ASK-ELLE: A Haskell tutor
— Demonstration —

Johan Jeuring
Alex Gerdes

Bastiaan Heeren

Technical Report UU-CS-2012-010

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089

3508 TB Utrecht
The Netherlands

ASK-ELLE: A Haskell tutor
— Demonstration —

Johan]euringl/z, Alex Gerdes!, and Bastiaan Heeren!

School of Computer Science, Open Universiteit Nederland
P.O.Box 2960, 6401 DL Heerlen, The Netherlands
{jje, age, bhr}t@ou.nl
2 Department of Information and Computing Sciences, Universiteit Utrecht

Abstract. In this demonstration we will introduce ASK-ELLE, a Haskell
tutor. ASK-ELLE supports the incremental development of Haskell pro-
grams. It can give hints on how to proceed with solving a programming
exercise, and feedback on incomplete student programs. We will show
Ask-ELLE in action, and discuss how a teacher can configure its behaviour.

1 Introduction

ASK—ELLEEI is a programming tutor for the Haskell [5] programming language,
targeting bachelor students at the university level starting to learn Haskell. Us-
ing ASK-ELLE, a student can:

develop a program incrementally,

receive feedback about whether or not she is on the right track,
ask for a hint when she is stuck,

can see how a complete program is stepwise constructed.

ASK-ELLE is an example of an intelligent tutoring system [6] for the domain of
functional programming.

In this demonstration we will show ASK-ELLE in action, by means of some
interactions of a hypothetical student with the tutor. Furthermore, we will show
how a teacher can configure the behaviour of ASK-ELLE. This demonstration
accompanies our paper introducing the technologies we use to offer flexibility
to teachers and students in our tutor [1)2]. Jeuring et al. [4] give more back-
ground information about ASK-ELLE.

2 ASK-ELLE in action

We will start our demonstration of ASK-ELLE with showing some interactions
of a hypothetical student with the functional programming tutor. A screenshot
of ASK-ELLE is shown in Figure 1} It sets small functional programming tasks,

Uhttp://ideas.cs.uu.nl/ProgTutor/

http://ideas.cs.uu.nl/ProgTutor/

8006 ASK-Elle "

Ask-Elle =

A Help

All Exercises <« Description
(==3 programming Write @ function that reverses a list: myreverse :: [a] -> [a]. For example: You can follow one of the following strategies:

ST list
= . Data. List> myreverse "A man, a plan, a canal, panamal"
3 creation “lamanap ,lanac a ,nalp a ,nam A"
=] dupli Hint 1 2
=] repli Data.List> myreverse (1,2,3,4]
B3 functions 4:3.2,1]
=] compress "
Editony Hint 2 ES

Introduce a helper function that uses an accumulating paramete —
Introduce the constructor pattern [].

reverse = ?
253 manipulation gt Refine the current term to
reverse' acc ? = ?

=] dropevery
myreverse =
?

=] myreverse I \ where
reverse' acc [] =

=] removeat
=] rotate
=] split
=3 projection
=] butlast
=] elementat
=] mylast
= slice
=2 properties
=] mylength
=] palindrome

Fig.1. The web-based functional programming tutor

and gives feedback in interactions with the student. We assume that the student
has attended lectures on how to write simple functional programs on lists.

At the start of a tutoring session the tutor gives a problem description. Here
the student has to write a program to construct a list containing all integers

within a given range.
Write a function that creates a list with all integers between
a given range:
range :: Int — Int — [Int]

For example:

>range 4 9
[4,5,6,7,8,9]

and displays the name of the function to be defined, along with its parameters:

range xy = e

The task of a student is to refine the holes, denoted by e, of the program. After
each refinement, a student can ask the tutor whether or not the refinement is
bringing him or her closer to a correct solution. If a student doesn’t know how
to proceed, she can ask the tutor for a hint. A student can also introduce new
declarations, function bindings, and alternatives.

Suppose the student has no idea where to start and asks the tutor for help.
The tutor offers several ways to help. For example, it can list all possible ways
to proceed solving an exercise. In this case, the tutor would respond with:

You can proceed in several ways:

- Implement range using the unfoldr function.

- Use the enumeration function from the prelud{].
- Use the prelude functions take and iterate.

We assume a student has some means to obtain information about functions
and concepts that are mentioned in the feedback given by the tutor. This infor-
mation might be obtained via lectures, an assistant, lecture notes, or even via
the tutor at some later stage. The tutor can make a choice between the different
possibilities, so if the student doesn’t want to choose, and just wants a single
hint, she gets:

Implement range using the unfoldr function.

Here we assume that the teacher has set up the tutor to prefer the solution that
uses unfoldr, defined by:

unfoldr :: (b — Maybe (a,b)) — b — [a]
unfoldr f b = case f b of Just (a,b') — a:unfoldr f b/
Nothing — |[]

The higher-order function unfoldr builds a list from a seed value b. The argu-
ment f is a producer function that takes the seed element and returns Nothing if
it is done producing the list, or Just (a,b), in which case a is prepended to the
output list and V' is used as the seed value in the recursive call.

The student can ask for more detailed information at this point, and the
tutor responds with increasing detail:

Define function range in terms of unfoldr, which takes two
arguments: a seed value, and a function that produces a new
value.

with the final bottom-out hint:
Define: range x y = unfoldr e e

At this point, the student can refine the function at two positions. We do not im-
pose an order on the sequence of refinements. Suppose that the student chooses
to first implement the producer function:

range x y = unfoldr fe wherefi|e =

Note that the student has started to define the producer function in a where
clause. She continues with the introduction of the stop criterion:

2 The prelude is the standard library for Haskell containing many useful functions.

range x y = unfoldr f ¢ wherefi|i==y+1=e
There are several ways in Haskell to implement a condition. Here the student
has chosen to define the function f with a so-called guarded expression; the
predicate after the vertical bar acts as a guard. The student continues with:
range x y = unfoldr f e wherefi|i==y+1=Just e
The tutor responds with:

Wrong solution: range 4 6 provides a counterexample.

The partial definition of f does not match any of the correct solutions, and by
means of random testing the tutor can find an example where the result of the
student program differs from a model solution. Correcting the error, the student
enters:

range x y = unfoldr f where fi|i==y+ 1= Nothing
which is accepted by the tutor. If the student now asks for a hint, the tutor
responds with:

Introduce a guarded expression that gives the output value and
the value for the next iteration.

She continues with

range x y = unfoldr f ¢ where f i |i==y+ 1= Nothing
| otherwise = Just o

which is accepted, and then

range x y = unfoldr f ¢ where fi|i==y+ 1= Nothing
| otherwise = Just (n,i+1)

which gives:
Error: undefined variable n

This is a syntax-error message generated by the Helium [3] compiler, which we
use in our tutor. The student continues with:

range x y = unfoldr f x where f i |i==y+ 1= Nothing
| otherwise = Just (i,i+ 1)

which completes the exercise.
A student can develop a program in any order, as long as all variables are
bound. For example, a student can write

rangexy =e wherefi|e =

and then proceed with defining f. This way, bottom-up developing a program
is supported to some extent.

These interactions show that our tutor can give hints about which step to
take next, in various levels of detail, list all possible ways in which to proceed,
point out errors, and pinpoint where the error appears to be, and show a com-
plete worked-out example.

3 Configuring the behaviour of ASK-ELLE

In this part of the demonstration we show how a teacher adds a programming
exercise to the tutor by specifying model solutions for the exercise, and how a
teacher adapts the feedback given by the tutor.

3.1 Adding an exercise

The interactions of the tutor are based on model solutions to programming prob-
lems. A model solution is a program that an expert writes, using good pro-
gramming practices. We have specified three model solutions for range. The
first model solution uses the enumeration notation from Haskell’s prelude:

range x y = [x..y]

The second model solution uses the prelude functions fake, which given a num-
ber n and a list xs returns the first n elements of xs, and iterate, which takes a
function and a start value, and returns an infinite list in which the next element
is calculated by applying the function to the previous element:

range x y = take (y — x + 1) (iterate (+1) x)
The last model solution uses the higher-order function unfoldr:

range x y = unfoldr f x where f i |i==y+ 1 = Nothing
| otherwise = Just (i,i+ 1)

The tutor uses these model solutions to generate feedback. It recognises many
variants of a model solution. For example, the following solution:

range x y = let f = Aa — if a == y + 1 then Nothing else Just (a,a+1)
g =Af x — case f x of Just (r,b) - r:gfb
Nothing — []
ingfx

is recognised from the third model solution. To achieve this, we not only recog-
nise the usage of a prelude function, such as unfoldr, but also its definition.
Furthermore, we apply a number of program transformations to transform a
program to a normal form.

Using a class a teacher groups together exercises, for example for practic-
ing list problems, collecting exercises of the same difficulty, or exercises from a
particular textbook.

3.2 Adapting feedback

A teacher adapts the feedback given to a student by annotating model solutions.
The description of the entire exercise is given together with the model solutions

in a configuration file for the exercise. Using the following construction we add
a description to a model solution:

{—# DESC Implement range using the unfoldr... #—}

The first hint in Section 2| gives the descriptions for the three model solutions
for the range exercise.
A teacher allows an alternative implementation for a prelude function by:

{—# ALT iterate f = unfoldr (Ax — Just (x,f x)) #—}

Using this annotation we not only recognise the prelude definition (iterate f x =
x :iterate f (f x)), but also the alternative implementation given here. Alterna-
tives give the teacher partial control over which program variants are allowed.

A teacher may want to enforce a particular implementation method, for
example, use higher-order functions and forbid their explicit recursive defini-
tions, for which we use the MUSTUSE construction:

range x y = {—# MUSTUSE #—} unfoldr f x

Specific feedback messages can be attached to particular locations in the source
code. For example:

range x y = {—# FEEDBACK Note... #—} take (y —x + 1) $ iterate (+1) x

Thus we give a detailed description of the take function. These feedback mes-
sages are organised in a hierarchy based on the abstract syntax tree of the model
solution. This enables the teacher to configure the tutor to give feedback mes-
sages with an increasing level of detail.

References

1. A. Gerdes, B. Heeren, and J. Jeuring. Teachers and students in charge — using an-
notated model solutions in a functional programming tutor. In Proceedings of ECTEL
2012, 2012.

2. A. Gerdes, B. Heeren, and J. Jeuring. Teachers and students in charge — using anno-
tated model solutions in a functional programming tutor. Technical Report UU-CS-
2012-007, Utrecht University, Department of Computer Science, 2012.

3. B. Heeren, D. Leijen, and A. van IJzendoorn. Helium, for learning Haskell. In Haskell
2003: Proceedings of the 2003 ACM SIGPLAN workshop on Haskell, pages 62 —71. ACM,
2003.

4. J.Jeuring, A. Gerdes, and B. Heeren. A programming tutor for Haskell. In Proceedings
of CEFP 2011: Lecture Notes of the Central European School on Functional Programming,
LNCS. Springer, 2012. To appear.

5. S.Peyton Jones et al. Haskell 98, Language and Libraries. The Revised Report. Cambridge
University Press, 2003. A special issue of the Journal of Functional Programming, see
alsohttp://www.haskell.org/.

6. K. VanLehn. The behavior of tutoring systems. International Journal on Artificial Intel-
ligence in Education, 16(3):227-265, 2006.

http://www.haskell.org/

	Introduction
	Ask-Elle in action
	Configuring the behaviour of Ask-Elle
	Adding an exercise
	Adapting feedback

