Teachers and students in charge —
Using annotated model solutions in
a functional programming tutor

Alex Gerdes
Bastiaan Heeren

Johan Jeuring

Technical Report UU-CS-2012-007

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl



ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089

3508 TB Utrecht
The Netherlands



Teachers and students in charge

Using annotated model solutions
in a functional programming tutor

Alex Gerdes', Bastiaan Heeren!, and Johan Jeuring!:?

'School of Computer Science, Open Universiteit Nederland
P.O.Box 2960, 6401 DL Heerlen, The Netherlands
{1byage, bhr, jje}@ou.nl
2 Department of Information and Computing Sciences, Universiteit Utrecht

Abstract We are developing ASK-ELLE, a programming tutor that sup-
ports students practising functional programming exercises in Haskell.
ASK-ELLE supports the stepwise construction of a program, can give
hints and worked-out solutions at any time, and can check whether or
not a student is developing a program similar to one of the model solu-
tions for a problem. An important goal of ASK-ELLE is to allow as much
flexibility as possible for both teachers and students. A teacher can spe-
cify her own exercises by giving a set of model solutions for a problem.
Based on these model solutions our tutor generates feedback. A teacher
can adapt feedback by annotating model solutions. A student may use
her own names for functions and variables, and may use different, but
equivalent, language constructs. This paper shows how we can use an-
notated model solutions from a teacher to give feedback to a student
in Ask-ELLE. This requires both translating annotated model solutions
to a form which we can use to track intermediate student steps, and
developing techniques to avoid the state space explosion we get when
analysing intermediate, incomplete, student answers.

Keywords: Functional programming, tutoring, Haskell

1 Introduction

Learning to program is challenging. The results of a first course in programming
are often disappointing [21]. Learning by doing through developing programs,
and learning through feedback [10] on these programs are essential aspects of
learning programming. Students often get feedback late or not at all in a first
programming course at university level, because students work outside class
hours, or at home, and because these courses often attract quite a lot of students,
where individual feedback in class is difficult or impossible, and corrected labs
are returned to students weeks after they have been handed in.

To support learning programming, many intelligent programming tutors have
been developed. Intelligent programming tutors support the development of pro-
grams, and can give immediate feedback to the student. There exist program-
ming tutors for Lisp [3], Prolog [15], Java [17], Haskell [19], and many more



programming languages. Some of these tutors are well-developed tutors extens-
ively tested in classrooms, others haven’t outgrown the research prototype phase
yet, and quite a few have been abandoned.

Evaluation studies have indicated that working with an intelligent tutor sup-
porting the construction of programs may have positive effects. For example,
using the LISP tutor is more effective when learning how to program than doing
the same exercise “on your own” using only a compiler 7], and using a problem-
solving software tutor increases the self-confidence of female students [18].

The functionality and help offered by programming tutors varies widely. The
following aspects play a role:

— Development process: does the tutor support the incremental development
of programs, where a student can obtain feedback or hints on incomplete
programs, can a student follow his or her preferred way to solve a particular
programming problem, does the tutor support refactoring a program, can a
student submit a complete solution to a problem in the tutor?

— Correctness: does the tutor guarantee that a student solution is correct, can
it check that a student has followed good programming practices, can it
verify that the student solution has the desired efficiency, does it give an
explanation why a program is incorrect, does it give counterexamples for
incorrect programs, and/or does it detect at which point of a program a
particular property is violated?

— Adaptivity: can a teacher add his or her own exercises to a tutor, and can
(s)he adapt the behaviour so that particular ways for solving an exercise are
enforced or disallowed?

None of the existing programming tutors addresses all of the above aspects.
In particular, for tutors that support the incremental development of programs,
it is usually quite hard for teachers to adapt or add programming exercises to
the tutor, and to adapt the feedback given by the tutor.

Programming tutors are not used much. Anderson et al. [4] mention the lack
of adaptability as one of the main reasons for the slow uptake of their tutors
outside their own teaching environment. It is usually quite hard for teachers to
adapt or add programming exercises to a programming tutor, and to adapt the
feedback given by the tutor. Bokhove and Drijvers [6] list teacher adaptability
as one of the four fundamental requirements for mathematical learning environ-
ments, and Lowes [20] found that among a group of almost a hundred teachers
of on-line courses, almost 70% regularly adapted their assignments. Teacher ad-
aptability is of fundamental importance for the uptake of learning environments.

Another important aspect of a programming tutor is that it offers sufficient
freedom to students: a student should be able to use her own names, to use her
own favourite programming style, her own refinement step-size, etc. Similar to
the Lisp tutor [7], the refinement rules in our tutor model Haskell at the finest
grain size that has functional meaning in Haskell, but we want to offer students
the possibility to make larger steps than these small steps. This is challenging
in the context of teacher annotated model solutions to program exercises.



This paper investigates how we can develop a programming tutor:

— in which a student incrementally develops a program that is equivalent (mod-
ulo syntactic variability) to one of the teacher-specified model solutions for
a programming problem,

— that gives feedback and hints on intermediate, incomplete, and possibly
buggy programs, following the formative feedback guidelines to enhance
learning [22], based on teacher-specified annotations in model solutions,

— to which teachers can easily add their own programming exercises, and in
which teachers can adapt feedback,

— and in which a student can use her preferred step-size in developing a pro-
gram: from making a minor modification to submitting a complete program
in a single step.

In particular, we address some of the technical challenges that need to be solved
to develop such a tutor.

This paper is organised as follows. Section 2 introduces our programming
tutor, and shows how a teacher specifies a programming problem for the tutor,
which a student solves in the tutor. Section 3 discusses how we can combine
teacher-annotated model solutions to both give hints to students as well as diag-
nose partial student programs. Section 4 shows how we recognise student steps
where step size doesn’t matter. Section 5 discusses related work and concludes.

2 The ASK-ELLE programming tutor

We are developing ASK-ELLE, a programming tutor for Haskell [16]. See Fig-
ure 1 for a screenshot. Haskell is a lazy, higher-order functional programming
language with a relatively simple semantics, and a limited core based on the
A-calculus. It is taught at many universities all over the world. More than 50.000
copies of introductory Haskell text books have been sold. Our tutor targets first
year computer science students and offers introductory functional programming
exercises. The tutor produces different types of feedback. It can:

— give hints, in increasing level of detail, when a student is stuck,

— analyse intermediate answers, and report whether or not a student is still on
the right track,

— show how a complete program is constructed step by step,

— report type and syntax errors.

Suppose a teacher wants to set an exercise to develop a program that reverses
a list. For example:

Data.List) reverse "A man, a plan, a canal, panama!"
"lamanap ,lanac a ,nalp a ,nam A"

Data.List) reverse [1,2,3,4]

[4,3,2,1]



800 ASK-Elle e

i Ask-Elle =

All Exercises <« Description A/ Help »)

= programming Write a function that reverses a list: myreverse :: [a] -> [a]. For example: You can follow one of the following strategies:
= list
=3 creation
= dupli
=] repli Data.List> myreverse [1,2,3,4]
23 fundtions [4,3,2,1] Introduce the constructor pattern [].

Data.List> myreverse "A man, 2 plan, a canal, panamal” Introduce a helper function that uses an accumulating paramete —
"lamanap lanac 2 ,nalp a ,nam A"

Hint 1 £y

= compres Siiton Hint 2 A
= encode
243 manipulation ’“"::‘;iﬁ“ = Refine the current term to
=] dropevery reverse' acc ? = ?
myreverse =
2
= myreverse I | where
=l pack reverse' acc [] =
7

=53 projection
=] butlast
=] elementat
= mylast
=] slice

=3 properties
=] mylength
=] palindrome:

Figure 1. Ask-ELLE: a web-based functional programming tutor

The teacher specifies the exercise by means of three solutions:

{-# DESC Use the prelude function foldl. #-}
reverse; = foldl {-# FEEDBACK Use flip and (:). #-}(flip () []

{-# DESC Use explicit recursion. #-}
reverses (| =]
reverses ( : 18) = reverses xs + [z]

{-# DESC Define a helper function with an accumulating parameter. #-}
reverseg list = reverse’ list []
where
reverse’ [] reversed = reversed
reverse’ (x : xs) reversed = reverse’ xs (x : reversed)

Note that the second solution is suboptimal, since it takes quadratic time in
its input. Despite the fact that we can also specify suboptimal solutions, we
will call these solutions “model solutions”. A teacher may annotate the solu-
tions to fine-tune the generated feedback. The three solutions above are anno-
tated with a high-level description of the approach used in the solution, using
{-# DESC .... #-}. In addition to the description annotation, the teacher has
attached a specific feedback message to the operator argument of foldl in the first
model solution, using {-# FEEDBACK ... #-}. When introducing the operator
is one of the steps a student can take, and the student asks for help, the tutor
will display the specified message. Since {-... -} is used for multi-line comments



in Haskell, annotated solutions are valid Haskell programs. Other classes of an-
notations are {-# ALT ... #-} and {-# MUSTUSE #-}. The ALT annotation
specifies an alternative definition of a function, such as defining map f zs by
means of a list comprehension [f z | z + zs]. The tutor also accepts the defi-
nition of a library function in addition to its usage; the MUSTUSE annotation
disallows this behaviour. A feedback annotation binds stronger than all other
language constructs, i.e., it applies to the smallest possible expression. In the
following example:

reverse; = {-# MUSTUSE #-}foldl (flip (:)) []

the student is not allowed to use the explicit recursive definition of foldl due
to the MUSTUSE annotation. The student is allowed to use the definition of
flip, because the scope of the MUSTUSE annotation is limited to the expression
foldl. If a teacher wants to prohibit the use of definitions of library functions
altogether, she can expand the scope of the annotation by placing parentheses:

reverse; = {-# MUSTUSE #-}(foldl (flip (:)) [])

Suppose a student chooses to implement the reverse function using the
higher-order function foldl, and has started in the following way:

reverse = foldl e e

A hole ( e ) denotes an incomplete part of a program that needs to be refined.
Here the student can refine the program at two locations: she can introduce an
operator argument, or a base argument. If the student asks for help, the tutor
responds with:

Use flip and (:).

Since refining the operator argument is one of the possible next steps, the hint
specified in the annotated solution is given. If the student asks for a more detailed
hint she gets:

Introduce the function flip.
If the student remains stuck, we can give a bottom-out hint:

Refine the program to:

reverse = foldl (flip o) e

In addition to giving detailed feedback about a single step, the tutor can list the
different steps that are allowed. In the given example, refining the hole for the
base case is another step that the student can take. When asked for a hint about
another step the tutor responds with:

Introduce the empty list constructor [].



3 The teacher in charge

Our tutor takes a set of model solutions for a programming exercise as input.
Using these solutions, it constructs a programming strategy [8], which it uses
to follow a student when incrementally solving the programming exercise. The
strategy is interpreted as a recogniser that recognises program refinement steps
of students. This section discusses how we construct a recogniser from several
possible model solutions, such that teacher annotations in model solutions are
used when giving feedback, hints, or worked-out solutions.

3.1 Strategy language

Heeren et al. [12] have developed a strategy language for describing procedural
skills as rewrite strategies. The basic elements of the strategy language are re-
write and refinement rules, and the language supports combining strategies by
means of strategy combinators. We use the following strategy combinators:

r symbol: a rewrite or refinement rule

s<>t choice: do either s or ¢

§ <>t sequence: do s before ¢

fail always fails (the unit of choice)

succeed always succeeds (the unit of sequence)

label ¢ s attach a label £ to a strategy (to mark a position)

fix f fixed-point operator for recursion

s <Io>t interleave: steps from s and t are performed in any order
s %>t left-interleave: start interleaving with a step from s

(s) atomic: s cannot be interleaved

where s and t are strategies and f is a function that takes a strategy as argu-
ment, and returns a strategy. The label combinator takes a label and a strategy
as arguments, and offers the possibility to attach a text to the argument strategy.
Using these combinators we can express the order of refinements that are ne-
cessary to define a program. For example, the strategies for the different model
solutions are combined into a single strategy using the choice combinator.

We convert a model solution to a programming strategy using a tree matching
algorithm to translate every construct in the abstract syntax tree of a model
solution to a corresponding refinement rule. For example, we have a constructor
for variables, and hence also a refinement rule for refining a hole to a variable.
A feedback annotation in the model solution leads to a label in the derived
strategy, an alternative annotation adds a choice with the strategy derived for
the alternative, and a MUSTUSE annotation removes a choice. For instance, the
model solution reverse; is translated to the following (simplified) strategy:

fun <> app <> (app <x> var "foldl"
<%> label "..." (app <%> var "flip"
<%o> var "(:)"))
<Y%> var "[]"



where fun, app, and var are refinement rules for the introduction of a func-
tion, an application, and a variable respectively. The interleaving operator <%>
allows refining the arguments of foldl in any order. The feedback annotation
in reverse; has been translated to a label at the location of the annotation in
the model solution. We distinguish two types of annotations: location specific
and global annotations. Location specific annotations, such as the feedback mes-
sage annotation, target a particular expression in the model solution. To obtain
this location information, and the attached feedback, we have extended the He-
lium [13] compiler that we use for compiling the source code. The lexer, parser,
and abstract syntax have been extended to incorporate feedback annotations.
The global annotations are always placed in the header of the model solution
source file. These annotations concern the entire model solution, such as the
description annotation.

3.2 Strategy recogniser

We interpret a strategy as a context-free grammar. The language generated by a
strategy can be used to determine whether or not a sequence of rules applied by
a student follows a strategy. The sequence of rules should be a sentence in the
language, or a prefix of a sentence, since we solve exercises incrementally. A re-
cogniser for a context-free grammar recognises refinement steps that are applied
to some initial term, usually the empty program. The recogniser maintains the
current location within the strategy at which the student has applied a refine-
ment rule, to give precise feedback. Using the information about the progress of
a student, we can calculate which steps are allowed next, and check whether or
not a student deviates from a path towards a model solution.

The recogniser maintains the active labels, which contain the texts that are
used when a student asks for a hint. The interpretation of a strategy with a label
introduces the special rules ENTER and EXIT, parameterised by the label. These
rules are only used for tracing positions in strategies, and delivering feedback
texts when necessary. A label is active when we have recognised the ENTER rule
of that particular label, but not yet its corresponding EXIT rule.

Most of the feedback is derived from the grammar functions empty and firsts.
The empty function determines whether or not the language described by a
strategy contains the empty sentence. The firsts function determines the set
of rules with which a sentence in the language of a strategy can start. These
grammar functions are used to give hints to students.

3.3 Parallel top-down recogniser

The recogniser recognises prefixes, and hence also accepts intermediate (incom-
plete) solutions. It cannot use backtracking, since this would imply that it ac-
cepts steps that do not lead to a solution, and hence guides a student into the
wrong direction. It follows that the recogniser needs to choose between the vari-
ous model solutions on the basis of a single refinement step. This is problematic



when multiple model solutions share a first step, i.e., when we encounter a left-
factor in the strategies generated for the model solutions. Note that combining
model solutions almost always leads to left-factors. The introduction of a de-
claration, and a function name is very often shared between the different model
solutions. Consider the following somewhat contrived strategy:

leftFactor = label El (app <> var "' <> var "X")
<|> label 62 ((lpp < > var "g" <S> var "Y")

The two sub-strategies labelled ¢; and ¢5 share a left-factor: the refinement
rule app. We should decide which sub-strategy to follow after recognising the
application of app, but the requirement to choose based on a single refinement
step does not allow for this. The standard method of dealing with this problem
is to apply left-factoring, a grammar transformation that removes left-factors.
However, the presence of labels makes it more difficult to use left-factoring, since
moving or merging labels leads to scrambling annotations of model solutions,
making it very hard if not impossible to give the intended hints. We need to
defer committing to a particular path in the strategy.

To deal with left-factors, we fork the recogniser whenever we run into a
left-factor. If any of these recognisers fails to recognise the student solution, we
discard it. Thus we obtain a top-down variant of a parallel recogniser. Using a
top-down parallel recogniser we allow a teacher to specify model solutions that
have common components.

The strategy language has also been used to describe how to solve exercises in
many mathematical domains, such as solving quadratic equations, and differen-
tiating functions. The strategies in these domains do not contain left-factors, and
a top-down recogniser for LL(1) grammars that are not left-recursive supports
solving such exercises well.

4 The student in charge

Most model solutions are programs that an expert would write; they make use
of good programming practices. During the stepwise definition of a solution, we
guide a student towards one of these model solutions, based on the derived pro-
gramming strategy. The derived programming strategy, however, is rather strict:
it only accepts solutions that are syntactically equivalent to one of the model
solutions. We want to also accept all kinds of variants of model solutions, and
have taken a number of measures to increase the number of accepted solutions.

The first measure is the introduction of standard strategies. These standard
strategies are defined for functions from standard libraries such as the Haskell
prelude, and recognise the usage of a standard function as well as its defini-
tion. For example, the standard strategy for the flip function not only recog-
nises flip (:), but also the equivalent Az y — y: z. If a teacher wants to en-
force the usage of a standard function, and not its definition, she can use the
{-# MUSTUSE #-} annotation. However, there are also syntactic differences



that we cannot or would not like to capture in a strategy. For example, we al-
low a student to use different variable names. To ignore such differences we use
program normalisation. Our normalisation procedure uses program transforma-
tions to rewrite a program to a normal form. We use amongst others inlining,
a-renaming, §- and n-reduction, and desugaring program transformations. Our
normalisation performs (- and 7-reductions in applicative order and normalises
a program to S-normal form. The procedure we use is related to normalisation
by evaluation [5].

We have performed several experiments with ASK-ELLE and asked students
to evaluate the programming tutor [9]. We conducted the experiments in a course
on functional programming for second year bachelor students at Utrecht Univer-
sity in September 2011. The course attracted more than 200 students. Around
a hundred students used our tutor in two sessions, and 40 of them filled out a
questionnaire about the tutor. The goal of the experiment was to find out if stu-
dents appreciate our approach, such as giving feedback on intermediate answers.
We did not investigate whether or not the tutor is more effective or efficient from
a learning point of view. We hope to study this in the future.

Students were generally positive about using the tutor; their main comment
was that the tutor is of no help when performing many refinement steps in a
single step. Some students even pasted complete solutions in the tutor, which we
might consider undesirable behaviour, but which we don’t want to disallow. At
the time of the experiments, the tutor could only recognise a limited number of
steps towards a solution when a student submitted a (possibly partial) program.
The enhancements described in the remainder of this section lift this restriction.

Recognising multiple steps is difficult. In an expression such as

reverse list = reverse’ list []
where reverse’ e, o, =o,
reverse’ ( ey :xs) e, = reverse’ rs ey

a student may refine any of the five holes, in any order. The derived strategy for
this solution allows to interleave the refinement of the five holes. The number
of sentences recognised by this strategy is enormous. For example, the result of
interleaving a more restricted strategy abc that recognises the sequence of the
refinement rules a, b, and ¢, with a strategy def (that is, abc <%> def) results
in the following set:

{ abedef , abdefc, abdecf , abdcef , adefbc, adebef , adebfe, adbeef , adbefe,

adbecf , defabc, deabef , deabfc, deafbe, dabeef , dabefc, dabecf , daefbe,

daebcf , daebfc}
The number of interleavings for two sentences of lengths n and m equals (’:I::!)! ,
see [11] for more details. This number grows quickly with longer sentences. That
means that even for relatively small introductory programs the number of inter-
mediate solutions is huge. In the case that all possible steps can be interleaved, as
is not uncommon in programming exercises, the number of interleavings becomes
close to n!.




The use of standard strategies not only increases the number of accepted
solutions, but also the number of possible interleavings. Our experiment showed
that it is not an option to check, by means of multiple calls to the firsts function,
if a student submission is an element of the set of all possible intermediate
solutions.

4.1 Pruning

We constrain the search space of intermediate answers to determine whether or
not a student submission follows a strategy. First, we observe that the first steps
of the different strategies for model solutions may be the same, but they diverge
after a number of steps. For example, if a student submits

reverse = foldl (flip o) e

we know she follows the strategy of the first model solution, and we ignore the
intermediate answers of the other model solutions, i.e., reverses and reverses.
Since we use refinement rules, a student can no longer refine her program towards
those model solutions. This reduces the number of interleavings significantly. We
filter out these intermediate answers by determining whether or not the norm-
alised abstract syntax trees of the model solution and the student submission
overlap, where a hole (e ) overlaps with any tree. We use depth-first search to
find matching solutions, since it is more likely that a student first finishes a par-
ticular part of the program, such as a case alternative, than doing refinements
at arbitrary places.

4.2 A search mode for the interleave combinator

Although pruning is a step forward, it is not good enough. Even with pruning, the
search space remains too large, due to the amount of possible interleavings. To
reduce the number of interleavings, we observe that when recognising multiple
steps, the order of refinements of holes that may be interleaved is irrelevant.
Consider the example from the previous subsection. For recognition it does not
matter whether we first introduce the cons operator (:) followed by the empty
list constructor [], or vice versa. Interleaving causes many duplicates in the set of
intermediate answers. Consider the following derivation for our running example:

reverse = foldl (flip o) e
= reverse = foldl (flip (:)) e
= reverse = foldl (flip (%)) []

We can reach the same result with a different order of steps:

reverse = foldl (flip o) e
= reverse = foldl (flip o) []
= reverse = foldl (flip (:)) []



We use the irrelevance of refinement order when recognising multiple steps by
introducing a search mode for the interleave combinator. The semantics of the
original interleave combinator chooses between the left-interleave of both sub-
strategies:

z <>y =(z %> y) <> (y %> x)
(a)y <> 12) 7> y=a < (z <I>y)

The search mode for interleave changes the semantics of <%>, which we denote
by <%>°. The changed combinator chooses between left-interleaving the left
sub-strategy with the right sub-strategy, or taking the (non-interleaved) right
sub-strategy:

x <I>*y=(z%>*y) <>y
((a) <> z) %> y=a < (2 <I>*y)

In the first line, the right-hand side of the choice does not recognise steps from
x. We recognise intermediate answers containing steps from z with the left-
interleave of z with y. Because of the left-interleave, steps from z are recognised
before steps from y. This is safe because the order of refinement steps does not
matter. Using the search mode for interleave, all sequences of refinement steps
leading to the same intermediate program are replaced by a single sequence,
drastically reducing the search space. Recall the intermediate program example
for reverse at the beginning of this section. The right-hand side diagram in
Figure 2 shows that in search mode every (intermediate) program can be con-
structed by exactly one sequence. All other sequences depicted in the left-hand
side diagram do not appear anymore when using the search mode. For generating
hints we still use the normal behaviour of the interleave combinator.

Our approach is similar to partial-order reduction in model checking [2]. It
can be applied in the functional programming domain because we use refinement
rules. If we would also use rewrite rules, we would need to prove that the rewriting
system is Church-Rosser before we can use the alternative semantics of interleave.

5 Conclusions and related work

We have discussed two important issues for Ask-Elle, a programming tutor for
Haskell.

First, we have shown how teachers can add programming exercises to our
programming tutor by means of annotated model solutions. Teachers determine
which solutions are accepted and/or suggested to students, and which solutions
are not allowed. Since we do not want to give hints that do not lead to a solution,
we cannot use backtracking or problem compilation [7] in our framework, and
instead we introduce parallel top-down recognition.

Second, we have shown how we recognise almost arbitrary many student steps
on the way to a solution. A student may take refinement steps in any order, but
when recognising student steps we fix the order to reduce the search space.



(a) Normal mode (b) Search mode

Figure 2. Interleaving the sentences abc and def.

The concepts we have introduced to deal with these issues are not specific
for Haskell. We can use the approach described in this paper to develop similar
programming tutors for other functional programming languages, such as Lisp or
OCaml. We believe that we have not made assumptions that exclude imperative
programming languages, but we would have to further investigate this.

We have not yet performed experiments with teachers using our system,
except for ourselves using the system. We want to perform experiments to test
the new functionality of our tutor.

Our tutor resembles the Lisp tutor [3] in that it supports the stepwise develop-
ment of programs, and gives hints at intermediate steps. By generating strategies
from model solutions we think it is easier to add programming exercises to our
tutor. Moreover, teachers can easily fine-tune the generated feedback.

The Prolog tutoring system [15] supports a number of strategies for Prolog
programming. These strategies are matched against complete student solutions,
and feedback is given after solving the exercise. Our tutor is able to give feedback
during the stepwise construction of a program.

J-Latte [14] verifies complete student Java programs against constraints. In
the future we want to add the possibility to check constraints on an incomplete
student program to our tutor.

CTAT [1] is a framework for building intelligent tutoring systems based on
example derivations. It mainly targets mathematical domains that are taught at
high school level. The underlying technology is similar to our strategy language.
Other similarities are that feedback messages can be attached to examples, and
ambiguity is solved by maintaining multiple interpretations of student behaviour
in parallel. A difference with our approach is that a procedure for solving an
exercise is derived from an example derivation instead of a set of model solutions.
CTAT supports derivations with rewrite rules, but not with refinement rules as



used in our programming domain. We have not found programming tutors built
using CTAT.

References

1.

10.

11.

12.

13.

14.

15.

16.

V. Aleven, B. M. McLaren, and J. Sewall. Scaling up programming by demon-
stration for intelligent tutoring systems development: An open-access web site for
middle school mathematics learning. IEEE Transactions on Learning Technologies,
2:64-78, 2009.

R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Partial-
order reduction in symbolic state-space exploration. Formal Methods in System
Design, 18:97-116, 2001.

J. R. Anderson, F. G. Conrad, and A. T. Corbett. Skill acquisition and the LISP
tutor. Cognitive Science, 13:467-505, 1986.

J. R. Anderson, A. T. Corbett, K. R. Koedinger, and Ray Pelletier. Cognitive
tutors: Lessons learned. Journal of the Learning Sciences, 4(2):167-207, 1995.

U. Berger, M. Eberl, and H. Schwichtenberg. Normalization by evaluation. In
B. Moller and J. Tucker, editors, Prospects for Hardware Foundations, volume
1546 of LNCS, pages 624-624. Springer Berlin / Heidelberg, 1998.

C. Bokhove and P. Drijvers. Digital Tools for Algebra Education: Criteria and
Evaluation. Int. Journal of Comp. for Math. Learning, 15(1):45-62, April 2010.
A. T. Corbett, J. R. Anderson, and E. J. Patterson. Problem compilation and
tutoring flexibility in the LISP tutor. In Proceedings of ITS 1988: jth International
Conference on Intelligent Tutoring Systems, pages 423—429, 1988.

A. Gerdes, B. Heeren, and J. Jeuring. Constructing Strategies for Programming.
In José Cordeiro, Boris Shishkov, Alexander Verbraeck, and Markus Helfert, ed-
itors, Proceedings of the First International Conference on Computer Supported
Education, pages 65-72. INSTICC Press, March 2009.

A. Gerdes, J. Jeuring, and B. Heeren. An interactive functional programming
tutor. In Proceedings of ITICSE 2012: the 17th Annual Conference on Innovation
and Technology in Computer Science Education, 2012. To appear. Also available
as technical report Utrecht University, UU-CS-2012-002.

J. Hattie and H. Timperley. The power of feedback. Review of Educational Re-
search, 77(1):81-112, 2007.

B. Heeren and J. Jeuring. Interleaving strategies. In Proceedings of MKM 2011: the
10th International Conference on Mathematical Knowledge Management, volume
6824 of LNAI, pages 196-211. Springer, 2011.

B. Heeren, J. Jeuring, and A. Gerdes. Specifying rewrite strategies for interactive
exercises. Mathematics in Computer Science, 3(3):349-370, 2010.

B. Heeren, D. Leijen, and A. van IJzendoorn. Helium, for learning Haskell. In
Proceedings of Haskell 2008: the ACM SIGPLAN workshop on Haskell, pages 62 —
71. ACM, 2003.

Jay Holland, Tanja Mitrovic, and Brent Martin. J-Latte: a constraint-based tutor
for Java. In Proceedings of ICCE 2009: the 17th International on Conference
Computers in Education, pages 142-146, 2009.

J. Hong. Guided programming and automated error analysis in an intelligent
Prolog tutor. Int. Journal on Human-Computer Studies, 61(4):505-534, 2004.

J. Jeuring, A. Gerdes, and B. Heeren. A programming tutor for Haskell. In Proceed-
ings of CEFP 2011: Lecture Notes of the Central European School on Functional
Programming, LNCS. Springer, 2012. To appear.



17.

18.

19.

20.

21.

22.

M. Kolling, B. Quig, A. Patterson, and J. Rosenberg. The BlueJ system and its
pedagogy. Journal of Computer Science Education, Special issue on Learning and
Teaching Object Technology, 13(4), 2003.

A. N. Kumar. The effect of using problem-solving software tutors on the self-
confidence of female students. In Proceedings of SIGCSE 2008: the 39th SIGCSE
technical symposium on Computer science education, pages 523—-527. ACM, 2008.
N. Lépez, M. Nuifiez, I. Rodriguez, and F. Rubio. WHAT: Web-based Haskell
adaptive tutor. In Proceedings of AIMSA 2002: the 10th Int. Conf. on Artificial
Intelligence: Methodology, Systems, and Applications, pages 71-80. Springer, 2002.
S. Lowes. Online teaching and classroom change: The impact of virtual high school
on its teachers and their schools. Technical report, Columbia University, Institute
for Learning Technologies, 2007.

M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B. Kolik-
ant, C. Laxer, L. Thomas, I. Utting, and T. Wilusz. A multi-national, multi-
institutional study of assessment of programming skills of first-year CS students.
In Working group reports from ITiCSE on Innovation and technology in computer
science education, ITICSE-WGR, 2001, pages 125-180. ACM, 2001.

Valerie J. Shute. Focus on formative feedback. Review of Educational Research,
78(1):153-189, 2008.



