flip op) e o reverse

So, if a function that is specified by means of a foldl is implemented by means
of a foldr together with reverse, this is also accepted. Of course, students can
introduce their own abstractions.

A strategy cannot capture all variations of a program that a student can in-
troduce. For example, the fact that a student uses different names for variables
is hard, if not impossible, to express in a strategy. However, we do want to give
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a student the possibility to use her own variable names. We use normalisation to
handle such kinds of variations. If a student introduces her own foldr, possibly
using a different name, normalisation will successfully compare this against a
model solution using the prelude’s foldr.

5.4 A canonical form for Haskell programs

The diagnose service checks whether or not a student submissions follows a
strategy. To verify that a program submitted by a student follows a strategy, we
apply all rules allowed by the strategy to the previous submission of the student
(which is also passed to the diagnose service), normalise the programs thus ob-
tained, and compare each of these programs against the normalised submitted
student program. Using normalisation, which returns a canonical form of a pro-
gram, we want to recognise as many syntactical variants of Haskell programs
as possible. For example, sometimes a student doesn’t explicitly specify all ar-
guments to a function, and for that purpose we use 77-reduction when analysing
a student program:

Ax = fx=f

Normalisation uses various program transformations to reach a canonical form
of a Haskell program. We use amongst others inlining, #-renaming, - and #-
reduction, and desugaring program transformations. Our normalisation pro-
cedure starts with a-renaming, which gives all bound variables a fresh name.
Then it desugars the program, restricting the syntax to a (core) subset of the
full abstract syntax. The next step inlines local definitions, which makes some
B-reductions possible. Finally, normalisation performs - and #-reductions in
applicative order (leftmost-innermost) and normalises a program to S-normal
form.

In the remainder of this section we show some of the program transforma-
tions and discuss the limitations of our normalisation.

Desugaring. Desugaring removes syntactic sugar from a program. Syntactic su-
gar is usually introduced to conveniently write some kind of programs, such as
writing Ax y — ... for Ax — Ay — ... Syntactic sugar does not change the
semantics of a program. However, if we want to compare a student program
syntactically against (possibly partially complete) model solutions we want to
ignore syntactic sugar. Desugaring consists of several program transformations
such as removing superfluous parentheses, rewriting a where expression to a
let expression, moving the arguments of a function binding to a lambda ab-
straction (e.g., f x = y = f = Ax — y), and rewriting infix operators to (prefix)
functions. The following derivation shows how a somewhat contrived example
is desugared:

reverse = foldl f [| where f xy =y :x
= {wheretolet}
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reverse = let f x y = y:x in foldl f []
= { Infix operators to (prefix) functions }
reverse = let f x y = (:) y x in foldl f []
= { Function bindings to lambda abstractions }
reverse = let f = Ax — y — () y x in foldl f []
In the following paragraph on inlining we will see how the declaration of f is
inlined in the foldl-expression.

Inlining. Inlining replaces a call to a user-defined function by its body. We per-
form inlining to make B-reduction possible. For example,

reverse = let f = Ax — Ay — (:) y x in foldl f []
= {Inline }
reverse = foldl (Ax — Ay — (:) y x) []

Constant arquments. An argument is constant if it is passed unchanged to all re-
cursive function calls. Compilers often optimise such constant arguments away,
to save space and increase speed. Consider the following naive implementation
of the higher-order function foldr:

foldr op b [] =D
foldr op b (x:xs) = x‘op’ foldr op b xs

This implementation has two constant arguments: op and b. A better implemen-
tation is:

foldrop b =f
where f [] =b
f(x:xs) =x"op"f xs

The above definition is the standard definition for foldr from the Haskell pre-
lude. Our goal with this transformation is not to optimise programs, but in-
stead to increase the number of possibilities to apply B-reduction. Note that we
do not inline recursive functions. Recursive functions are rewritten in terms of
fix, which does not get f-reduced. However, the constant arguments of a recur-
sive function can be B-reduced. The optimisation of a recursive function with
constant arguments, such as the naive foldr function, separates the recursive (f
in the example) from the non-recursive part of a function. Therefore, only af-
ter optimising constant arguments away does it help to inline the function. The
optimised version of foldr will be inlined, but the recursive help function f will
not be inlined.

Lambda calculus reductions. At the heart of our normalisation are program trans-
formations based on the A-calculus.
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We use a-conversion to rename bound variables. To check that a program
is syntactically equivalent to a model solution, we a-convert both the submit-
ted student program as well as the model solution. x-conversion ensures that
all variable names are unique. This simplifies the implementation of other pro-
gram transformation steps, such as B-reduction, due to the fact that substitu-
tions become capture avoiding.

n-reduction reduces a program to its #7-short form, trying to remove as many
lambda abstractions as possible. #-reduction replaces Ax — f x by f if x does
not appear free in f.

Finally, we apply B-reduction. B-reduction takes the application of a lambda
abstraction to an argument, and substitutes the argument for the lambda-ab-
stracted variable: (Ax — expr) y =4 expr[x := y|. The substitution [x:=y]
replaces all free occurrences of the variable x by the expression y. For example,
using B-reduction we get:

Mxy—=fyx) () =Axy—(yx

Although we don’t expect a student to write a program containing a S-redex,
this happens in practice.

Discussion. Correctness of a normalisation procedure depends on several as-
pects [Filinski and Korsholm Rohde) 2004]. A normalisation procedure is

— sound if the output term, if any, is f-equivalent to the input term,
— standardising if equivalent terms are mapped to the same result,
— complete if normalisation is defined for all terms that have normal forms.

We claim that our normalisation procedure is sound and complete but not stan-
dardising, but we have yet to prove this. The main reason for our normalisation
procedure to be non-standardising is that we do not inline and B-reduce recur-
sive functions. For example, while the terms take 3 [1..] and [1, 2, 3] are equiva-
lent, the first will not be reduced by normalisation. Therefore, these terms have
different normalisation results. We do not incorporate S-reduction of recursive
function because this might lead to non-terminating normalisations.

We could extend our normalisation procedure with several other transfor-
mations, such as permuting function arguments, or swapping components of
pairs, but haven’t done so yet.

Normalisation by evaluation (NBE) [Berger et al| |1998] is an alternative ap-
proach to normalisation. NBE evaluates a A-term to its (denotational) seman-
tics and then reifies the semantics to a A-term in f-normal and #-long form. The
difference with our, more traditional, approach to normalisation is that NBE
appeals to the semantics (by evaluation) of a term to obtain a normal form. The
main goal of NBE is to efficiently normalise a term. We are not so much in-
terested in efficiency, but it may well be that NBE improves standardisation of
normalisation.
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5.5 Relating strategies to locations in programs

A program is constructed incrementally, in a top-down fashion. When starting
the construction of a program there is usually a single hole. During the devel-
opment, refinement rules introduce and refine many holes. For example, the
app refinement rule introduces two new holes: one for an expression that is of a
function type, and one for an expression that is the argument of that function.
When used in a strategy for developing a particular program, a refinement rule
always targets a particular location in the program. For example, the refinement
rule that introduces the base argument expression in an fold! application cannot
be applied to an arbitrary expression hole, but should be applied at exactly the
location where the argument is needed in the program. In the next example this
is the second expression hole (counted from left to right):

foldl (flip L) L = foldl (flip L) some_arqument

To target a particular location in a program, every refinement rule is extended
with information about the location of the hole it refines. A rewrite rule, on the
other hand, may be applicable to more than one location in the AST.

When defining a strategy for developing a functional program, we need to
relate the holes that appear in the refinement rules to the strategies that are used
to refine these holes. For example, the holes introduced by the app refinement
rule need to be connected to rules that refine them. Recall that our refinement
rules just encapsulate a constructor of an abstract syntax datatype in a rule. For
instance, the app rule encapsulates the App constructor from the Expr datatype
in an expression refinement rule:

app :: Expr — Expr — Rule Expr
app f x = toRefinement "Introduce application" "app" (Appf x)

The app refinement rule applies App to two expression holes. These holes should
be connected to the rules that are going to refine them. The first might for exam-
ple be a var :: String — Expr refinement rule that introduces a prelude function,
as in var "length". The hole expression and the var rule have to be connected.
We achieve this connection by giving a hole an identifier and specialising a rule
only to be applicable to a hole with that particular identifier. We extend the Hole
constructors of the various abstract syntax datatypes with an identifier field.
For example, the Hole constructor of the Expr data type is extended as follows:

type HolelD = Int
data Expr = Hole HolelD | ...

When combining refinement rules in a strategy, we do not only specify the re-
finement rule, but also the identifier of the hole it is going to refine. We define a
datatype that combines a term containing one or more holes and a strategy that
refines the holes in that term:

data Refinement a = Ref {term ::a, strat :: Strategy a }
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Here is an example value of this datatype for a strategy that introduces the
application of the prelude function length to the empty list [ |:

Ref (App (Hole 1) (Hole 2)) (vary "length" <%> cony "[1")

The refinement rule is annotated with the identifier of the hole it should refine.
So, the refinement rule var; is only applicable to a hole with identifier 1. The
actual numbering of holes takes place in a state monad:

type RefinementS a = State Int (Refinement a)

After evaluating the state monad, every hole has a unique number. We define a
function bindRefinement to bind a rule to a hole:

bindRefinement :: Rule a — Refinement$S a

This function takes a rule and returns, in the state monad, a term together with
the strategy consisting of the argument rule. The bindRefinement function en-
sures that the refinement rule is applied to the right hole. We use generic pro-
gramming techniques to locate a particular hole in an AST, but we omit the
details.

Since strategy combinators combine rules, the combinators have to be aware
of the relations between refinement rules and holes, and adapt them appropri-
ately whenever rules are combined. For example, when combining two pro-
gramming strategies by means of the choice combinator, both substrategies
should refine the same hole. Since the concepts of refinement rules and holes
are special for the programming domain, and do not appear in most of the
other domains we have studied, we define lifted versions of the combinators
introduced in Subsection [5.1] that deal with the relations between refinement
rules and holes. For example, the lifted version of the choice combinator uses
a ‘plain’ choice combinator to combine the substrategies, and updates the re-
lation between holes and substrategies. A refinement rule is only applicable
when the holes it refines are present in the AST. For instance, in the strategy for
the application of the length function to the empty list, the app refinement rule
is applied before the var "length" rule. We use the sequence combinator to en-
force the order in which the refinements have to take place. When sequencing
two programming substrategies, we ensure that the first substrategy refines to
a term that can be refined by the second substrategy.

Relating holes and refinement rules using holes with identifiers has some
consequences for the implementation of our functional programming domain
reasoner. For the other domains we have developed, the domain reasoners op-
erate on the term that has been submitted by the student. In the functional pro-
gramming domain reasoner, however, we get an AST with holes without iden-
tifiers when we parse a student submission, due to the fact that the concrete
syntax does not contain hole identifiers. Since we need holes with identifiers as
specified in the strategy, we use information about the steps that a student has
taken so far. We use the strategy and these steps to reconstruct the AST with
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the correct hole identifiers, which we can compare against the program of the
student. Reconstructing the AST is easy because information about previous
steps is maintained and communicated back and forth between the front- and
back-end.

6 A strategy language

In the previous section we introduced strategies and strategy combinators in-
formally. This section defines the semantics of these combinators, and the laws
they satisfy. Our strategy language is very similar to the language for specifying
context-free grammars (CFGs), and we will describe the equivalent concepts
when applicable. This strategy language has been used extensively in domain
reasoners for various mathematical domains [Heeren et al.| 2008, [Heeren and
Jeuring), 2008} [2009, 2010} [2011].

We use a collection of standard combinators to combine strategies, result-
ing in more complex strategy descriptions. The semantics of the combinators is
given in terms of the language of a strategy. The language of a strategy is a set
of sentences, where each sentence is a sequence of refinement or rewrite rules.
We use 4,b,c,... to denote symbols, and x, y, z for sentences (sequences of such
symbols). As usual, we write € for the empty sequence, and xy (or ax) for con-
catenation. Function £ generates the language of a strategy, by interpreting it
as a context-free grammar.

6.1 Rules

The basic components of our strategy language, the alphabet, are the rewrite
and refinement rules. The language of a strategy consisting of a single rule is
just that rule:

6.2 Choice

The choice combinator <[> allows solving a problem in two different ways.
In CFGs, choice is introduced by having multiple production rules for a non-
terminal symbol, which can be combined by means of the |-symbol, which ex-
plains our notation. The language generated by choice is the union of the lan-
guages of the arguments:

L(s<[>t) = L(s)UL(t)
The fail combinator is a strategy that always fails. Its set of sentences is empty:
L (fail) = @

It is a unit element of <|>:
fail <|>s = s
s <[> fail = s
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6.3 Sequence

Often, a program is developed in a particular order: when developing the ap-
plication of a function to an argument, we usually first develop the function,
and only then the argument. So if fS is a strategy for developing f, and eS is a
strategy for developing ¢, to develop f e, we first perform fS and then eS. Thus
the development of this program follows a particular order. The sequence combi-
nator, denoted by <x>, applies its second argument strategy after its first, thus
allowing programs that require multiple refinement steps to be applied in some
order. The right-hand side of a production rule in a CFG consists of a sequence
of symbols. The sentences in the language of sequence are concatenations of
sentences from the languages of the component strategies:

L(s<e>t) ={xy|xeLl(s),yeLl(t)}

The succeed combinator is a strategy that always succeeds. Its set of sentences
contains just the empty sentence:

L (succeed) = {e}
The fail combinator is a zero element of <x>, and succeed is a unit element:

fail <> s = fail
s <> fail = fail

succeed <x>s = s
S <> succeed = s

6.4 Interleave
In a case-expression like

case xs of
[] —1
x:xs — L

a student may refine any of the two right-hand sides, in any order. She may
even interleave the refinement of the two right-hand sides. To support this be-
haviour, we introduce the interleave combinator, denoted by <%>. This com-
binator expresses that the steps of its argument strategies have to be applied,
but that the steps can be interleaved. For example, the result of interleaving
a strategy abc that recognises the sequence of three symbols a4, b, and ¢, with
the strategy de that recognises the sequence of two symbols d and e (that is,
abc <%> de) results in the following set:

{abcde, abdce, abdec, adbce, adbec, adebc, dabce, dabec, daebc, deabe }
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Interleaving sentences. To define the semantics of interleave, we first define an
interleave operator on sentences. The interleaving of two sentences (x <%> v)
can be defined conveniently in terms of left-interleave (denoted by x %> v,
and also known as the left-merge operator [Bergstra and Klop) (1985]), which
expresses that the first symbol should be taken from the left-hand side operand.
The algebra of communicating processes field traditionally defines interleave
in terms of left-interleave (and “communication interleave”) to obtain a sound
and complete axiomatisation [Fokkink} [2000].

€ <Y%o> x {x}
x <%>e = {x}
x<%o>y = x%>yUy%>x (x#£eANy#e)

€°/o>]/ =0Q
ax %>y = {az|zex <%>y}

The set abc %> de (where abc and de are now sentences) only contains the six

sentences that start with symbol a. It is worth noting that the number of inter-

leavings for two sentences of lengths 7 and m equals (n+m) . This number grows

quickly with longer sentences. An alternative deflrutlon of interleaving two se-
quences, presented by Hoare in his influential book on CSP [Hoare}(1985], is by
means of three laws:

€€ (y<¥>z)

&S y=z=
x€ (y<%>z) & x

<

v (

€ (z /o>y)
Jyy=ay Nx e (y <%>2z))
d72iz=a Nx e (y <%>7'))

ax € (y <%> z)

Interleaving sets. The operations for interleaving sentences can be lifted to work
on sets of sentences by considering all combinations of elements from the two
sets. Let X, Y, and Z be sets of sentences. The lifted operators are defined as
follows:

X<%>Y = U{x<r>y|lxeXyeY}

X%>Y = U{x%ylxeXyeY}

For instance, {a,ab} <%> {c,cd} yields a set containing 14 elements:
{abc,abcd, ac, acb,acbd, acd, acdb, ca, cab, cabd, cad, cadb, cda, cdab}

From these definitions, it follows that the lifted operator for interleaving is com-
mutative, associative, and has {e} as identity element. The left-interleave op-
erator is not commutative nor associative, but has the interesting property that
(X %>Y) %> Zisequal to X %> (Y <%> Z).

Atomicity. Interleaving assumes that there exist atomic steps, and we introduce
a construct to introduce atomic blocks within sentences. In such a block, no
interleaving should occur with other sentences. We write (x) to make sequence
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x atomic: if x is a singleton, the angle brackets may be dropped. Atomicity obeys
some simple laws:

() = € (the empty sequence is atomic)
(a) = a (all primitive symbols are atomic)
(x(y)z) = (xyz) (nesting of atomic blocks has no effect)

In particular, it follows that ((x)) = (x). Atomic blocks nicely work together
with the definitions given for the interleaving operators, including the lifted
operators: sentences now consist of a sequence of atomic blocks, where each
block itself is a non-empty sequence of symbols. For instance, a(bc) <%> (de)f
will return:

{abcdef, adebcf, adef be, deabef, deaf be, defabe }

In the end, when no more interleaving takes place, the blocks have no longer
any meaning, and can be discarded.

The interleaving operators. The semantics of the interleaving operators is defined
in terms of the lifted operators:

L ((s)) = {0 [xeLl(s)}
L (S <Y%> t) =L (S) <%> L (t)
L (S %o> t) =L (S) %> L (t)

The interleave combinator satisfies several laws: it is commutative and as-
sociative, and has succeed as identity element:

s <%>t = t<%>s
s <Y%o> (t <Y%o> M) = (S <%o> t) <%> u
s <%> succeed =3

Because interleaving distributes over choice
s <> (t<[>u) = (s <%>t) <> (s <¥>u)

we have a second semi-ring. Also left-interleave distributes over choice. The op-
erator that makes a strategy atomic is idempotent, and distributes over choice
(s <[> t) = (s) <[> (t). Many more properties can be found in the literature on
ACP [Bergstra and Klop) 1985]].

6.5 Label

When developing a program, a student may ask for a hint at any time. Of
course, the tutor should take the actions of the student until he asks for a hint
into account. We mark positions in the strategy with a label, which allows us
to describe feedback. The label combinator takes a string (or a value of another
type that is used for labelling purposes) and a strategy as arguments, and offers
the possibility to attach a text to the argument strategy.

L (label £s) = {ENTER; x EXITy | x € L (s) }
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This interpretation introduces the special rules ENTER and EXIT (parameterised
by some label ¢) that show up in sentences. These rules are minor rules that
are only used for tracing positions in strategies. Except for tracing, the label
combinator is semantically the identity function.

6.6 Recursion

One aspect we haven't discussed yet is recursion. Recursion is used for example
to specify that a user replaces all occurrences of a particular expression in a
program by another expression. Recursion is specified by means of the fixed-
point operator fix, which takes as argument a function that maps a strategy to a
new strategy. The language of fix is defined by:

L(fixf) = L(f (fixf))

The fix operator is mainly used in traversals over the abstract syntax tree. It is
the responsibility of the user to specify meaningful fixed-points. In our recog-
niser for the strategy language we specify a cutoff for the fixed-point operator.

6.7 Overview

We list the components of our strategy language introduced in the previous
subsection in the following definition.
A strategy is an element of the language of the following grammar:

s n= 1
|  s<>s | fai
| s<s>s | succeed
| label ¢ s
| fixf
| (s) | s<%>s | s%>s

where 7 is a rewrite rule or a refinement rule, £ is a label, and f is a function that
takes a strategy as argument, and returns a strategy.
The language of a strategy is defined by:

() —

L(s<[>t) = L(s)UL(t)
L (fail) =
L (s <> t) =
L (succeed) =
L (label £s) =

A A
o 9

Y

}

NTERy x EXITy | x € L (s) }
f (f

L (fix f) = L(f (fixf))
L((s)) = {0 |xeL(s)}
L (S] <Yo> Sz) =L (51) <%> L (Sz)
L (s1%>s) = L(s1) %> L (s)



This definition can be used to tell whether a sequence of rules follows a strategy
or not: the sequence of rules should be a sentence in the language generated by
the strategy, or a prefix of a sentence, since we solve exercises incrementally. Not
all sequences make sense, however. An exercise gives us an initial term (say t),
and we are only interested in sequences of rules that can be applied successively
to this term. Suppose that we have terms (denoted by ¢;) and rules (denoted by
r;), and let t; 1 be the result of applying rule r; to term ¢; by means of function
apply. Function apply takes a refinement or a rewrite rule and a term, tries to
unify the term with the left-hand side of the rule, and, if it succeeds, applies
the substitution obtained from unification to the right-hand side of the rule to
obtain the rewritten or refined rule. A possible derivation that starts with t( can
be depicted in the following way:

T T T T
to = bt — by — 13— ...

To be precise, applying a rule to a term can yield multiple results, but most
domain rules, such as the refinement rules for functional programs in Figure
return at most one term. Running a strategy with an initial term returns a set of
terms, and is specified by:

runsty = {ty11|r0..1n € L (5),Vico..n:tiv1 €apply r; t; }

Recognising a strategy amounts to tracing the steps that a student takes,
but how does a tutor get the sequence of rules? In a tutor that offers free input,
such as our functional programming tutor, students submit intermediate terms.
Therefore, the tutor first has to determine which of the known rules has been
applied, or even which combination of rules has been used. Discovering which
(sequence of) rule(s) has been used is obviously an important part of a tutor,
and it influences the quality of the generated feedback. It is, however, not the
topic of these notes, more information can be found in Gerdes et al.| [2012]. An
alternative to free input is to let students select a rule, which is then applied
automatically to the current term. In this setup, it is no longer a problem to
detect which rule has been used.

6.8 Applications of strategies in other domains

Using our strategy language we can specify strategies for an arbitrary domain
in which procedures are expressed in terms of rewriting and refinement rules.
In this subsection we introduce two examples not related to the domain of func-
tional programming in which we use our strategy language. The first example
shows a general pattern that occurs in many different domains, the second ex-
ample describes a procedure for calculating with fractions.

Example 1. Repetition, zero or more occurrences of something, is a well-known
recursion pattern. We can define this pattern using our fixed point recursion
combinator:
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Rules Buggy rules

a b _a+b a4, ¢ a+tc
a ¢ axc b axb
MutL: Exﬁ_bxd B2: aXE#axc
RENAME: 9: axb B3: E;A atb
Cc axc C C
a+b a
S : =1+ -
IMPL 2 +b

Fig. 4. Rules and buggy rules for fractions

many s = fix (Ax — succeed <[> (s <*> x))

The strategy that applies transformation rule r zero or more times would thus
be:

many r
= succeed <|> (r <> many r)
= succeed <|> (r <> (succeed <|> (r <> many r)))

Example 2. Consider the problem of adding two fractions, for example, % and
Z: if the result is an improper fraction (the numerator is larger than or equal
to the denominator), then it should be converted to a mixed number. Figure
displays four rewrite rules on fractions. The three rules at the right (B1 to B3)
are buggy rules that capture common mistakes. A possible strategy to solve this
type of exercise is the following:

— Step 1. Find the least common denominator (LCD) of the fractions: let this
ben

— Step 2. Rename the fractions such that # is the denominator

— Step 3. Add the fractions by adding the numerators

— Step 4. Simplify the fraction if it is improper

We use the strategy combinators to turn this informal strategy description
into a strategy specification:

addFractions = label ¢y ( label £ LCD
<> label l (repeat (somewhere RENAME))
<> label {3 ADD
<> label {4 (try SIMPL)

)

The strategy contains the labels ¢y to ¢4, and uses the transformation rules given
in Figure @ The transformation LCD is somewhat different: it is a minor rule
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that does not change the term, but calculates the least common denominator
and stores this in an environment. The rule RENAME for renaming a fraction
uses the computed lcd to determine the value of 4 in its right-hand side.

The definition of addFractions uses the strategy combinators repeat, try, and
somewhere. In an earlier paper [Heeren et al) 2008|], we discussed how these
combinators, and many others, can be defined conveniently in terms of the
strategy language. The combinator repeat is a variant of the many combinator:
it applies its argument strategy exhaustively. The check that the strategy can
no longer be applied is a minor rule. The try combinator takes a strategy as
argument, and tries to apply it. If the strategy cannot be applied, it succeeds.

The combinator somewhere changes the focus in an abstract syntax tree by
means of one or more minor navigation rules, before it applies its argument
strategy. The navigation rules are inspired by the operations on the zipper data
structure [Huet, |1997]. These rules, usually called DOWN (go to the left-most
child), RIGHT, LEFT, and UP, are used to navigate to a point of focus. Until
now we have used holes to denote locations in terms, instead of a zipper. Using
navigation rules and the zipper in the functional programming domain is less
convenient. Whereas the strategy for adding fractions given above applies to
any fraction, so that we do not know up front where our rules will be applied,
our functional programming strategies describe the construction of a particu-
lar functional program, and recognise the construction of alternative versions.
A strategy for a functional program describes exactly where all substrategies
should be applied. For example, for the strategy for reverse, only the second
argument to foldl should be refined to the empty list []. This refinement is not
applied bottom-up or somewhere: it is exactly applied at the location of the
second argument of foldl. We could have specified this location by means of
navigation rules, in which case we would have obtained a strategy for reverse
consisting of amongst others:

foldlS
<x> DOWN
<> (flipS consS)
<> RIGHT
<> nilS
<> Up

and similarly for all other strategies. Since this information can be inferred au-

tomatically, as explained in Section [5, we use holes to denote locations in the
functional programming domain.

6.9 Restrictions
To use strategies for tracking student behaviour and give feedback, we impose

some restrictions on the form of strategies. These restrictions are similar to some
of the restrictions imposed by parsing algorithms on context-free grammars.
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Left-recursion. A context-free grammar is left-recursive if it contains a nonter-
minal that can be rewritten in one or more steps using the productions of the
grammar to a sequence of symbols that starts with the same nonterminal. The
same definition applies to strategies. For example, the following strategy is left-
recursive:

leftRecursive = fix (Ax — x <%> ADD)

The left-recursion is obvious in this strategy, since x is in the leftmost position
in the body of the abstraction. Left-recursion is not always this easy to spot.
Strategies with leading minor rules may or may not be left-recursive. Strictly
speaking, these strategies are not left-recursive because the strategy grammar
does not differentiate between minor and major rules. However, in our seman-
tics these strategies sometimes display left-recursive behaviour. For example, if
we use a minor rule that increases a counter in the environment, which is an
action that always succeeds, the strategy is left-recursive. On the other hand, in
leftRecursive':

leftRecursive’ = fix (Ax — DOWN <&> x <> ADD)

the minor rule DOWN is applied repeatedly until we reach the leaf of an expres-
sion tree, and stop. This strategy is not left-recursive. However, this is caused
by a property of DOWN that is not shared by all other minor rules.

We use top-down recursive parsing to track student behaviour and give
feedback, because we want to support the top-down, incremental construction
of derivations (programs, but also derivations for other exercises). However,
top-down recursive parsing using a left-recursive context-free grammar is diffi-
cult. A grammar expressed in parser combinators [Hutton, 1992] is not allowed
to be left-recursive. Similarly, for a strategy to be used in our domain reasoner, it
should not be left-recursive. In particular, trying to determine the next possible
symbol(s) of a left-recursive strategy will loop. This problem would probably
disappear if we would use a bottom-up parsing algorithm, but that would lead
to other restrictions, which sometimes are harder to spot and repair (compare
determining whether or not a grammar is LR(1) with determining whether or
not a grammar is left-recursive). Left-recursion can sometimes be solved by us-
ing so-called chain combinators [Fokker, [1995].

Left-recursive strategies are not the only source of non-terminating strategy
calculations. The fact that our strategy language has a fixed-point combinator
(and hence recursion) implies that we are vulnerable to non-termination. The
implementation of our strategy language has been augmented with a “time-out’
that stops the execution of a strategy when a threshold is reached, and reports
an error message.

Left-factoring. Left-factoring is a grammar transformation that is useful when
two productions for the same nonterminal start with the same sequence of ter-
minal and/or nonterminal symbols. This transformation factors out the com-
mon part, called left-factor, of such productions. In a strategy, the equivalent
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transformation factors out common sequences of rewrite rules from substrate-
gies separated by the choice combinator.

At the moment, a strategy that contains left-factors may lead to problems.
Consider the following, somewhat contrived, strategy:

leftFactor = label {1 (ADD <x> SIMPL)
<[> label ¢; (ADD <x> RENAME)

The two sub-strategies labelled /1 and ¢, have a left-factor: the rewrite rule
ADD. After the application of ADD, we have to decide which sub-strategy to
follow. Either we follow sub-strategy ¢;, or we follow sub-strategy f». Com-
mitting to a choice after recognising that ADD has been applied is unfortunate,
since it will force the student to follow the same sub-strategy. For example, if ¢;
is chosen after a student applies ADD, and a student subsequently performs the
RENAME step, we erroneously report that that step does not follow the strat-
egy. Left-factoring a strategy is essential to not commit early to a particular
sub-strategy. The example strategy is left-factored as follows:

leftFactor’ = ADD <> (SIMPL <|> RENAME)

It is clear how to left-factor (major) rewrite rules, but how should we deal with
labels, or minor rules in general? Pushing labels inside the choice combinator,

leftFactor’” = ADD <x> (label {1 SIMPL <[> label {; RENAME)

or making a choice between the two labels breaks the relation between the la-
bel and the strategy. Labels are used to mark positions in a strategy, and have
corresponding feedback text, which very likely becomes inaccurate if labels are
moved automatically.

At the moment we require strategies to be left-factored, so that we can de-
cide which production to take based on the next input symbol, as in LL(1) gram-
mars. However, this is very undesirable, since it makes it hard if not impossible
to generate functional programming strategies from model solutions. We in-
tend to use parallel top-down recursive parsing techniques to solve this prob-
lem. If we encounter a left-factor, i.e., the firsts set contains duplicates, we fork
the parser into two or more parsers, depending on the number of duplicates,
that run in parallel. Whenever a parsing branch fails, it is discarded. We have
started implementing this approach, and the first results indicate that it is in-
deed possible to solve this problem [Gerdes et al., 2012].

7 Design of a strategy recogniser

The function run, defined in the previous section, specifies how to run a strat-
egy. For this, it enumerates all sentences in the language of a strategy, and then
applies the rules in such a sentence in sequence, starting with some initial term.
Enumerating all sentences does not result in an efficient implementation be-
cause the number of sentences quickly becomes too large, making this approach
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infeasible in practice. Often, the language of a strategy is an infinite set. In our
domain reasoners we take a different, more efficient approach to recognise stu-
dent steps against a strategy definition. In this section we discuss the design of
such a strategy recogniser.

Instead of designing our own recogniser, we could reuse existing parsing
libraries and tools. There are many excellent parser generators and various
parser combinator libraries around [Hutton) 1992} Swierstra and Duponcheel,
1996, and these are often highly optimised and efficient in both their time and
space behaviour. However, the problem we are facing is quite different from
other parsing applications. To start with, efficiency is not a key concern as long
as we do not have to enumerate all sentences. Because we are recognising ap-
plications of rewrite or refinement rules applied by a student, the length of the
input is very limited. Our experience until now is that speed poses no serious
constraints on the design of the library. A second difference is that we are not
building an abstract syntax tree.

The following issues are important for a strategy recogniser, but are not (suf-
ficiently) addressed in traditional parsing libraries:

1. We are only interested in sequences of transformation rules that can be ap-
plied successively to some initial term, and this is hard to express in most
libraries. Parsing approaches that start by analysing the grammar for con-
structing a parsing table will not work in our setting because they cannot
take the current term into account.

2. The ability to diagnose errors in the input highly influences the quality of
the feedback services. It is not enough to detect that the input is incorrect,
but we also want to know at which point the input deviates from the strat-
egy, and what is expected at this point. Some of the more advanced parser
tools have error correcting facilities, which helps diagnosing an error to
some extent.

3. Exercises are solved incrementally, and therefore we do not only have to
recognise full sentences, but also prefixes. We cannot use backtracking and
look-ahead because we want to recognise strategies at each intermediate
step. If we would use backtracking, we might give a hint that does not lead
to a solution, which is very undesirable in learning environments.

4. Labels help to describe the structure of a strategy in the same way as non-
terminals do in a grammar. For a good diagnosis it is vital that a recogniser
knows at each intermediate step where it is in the strategy.

5. Current parsing libraries do not offer parser combinators for interleaving
parsers, except for a (rather involved) extension implemented by Doaitse
Swierstra on top of his parser combinator library [Swierstra), 2009].

6. A strategy should be serialisable, for instance because we want to commu-
nicate with other on-line tools and environments.

In earlier attempts to design a recogniser library for strategies, we tried
to reuse an existing error-correcting parser combinator library [Swierstra and
Duponcheel, [1996]], but failed because (some) of the reasons listed above.
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7.1 Representing grammars

Because strategies are grammars, we start by exploring a suitable representa-
tion for grammars. The datatype for grammars is based on the alternatives of
the strategy language discussed in Section|6} except that there is no constructor
for labels.

data Grammar a = Symbol a
| Succeed
| Fail
| Grammara | Grammara
| Grammara x Grammar a
| Grammara :%: Grammar a
| Grammar a :%>: Grammar a
| Atomic (Grammar a)
| Rec Int (Grammar a) -- recursion point
| Var Int -- bound by corresponding Rec

The type variable a in this definition is an abstraction for the type of symbols:
for strategies, the symbols are rules, but also ENTER and EXIT steps that are
associated with a label. For now we will postpone the discussion on labels in
grammars.

Another design choice is how to represent recursive grammars, for which
we use the constructors Rec and Var. A Rec binds all the Vars in its scope that
have the same integer. We assume that all our grammars are closed, i.e., there
are no free occurrences of variables. This datatype makes it easy to manipulate
and analyse grammars. Alternative representations for recursion are higher-
order fixed point functions, or nameless terms using De Bruijn indices.

We use constructors such as »x and :|: for sequence and choice, respectively,
instead of the combinators <x> and <[> introduced earlier. Haskell infix con-
structors have to start with a colon, but the real motivation is that we use <x>
and <[> as smart constructors later.

Example 3. The repetition combinator many, which we defined in Example
can be encoded with the Grammar datatype in the following way:

many :: Grammar a — Grammar a
many s = Rec 0 (Succeed 1| (s * Var 0))

Later we will see that the smart constructors are more convenient for writing
such a combinator.

7.2 Empty and firsts

We use the functions empty and firsts to recognise sentences. The function empty
tests whether the empty sentence is part of the language: empty (s) =€ € L (s).
The direct translation of this specification of empty to a functional program, us-
ing the definition of language £, gives a very inefficient program. Instead, we
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derive the following recursive function from this characterisation, by perform-
ing case analysis on strategies:

empty :: Grammar a — Bool
empty (Symbol a) = False

empty Succeed = True
empty Fail = False
empty (s i t) = empty s V empty t

empty (s x t) = emptys A empty
empty (s :%: t) = emptys A emptyt
empty (s :%>:t) = False

empty (Atomic s) = empty s

empty (Recis) = emptys

empty (Var i) = False

The left-interleave operator expresses that the first symbol is taken from its left-
hand side operand. Hence, such a strategy cannot yield the empty sentence.
The definition for the pattern Rec i s may come as a surprise: it calls empty re-
cursively on s without changing the Vars that are bound by this Rec. We define
empty (Var i) to be False. Note that there is no need to inspect recursive occur-
rences to determine the empty property for a strategy.

Given some strategy s, the function firsts returns every symbol that can start
a sentence for s, paired with a strategy that represents the remainder of that sen-
tence. This is made more precise in the following property (where a represents
a symbol, and x a sequence of symbols):

Va,x:ax € L (s) & 3s':(a,8) € firsts (s) ANx € L (s)

As for the function empty, the direct translation of this specification into a func-
tional program is infeasible. We again derive an efficient implementation for
firsts by performing a case analysis on strategies.

Defining firsts for the two interleaving cases is somewhat challenging: this is
exactly where we must deal with interleaving and atomicity. More specifically,
we cannot easily determine the firsts for strategy s %> t based on the firsts for
sand ¢ (i.e., in a compositional way) since that would require more information
about the atomic blocks in s and t. For a strategy s %> t, we split s into an atomic
partand a remainder, say Atomic s’ <s> s. After s’ without the empty sentence,
we can continue with s” <%> t. This approach is summarised by the following
property, where the use of symbol a takes care of the non-empty condition:

((a <> s) <> t) Yo> u = (@ <> s) <> (F <%o> u)

The function split transforms a strategy into triples of the form (a,x,y), which
should be interpreted as (¢ <*> x) <x> y. We define split for each case of the
Grammar datatype.

split :: Grammar a — [(a, Grammar a, Grammar a) |
split (Symbol a) = [(a, Succeed, Succeed) |
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split Succeed =[]

split Fail =]

split (s s t) = split s +split t

split (s =t) = [(a,x,y*t)]|(a,xy) < splits] H
if empty s then split t else []

split (s :%: t) = split (s :%>: t) H-split (t :%>:s)

(s
split (s :%>:t) = [(a,x,y:%: t) | (a,x,y) < split s]

split (Atomic s) = [(a,x * y, Succeed) | (a,x,y) < split s]
split (Recis) = split (replaceVar i (Recis) s)

split (Var i) = error "unbound Var"

For a sequence s x: t, we determine which symbols can appear first for s, and
we change the results to reflect that ¢ is part of the remaining grammar. Further-
more, if s can be empty, then we also have to look at the firsts for t. For choices,
we simply combine the results for both operands. If the grammar is a single
symbol, then this symbol appears first, and the remaining parts are Succeed
(we are done). To find the firsts for Rec i s, we have to look inside the body
s. All occurrences of this recursion point are replaced by the grammar itself
before we call split again. The replacement is performed by a helper-function:
replaceVar i s t replaces all free occurrences of Var i in t by s. Hence, if we en-
counter a Var, it is unbound, which we do not allow. Recall that we assume our
grammars to be closed.

We briefly discuss the definitions for the constructs related to interleaving,
and argue why they are correct:

— Case (Atomic s). Because atomicity distributes over choice, we can con-
sider the elements of split s (the recursive call) one by one. The transforma-
tion

((a <> x) s> y) = (@< (x <> y)) <> succeed

is proven by first removing the inner atomic block, and basic properties of
sequence.

— Case (s1 :%: sp). Expressing this strategy in terms of left-interleave is justi-
fied by the definition of £ (s; <%> sy). For function split, we only have to
consider the non-empty sentences.

— Case (s1 :%>: sp). Left-interleave can be distributed over the alternatives.
Furthermore, ({2 <> x) < y) %> t = (a <> x) <> (y <%> t) follows
from the definition of left-interleave on sentences (with atomic blocks).

With the function split, we can now define the function firsts, which is needed
for most of our feedback services:

firsts :: Grammar a — [(a, Grammar a) |
firstss = [(a,x * y) | (a,x,y) < split s]

In Section we discussed restrictions that are imposed on strategies. It
should now be clear from the definition of firsts why left-recursion is problem-
atic. For example, consider the many combinator. A strategy writer has to use
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this combinator with great care to avoid constructing a left-recursive grammar:
if grammar s accepts the empty sentence, then running the grammar many s
can result in non-termination. The problem with left recursion can be partially
circumvented by restricting the number of recursion points (Recs and Vars) that
are unfolded in the definition of split (Rec i s).

7.3 Dealing with labels

The Grammar datatype lacks an alternative for labels. Nevertheless, we can use
label information to trace where we are in the strategy by inserting ENTER and
EXIT steps for each labelled substrategy. These labels enable us to attach spe-
cialised feedback messages to certain locations in the strategy.

The sentences of the language generated for a strategy contain rules, ENTER
steps, and EXIT steps, for which we introduce the following datatype:

data Step  a = Enter 1 | Step (Rule a) | Exit |

The type argument / represents the type of information associated with each la-
bel. For our strategies we assume that this information is only a string. The type
Rule is parameterised by the type of values on which the rule can be applied.
With the Step datatype, we can now specify a type for strategies:

type Labellnfo = String
data Strateqy a = S {unS :: Grammar (Step Labellnfo a) }

The Strategy datatype wraps a grammar, where the symbols of this grammar
are steps. The following function helps to construct a strategy out of a single
step:

fromStep :: Step Labellnfo a — Strategy a
fromStep = S o Symbol

The (un)wrapping of strategies quickly becomes cumbersome when defining
functions over strategies. We therefore introduce a type class for type construc-
tors that can be converted into a Strategy:

class IsStrategy f where
toStrategy :: f a — Strategy a

instance IsStrategy Rule where
toStrategy = fromStep o Step

instance IsStrategy Strategy where
toStrategy = id

In addition to the Strategy datatype, we define the LabeledStrategy type for strat-
egies that have a label. A labelled strategy can be turned into a (normal) strategy
by surrounding its strategy with Enter and Exit steps.
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data LabeledStrategy a = Label {labellnfo :: Labellnfo, unlabel :: Strategy a }

instance IsStrategy LabeledStrategy where
toStrateqy (Label a s) = fromStep (Enter a) <> s <> fromStep (Exit a)

In the next section we present smart constructors for strategies, including the
strategy combinator <x> for sequences used twice in the instance declaration
for LabeledStrategy.

7.4 Smart constructors

A smart constructor is a function that in addition to constructing a value per-
forms some checks, simplifications, or conversions. We use smart constructors
for simplifying grammars. We introduce a smart constructor for every alterna-
tive of the strategy language given in Section[6.7] Definitions for succeed and fail
are straightforward, and are given for consistency:

succeed, fail :: Strategy a
succeed = S Succeed
fail = S Fail

The general approach is that we use the IsStrategy type class to automatically
turn the subcomponents of a combinator into a strategy. As a result, we do not
need a strategy constructor for rules, because Rule was made an instance of the
IsStrategy type class. It is the context that will turn the rule into a strategy, if
required. This approach is illustrated by the definition of the label constructor,
which is overloaded in its second argument:

label :: IsStrategy f = Labellnfo — f a — LabeledStrategy a
label s = Label s o toStrategy

All other constructors return a value of type Strategy, and overload their
strategy arguments. We define helper-functions for lifting unary and binary
constructors (lift1 and lift2, respectively). These lift functions turn a function
that works on the Grammar datatype into an overloaded function that returns a
strategy.

-- Lift a unary/binary function on grammars to one on strategies
liftlop =S oopounS o toStrategy
lift2 op = lift1 o op o unS o toStrategy

For choices, we remove occurrences of Fail, and we associate the alternatives
to the right.

(<|>) :: (IsStrategy f,IsStrateqy §) = f a — g a — Strategy a
(<[>) =lift2 op
where
op :: Grammar a — Grammar a — Grammar a
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opFail t =t

ops Fail = s

op (s t)yu =s’op’ (t'op’u)
op s to=sit

The smart constructor <x> for sequences removes the unit element Succeed, and
propagates the absorbing element Fail.

(<o) it (IsStrategy f, IsStrategy §) = f a — g a — Strategy a
(<) =lift2 op

where
op :: Grammar a — Grammar a — Grammar a
op Succeed t =t
ops Succeed = s
op Fail — _ = Fail
op — Fail = Fail
op (sxt) u =s‘op’ (t"op" u)
ops t =swt

The binary combinators for interleaving, <%> and %>, are defined in a similar
fashion. The smart constructor atomic, which was denoted by (-) in Section @
takes only one argument. It is defined in the following way:

atomic :: IsStrategy f = f a — Strategy a
atomic = lift1 op
where
op :: Grammar a — Grammar a
op (Symbol a) = Symbol a

op Succeed = Succeed
op Fail = Fail

op (Atomics) =ops

op (s t) =opsi|opt
ops = Atomic s

This definition is based on several properties of atomicity, such as idempotence
and distributivity over choice.

The last combinator we present is for recursion. Internally we use num-
bered Recs and Vars in our Grammar datatype, but for the strategy writer it is
much more convenient to write the recursion as a fixed-point, without worry-
ing about the numbering. For this reason we do not define direct counterparts
for the Rec and Var constructors, but only the higher-order function fix. This
combinator is defined as follows:

fix :: (Strategy a — Strategy a) — Strategy a
fix f = lift1 (Rec i) (make i)
where

make = f o So Var
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is = usedNumbers (unS (make 0))
i = if null is then 0 else maximum is + 1

The trick is that function f is applied twice. First, we pass f a strategy with
the grammar Var 0, and we inspect which numbers are used (variable is of type
[Int]). Based on this information, we can now determine the next number to use
(variable 7). We apply f for the second time using grammar Var i, and bind these
Vars to the top-level Rec. Note that this approach does not work for fixed-point
functions that inspect their argument.

Example 4. We return to Example (3} and define the repetition combinator many
with the smart constructors. Observe that many’s argument is also overloaded
because of the smart constructors.

many :: IsStrategy f = f a — Strategy a
many s = fix $ Ax — succeed <[> (s <> x)

7.5 Running a strategy

So far, nothing specific about recognising strategies has been discussed. A strat-
egy is a grammar over rewrite rules and Enter and Exit steps for labels. We first
define a type class with the method apply: this function was already used in the
run method defined in Section [6.7] It returns a list of results. Given that rules
can be applied, we also give an instance declaration for the Step datatype, where
the Enter and Exit steps simply return a singleton list with the current term, i.e.,
they do not have an effect.

class Apply f where

apply ::f a — a — [a]
instance Apply Rule -- implementation provided in framework
instance Apply (Step ) where

apply (Step r) = apply r
apply _ = return

We can now give an implementation for running grammars with symbols in the
Apply type class (see Section [6.7)for run'’s specification). The implementation is
based on the functions empty and firsts.

run :: Apply f = Grammar (f a) — a — [a]
runsa = [a|emptys)+ [c| (f, t) < firsts s,b < apply f a,c < run t b]

The list of results returned by run consists of two parts: the first part tests
whether empty s holds, and if so, it yields the singleton list containing the term
a. The second part takes care of the non-empty alternatives. Let f be one of the
symbols that can appear first in strategy s. We are only interested in f if it can
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be applied to the current term 4, yielding a new term b. We run the remainder
of the strategy (that is, t) on this new term.

Now that we have defined the function run we can also make Strategy and
LabeledStrategy instances of class Apply:

instance Apply Strategy where
apply = run ounS

instance Apply LabeledStrategy where
apply = apply o toStrategy

The function run can produce an infinite list. In most cases, however, we are
only interested in a single result (and rely on lazy evaluation). The part that
considers the empty sentence is put at the front to return sentences with few
rewrite rules early. Nonetheless, the definition returns results in a depth-first
manner. We define a variant of run which exposes breadth-first behaviour:

runBF :: Apply f = Grammar (f a) — a — [[a]]
runBF s a = [a | empty s] : merge [runBE t b | (f,t) < firsts s,b < apply f a|
where merge = map concat o transpose

The function runBF produces a list of lists: results are grouped by the number
of rewrite steps that have been applied, thus making explicit the breadth-first
nature of the function. The helper-function merge merges the results of the re-
cursive calls: by transposing the list of results, we combine results with the
same number of steps.

7.6 Tracing a strategy

The run functions defined in the previous section do nothing with the labels.
However, if we want to recognise (intermediate) terms submitted by a student,
and report an informative feedback message if the answer is incorrect, then la-
bels become important. Fortunately, it is rather straightforward to extend run’s
definition, and to keep a trace of the steps that have been applied:

run?ace ::A;ﬁ?lyf = Grammar (f a) — a — [(a,[f a])]
[(a,[]) | empty s] +
[(c,(f:fs)) | (f,t) < firsts s,b < apply f a, (c,fs) < runTrace t b]

In case of a strategy, we can thus obtain the list of Enter and Exit steps seen so
far. We illustrate this by means of an example.

Example 5. We return to the strategy for adding two fractions (addFractions, de-
fined in . Suppose that we run this strategy on the term 2 + 2. This would
give us the following derivation:

2,2 6.2 6 10 16 1
5 3 15 3 15 15 15 15
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The final answer, 1 11—5, is indeed what we would expect. In fact, this result is re-
turned twice because the strategy does not specify which of the fractions should
be renamed first, and as a result we get two different derivations. It is much
more informative to step through such a derivation and see the intermediate
steps.

[ Enter £, Enter {1, Step LCD, Exit {4, Enter {5

,  Step downg), Step RENAME, Step up, Step downy), Step RENAME
, Step up, Step not, Exit ¢, Enter {3, Step ADD

, Exit /3, Enter £y, Step SIMPL, Exit {4, Exit £,

The list has twenty steps, but only four correspond to actual steps from the
derivation: the rules of those steps are underlined. The other rules are adminis-
trative: the navigation rules up and down are introduced by the somewhere com-
binator, whereas not comes from the use of repeat. Also observe that each Enter
step has a matching Exit step. In principle, a label can be visited multiple times
by a strategy.

The example clearly shows that we determine at each point in the deriva-
tion where we are in the strategy by enumerating the Enter steps without their
corresponding Exit step. Based on this information we can fine-tune the feed-
back messages that are reported when a student submits an incorrect answer,
or when she asks for a hint on how to continue. For reporting textual messages,
we use feedback scripts, which is explained in the next section.

7.7 Feedback scripts

All textual messages are declared in so-called feedback scripts. These scripts are
external text files containing appropriate responses for various situations. De-
pending on the diagnosis that was made (e.g., a common mistake was recog-
nised, or the submitted term is correct and complies with the specified strategy),
a feedback message is selected from the script and reported back to the student.
One of the criteria on which this selection can be based is the current location in
the strategy, i.e., one of the labels in the strategy. Other selection criteria are the
name of the rule that was recognised (possibly a buggy rule), or the submitted
term being correct or not.

For the functional programming tutor, we give three levels of hints, which
can be categorised as follows [Vanlehn et al., 2005]:

— general: a general, high-level statement about the next step to take;

— specific: a more detailed explanation of the next step in words;

— bottom-out: the exact next step to carry out, possibly accompanied with some
literal code.

The level of the message is another available selection criterion in the feedback
scripts. All textual messages are assigned to one of these three levels.
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Having only static texts in the feedback scripts (that is, texts that appear ver-
batim in the script) severely restricts the expressiveness of the messages that can
be reported. We allow a variety of attributes in the textual messages of a script,
and these attributes are replaced by dynamic content depending on the situa-
tion at hand. In this way, messages can for instance contain snippets of code
from the original student program, or report on the number of steps remain-
ing. Feedback scripts contain some more constructs to facilitate the writing of
feedback messages, such as local string definitions and an import mechanism.
These topics are work in progress, and lie outside the scope of these lecture
notes.

An important advantage of external feedback scripts is that they can be
changed easily, without recompiling the tutoring software. This approach also
allows us to add feedback scripts that support new (programming) exercises.
A final benefit is that the support of multiple languages (as opposed to only
English) comes quite natural, since each supported language can have its own
feedback script.

8 Conclusions, related and future work

We have discussed the design and implementation of a tutoring system for
functional programming. The distinguishing characteristics of our tutoring sys-
tem are:

— it supports the incremental development of programs: students can submit
incomplete programs and receive feedback and/or hints.

— it calculates feedback automatically based on model solutions to exercises.
A teacher does not have to author feedback.

— correctness is based on provable equivalence to a model solution, based on
normal forms of functional programs.

The tutoring system targets students at the starting academic, or possibly end
high-school, level.

8.1 Related work

If ever the computer science education research field [Fincher and Petre} 2004]
finds an answer to the question of what makes programming hard, and how
programming environments can support learning how to program, it is likely to
depend on the age, interests, major subject, motivation, and background knowl-
edge of a student. Programming environments for novices come in many vari-
ants, and for many programming languages or paradigms [Guzdial, [2004]. Pro-
gramming environments like Scratch and Alice target younger students than
we do, and emphasise the importance of constructing software with a strong
visual component, with which students can develop software to which they
can relate. We target beginning computer science students, who expect to work
with real-life programming languages instead of ‘toy” programming languages.

41



The Lisp tutor [Anderson et al., [1986] is an intelligent tutoring system that
supports the incremental construction of Lisp programs. At any point in the
development a student can only take a single next step, which makes the inter-
action style of the tutor a bit restrictive. Furthermore, adding new material to
the tutor is still quite some work. Using our approach based on strategies, the
interaction style becomes flexible, and adding exercises becomes relatively easy.
Soloway| [1985] describes programming plans for constructing Lisp programs.
These plans are instances of the higher-order function foldr and its companions.
Our work structures the strategies described by Soloway.

In tutoring systems for Prolog, a number of strategies for Prolog program-
ming have been developed [Hong, [2004]. Hong also uses the reverse example
to exemplify his approach to Prolog tutoring. Strategies are matched against
complete student solutions, and feedback is given after solving the exercise.
We expect that these strategies can be translated to our strategy language, and
can be reused for a programming language like Haskell.

Our work resembles the top-down Pascal editors developed in the Genie
project [Miller et al., [1994]. These series of editors provide structure editing
support, so that student don’t have to remember the particular syntax of a pro-
gramming language. In our case students do have to write programs using the
syntax of Haskell, but the intermediate steps are comparable. The Genie editors
did not offer strategical support.

Our functional programming tutoring system grew out of a program assess-
ment tool, which automatically assesses student programs based on model so-
lutions [Gerdes et al.,|2010] and program transformations to rewrite programs
to normal form. Similar transformations have been developed for C++-like lan-
guages [Xu and Chee, [2003].

8.2 Future work

The functional programming tutor grew out of our work on assessing func-
tional programs, and on providing feedback, mainly in learning environments
for mathematics. The version presented at this school is the first public release
of our tutor. We still need to work on several aspects.

First of all, we want to use the tutor in several courses, to receive feedback
from students and teachers. We will start with obtaining feedback about usabil-
ity and appreciation. For example, do the refinement rules we offer correspond
to the refinement rules applied by students? At a later stage, we want to study
the learning effect of our tutor together with researchers from the domain of
learning sciences.

The restriction that a student cannot proceed if an intermediate solution
does not follow a model solution is rather severe. This disallows, for example,
a bottom-up approach to developing a program, where first a component is de-
veloped, without specifying how the component is used in the final solution.
We want to investigate if we can specify properties for a program, which are
used to check that a student solution is not provably wrong. We can then let a
student go on developing a program as long as the properties specified cannot
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be falsified. Once a student connects the developed components to the main
program, strategy checking kicks in again to see if the program is equivalent
to a model solution. This approach is orthogonal to our current approach: us-
ing our tutor we can ensure that a student solution is equivalent to a model
solution, and hence correct. However, if a student does not implement a model
solution, we don’t know if the student is wrong. On the other hand, using prop-
erty checking we can prove that a student solution is wrong, but the absence of
property violations does not necessarily imply that the student program is cor-
rect. We would achieve a mixed approach if we determine the propagation of
post-conditions to components in our rewrite rules, and verify that the com-
position of the rewrite rules performed by the student results in a proof that a
specified post-condition holds for a given program. However, we would need
to manually support a prover to construct the proof in many cases, which might
not be desirable for beginning programmers.

Teachers prefer different solutions, and sometimes want students to use par-
ticular constructs when solving a programming exercise (‘use foldr to imple-
ment a function to ..."). It is important to offer teachers the possibility to adapt
the tutor. We see two ways in which teachers can adapt the tutor. First, addi-
tional equalities satisfied by a particular component of a model solution can
be specified separately, and can then be used in the normal form calculation.
Second, a teacher can annotate a model solution with ‘switches’ to enforce or
switch off particular ways to solve a problem, or to change the order in which
subproblems have to be solved. For example, a teacher may want to enforce us-
age of foldr instead of its explicit recursive alternative. Or a teacher may allow
the interleaved development of the then and else branches of an if-then-else
expression. We want to add these facilities to our tutoring system.

Developing a function is an important part of functional programming. But
so are testing a function, describing its properties, abstracting from recurring
patterns, etc. [Felleisen et al., [2002]. We want to investigate how much of the
program design process can be usefully integrated in an intelligent tutoring
system for functional programming.

Our approach is not bound to functional programming: we could use the
same approach to develop tutoring systems for other programming languages
or paradigms. We think that our programming tutor is language generic, and we
want to investigate the possibilities for automatically generating large parts of a
programming tutor, based on a (probably annotated) grammatical description.

Acknowledgements. Peter van de Werken contributed to a first version of the pro-

gramming tutor described in these notes. An anonymous reviewer suggested
many improvements to these notes.
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