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Abstract—Software systems often produce logs which contain
information about the execution of the systems. When an error
occurs, the log file with the error is reported for subsequent
analysis. The longer the log file, the harder to identify the
cause of the observed error. This problem can be considerably
simplified, if we reduce the log length, e.g., by removing
events which do not contribute towards finding the error. This
paper addresses the problem of log reduction by rewriting
the reported log in such a way that it preserves the ability
to reproduce the same error. The approach exploits rewrite
rules inferred from a set of predefined algebraic rewrite
rule patterns, capturing such properties as commutativity and
identity. The paper presents an algorithm for inferencing the
rewrite rules from logs and a terminating reduction strategy
based on these rules. Being log-based the inference algorithm
is inherently imprecise. So the inferred rules need to be
inspected by an expert before actually being used for rewriting.
The approach is language independent and highly flexible.
The paper formally defines all used concepts and discusses a
prototype implementation of a log reduction framework. The
prototype was empirically validated on a web shop application.

Keywords-logging; fault localisation; log reduction; log
rewriting; property mining;

I. INTRODUCTION

It is hardly possible to imagine a large modern software
system that does not produce any logs during its operation.
In some application areas, such as distributed computing,
real-time critical embedded applications and operating sys-
tems, logging has already become standard practice [1].
For these systems the possibility of failure can not be
completely eliminated, because they are often not fully
verified or sufficiently tested due to their complexity and
size. Therefore, writing logs has been considered as a simple
and natural way of providing information about the system
behaviour at run-time. This information, for instance, is used
for recognition of potential failures, identification of their
causes [2], [3], and building system models [4], [5]. Due to
the continuous execution process and desire to log as much
information about system behaviour as possible, the volume
of logs can be excessive, which makes the analysis of logs
an even more challenging task [6].

Recently, several tools have been suggested to improve
the quality of log messages [7], [8], and this may implicitly
simplify the diagnosis of failures from logs. Furthermore,
some clustering based tools have been implemented to un-
dertake the failure analysis problem by log reduction [9], [10].

Let us consider the diagnosis process of a typical com-
puter application. The application is constantly writing mes-
sages into the log during execution. A log is a sequence
of application events being triggered during an execution,
together with some auxiliary information. The application
may not have been exhibiting any invalid behaviour for a
long time, when it suddenly crashes, or reports an error
into the log file. This log should be passed for subsequent
analysis to identify the root cause of the error so that it can
be fixed. If the error cause is not manifested in an obvious
way in the log, a person carrying out the failure analysis
has to come up with a short reproducible test case that
exhibits the same failure. Assuming event reproducibility,
the sequence of all events contained in the log, in principle,
can serve as such a test case. However, this sequence may
consist of thousands of events, and most events may not
contribute to the error.

This paper addresses the problem of log reduction.
We propose a formal approach to this problem based on
rewriting. The approach consists of two phases: 1) inferring
rewrite rules from already collected logs based on a set
of predefined rewrite rule patterns; and 2) applying these
rules as a rewriting system on logs with the purpose to
reduce the original log to a smaller one. The predefined
patterns represent common algebraic properties between
the application events, such as commutativity and identity.
Despite their apparent simplicity, these properties can be
successfully used for log reduction. It has been verified on
a model web store application example.

The main contributions of this paper are:
• It formally states the log reduction problem.
• A solution is proposed, which exploits the equivalence

of event traces with respect to the final states in which
the execution of these events can result.

• A terminating and non-increasing reduction strategy is
presented.

• Empirical validation is carried out on the Flexstore
application example1.

This paper has the following structure. Section II in-
troduces a motivating example, the GCD application, and
shows how the reduction approach works. In Section III-A
the formal definitions of log and event trace equivalence are
given. The event-state instrumentation model is presented

1http://examples.adobe.com/flex2/inproduct/sdk/flexstore/flexstore.html



in Section III-B. The algebraic rewrite rule patterns and
the reduction strategy with its properties are discussed in
Section III-C and III-D respectively. We talk about the
implementation of the log reduction framework in Sec-
tion IV. Results of the empirical validation are presented
in Section V. Related work is discussed in Section VI, and
future work in Section VI. Section VIII concludes the paper.

II. MOTIVATING EXAMPLE

In this section, we introduce an example to illustrate the
log reduction approach. The example is a GUI application
for calculating the great common divider (GCD) of two
natural numbers. The application has three text fields X (the
first number), Y (the second number), and R (the result),
and two buttons calc and clear. When the application is
initialised, all fields are empty by default.

An essential part of our approach is to use an event-
state logging model. This model is discussed in detail in
Section III. For now, we only need to know that a log
is composed of the alternation of events and states, where
the events are the application events and the states are the
abstract states of the application. That is, when an event
is triggered, we log (serialise) the abstract application state
at the beginning and at the end of the event, as well as a
description of the event itself, including the values of its
parameters. The state is logged after the event is executed.
An event starts its execution in the state in which the
previous event has finished (except for the first event, which
starts in some initial state).

We distinguish the following application events in our
GCD example:
• setX(x) — the user assigns the value x to the field X;
• setY (y) — the user assigns the value y to the field Y ;
• calc — the user clicks the button calc, which changes

the value of R;
• clear — the user clicks the button clear, which erases

all fields.
As an abstract state of the GCD application, let’s take the
triple (x, y, r), where x, y and r are the values of the
corresponding fields X , Y and R. The semantics of our
events is described by the finite state automaton (FSA)
in Figure 1. Our reduction technique does not require the
presence such an FSA. Stronger yet, it may even be that
the FSA is not known. Here, the FSA introduced only for
presentation purposes to clarify what the events are, and how
they affect the abstract state. In the state Q0 all variables
have undefined values; it is the initial state of any execution.
If there is a call to the calc event when one of the GCD
parameters is undefined, we simply return to the same state,
that is, this event does not produce any error.

It may turn out that somewhere in the application there
is an error. To work out this case in our model, we pes-
simistically assume that an exception can be thrown during
any execution step. Thus, we draw dashed transitions from

Q0
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y =?
r =?

Q1

x =?
y = y′

r =?

Q2

x = x′
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clear
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Figure 1. The GCD event execution model.

all states of the automaton to the special “error” state Qerr
and label such transitions by the virtual event err, as shown
in Figure 2. We add inverse transitions from the error state
to each normal state to be able to recover from an error
execution. In Figure 2 such transitions are labelled by the
virtual event err−1.

In the GCD example the transition to the error state can
actually happen only if the calc event is executed when one
of the GCD parameters has zero value.

Now, let us consider the following execution sequence:

τ = setX(3)→ setY (5)→ calc → clear → setY (1)→
setX(7)→ setX(0)→ setY (2)→ calc → err

This sequence leads to an error due to the attempt to compute
the GCD when x = 0. If we carefully look at the application
model in Figure 1, it is easy to notice that there are some
equivalences between different execution sequences. For
instance, the following equivalences hold for all states of
our model:

∀e ∈ Event [e ; clear ] = [clear ]
[setX(x); setY (y) ] = [setY (y); setX(x)]
[setX(x); setY (x ′)] = [setX(x ′) ]
[setY (y) ; setY (y ′)] = [setY (y ′) ]

The second rule, for instance, says that the order of assigning
values to the fields X and Y does not matter with respect
to the final state they produce. Applying these rules step by
step to the original sequence τ , we can reduce it from ten
entries to only five, such that the reduced sequence preserves
the ability to reproduce exactly the same error:

setX(3)→ setY (5)→ calc → clear → setY (1)
→ setX(7)→ setX(0)→ setY (2)→ calc → err
≡ { apply [e;clear]=[clear] three times }

clear → setY (1)→ setX(7)→ setX(0)→ setY (2)
→ calc → err
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Figure 2. The err and err−1 events that complement the GCD model
in Figure 1.

≡ { apply [setX(x);setX(x’)]=[setX(x’)] }
clear → setY (1)→ setX(0)→ setY (2)→ calc

→ err
≡ { apply [setY(y);setX(x)]=[setX(x);setY(y)] }

clear → setX(0)→ setY (1)→ setY (2)→ calc
→ err
≡ { apply [setY(y);setY(y’)]=[setY(y’)] }

clear → setX(0)→ setY (2)→ calc → err

III. FORMAL REDUCTION THEORY

In this section, we formally describe the reduction prob-
lem and present our solution. We start with the description
of a logging approach and then define an equivalence
relation on logs. This relation lies at the basis of the log
reduction, the purpose of which is to decrease the length of
a log by rewriting it to a smaller but equivalent one. We
propose to learn special rewrite rules from logs that express
simple and ubiquitous properties among the events such as
commutativity and idempotence. The learning is possible,
even if the logs are relatively small (hundreds of entries).
And the application of the rules can result in a significant
log reduction.

A. Log and Event Trace Equivalence

As we already mentioned, we use the event-state logging
model to produce application logs. That is, together with an
event we log the preceding and the following application
state.

Given an application App, we can think of it as a black
box that accepts some input values and returns some output
values. At any time, App is in a certain concrete state, which
completely determines its possible response (output) on a
certain input. A concrete state is generally much too large, so
we need to abstract away from details to obtain the abstract
state that can then be serialised into a log.

Definition 1 (Event): Let Evt be the set of events that an
application App can dispatch. There is a distinguished event
ε that does not have any effect on the concrete application
state. Each event has a fixed number of parameters.

Definition 2 (Log): A log generated by the execution of
the application App is the following sequence:

Σ = [(ε, s0), (ev1, s1), . . . , (evl, sl)],

where evi ∈ Evt, si is an application abstract state during
the execution, and s0 is the initial state of the execution.

Definition 3 (Event Trace): The sequence of events τ =
[ev1, . . . , evl] extracted from the log Σ in Definition 2 is
called the event trace of this log.

In some sense, a log is the footprint of an event trace
started from a certain state. This is denoted as:

Σ = s0 ⇒ τ

Let Evt∗ be the set of all possible event traces in Evt. Then
Σ∗ = Σ(Evt∗) denotes the set of all logs based on the event
traces from Evt∗.

Definition 4 (State δ-Equivalence): Let δ be a function
that maps a state to a set D on which the equality relation
(=) is defined. Two abstract states s1 and s2 are δ-equivalent
(s1

δ
= s2) if δ(s1) = δ(s2). A special case of δ-equivalence

is when an abstract state consists of the set of application
variables Var. In this case it is called a state projection,
which is defined as:

projA(s1, s2) =
∧
x∈A

(projx(s1) = projx(s2)),

where A ⊆ Var.
Using δ allows us to impose another layer of abstraction
over states, that is, to hide or simplify superfluous logging
information, which is known to be irrelevant with respect to
a particular log analysis.

Definition 5 (Log δ-Equivalence): Two logs Σ1 and Σ2

are δ-equivalent (Σ1
δ
= Σ2) if (1) fst(Σ1)

δ
= fst(Σ2); and

(2) lst(Σ1)
δ
= lst(Σ2); where the functions fst and lst

return the first and the last state of the log respectively.
Definition 6 (Event Trace δ-Equivalence ): Two event

traces τ1 and τ2 are δ-equivalent (τ1
δ
= τ2) if for all s1, s2

such that s1
δ
= s2 implies (s1 ⇒ τ1)

δ
= (s2 ⇒ τ2).

If the function δ is just an ordinary componentwise equality,
we denote equivalence of states, logs and traces as s1 ≡ s2,
Σ1 ≡ Σ2 and τ1 ≡ τ2 respectively. When it is clear which
δ is used, then states, logs, and traces are simply called
equivalent. For the sake of simplicity, in the rest of this
section, we only deal with ≡-equivalence, but the theory
also works for an arbitrary chosen δ-equivalence function.

Definition 7 (Log Reduction System): A log reduction
system defined by a set of event trace equivalences R on
Evt∗ is a pair < = (Σ∗,→R).
A reduction step Σ1 →R Σ2 entails the replacement of an
occurrence Φ in Σ1 (Σ1 = V ΦU) by an equivalent log Ψ,
i.e. (Φ ≡ Ψ) ∈ R. The result of this reduction is a new
log Σ2 = VΨU that is equivalent to Σ1 with respect to
Definition 5.

In a similar way, we can define an event trace reduction
system if we were interested only in the reduction of
corresponding event traces.



Because of the log reduction, we inevitably lose some
concrete state information. This may be the consequence
of removing events, but also the result of swapping two
adjacent events. For instance, given the log Σ = s0

e→
s1

d→ s2 and the rule [e; d] ≡ [d; e], Σ can be reduced
to Σ1 = s0

d→ ∗ e→ s2, where s1 is replaced by star (∗)
because the rule does not tell us what the new intermediate
state is.

Definition 8 (Maximal Log-Reduction): Given
< = (Σ∗,→R) and Σ ∈ Σ∗, the log ΣM is a maximal
reduction of Σ in < if for all Σ →∗R ΣM1 implies that
|ΣM | 6 |ΣM1 |.
There might be possible several different reductions that are
all maximal for a given log. They are all equivalent up to
the length isomorphism.

B. Event-State Instrumentation Model

To extend an application with logging, a formal applica-
tion model is required. A control flow graph (CFG) gives
us the right level of abstraction for such a model, as it
allows access to every program point and instrument it with
a logging statement.

Definition 9 (Application Model): A model of an appli-
cation App is a pair (CFG, CState), where:

• CFG = (N, E) is the application’s overall inter-
procedural control flow graph. If there is an edge
between nodes ni and nj , it is denoted as ni → nj .
The relation ∗→ is the reflexive and transitive closure of
→ on E. A path from ni to nj is written as ni

∗→ nj .
• CState is a set of concrete application states.

The formal concept of the application model does not
include a mechanism of error (failure) propagation. The next
few definitions introduce it to our “universe”.

Definition 10 (Error): Let E denote the set of errors an
application can throw.

Definition 11 (Application Model with Errors): An
application model App can throw errors from E, which
is denoted as AppE, if the application state s is either
s ∈ CState or s ∈ E, i.e., AppE = (CFG, CState ∪ E).

An application model with errors can also be extended to
describe the recovery from an error like in the GCD example.
For the sake of simplicity, the recovery model is not formally
considered in this paper.

Definition 12 (Partial Execution): A partial execution π
of the application App is an arbitrary path in App’s CFG.
We mean partial execution everywhere the term execution
is used.

Definition 13 (Execution Trace): An execution trace pro-
duced by the execution π = [n1, . . . , nk] starting from the
state s0 is the following sequence:

s0 → π = [(n1, s1), . . . , (nk′ , sk′)],

where k′ is an index defined as:

k′ = max
06i6k

{i| ∀j 6 i : sj /∈ E}.

That is, in the case of an error, the execution trace is
truncated to include exclusively the part preceding the error.
If si is always defined, π is called a feasible execution, and
the corresponding trace is also called feasible; otherwise,
they both are infeasible. In this paper, whenever execution
traces are used, we only mean the feasible ones.

Definition 14 (Application Logging Model): A
logging model of an application is a 3-tuple
AppLM = (AppE, AState, α), where:
• AppE is an application model with errors.
• AState is a set of abstract application states.
• α : CState→ AState is an abstraction function.
An application can be instrumented with events. We

consider only static unconditional instrumentation.
Definition 15 (Event Instrumentation Model): An event

instrumentation model is a 3-tuple (AppLM, Evt, I), where:
• AppLM is an application logging model.
• Evt is a set of application events.
• I : Evt → 2N×N is an event instrumentation function.

For each event ev ∈ Evt, the function I returns the set
(instrumentation set) of begin-end pairs (instrumenta-
tion points) of ev in terms of nodes. The following
conditions must hold for the function I:
– (nb, ne) ∈ I(ev)⇒ nb

∗→ ne;
– (nb, ne), (nb, ne

′
) ∈ I(ev) ∧ ev 6= ε⇒ ne = ne

′
;

– I(ε) =
⋃
n∈N (n, n).

Definition 16 (Log’): Given an event instrumentation
model (AppLM, Evt, I), the log produced by an execution
π = [n1, . . . , nk] of App from the starting state s0 is the
sequence:

Σ = [(tb1, ev1, t
e
1), . . . , (tbl , evl, t

e
l )],

for which there exists a function J : N→ N× N such that
the following conditions hold for the execution trace:

s0 → π = [(n1, s1), . . . , (nk, sk)]

• For all i ∈ [1, l] it holds that:
(1) J (i) = (np, nq), where 1 6 p 6 q 6 k;
(2) J (i) ∈ I(evi);
(3) tbi = α(sp) and tei = α(sq).

• For all i ∈ [1, l − 1] it holds that:

J (i) = (nb1, ne1)∧J (i+ 1) = (nb2, ne2)⇒ b1 6 b2.

• For all i, j ∈ [1, k] it holds that:

(ni, nj)∈
⋃

ev∈Evt
I(ev)⇒ ∃k ∈ [1, l] : J (k) = (ni, nj).

Logging separately the beginning and end of the events,
we can always reorder the log generated by π according



to Definition 16. Even though we did not attach any formal
semantics to the events, they are assumed to be deterministic.
To carry this property along with the instrumentation, the
next few restrictions have to be imposed on the log structure:
• Σ1 = [(tb1, ev, t

e
1)]∧Σ2 = [(tb1, ev, t

e′

1 )]⇒ te1 = te
′

1 , for
all ev ∈ Evt.

• Σ = [(tb1, ev1, t
e
1), . . . , (tbl , evl, t

e
l )] ⇒ ∀1 6 i <

n : tbi+1 = tei , for all Σ.
The implication of the second property is that the log Σ

can be represented as a list of pairs — the event and the
final state — instead of triples. Namely, it can be rewritten
to:

Σ = [(ε, tb1), (ev1, t
e
1), . . . , (evl, t

e
l )].

The given expression for Σ coincides with Definition 2,
which means that the logging model defined in this sub-
section can be used to implement event-state logging model
required for log reduction.

C. Rewriting Patterns

As we have already seen in the GCD example, there exist
some equivalences between the GCD event traces. This is
essentially due to the nature of algorithmic languages that
execute constructions such as loops, branches and recursion.
Some of the trace equivalences are application specific, but
there are also equivalences that commonly occur in many
applications. Below we propose three algebraic rewrite rule
patterns that express equivalences between segments of
event traces. These algebraic patterns form the basis for the
log reduction.

Skip: [e(p)] ≡ ε
Obviously, not all events have an effect on the
application. Those events that do not interfere with
the abstract state at all fall into the category of
this rewrite rule pattern. The GCD application does
not have any skip-like events. However, if we
project the abstract state only on x and y, that is,
apply a δ-function, the calc event becomes skip-
like with respect to the state projection projA,
where A = {x, y}.

Zero: [e(p); d(q)] ≡ [d(q)]
Some events may completely overwrite the effect
of the preceding events. We call such events zero-
like with respect to the preceding events. In the
GCD-application, the event clear annuls the effect
of any preceding event (setX , setY or calc). A
particular case of this pattern is when d = e, that
is, whatever the application state is, an execution of
e(q) always overwrites the effect e(p). The setX
and setY are example events of this particular
pattern.

Com: [e(p); d(q)] ≡ [d(p); e(q)]
The last pattern asserts the property of two events
being commutative. For example, the fields X and

Y can be updated in any order, and therefore the
corresponding events setX and setY are commu-
tative, in other words they are independent.

In the sequel, when we talk about reduction, we only con-
sider log reduction systems formed by these three patterns:
Skip, Zero and Com.

Definition 17 (Algebraic Log Reduction System): We
call the log reduction system <A = (Σ∗,→RA

) algebraic
if for all r ∈ RA, r is of one of the types Skip, Zero or
Com.

D. Reduction Strategy

The following auxiliary functions are used to retrieve the
rules corresponding to a given rewrite rule pattern:

Rs ={r ∈ R | isSkip(r) — is r a Skip rule?}
Rz ={r ∈ R | isZero(r) — is r a Zero rule?}
Rc ={r ∈ R | isCom(r) — is r a Com rule?}

Algorithm 1 A reduction strategy for an algebraic event
trace reduction system
1: procedure REDUCELOG(Rs, Rz , Rc, τ )
2: (Rs, Rz , Rmz , Rc)← InferRules(Rs, Rz , Rc)
3: Rz/∼ ← splitZeroCls(Rz)
4: Rmz/∼ ← splitZeroCls(Rmz)
5: . splitZeroCls(R) = {rx|rx ⊂ R, ∀r ∈ rx : r = (yx ≡ x)}
6: τ ← applySkip(R′s, τ)
7: repeat
8: τ ← ZeroReduce(Rz/∼, Rc, ε, τ)
9: τ ← reverse(τ)

10: τ ← ZeroReduce(Rmz/∼, Rc, ε, τ)
11: τ ← reverse(τ)
12: until FIX(τ)
13: return τ
14: end procedure

15: procedure INFERRULES(Rs, Rz , Rc)
16: R′s ← inferSkip(Rs, Rz) . ab ≡ b ∧ b ≡ ε⇒ a ≡ ε
17: R′z ← inferZero(Rz) . ab ≡ b ∧ ca ≡ a⇒ cb ≡ b
18: Rmz ← inferMZero(Rz ∪R′z , Rc)
19: . ab ≡ ba ∧ ab ≡ b⇒ ba ≡ b
20: R′mz ← inferZero(Rmz)
21: return (Rs ∪R′s, Rz ∪R′z , Rmz ∪R′mz , Rc)
22: end procedure

23: procedure ZEROREDUCE(Rz/∼, Rc, u, v)
24: (rx, (w, x′, v))← findF irstOccur(Rz/∼, v)
25: if (x′ = Just x) then
26: u← uw
27: repeat
28: repeat
29: u← applyZero(u, rx)
30: . r = (yx ≡ x) ∧ u = u′y → u = u′

31: until FIX(u)
32: u← applyZeroWithCom(u, rx, Rc)
33: .

r = (yx ≡ x) ∧ u = u′yu′′ ∧ (∀e ∈ u′′ : com(e, y))→ u = u′u′′

34: until FIX(u)
35: ZeroReduce(Rz/∼, Rc, ux, v)
36: else
37: return uv
38: end if
39: end procedure



There are some properties that we would often like to
have such as termination and confluence [11]. Algorithm 1
presents a reduction strategy for an algebraic event trace
reduction system that can be proved to be terminating and
non-increasing. It terminates in polynomial time, but does
not necessarily produce the maximal possible reduction that
is reachable with a given set of rewrite rules. The reduction
is carried out by the procedure ReduceLog, which consists
of the following key steps:

1) Enriching the original set of rules is implemented by the
InferRules procedure, which reminds of an anal-
ogous step of the Knuth-Bendix algorithm [11]. The
procedure considers overlaps of Skip and Zero rules
(InferSkip), Zero and Zero rules (InferZero),
and Zero and Com rules (InferMZero). For exam-
ple, taking the overlap of the rules ab→ b and bc→ c
and applying them in a different order to the sequence
abc, we get ac→ c as a new possible reduction rule.

2) The function splitZeroCls groups Zero rules with
equal right hand sides in the same equivalence class.

3) The function applySkip removes all occurrences of
Skip events.

4) The last reduction step is the recursive application of
the ZeroReduce procedure to the event trace in both
directions (from left to right and right to left) until
a fixed point is reached. To express the fixed point
computation, Algorithm 1 uses the special form of
repeat-until loop (the top line of the equivalence), which
is only a syntactic sugar for the function Fix(F, τ) (the
bottom line of the equivalence), defined as follows:

repeat F until Fix(τ)

Fix(F, τ) := m
if F (τ) ≡ τ then τ else Fix(F, F (τ))

The procedure ZeroReduce looks for the first oc-
currence of x in v, where rx is a class in Rz/∼
(findFirstOccur), and then it exhaustively applies
all rules from rx to the left part of v that starts from x
(applyZero), and it also tries to combine zero with
commutative rules (applyZeroWithCom). The later
combination allows to discover zero reductions that are
not enabled by default. Crossing zero and commutative
rules gives us the mirror zero rules (line 18), which are
like zero with respect to the reversed event trace. These
rules are used at line 10 to get a reduction by means of
the application of the ZeroReduce procedure to the
reversed trace.

Theorem 1 (Termination): For the algebraic log (event
trace) reduction system <A = (Σ∗,→RA

), the reduction
relation →RA

implemented by Algorithm 1 is terminating.
Note, that during reduction Algorithm 1 effectively ap-

plies only Skip and Zero rules in the decreasing direction,
that is, they form a non-cyclic reduction system. In order to
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Rewrite Rules Inferencer

Rewrite
Rules

Expert

Rewrite
Rules

Rewriting System (e.g. HOL)

Log

Log

Figure 3. Log Reduction Framework

prove termination, we need to show that the fix points are
guaranteed to be reachable in all three cases (lines 28, 27
and 7). But this obviously follows from the facts that at
each time the log is either reduced or not, and the number
of rules is finite. If the log can not be reduced anymore, we
have reached the corresponding fixed point.

Theorem 2 (Length Reduction): For an algebraic log
(event trace) system <A = (Σ∗,→RA

), the reduction re-
lation →RA

implemented by Algorithm 1 is non-increasing.
This property follows from the shape of reduction being
applied. The algorithm only uses non-increasing reductions.

Lemma 1 (Zero-Based Log Reduction System):
For a given Σ ∈ Σ∗, the maximal reduction
of Σ in <z = (Σ∗,→Rz

) is equal to the
maximal reduction of Σ in <>z = (Σ∗,→R>

z
)

and the reduction relation →R>
z

is confluent, where
R>z = Rz ∪ {ac→ c | (ab→ b) ∈ Rz ∧ (bc→ c) ∈ Rz}.

IV. IMPLEMENTATION

Our log reduction framework, including the inference
and reduction part, have been implemented in Haskell. The
complete structure of the framework is depicted in Figure 3.
As an input, it accepts a log for reduction, a list of predefined
rewrite rule patterns (for example, the ones presented in
Section III-C), the event signatures (event names and arities)
and a state abstraction function. The Rewrite Rule Inference
block analyses the initial log and produces the concrete
rewrite rules, which are not guaranteed to be either sound or
complete. Therefore, user intervention is required to remove
the false positives (Expert block). Finally, the initial log
can be reduced using the filtered set of rewrite rules. In
our earliest experiments, we tried to adopt the rewriting
capabilities of HOL [12] to carry out log reduction. To do
this, we literally translated our rewrite rules into the HOL
format, and used HOL’s built-in automatic rewriting tactics



to reduce the log. But it led to either an infinite rewriting
loop or a weak reduction if we had chosen and fixed the
direction of rule application in order to handle termination.
That is, if we had had a rule ab ≡ ba, we should have
decided whether apply it as ab → ba or ba → ab. As a
result, Algorithm 1 has been implemented, which ensures
termination and provides a better reduction then the one
in HOL. The algorithm is implemented in Haskell, but we
could integrate it into HOL, and thereby being able to use
the whole bunch of HOL tactics to prove some additional
facts about our reduction rules.

V. EMPIRICAL VALIDATION

To evaluate our framework, we applied it to the web
shop application flexstore. It is a standard example of an
application for buying mobile phones, provided by adobe to
demonstrate some features of the Flex SDK. The flexstore
has the usual ingredients of a web shop, such as a catalog,
various filters and a shopping cart. Therefore it is represen-
tative enough to be used for the evaluation of our reduction
framework.

For the flexstore, we can define high level events such
as “add phone to the cart”, “compare several phones”,
“show all phones satisfying a certain criterion”. These and
many others flexstore events were instrumented by the use
of the FITTEST Automation Framework (AF) [13], [14].
AF allows us to log application events and the application
abstract states associated with them in the FITTEST Log-
ging Format [13]. The user of AF provides an application
abstract function, which is the collection of objects and fields
associated with them. The resulted log fully conforms to the
definition of log given in Section III-A.

All experiments presented in this section were carried
out on an Intel i5 (2.4 GHz) machine with 6GB of RAM
under Ubuntu 12.04 OS. We generated a log of length 11000
entries, randomly invoking different flexstore events out of
the 23 possible events. We considered two different state
projections: high abstraction (2 variables, Abs = high) and
low abstraction (7 variables, Abs = low). False positives
were filtered by the use of a confidence level (Conf = yes),
i.e., all rules with a confidence level lower than 0.99 were
not accepted. Without the confidence level (Conf = no) it
was sufficient for a rule to have at least one positive witness
and zero negatives to be accepted as a rewrite rule.

A. Inference Results

As we mentioned already, the inference algorithm can
both report false positives and reject false negative rules.
Therefore, an expert assessment is required to at least sift
out the false positive ones, otherwise, we might get a
wrong reduction sequence. We judged the results of the rule
inference from the log of 11000 entries, and used them as a
template to measure the number of erroneously accepted and
rejected rules in all other measurements in the experiment.

Table I
RESULTS OF PATTERN INFERENCE FOR THE FLEXSTORE. THE EVENTS

RECOGNISED AS SKIP ARE EXCLUDED FROM THE CONSIDERATION FOR
CANDIDATES TO FORM Zero OR Com RULE.

Patterns Abs Conf 5000 2500 1000 500 100
m p n m p n m p n m p n m p n

Skip

low yes 7 0 0 7 0 0 7 0 0 6 0 1 2 0 5
low no 7 0 0 7 0 0 7 0 0 7 0 0 7 4 0
high yes 9 0 0 9 0 0 9 0 0 8 0 1 2 0 7
high no 9 0 0 9 0 0 9 0 0 9 0 0 9 5 0

Zero

low yes 15 6 11 13 13 13 11 22 15 4 5 22 0 0 26
low no 25 39 1 23 42 3 17 42 9 12 37 14 0 4 26
high yes 1 9 8 1 17 8 0 31 9 0 7 9 0 0 9
high no 8 15 1 6 30 3 3 46 6 2 42 7 0 4 9

Com

low yes 8 3 2 2 0 8 0 0 10 0 1 10 0 0 10
low no 10 5 0 6 8 4 2 3 8 1 1 9 0 0 10
high yes 6 4 1 1 1 6 0 0 7 0 1 7 0 0 7
high no 7 9 0 4 11 3 1 5 6 0 2 7 0 0 7

The aggregated data of the inference part are shown in
Table I. We used the logs of different sizes (initial segments
of length from 100 up to 5000 entries taken from the original
log) to infer the rules, and then we compared the inference
outcome with the template. As a result, we calculated the
number of correctly identified rules (m column) as well as
the number of false positives (p column) and negatives (n
column). Because of the abstraction, we might get some
new rules as well as lose some old ones. It is clear from
Table I that to correctly identify all skip rules, it was already
sufficient to have 1000 entries in the log. But for Zero or
Com rules we had missed or wrongly accepted some rules
even for the log of 5000 entries. The choice of an appropriate
confidence level is a trade-off between the number of false
positive rules we want to avoid and the number of potential
false negatives we might lose because of being too exact. As
we can see, in case of the Zero and Com rules, there are
dozens of candidates, so it is wise to rely on the confidence
level to decrease the number of false positives, especially if
the amount of data in the logs is limited. For instance, we
got rid of 33 false positive rules (reported 6 instead of 39
rules) of the type Zero, learnt from the log of 5000 entries.

B. Reduction Results

Table II presents the reduction results of the log of 5000
entries that were achieved by Algorithm 1 using the rules
from Table I. In the best case, we managed to reduce the
original log by 65% (1727 entries), and, in the worst case,
we got only 35% reduction (3259 entries). The higher level
of abstraction did not give us better reduction power, even
though, in the abstracted log, we had more skip like events (9
vs. 7), but at the same time, we had less zero-like rules. The

Table II
RESULTS OF 5000 ENTRIES LOG REDUCTION FOR FLEXSTORE

Abs Conf 11000 5000 2500 1000 500 100
low yes 1727 1846 1907 1963 2243 3259
low no 1727 1739 1739 1882 2023 2327
high yes 1954 2159 2159 2181 2393 3259
high no 1954 1973 2023 2141 2150 2181
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Figure 4. Reduction of the log l where |l| = 5000 by different strategies.

use of a confidence level allowed to reject some incorrect
rules, but it also led to the rejection of some correct ones,
which finally affected the reduction.

Figure 4 shows the comparison of the reduction power
that was reached by the different variations of Algorithm 1
when applied to a log of length 5000. It turns out that
we already obtanied a 50% reduction by only removing all
skip events. Additionally, reducing all immediate instances
of zero rules after only a single traversal we obtained 4-
11% extra reduction. In this experiment we did not observe
any additional reduction due to the recursive application of
Back&Forth, i.e. NonCom. The reduction achieved by
the application of Com together with Zero allowed us to
remove 3 additional events out of 1957. So there is only little
contribution from the reduction by combination of Zero and
Com rules. This is a consequence of the randomness of
event invocations during the generation of our experimental
log data. We expect, the real user behaviour scenarios to
exhibit more cases of the reduction by application of Zero
together with Com rules.

VI. RELATED WORK

Since our approach essentially consists of two parts:
learning specific rules from logs, and then applying the
reduction procedure based on these rules, we accordingly
split the related work section.

A. Mining Properties From Logs

There are various categories of properties that can be
learnt from logs. But these properties come under different
names: invariants [15], specifications [16] or oracles [17].

The Daikon tool [15] discovers assertions (invariants) that
hold at certain program points, e.g., method entry and exit.
The assertions are templated predicates over program vari-
ables. They express invariants such as constant equality and
ordering. The inference of polynomial and array invariants,
which Daikon is unable to discover, is presented in [18].
DySy obtains invariants that are specific for the observed
program executions by using symbolic analysis [19]. The
Daikon approach can be extended by the inference of

behavioural models of an application [4], which are extended
finite state machines that describe the interplay between data
values and component interactions.

Temporal properties have also been thoroughly investi-
gated. Therefore, several tools for learning them have been
developed in recent years [20], [5], [21]. In contrast to
Daikon’s properties, which represent data-flow dependen-
cies, the temporal properties describe control-flow relations,
for instance, the precedence of function calls. The Perracotta
tool [21] infers the strictest template, with respect to the
hierarchy proposed for the Response pattern [22] (P must
be followed by S), that any two events satisfy. A more
general class of temporal properties can be inferred by the
Ocd tool [20] — a tool for learning and enforcing temporal
properties over function and method call sequences. The
properties are predefined by templates, which are two-
letters regular expressions (ab, ab+, etc.). Synoptic [5] mines
temporal properties, such as a always followed by b, a
always precedes by b, from partially ordered logs, and then
uses these properties to visualise the application model.

The properties proposed in this paper belong to the cat-
egory of algebraic properties (specifications) [23]. Hankel
et al. [16] suggest discovering algebraic specifications by
exercising the terms (dynamic part) generated from the alge-
braic signatures of program classes (static part). Adiheu [24]
improves this approach by using Adabu’s sequences of legal
operations [25] expressed as non-deterministic FSA .

B. Log Reduction

The reduction always leads to the loss of some informa-
tion, in particular, we have to sacrifice the completeness of
logged data. But there should exist an invariant that con-
tinues to hold during the reduction. For instance, someone
might be interested in the presence of certain events in the
reduced log. The invariant discussed in this paper has the
ability to reproduce the same failure as the one contained in
the original log. This section discusses different approaches
to the log reduction irrespective of the chosen reduction
invariant.

Wang and Parnas [26] suggest to use trace specifications
of software modules as a basis for trace rewriting to simu-
late module behaviour. The trace specifications completely
describe the effect of an event trace execution on the appli-
cation. In [26] the authors present a smart trace rewriting,
which is proved to be terminating and confluent. Due to
these properties, the smart rewriting, moreover, gives the
maximal possible reduction. But a formal trace specification
is often absent, and the issue of its inference brings us back
to the questions raised in Section VI-A, namely how to get
the specification in the first place.

Clustering techniques are found to be quite useful to
reduce the length of logs, in particular, if logs are un-
structured. So several clustering algorithms and tools have
been introduced [27], [28], [29], [30], [31]. Clustering



assists reduction in two possible ways: 1) grouping similar
events in clusters and use one event as a representative of
the entire cluster; and 2) learning event correlations [10].
Moreover, outliers (those events that do not fall in any of the
existing clusters) are potential candidates to be considered
as anomalies.

Zawawy et al. [32] propose to filter logs with respect
to the set of analysis goals and diagnostic hypotheses in
order to assist root cause analysis. Two reduction strategies
are suggested: 1) filtering events that are irrelevant to the
failure by executing SQL queries generated from annotated
goal models [33] capturing application requirements, and
2) applying Latent Semantic Indexing [34] to identify log
entries connected with the query representing a particular
aspect of the model. Kontogiannis et al. [9] suggest to
reduce logs according to the chosen upfront sequence of
beacon events. This approach exploits a collection of event
dependency relations to construct the Event Dependency
Graph, and then by clustering to extract all events correlated
to the beacon sequence.

Delta Debugging [2] is able to reveal the cause-effect
chain of a failure, isolating the relevant variables and values.
This chain is essentially the reduced log we are looking for.
The method compares the state difference between a passing
and failing run. This requires the ability to replay the failing
execution multiple times, which we do not need.

Lee et al. in [35] consider the reduction of log replaying,
retaining the ability to reproduce the failure. The reduction
is reached by reducing the amount of information that needs
to be logged in order to replay the execution. The reduction
is carried out at the unit level (loop iterations) by the
offline analysis of the enhanced log — a log resulting from
the execution of an instrumented program to collect some
axillary runtime information.

BugRedux [36] synthesises and reduces in-house exe-
cutions that could reproduce the failures observed in the
field. BugRedux exploits additional information, for instance
call sequences or complete traces, to produce an input
that mimics the execution by means of symbolic analysis.
Our reduction technique is purely based on the information
presented in log files, and it does not require the application
source code to be available.

An FSA is a common way to represent an application
model. Such a model can be learnt from logs as in [3], [37]
and used for root cause analysis. A failure is then recognised
by observing that an execution trace is inconsistent with the
FSA. The point of divergence indicates where the abnormal
behaviour has started, and the application model can be used
to find the shortest path to this point. This gives us a reduced
failing execution trace. But, of course, building the precise
application model from logs is an expensive task, and the
lightweight approaches to reduction might be preferable.

VII. DISCUSSION AND FUTURE WORK

The reduction algorithm for algebraic log reduction sys-
tems presented in this paper, as we mentioned in Sec-
tion III-D, does not guarantee reaching a maximal reduction.
We have not yet investigated the decidability of this ques-
tion. Even if the answer is positive, it is still desirable to
provide an efficient algorithm for maximal reduction. These
questions are more clearly formulated in the Appendix of
this paper.

Apart from the three rewrite rule patterns discussed in
Section III-C, there exist some other rule patterns such as
[e(p)] ≡ [e(q)] and [e(p)] ≡ [d(p)]. The former pattern sug-
gests to ignore the concrete values of the parameters, when
the latter one says that two events are simply equivalent if
they are applied to the same parameters. In general, some
practical issues appear if we want to extend our reduction
framework with new rewrite rule patterns, namely:
• How to infer the concrete instances of the rewrite rules

for this pattern? The inference might be very expensive,
require a huge amount of logging data, or generate too
many false positives.

• How to incorporate a new pattern into the existing
reduction algorithm or to build a new one that is as
effective and powerful as the former one?

The answers to these questions in many cases require a trade-
off between the pattern complexity, inference efficiency and
reduction power. These problems are beyond the scope of
in this paper, and we consider them future work.

The inferred rewrite rules, after they were inspected by an
expert, become application invariants that need to hold over
all executions. A violation of any rule is a potential signal
of an error in the application. Therefore, the rules can be
used as testing oracles. The strength of these oracles can
be assessed by applying mutations to the source program
and validating the oracles on the modified version of the
program. Moreover, it is interesting to compare the number
and types of the mutations caught by our rules and well-
known tools like e.g. Daikon [15].

VIII. CONCLUSION

In order to discriminate failures that might happen during
the execution of an application, the programmers are trying
to provide as much informative logs as possible. But if a
failure occurs, we are not interested in all this excessive
information to carry out the root cause analysis of that
particular failure.

This paper addresses the issue of log reduction that
arises if we consider in-house or in the field debugging.
We propose to infer algebraic properties among application
events, and use them as the basis for our reduction system.
We built a prototype of the log reduction system based on
these rules and applied it to the flexstore application. As
a result, we managed to get 65% reduction of the original
logs.
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APPENDIX: UNRESOLVED PROBLEMS

The appendix lists the unresolved problems arisen in this
paper. In addition, some basic concepts of the reduction
theory are given. The theory is presented in a more general
way than in the main content of this paper. That is, the
interpretation of alphabet symbols is neither events nor log
entries.

Let E be an event alphabet; τ = [e1, . . . , en] is a event
sequence in E, i.e. ∀i ∈ [1, n] : ei ∈ E; < = (E∗,→R) is
a reduction system based on R, where R is a set of rules,
i.e. ∀r ∈ R : r = (τ → σ).

Definition 1 (Maximal Reduction): Given < = (E∗,→R

) and τ ∈ E∗, the reduction τM of τ (τ →∗R τM ) in < is
called maximal if ∀τ1 : τ →∗R τ1 implies |τM | 6 |τ1|.



There might be more than one the maximal reductions for
a given τ .

Consider three special classes of rules:

Rs ⊆ R : r ∈ Rs ⇒ r = (a↔ ε)

Rz ⊆ R : r ∈ Rz ⇒ r = (ab↔ b)

Rc ⊆ R : r ∈ Rc ⇒ r = (ab↔ ba)

R with a subscript consisting of a combination of letters
s, z or c defines which types of rules Rs, Rz or Rc are
included in R.

Problem 1: Given < = (E∗,→Rzc
) and τ ∈ E∗. Does

there exist a maximal reduction τM for τ in <?
We are not only interested in decidability of Problem 1,

but also want to get an efficient algorithm computing τM .
Problem 2: Given < = (E∗,→Rc) and τ = aσb ∈ E∗.

Does there exist τ1 = σ′abσ′′ such that τ →∗Rc
τ1?

For both problems, in case of positive answer, the question
of decision procedure complexity will finally appear.
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