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Abstract—The reverse engineering of test-oracles is a noto-
riously hard problem. A popular approach is to use a tool
like Daikon to dynamically infer pre- and post-conditions
from execution traces (logs). Unfortunately, the underlying
expressiveness of Daikon is very limited, so it cannot infer
complex specifications. In this paper, we use sub-cases to
circumvent the restriction. For a given target method, this
paper proposes to first divide it into sub-cases. A sub-case
may represent a complex subset of the method’s executions,
but without necessarily requiring a complex formula to express
it. E.g. we use visits (or visit-patterns, if we want to be more
general) over the method’s control flow nodes to identify sub-
cases. For each sub-case, pre- and post-conditions are inferred
with Daikon. Daikon’s limitations still apply, but more useful
oracles can be inferred, as we shall illustrate by a case study.

Keywords-Oracle Inference, Specification Inference, Specifi-
cation Mining

I. Introduction

There has been a lot of research on test-case generation
(see, e.g., [1], [2], [3]). The focus of these works is on
the generation of test-inputs. But for every test-case we
also need to establish so-called ’oracles’. An oracle is a
predicate to judge whether the execution of a test-case meets
our expectations. For example, it can verify that the value
returned by the tested program equals some expected value,
or it can call a boolean method that essentially represents the
program’s specification. The latter approach is particularly
attractive, because a single specification can be shared by
multiple test-cases, but unfortunately in practice people
rarely write such specifications.

To some extent oracles can be reverse engineered from a
program, but only if the program can be reasonably assumed
to be correct. The resulting oracles are therefore not helpful
for testing the program. Instead, they are used for future
regression tests. Oracles can be inferred both statically or
dynamically [4], [5], [6], each with its own strengths and
weaknesses. Our approach is largely dynamic. Dynamic
inference is usually done by analyzing data, e.g. logs, gener-
ated at run time. Many modern applications already employ
logging. E.g. web servers produce access logs, embedded
software produce operational logs, database servers produce
transaction logs, and operating systems produce system logs
(usually to log device changes and operations as well as
security related events).

Tools like Daikon [4] are used to infer oracles from
logs. If the events in the logs can be treated or encoded as

method calls, and translated to Daikon’s format, Daikon can
infer class invariants, pre-conditions, and post-conditions.
However, Daikon’s strength is limited. First of all, it has a
restricted vocabulary (the kinds of basic terms it recognizes).
Second, even if we stay within that vocabulary, a post-
condition like this.x>0 ∨ (q1 ∧ q2) cannot be inferred. In
general, Daikon cannot infer disjunctive predicates [7], [8],
because to do so requires all possible disjunctions to be in-
spected and the number of possibilities grows exponentially.
One way to circumvent this problem is to use splitters.

A splitter is a predicate used to partition log entries.
Let m be the method in question. In the above example
this.x>0 can be used as the splitter: Daikon then puts all
log entries that correspond to m’s calls that violate this.x>0
in a set L1 and the others in L2. Any oracle q′ inferred
from L1 implies this.x>0 ∨ q′ as an oracle for m. However,
this approach requires the split predicate this.x>0 to be
known upfront, either by figuring it out manually or by
calculating it statically [8]. Static calculation boils down to
either calculating the weakest pre-condition or the strongest
post-condition with respect to some easier to formulate
scenarios, e.g. scenarios that visit only certain branches in
m. In practice this may be difficult to do, because of loops,
recursion, and calls to modules of which the source code is
not available.

In our approach, we use what we call ’sub-cases’ to
specify scenarios within m. A sub-case is very similar to
a splitter, but differs from traditional splitters in that it is
a predicate over log segments, rather than a predicate over
log entries. In particular, we want to express visit patterns
through log-points within m. For example, we can express
the scenario where the execution of m passes a certain
branch, or express the scenario where m calls open f ile and
close f ile alternately. Simple visit patterns are often able to
express meaningful scenarios. In contrast, the corresponding
traditional splitter, which is either the weakest pre-condition
or the strongest post-condition of the scenario, can be a
complex predicate. Or worse, cannot be calculated as pointed
out above. Sub-cases are thus suitable for a purely dynamic
approach. The price we pay is that deeper logging is required
to give clues about what happens inside m, so that sub-cases
can be identified. But the deep logging can be kept light, e.g.
state serialization is not necessary.

We have implemented our approach to infer sub-case
oracles for ActionScript programs. ActionScript is a popular



object oriented language to write browser-based programs.
In the current implementation we limit ourselves to sub-
cases expressed in terms of visits to nodes in the target
method’s control flow graph. As a case study, we applied
the approach to infer oracles for a number of methods from
a retro-game called Asteroid. Game testing is notoriously
difficult. What appears to be a simple game can turn out to
involve quite complex positions calculation. It may contain
many scenarios that are hard to reconstruct programmati-
cally, so that the only feasible way to test the game is by
actually playing it. A further consequence of this is that the
role of oracle is often taken by the tester himself, who has to
visually judge whether the game behaves correctly. In such
a setup, oracle inference is even more useful.

A. Contribution

The most important contributions are: (1) the idea of using
visit patterns as a simple yet powerful way to strengthen
Daikon-based oracles inference, (2) an implementation of
the approach, and (3) a theory that provides a general,
formal underpinning of the idea, —useful if one wants to
re-implement the idea in a different setting.

B. Sections overview

To give a general idea of how our approach is used,
Section III briefly explains the architecture of our implemen-
tation. Section IV provides the theory so that we can talk
about relevant concepts more precisely. It defines precisely
what vehavior ’case’ and ’sub-case’ oracles are. Section V
briefly discusses how to encode log entries in the Daikon
format. Section VI discusses the use of control flow nodes
to express sub-cases of methods. Section VII discusses our
case study. Section VIII considers some related work and
Section IX concludes.

II. Motivating Example

To first illustrate our idea, consider the following simple
method Update, of some class C:

1 Update(){
2 x++ ;
3 if (this.x <= 0 )
4 this.x=0 ;
5 if (this.x == 11)
6 this.x=10 ;
7 }

Let x stand for this.x. The intended pre-condition is x≤10,
and the post-condition is:

(old(x)= − 1 ∧ x=0)
∨ (old(x)=10 ∧ x=10)
∨ (0 ≤ old(x) < 10 ∧ x=old(x)+1)

Although each atom above is in Daikon’s vocabulary, the
whole specification cannot be inferred as Daikon does not
infer disjunctions. If it was to do so, it would have to check

various candidate disjunctions. The number of possibilities
is exponential.

Our idea is to split Update into ’sub-cases’, and derive
oracles of the sub-cases instead. Let us define sub-cases
Update4 and Update6 to stand for the sets of Update’s
executions that visit the branch at line 4 respectively 6; and
the sub-case Update3,5,7 represents executions that visit lines
3,5,7, and skipping both then-branches. These sub-cases
fully partition the executions of Update. Each disjuncts in
the above specification in fact corresponds to one of these
sub-cases. If we treat the sub-cases as programs, these are
their intended specifications:

sub-case pre-cond post-cond
Update4 x = −1 x = 0
Update6 x = 10 x = 10
Update3,5,7 0 ≤ x < 10 x = old(x) + 1

These sub-cases specifications, including the pre-
conditions, can all be inferred with Daikon. Note that using
traditional splitters we will have to calculate e.g. these
pre-conditions ourselves as we need them to be used as
splitters. If for example the method above calls foo() at the
beginning, whose source code is not available, static analysis
to calculate them will not work.

For the above idea to work, the logs do need to contain
sufficient information: we must be able to indentify which
log segments belong to which sub-cases. We do this by
logging control flow nodes. In general any form of deep
logging will do, which then determines what kind of sub-
cases we can express.

In a more complex situation, the intended specifications
of some sub-cases can be disjunctive, which are again
problematical. In theory we can still split a sub-case E into
smaller ones, as long as they are expressible in term of the
information exposed by the logs. But even if we do not do
so, the sub-case itself is a specification, as it specifies a
subset of possible executions. For pre or post-condition of
the form p ∧ (q1 ∨ q2...) we will lose qk’s, but may still be
able to infer p. Although weaker, in conjunction with E we
may still get a useful oracle. In any case, it is still better
than getting no oracle at all, which was the case if we just
directly use Daikon.

III. Architecture

Figure 1 shows the global architecture of our implementa-
tion. Given a target application App, we specify which meth-
ods are to be logged. Using our ABCI bytecode instrumenter,
the neccessary logging code is injected. The entry and exit
points of those methods will be logged, and also locations
that correspond to the start of the nodes in their control flow
graphs. At the entry and exit points, the parameters of the
method, the state of the receiver object, and the return value
are serialized and written to the log. To keep the overhead
reasonable, nodes do not perform any object serialization.



The logger is an instance of the class FittestLogger,
which is then attached to App′. FittestLogger has a
number of nice features. It has a powerful way to specify
how instances of classes of interest are to be serialized. It
produces compact but deeply structured XML-like logs; the
logs can also be collected in a distributed fashion by a remote
server.

Then we use another one of our tools, haslog, to convert
FITTEST logs to Daikon logs, and, more importantly, to re-
group the logs into sub-cases. Then we use Daikon to to
infer oracles for the sub-cases.

ABCI
(instrumenter)

App
(ActionScript)

+ injection
specification

App’

FittestLogger logs

haslog
(transformer)

Daikon Oracles

Figure 1. The architecture of our sub-cases oracles inference system.

ABCI, FittestLogger, and haslog are products of an
ongoing project and part of the FITTEST testing framework
(see [9] for more information).

IV. Theory

This section formally defines the concepts of ’behavior
cases’, ’sub-cases’, and their oracles. Importantly, these will
be fully defined in terms of logs, so that they can be used
in pure log-based inference. Although in our case study
we restrict ourselves to methods as ’behavior cases’, and
their visits to the nodes in their control flow graphs as ’sub
cases’, the concepts are more general than that. Instantiations
different from ours are thus possible. We restrict ourselves
to Hoare triple-like oracles, because they can be mapped
directly to Daikon inference.

Concretely, a log ` of a program P is a sequence of entries,
written in some format. Each entry provides information
about some event of interest that occurs during an execution
of P. Abstractly, we model ` as a sequence of events. Each
event e in ` is assumed to be described like this:

e = 〈η(x), s〉 (1)

where η is the type/name of the event, s represents the
relevant part of P’s state when the event occurs, and x is the
event’s parameter. For simplicity events are assumed to have
at most one parameter. Our implementation can deal with
multiple parameters. The x and s components are optional,
and the information they contain depends on the event type.

For example if e represents a user clicking on a GUI
button, then s may represent the state of the button, and x
specifies which mouse button was clicked. If e represents
the entrance to a method m, s may represent the state of m’s
receiver object, and x is m’s parameter.

For now we assume P to contain no recursion; this is
handled later in Section VI.

A behavior case characterizes log segments whose start
and end are signalized by certain events:

Definition 1: A behavior case is a pair C of event-types
(ηE , ηX). An instance of C is a log segment that starts with
ηE and ends with ηX . All events between them should be of
other types. �

E.g. a behavior case can be used to identify log segments
generated by a method m inside P if we log m’s entry and
exit points; these events then identify those segments. Note
however that the concept itself is very general. Any set
of segments can be turned to a behavior case by uniquely
marking their start and end with special events.

The definition implies that instances of the same case
cannot overlap. Instances of different cases can in theory
overlap.

Some notations. E denotes the universe of all possible
events. Logs and log segments are thus members of E∗.
N denotes the universe of event-types. For ` ∈ E∗, η(`)
denotes the corresponding sequence of event-types. If σ =

[u0, u1, ..., uk−2, uk−1], with k≥2, mid(σ) denotes the middle
part [u1, ..., uk−2]. �

Oracles are predicates over E∗, with the following concept
of validity:

Definition 2: An oracle o is valid on P if it is valid on
any log generated by P. �

Definition 3: A case oracle of a behavior case C =

(ηE , ηX) is an expression of the form:

p⇐ s→ ηE(x), ηX(y)→ s′ ⇒ q

where x, y, s, s′ are free variables, and p, q are predicates.
Such an oracle is valid on a log ` if it is valid on
all all instances of C (in `). It is valid on an instance:
[(ηE(x), s), ..., (ηX(y), s′)] if p holds on (x, s) and q holds on
(y, s′). �
If we want to be able to relates the exit and entry states in
q, we can extend q to be a predicate over (x, s, y, s′).

Definition 4: The p and q above are called respectively
past- and post-conditions (we will explain why we avoid the
term pre-condition). �

For example, suppose we have a behavior case specified
by events of types E and X as its start and respectively end.
The following oracle says that the behavior increases the
value of its state s with d:

true⇐ s→ E(d), X()→ s′ ⇒ s′=s+d

Importantly, case oracles can be straightforwardly inferred
using Daikon, provided p and q are made of conjunctions of
atoms within Daikon’s vocabulary. The encoding to Daikon
logs is explained in Section V.

The roles of p and q in case oracles are analogous to
pre- and post-conditions in Hoare triple, but we caution the
reader of the following subtle difference. A Hoare triple e.g.



{P} S {Q} means that if S is executed on P, then it will end
in Q. So, the pre-condition has the role of an assumption.
Our inference approach uses Daikon as the back-end. Daikon
only infers based on the logs it sees; it does not speculate
on logs it does not see. Consequently, it cannot actually
infer assumptive pre-conditions. If the above specification is
inferred by Daikon, it would instead mean that whenever S
is executed, P would hold at the start, and Q at the end. So,
both P and Q take the role of conclusions, one past-time
and the other future-time. For this reason we avoid re-using
Hoare triple notation, and we call p past-condition rather
than pre-condition.

Definition 5: A sub-case of a behavior case C is a pair
E = (C, φ) where φ is a predicate over E∗. Instances of E
are instances σ of C such that mid(σ) satisfies φ. �

Notice that a sub-case essentially specifies a subset of a
case. We can split a case into a set of sub-cases. Rather than
trying to infer case oracles we can thus, as hinted in Section
I, try to infer sub-case oracles instead.

Definition 6: A sub-case oracle of a sub-case E = (C, φ)
is an expression of this form (which looks almost like a case
oracle):

p⇐ s→ ηE(x), φ , ηX(y)→ s′ ⇒ q

It is valid on a log ` if it is valid on all instances of E. It is
valid on an instance σ if the corresponding case oracle (the
same expression as above, but without φ) is valid on σ. �

Some notations. If g:U→V and f : set(V) → set(W),
the lifted composition is: ( f ◦ g)(U) = f {g(u) | u∈U}. �

A proto-inferencer is a function F that takes a set of logs
as input and returns a set of oracles.

Definition 7: An inference procedure is a proto-inferencer
F such that for all o ∈ F(L) and for all `∈L, o is a valid
oracle on `. �

Definition 8: A filtered inference procedure is denoted by
F| f , where f : E∗→E∗ is called a ’filter’, and F is proto-
inferencer. They have the following property: for all o ∈
(F ◦ f )(L), o is a valid oracle on f (`). �

A (filtered) inference procedure is an inference procedure
for a behavior case C, if all oracles it produces are case
oracles of C. Inference procedures for a sub-case E are
defined analogously.

Theorem 1: Any inference procedure F for a behavior
case C can be turned to a filtered inference procedure for a
sub-case E of C. �

Proof: Let L be a set of logs, and L′ = { f (`)|` ∈ L}, where
f (`) will filter ` by throwing away all instances of C which
are not instances of E. Because F is an inference procedure
for C, then for every o ∈ F(L′) and every `′ ∈ L′, o is a
valid oracle of C on `′. Notice that F(L′) = (F ◦ f )(L). So,
F| f is a filtered inference procedure for C. However, by the
definition of f we have: for all ` ∈ L, all instances of C in

f (`) are actually instances of E. So, any oracle o inferred
by F| f is also an oracle of E. �

We have said that case oracles can be inferred with
Daikon. By the theorem above, sub-case oracles can also be
inferred with Daikon. However, a filter f is required to do
this (see the proof) to identify log segments that match the
given sub-case E. This filter is basically an implementation
of the φ part of E. Notice that φ is a predicate over E∗. It
can in theory be temporal, and checking it can be costly. For
effeciency, we can choose to limit φ, e.g. by constraining it
to be a regular expression over event types:

Definition 9: Let C be a behavior case and r a regular
expression over the alphabet N . The pair (C, r) is a regular
behavior sub-case of E. It defines the sub-case (C, φ) where
φ(σ) is true if η(σ) is accepted by r, and else false. �

V. Daikon Encoding

This section briefly explains how to use Daikon to infer
case oracles. By Theorem 1, it can then be used to infer
sub-case oracles. The proof describes how this can be done.

Out of the box, Daikon is a tool to infer state predicates
from ’execution traces’ [4]. Traces are synonymous to logs,
and ’events’ are called ’program points’ in Daikon. Various
categories of program points are available, including the
categories ENTER and EXIT to represent the entrance and
exit of a method. Suppose m is a method of class C, whose
entry and exit are logged in the Daikon format. The logging
will generate program points of types m(..):::ENTER and
m(..):::EXIT. Below is an example of a Daikon log (less
interesting details are removed) showing two program points
(events) representing a call o.m(3). The first one corresponds
to the entrance to m, the second one to its exit:

m(..):::ENTER
arg1
3
this.x
1

m(..):::EXIT
arg1
3
this.x
4

Every program point may contain information about ”vari-
ables”, which can be used to represent either parameters (e.g.
arg1 above) of the corresponding event or state information,
such as this.x above.

So, the above log says that on entrance of the call to
o.m(3) the value of o.x is 1, and on exit it becomes 4.

From a set of logs consisting of events of the above types,
Daikon can infer the past- and post-conditions for m.

If C = (ηE , ηX) is a behavior case, an inference procedure
for C can be built as follows. Let L be the input set of
logs. We translate L to Daikon logs. Only instances of C are
needed, the rest can be thrown away (but we do not have to).
In particular, events of type ηE should be mapped to method



entries η(..):::ENTER and those of type ηX to η(..)::EXIT. The
resulting past/post-conditions for η(..) are case oracles for C.

In practice the translation to Daikon logs will require
more work. For example, each program point must have the
corresponding declaration. We have to declare its name and
type, and the ”variables” it constitute. Daikon also expect
values of variables to be typed (int, bool, etc). So, if the used
logger does not log this information, then the translator must
try to guess it. The description of the Daikon syntax can be
found in its documentation [10]. Daikon format is however
rather verbose. Our implementation (Section III) produces
logs in the so-called FITTEST format [9], our tool haslog
(Figure 1) can translate them to Daikon.

VI. Specifying Sub-cases ofMethods

Let P be an application, of which we want to infer
the oracles of some methods in P. To do so, each target
method m needs to be instrumented so that the corresponding
behavior case (mE ,mX) is defined, where mE is the event
representing the entrance of m, and mX represents its exit.
To allow sub-cases to be expressed, and thus oracles for
them to be inferred, we also need to instrumentation within
m’s body.

Let Gm be m’s control flow graph (CFG). Every node i
in Gm is represented by a unique number and represents
a ’block’ of consecutive instructions in m’s body that does
not contain any jump or branching instruction except the last
instruction in the block, and furthermore no instruction in
the block is targeted by a jump or a branching instruction
except for the the block’s first instruction.

Notation. If r is a regular expression, we write ^r to
mean any∗ r any∗. So, it matches a sequence σ that contains
a segment that matches r. �

Our implementation instruments every i ∈ Gm so that
when it is visited it produces an event of type mi. So, the
regular sub-case:

((mE ,mX),^m3)

represents thus the executions of m that visit the node 3. Let
τ be a finite sequence event types induced by the nodes in
Gm. The regular sub-case:

((mE ,mX),^τ)

represents executions of m that visit all the nodes in τ (and
in the same order). If |τ| = 2, it corresponds to edge-visit. If
|τ| = 3, it corresponds to edge-pair-visit.

Definition 1 however requires that instances of the case
C = (mE ,mX) should not overlap. This property is broken
if m is recursive, which will result in nested instances
of C. Our implementation pre-process the logs to first
remove the nesting. For example consider the log below,
that corresponds to the call m(1) that in turn recursively
calls m(0):

 〈mE(1), 10〉, 〈m0(), ()〉,
〈mE(0), 10〉, 〈m0(), ()〉, 〈m1(), ()〉, 〈mX(0), 0〉,

〈m2(), ()〉, 〈mX(1), 0〉


Our pre-processing will rewrite this to:[

〈mE(1), 10〉, 〈m0(), ()〉, 〈m2(), ()〉, 〈mX(1), 0〉
〈mE(0), 10〉, 〈m0(), ()〉, 〈m1(), ()〉, 〈mX(0), 0〉,

]
Notice that the two instances of C are now no longer nested.
Because a case oracle is a predicate over its instances (and
not over sequences of these instances) the order of the
instances in the resulting log above does not actually matter.

The pre-processing algorithm is shown below; given an
input log `, regroup([],m, `) will produce a regrouped log
`′.

function regroup(stack,m, `)
if empty(`) then return []
stack.push(`0)
if type`0 = mX then

z← stack.popUntil(mE)
return z ++ regroup(stack,m, tail(`))

else return regroup(stack,m, tail(`))
end if

end function
In some situations we may prefer to express subcases in

terms of semantically more meaningful events than just node
visits. For example, suppose the method m uses a file f .
Assume first that we log m’s calls to open( f ) and close( f )
so that they produce events of type fO and respectively fC .
The regular sub-case:

((mE ,mX), ( fO fC)∗)

can be used to represent the executions of m that always
closes f after opening it. Where as:

((mE ,mX), ( fO fC)∗ f +
O )

represents the executions of m that fails to close an open f
before it exits.

However notice that subcases like these can be encoded as
node visits by mapping f0 and fC to the corresponding nodes
in m where they occur. The target program can be scanned
to construct such a mapping; then our inference approach
can be reused.

VII. Case Study

Our case study is a Flash game called Asteroid, written
in ActionScript. Asteroid is an action 2D game in which a
player controls a space ship to destroy asteroids. It consists
of 15 classes, with in total 1780 lines of source code. The
most complex class is Game, where the main part of the game
logic is implemented. It is 702 lines, and has 18 methods.
Testing games is notoriously difficult. They often contain



components that are hard to unit-test because they must be
executed in the context of the used game framework, so that
the only way to test their game logic is by playing them.
This is also the case with our case study.

We set up an experiment to infer oracles for two methods:
Update() of the class Bullet and Update() of the class
Game. The first implements bullets’ position calculation. The
second implements the game’s main logic. Both methods
have no parameters, but their target objects have multiple
fields. Figure 2 shows their statistics.

#lines #nodes McCabe
Bullet’s Update 19 9 3
Game’s Update 145 79 49

Figure 2. #nodes is the number of nodes the method’s CFG has, and
McCabe is its cyclomatic complexity [11].

After instrumenting the two methods we play the game a
number of times to produce 265 MB logs. The executions
produce over 18 thousands call to Game’s Update and over
45 thousands call to Bullet’s Update. Despite the massive
amount, they do not fully cover all ’scenarios’, as some
scenarios are simply very hard to expose in a manual game
play (e.g. hitting the ESC button at the same moment as the
last ship is destroyed). In any case, 100% edge coverage on
both methods is achieved.

For the experiment the program is assumed to be correct.
No specification for it exists unfortunately; so we manually
checked the inferred oracles to see if they are correct or false
positives.

A. Bullet’s Update

Figure 3 shows the method that calculates a bullet’s new
position.

1 c l a s s B u l l e t ex tends GameSpr i te {

2 v a r speed : P o i n t ;
3 v a r l i f e : Number ;
4 . . .
5 p u b l i c f u n c t i o n Update ( ) : void {

6 x += speed . x ;
7 y += speed . y ;
8 i f ( x+wid th <= 0 ) x = W−wid th ;
9 e l s e i f ( x >= W) x = 0 ;

10 i f ( y+ h e i g h t <= 0) y = H−h e i g t h ;
11 e l s e i f ( y >= H) y = 0 ;
12 super . Update ( ) ;
13 } }

Figure 3.

The method moves the bullet further by its speed vector,
but will wrap the bullet around the screen if it would oth-
erwise pass beyond the screen borders. Although seemingly
simple, the calculation has a number of nasty corner cases
which are influenced by several other classes, such as the
class Game that controls the starting positions of bullets.
Such context sensitivity is quite typical in an OO program.

Update (45097 samples)
past-c: x ≤ 521.0 (≤ 525)

x ≥ −24.0 (≥ −25)
y ≤ 399.0 (≤ 400)
y ≥ −20.0 (≥ −25)

post-c: x′ ≤ 499.99533810498167
√

(< 500)
x′ ≥ −1.99999999999999

√
(> −2)

y′ ≤ 374.99238475781965
√

(< 375)
y′ ≥ −1.9832464672030596 (> −2)

Figure 4. Inferred case oracles for Update.

Figure 4 shows the case oracles about bullets’ positions
we infer from Daikon. The table induces oracles of the form:

p⇐ x, y→ UpdateE(), UpdateX()→ x′, y′ ⇒ q (2)

where p and q are either true or a past-condition respec-
tively post-condition from the table.

Unsurprisingly, only the overall upper and lower bounds
of the x and y coordinates can be inferred. Note that they
are float numbers. Those marked with

√
are considered

acceptable, assumming ε = 0.01 accuracy. The bracketed
values are the real upper/lower bounds.

Daikon’s default algorithm to infer boundary values as-
sume either uniform distribution of the values, or that values
close to the bounds appear more frequently [12]. Neither
assumption is true for bullets (values close to borders are
less likely to occur). In this case it is more reasonable to
just take the minimum/maximum observable values as the
bounds, which we did in the experiment.

The inferred bounds in the past-conditions are noticably
less accurate. During the training the screen size is fixed to
500 × 375. We first expected that valid bullets coordinates
must lie between 0 and those values. Thanks to Daikon, we
then realized that this is not true. Bullets can be created
off the screen when the ship is shooting from a position just
beyond a screen border, but not yet wrapped to the otherside.
Maneuvering the ship to the furthest of such positions is
very difficult, which explains the inaccuracy in the past-
conditions.

It may be worth noting that the bounds in the past-
conditions are just as hard to get with a static approach.
We cannot infer them by just analyzing the class Bullet
alone. E.g. the class Game and Ship also influence them.
Additionally, the game’s implicit top-level loop (to run
Game’s Update repeatedly) also needs to be taken into
account.

Figure 5 shows the method’s CFG. Nodes 1074 and 1076
correspond to the branches at lines 8 and 9; and nodes 1078
and 1080 to the branches at lines 10 and 11.

Definition 10: A slice S is a set of sub-cases that belong
to the same case C. It is a complete slice if any execution
of C is an execution of a member of S (S itself does not
have to be disjoint). �

For example, these are complete slices of Update:



Figure 5. The CFG of the method Bullet/Update.

S x = {^Update1074,^Update1075}

S y = {^Update1078,^Update1079}

Applying our approach to the sub-cases in S x results in five
new oracles as shown in Figure 6 (oracles of the parent
case are also oracles of its sub-cases; we do not list them
below); the table induces oracles of the following form (U
abbreviates Update):

p⇐ x, y→ UE(), ^Uk , UX()→ x′, y′ ⇒ q (3)

^Update1074 (416 samples)
past-c: x ≤ 8.0

√√

y ≤ 398.0 (≤ 400)
y ≥ 0.0 (≥ −25)

post-c: x′ = 498.0
√√

x′ > x
√√

y′ ≤ 374.8384379119933 (< 375)
y′ ≥ 0.0 (> −2)
y′ < x′

√√

x′ > y
√√

^Update1075 (44681 samples)
past-c: x′ >= −1.7452406437283434 (> −2)
post-c: −

Figure 6. Sub-case oracles for nodes 1074 and 1075.

Those marked with
√√

are correct oracles (not necessarily
the strongest one). The others are false positives. We notice
that they are again related to inaccuracy in identifying
bounds, caused by missing corner scenarios in the logs.

Notice the inferred past-condition for 1074: x ≤ 8. Static
analysis can give a stronger past-condition, namely:

^Update1078 (426 samples)
past-c: x ≤ 507.0 (≤ 525)

x ≥ −0.8724641969320359 (≥ −25)
y ≤ 7.486447365551301 (≤ 8.0)

post-c: x′ ≤ 499.84809620246335 (< 500)
x′ ≥ 0.0 (> −2)
y′ = 373.0

√√

y′ > y
√√

^Update1079 (44671 samples)
past-c: y′ >= −2.0

√√
(> −2)

post-c: −

Figure 7. Sub-case oracles for nodes 1078 and 1079.

x + speed.x + width ≤ 0

where width is actually a constant 2. Dynamic inference
of bounds of a linear formula is unfortunately problematic.
With respect to the given set L of input logs, any such a
formula always have lower and upper bounds. This induces
an infinite number of oracles, but only a handful of them
are actually correct (the others are either derivatives or can
be refuted by some new execution which was not in L).

A dynamic approach will thus require a ’hint’ to be sup-
plied, in the form of some choices of which linear formulas
are to be tried. For example if we encode x + speed.x as
a ’fake’ variable x0 in the log, it is then not a problem to
infer:

x0 ≤ −2.0

Reminder: Discussion. Daikon can’t actually infer the
above. It seems to be a bug. We did write a script to find
the maximum value of x′, and verified the above oracle. �

We see that the ’upper’ part of Update deals with x, and
its lower part with y. This is reflected in the oracles learned
from the slice S x, which are mostly about x. The slice S y

will give us oracles about y, shown in Figure 7.
Consider again the slice S x. Noticing that 1075 has two

outgoing branches, we can decide to split its sub-cases into
two further sub-case representing the branches. However,
this time it is not possible to use a single node visit
to identify the new sub-cases (because of the use of ’if-
then’ without ’else’ at node 1075). Edge visits will be
required, namely ^Update[1075,1076] and ^Update[1075,1077].
Doing this split give us more oracles about x as shown in
Figure 8.

We can also use visits to e.g. prime paths [13] as
sub-cases, but their number is unfortunately exponential.
Alternatively, we can either limit the length of the paths,
or select just some of the paths. For example, the path
[1073, 1075, 1077, 1079, 1081] is interesting because it is the
only path that does not wrap the bullet around the screen.
Selecting this as an additional sub-case gives new oracles
shown in Figure 9.



^Update[1075,1076] (301 samples)
past-c: x ≥ 490.46505978071957 (≥ 490)

x , 0
√√

y ≤ 373.0 (≤ 400)
y ≥ −2.0 (≥ −25)
y < x

√√

post-c: x′ = 0.0
√√

x′ < x
√√

y′ ≤ 373.0 (≤ 375)
y′ ≥ −1.3537860237055863 (≥ −2)
y′ < x

√√

^Update[1075,1077] (44380 samples)
past-c: x ≤ 500.0

√√
(< 500)

post-c: x′ , 0
√√

x′ ≤ 499.99533810498167
√

(< 500)

Figure 8. Sub-case oracles for the outgoing branches of 1075.

Update[1073,1075,1077,1079,1081] (43625 samples)
past-c: x ≤ 500.0

√√
(< 490)

x ≥ −1.7452406437283434 (> −2)
y ≤ 377.0

√√
(< 365)

y ≥ −2.0
√√

(> −2)

post-c: x′ ≤ 499.99533810498167
√

(< 500)
x′ ≥ −1.999999999999993

√
(> −2)

x′ , 0
y′ ≤ 374.99238475781965

√
(< 375)

y′ ≥ −1.9832464672030596 (> −2)

Figure 9. Sub-case oracles for the outgoing branches of 1075.

Unfortunately, due to a bug in Daikon these post-c oracles
cannot be inferred. Then it would become very nice because
they happen to characterize the path:

x′−x−speed.x = 0 and y′−y−speed.y = 0

Still, if we encode e.g. x0 = x + speed.x, Daikon has no
problem deriving x′ = x0.

B. Game’s Update

This method is much more complex; see again the statis-
tics in Figure 2. Moreover, instances of Game have complex
state structures (over 40 fields, some of them are arrays
or objects). Recall that the logging requires some state
information to be logged at the method’s entrance and exits.
We cannot just serialize the whole state of a Game as the
overhead would be unacceptable. For this experiment we
decided to select the following state information:
• state, an integer representing the game’s global state

(playing, paused, or at the main-menu).
• gameOver and shipVisible with the obvious meaning.
• numBullets representing the number of bullets currently

alive.
As the slice (Def. 10) we take S π = {Updatek | k ∈ π}

where π is the set of all nodes in Update’s CFG that either
read or write to any of those variables, but excluding the
root node; π turns out to consist of 14 nodes. The slice is (in

variable type case-o new w-edge
state int 1 31 (5/0/26) +(0,0,5)
shipVisible bool 0 17 (5/4/8) +(0,0,2)
gameOver bool 0 18 (5/5/8) +(0,0,1)
numBullets int 1 31 (5/15/11) +(0,1,1)
total 2 97 (20/24/53) +(0,1,9)

Figure 10. Sub-cases oracles gained using slice S π

this example) complete, but unlike the slices in the previous
example, the sub-cases of this slice are not disjoint.

We constrained Daikon to derive oracles for one variable
at a time. This prevents Daikon from producing accidental
relations between variables. Figure 10 summarizes the result;
each row represents a variable (from the chosen state-
projection defined above). The third column shows the
number of case oracle we get for the whole Update, which
is the number of past- and post-condition predicates we get
from Daikon. As we can see, very little can be inferred at
that level.

The 4th column gives the number of new oracles we
get from the slice S π. In each entry k (k1, k2, k3), k is
the total number of new oracles, k1 are those that get too
few witnesses (< 7), k2 are those that are false positives,
k3 = k−k1−k2 is the number of correct oracles for which
we have ’enough’ evidence. In total we get 53 new such
oracles, which is a considerable improvement to just 2 in
the previous situation.

As in the previous example, we can split a sub-case
^Updatek to ^Update[k,l] and ^Update[k,m] if the node k
branches out to l and m. These may give use more oracles.
So we define a new slice S π2 = {^Update[k,l] | (k, l) ∈ π2},
where π2 is the set of outgoing branches of the nodes in π.

The fifth column in Figure 10 shows how much new
oracles we get from S π2. In each entry +(l1, l2, l3), l1 us
the number of reported oracles but with too few witnesses,
l2 is the number of false positives, and l3 is the number of
correct oracles, with enough evidence. We can see that this
gives us 9 new oracles.

To check the usefulness of the oracles we made 15
mutants of Game’s Update, each contains just one error. The
errors are manually seeded. In particular, we want to limit to
only errors that affect the variables previously selected to be
used in the oracles (listed earlier in this subsection). Errors
that do not affect them are undetectable by the oracles.

N = 15 survive case-kill subcase-kill o-kill
6 (4/2) 0 8 (7/1) 1

Figure 11. Mutants killed by the oracles

”Case-kill” is the number of errors (out of 15) that can be
found by case oracles alone. ”Subcase-kill” is the number of
errors that can be detected by the sub-case oracles (8). We
only count the detection by ”valid” oracles; these are those
which during the inference had sufficient number witnesses



(≥7) and are not marked as false positive. Of these 8, 7 are
detected by the slice S π, and 1 is detected by the S π2. This
indicates that edge-visits do gives us additional strength.
”Survive” is the number of errors that are left undetected
(8). It is expected that we will not be able to find all errors.
The important observation is the increase in the number of
errors found due to sub-cases oracles (from 0 to 8); in our
oppinion the improvement is substantial.

When selecting the slice S π (and S π2) we only consider
the nodes that directly read or write to the selected set of
variables. The selection can be strengthened by adding more
nodes, e.g. based on data flow. Selecting more nodes yield
more oracles. For example, if we just include all nodes of
Update, one more error can be detected (the ”o-kill” column
above). However, some balancing will be needed as more
sub-cases will also lead to more false positives.

False positives are not always useless. Some may have
overwhelming number of witnesses, and can be considered
to be properties of typical (frequently occurring) executions
of the corresponding subcases. A violation to such an oracle
may be worth to be investigated. Out of 6 errors undetected
by the oracles, 2 are detected by such false positives.

VIII. RelatedWork

In general, disjunctions can be inferred by Daikon by
first splitting events in logs into groups. Any specification
that holds for one group but not for the others induces
such a disjunct. Our sub-cases are splitters. Daikon’s native
splitters are state predicates over events (of the same type)
[4]. At their most general, sub-cases subsume the native
Daikon splitters, because sub-cases are predicates over event
sequences. The splitters obtained by our more restrictive
implementation are complementary to the native splitters.
Kuzmina et al use static analysis to calculate Daikon splitters
[8]. In our solution we only use visit patterns as sub-
cases, which are powerful and easy to express. Dodoo et al
investigated random-based and clustering-based splitting [7].
A random approach can infer a disjunct which is satisfied
by most (but not all) executions, so that the chance to get
a group consisting only of such executions is not too small.
Clustering works if a sub-case can be re-expressed in terms
of ’distances’. That is, executions that belong to it can be
identified by being ’close’ to each other. Whereas in our
approach we require deep logging, clustering can relax this
requirement.

We now discuss various approaches to dynamically infer
different types of specifications/oracles.

To infer global invariants, past-, and post-conditions
Daikon is probably still the main tool to use [4]. It is a
specialized tool, with a limited vocabulary for which it per-
forms well. A more general purpose approach is by Feather
[14]: logs are converted to tables in a relational database,
and database queries are used to express specifications and
check whether they are valid. Ducasse et al [15] convert

logs to Prolog facts, and use Prolog queries for the same
purpose. These approaches allow complex specifications to
be expressed and queried, but we (or another tool) have
to figure out ourselves, which specifications are sensible to
query.

Daikon is not suitable to infer algebraic specifications,
because the terms appearing in such specifications are typ-
ically specific for the target class. Henkel and Diwan [5]
use reflection to first discover candidate operators of the
target algebra. Then, candidate equations are constructed.
The target class is then driven to execute the terms in the
equations and to check whether the equations are valid. Di-
rectedly driving the class is crucial. Elyasov [16] studied the
inference of common equations such as commutativity and
absorbtion from undirected/random executions. Interestingly,
he exploits the equations to rewrite logs to get shorter but
still equivalent variants.

Finite State Automata (FSA) can also be used as oracles
[17]. Marchetto et al [18] use logs to infer an FSA that
models the behavior of the target program. Dallmeier et al
[19] use a function to map concrete states of objects of a
target class C to a finite domain F. By generating executions
on methods of C, we can infer how each method affects the
states in terms of F. Effectively, we build an FSA describing
how these methods operate over F. Raffelt et al [20] use an
active learning algorithm: it actively drives and queries the
program to construct a matching FSA.

As an oracle, an FSA is more powerful if e.g. the states
are decorated with predicates (e.g. x>0). Marchetto et al
[18] exploit abstraction functions that abstract the target
program’s real states to such predicates. However, these
functions must be manually designed. Lorenzoli et al [21]
use Daikon to infer such state predicates. The Daikon
approach can be said to be ’brute force’, as it simply
quantifies over a large amount of candidate formulas. On
the other hand, FSA inference is usually incremental: the
FSA is gradually grown as the logs are scanned. A brute
force approach is not suitable to infer temporal properties
as in, e.g. LTL. The number of candidate properties quickly
explodes, and we cannot know upfront which ones to try
first since this is very problem specific. Simple and common
temporal patterns can still be feasibly inferred. Weimer and
Necula [22] studied the inference of regular expressions
(over event types) of the form (e1e2)∗. Gabel and Su [6]
give a more general algorithm, that can infer instances of a
given regular expression template R. This template can be
any regular expression involving at most two different event
types. But note that the choice of R is fixed upfront by the
user.

Log-based analyses have their advantages, but they are
inherently unsound (we may get false positives). Static
inference, usually in the form of type inference, does not
suffer from this problem. On the other hand, static analysis
does not scale very well to large applications. Dynamic



inference can be improved, as shown by Dallmeier et al [19],
by statically verifying dynamically inferred oracles. Such a
combination is still unsound (due to the limitations of the
static approaches when dealing with loops and recursion),
but it is stronger (than without static verification).

IX. Conclusion and FutureWork

Sub-cases is a quite general concept of splitting. Regular
sub-cases give a convenient and semantically meaningful
way to express splitting. In our case study, they greatly
increased the number of oracles we obtained. They do
require deeper logging. Being log-based, our approach is
much simpler to implement than a static approach. On
the other hand, our approach is unsound (we do get false
positives).

Future work. CFG-based sub-cases are sensitive to mod-
ifications to the CFG. Fortunately modifications are only
local, which calls for an algorithm that can identify which
oracles are (likely) to remain valid. The problem seems to
be related to CFG-based tests selection in regression, where
several algorithms are known [23], [24].

Some execution paths are very difficult to produce, which
implies that logs are likely to be incomplete, and thereby our
inference unsound. Using an evolutionary-based execution
driver may improve the accuracy of the inference. Another
approach is to combine it with static verification (see Sec-
tion VIII). Since Daikon’s native splitters and our (restricted)
implementation of the sub-case splitters are complementary,
it makes sense to combine them in a future study.
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