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1 Introduction

A challenge crossing diverse scientific domains is the segmentation of sequential data into sub-
sequences that are significant for the analysis of the domain at hand. In this paper we survey
computer models that aim to mimic music segmentation by human listeners. That is, models
developed to segment sequential encodings of musical data into sub-sequences that humans would
agree aid the cognition of the music the data describes. In other words, sub-sequences that are
‘cognitively plausible’.

1.1 Scope

We restrict the scope of our survey to automatic segmentation of symbolic (score-like) represen-
tations of monophonic music. We focus on automatic boundary detection of segments resembling
the musicological concepts of phrase and section. That is, computational models aiming to detect
the time points separating contiguous phrases/sections.

1.2 Application Domains

Segmentation of music data is important for many areas concerned with automated music pro-
cessing, such as:

• Music Information Retrieval, where automatically identified segments can be used to in-
dex large digital music collections [37], visualise and classify music [45, 62], and aid music
summarisation [28].

• Computational Musicology, where automatically detected segments can be used to aid or
complement theoretical analyses of music.

• Audio Engineering, where automatically detected segment boundaries can provide musically
meaningful markers for the editing of music recordings [103], and segment identification
can be used to develop of active listening stations [51] and lyric-to-music synchronisation
algorithms [116, 49, 67] in consumer electronic devices .

• Generative Arts, where segment identification can be used to create melodic and harmonic
schemata templates for automatic composition [29] and improvisation systems [102]. Also
segment boundaries can be used as markers for music-to-video/text editing and synchroniza-
tion [93].

In addition, computer models of segmentation are relevant to test theories and hypotheses in
fields like Music Psychology, Music Cognition, and Musicology.
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1.3 Contributions

This paper presents the following contributions in respect to previous surveys:

1. Perception-centred Taxonomisation: Previous research discussing computer models of
segmentation have often classified models in respect to the computer modelling approach
employed (e.g. ‘rule-based’ [89], ‘state approaches’ [92], or ‘memory-based’ [121]),1 resulting
in model classes where the aims, and perhaps more importantly, the possible interpretation
of segments identified by the models might not be immediately clear. Conversely, In this
survey we approach the taxonomisation and discussion of segmentation models primarily in
respect to which ‘perceptual cues’2 they attempt to model. While our taxonomy does take
into consideration technical aspects to organise models, such as the computer modelling
approach employed, we believe our focus on targeted cues makes the aims of the models
more explicit, hence revealing possibilities of integration between models, and highlighting
which aspects should be taken into consideration for model evaluation and comparison.

2. Survey of perceptual cues: Previous research discussing computer models of segmenta-
tion often list ‘principles’ (perceptual cues) observed in music cognition research that might
explain segment perception (e.g. [84, 88]). However, the list of principles is commonly incom-
plete, including only those cues directly related to the segmentation models being discussed.
On the contrary, in this paper we provide a survey of the literature on segment perception,
with the aim of establishing a more complete perceptual cue taxonomy, which we use as the
foundation of the taxonomosations of segmentation models in subsequent sections.

3. Survey of terminology: The literature on music segmentation comprises domains as
diverse as musicology, music cognition and perception, and music information processing
and retrieval. As it can be expected, the terminology employed in these domains has a
fair degree of overlap. However, there are still widely used terms that are inconsistent
across domains and thus obscure rather than clarify the purpose and aims of segmentation
models (e.g. the term ‘structural segmentation’, frequently employed in the literature of
music information retrieval). In this paper we present a survey of terminology, aiming to (a)
provide operational definitions concerning segments and segmentation, and (b) distinguish
among the different sub-areas within music information retrieval that are concerned with
segmentation.

4. Coverage: This survey is, to the best of our knowledge, the most extensive survey on
symbolically-encoded music segmentation models to date.

1.4 Document Description

In §2 we define and discuss all the terminology and fundamental concepts used in this survey. In
§3 we review experimental studies that have studied segmentation in an empirical setting, and
also summarise the theories proposed to elucidate the cognitive factors influencing music listening
(we focus on those concerned with segment perception). In §4 we taxonomise, describe, and
discuss computational models of segmentation for symbolic encodings of music. In §5 we discuss
evaluation methodologies, campaigns, and results of the surveyed computational segmentation
models. Finally, in §6 we present our conclusions.

1One exception being [84], which is closer to the way to taxonomise models presented in this paper.
2The musical factors that have been observed to trigger the perception of a segment boundary. Perceptual cues

are discussed in detail in §3.2.
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2 Music Segments: Definitions & Terminology

In this section we define and discuss all the terminology and fundamental concepts used in this
survey. In §2.1 we discuss basic terminology. In §2.2 we provide operational definitions concerning
segments and segmentation, in §2.3 we define the task and sub-tasks associated to the computa-
tional modelling of segmentation, and finally, in §2.4 we taxonomise and describe the areas within
music information processing that are concerned with segmentation.

2.1 Basic Terminology

In the following we define terminology from music perception and music theory used in this survey
to describe and discuss musical segments.

2.1.1 Terminology from Music Perception

In [17, 61] notions in music perception such as musical description, category formation, and iden-
tity/similarity have been discussed. The concepts established have been used in a number of
publications dealing with music analysis and music information retrieval. In the following we
summarise concepts defined in the aforementioned studied that are of relevance to this survey.

Entity: In cognitive science entities denote perceptually complete and distinct “things” [17], often
referred as objects in the visual domain and events in the auditory domain. In music theory event
type entities can be notes, chords, melodies, phrases, motives, or even whole pieces. We refer to
event entities more abstractly as either segments or streams. Segments refer to entities that are
perceived to be organised sequentially, such as notes, figures, phrases, sections, etc. Conversely,
streams refer to entities that can be perceptually distinguished from one another even though they
occur simultaneously, such as different voices in a polyphony, melody plus accompaniment, etc.

To categorise the different levels in which an entity can be described, we use the terminology
summarised in Table 1.

Term Definition

property Any premise that may be used to describe an entity [17].
attribute Specification that defines a property of an entity [17].
feature Attribute (or set of) that is salient, distinctive, and meaningful [61]. In this

context salience: noticeability of an attribute, distinctiveness: relative salience of
an attribute in a given context, and meaningfulness: attributes that are pertinent
in describing a set of entities in a given situation.

Table 1: terminology used within music perception to differentiate levels of description of entities.

2.1.2 Terminology from Music Theory

To categorise segments we employ terminology from music theory used to describe structural units
[98, 114, 113, 101, 119]. In Table 2 we collect definitions of basic structural units that are relevant
to this survey. The definitions collected provide information on the intended structural function
of the unit, as well as their approximate duration.
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Term Definition

note Basic unit of musical structure, notational backbone of the western music. Specifies
one musical event. Ranges from a fraction of a second to several seconds [98].

figure Smallest musical unit with individual expressive meaning. Roughly 2-12 consecutive
notes [114].

motive Occasionally used as synonym of figure. Normally there is a distinction: the mo-
tive is a thematic particle (representative of the music), while a figure is used for
accompaniment [114].

sub-phrase Any unit smaller than a phrase [101], similar in length to a figure.
phrase Aggregation of consecutive notes “expressing a complete musical thought” [114], or

“containing significant tonal motion” [101]. Roughly 4-8 measures in length [119].
form Overall architecture of a piece of music. Describes the layout of a composition as

divided into sections [98].

Table 2: Relevant terminology of structural units used in music theory.

2.2 Musical Segment and Segmentation: A Working Definition

In this survey we consider a segment as an entity that has a structural function in the perception
and cognition of music and segmentation as the process of abstracting segment entities during (and
after) the act of listening to music.

In this paper we survey computer models mimicking this human capacity.

2.3 Computational Modelling of Segmentation: Task & Sub-Tasks

2.3.1 Task

In this paper we consider the task of segmenting digital music files as the process of auto-
matically determining segments given a symbolic or sub-symbolic representation of a musical
piece/melody/part.3 That is, a computational segmentation analysis aims to automatically iden-
tify the structural constituents of a musical entity given as input. It is important to notice that a
segmentation analysis does not intend to fully describe the internal structure of the constituents,
nor to provide a complete description of the role of these constituents within the input musical
entity.4 Below we outline the type of segment attributes a computational segmentation analysis
aims to capture.

2.3.2 Sub-tasks

The sub-tasks associated to segmenting digital music files consist of one or all of the following:

(a) boundary detection, i.e. locate to points in time which divide two contiguous segments.

(b) boundary pairing, i.e. identify which pair of boundaries encompass a segment (in case the
perception of overlapping segments is assumed possible).

3The task of automatically detecting the boundaries of segment entities in digital music files has been commonly
referred to as segmentation [127, 84], but also as grouping [69, 88] and chunking [50]. The term “grouping” suggests
a part-to-whole modelling approach, where segment detection is the result of perceptually aggregating contiguous
musical events that represent a given musical piece at some predefined atomic level. The terms “segmentation”
and “chunking”, on the other hand, suggest a whole-to-part modelling approach. Thus, starting from a musical
piece described as a sequence of perceptually discrete events, segments can be identified by dividing the sequence
into partitions/chunks of neighbouring elements. Despite the fact the terms grouping and segmentation/chunking
by themselves do suggest a particular methodology to identify the sought-for segment entities, the computational
models surveyed using one or the other to describe their models do not necessarily adopt the methodology suggested
by the term. In this survey we consequently consider the terms as interchangeable.

4This type of analysis is has commonly been referred to as ‘shallow’ parsing in the field of natural language
processing, to differentiate it from ‘deeper’, i.e. more exhaustive, types of structural analysis.
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(c) segment granularity level identification, i.e. identify the granularity level of the segments (in
case the perception nested/hierarchical segment organisation is assumed possible).

(d) segment labelling, i.e. categorize segments in respect to their relationship with other segments.
For example, using a letter label (e.g. A, B, etc.) to designate all segments with similar musical
characteristics, or using a semantic label (e.g. stanza, verse, antecedent, etc.) if structural
stylistic conventions are assumed.

An example of the segmentation of a simple melody is depicted in Figure 1. In the figure,
segment boundaries are represented as downward arrows. Two nested segment layers are illustrated
using horizontal curly brackets, and letter segment labels are used to categorise segments at the
two layers.

a b

A

Figure 1: Example of segmentation in a simple melody. The analysis depicts a hierarchical ordering
(bottom-to-top) of two levels of segment granularity.

2.4 Computational Modelling of Segmentation: Research Areas

In §2.4.1 we define which segment granularities have been targeted by the surveyed computer
models of segmentation. Subsequently, in §2.4.2, we list and describe areas of research dealing
with segmentation within music information retrieval.

2.4.1 Segment Granularity Targeted by Computer Segmentation Models

The time-span of a segment, has a strong influence on its perception and structural function,
making it necessary to define a time scale or ‘granularity’ when attempting a segmentation anal-
ysis. To classify computer segmentation models in respect to segment granularity, we resort to
terminology from music theory employed to designate structural units. In Figure 2 we present a
parallel between structural units of western music theory and different aspects associated to the
perception of musical time scales.

supramacromeso
basic
eventmicro

yearsminssecs100
msecs

form

days

phrase
sub-phrase

hours

note

45
msecs13

msecs

perception
action&

Musical
Time-scales

common duration
of a composition

(2-15 m)
recognition of
intrumental timbre

threshold of
pitch perception human

lifetimesample
waveform

fastest repetitive
human gestures
(~12 Hz)

~22
µ secs

music-theory
analytical
constructs

musical

∞∞

Figure 2: Broad view of musical time scales. The figure and definitions within have been adapted from
[98, pp. 3–6].

The work on computer modelling of segmentation surveyed in this paper focuses mainly in
the meso and macro time scales of music. As it can be seen in Figure 2, these time scales
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comprise segments ranging from note events to form. In this section we mainly discuss three
segments granularity classes: relatively-short (referred as subphrase-level), medium-sized (referred
as phrase-level), and relatively long (referred to as form- or section-level).

2.4.2 Areas of Research in MIR

The granularity classes discussed above have given rise to an equal number of segment infer-
ence areas. These areas can be organized by the level of detail and abstraction required in their
specific application scenarios. Here we describe three different ones: motif discovery (often at
subphrasel-level granularity), melodic segmentation (often at phrase-level granularity), and struc-
tural segmentation (often at form-level granularity),5. These areas are defined in Table 3.

Term Meaning

melodic segmentation Focuses on segment boundary detection on monophonic music (most often
melodies). Segment granularities targeted are commonly at the phrase and
sub-phrase level. Analysis assumes phrases do not overlap, and hence boun-
dary pairing is not necessary. The resulting set of segments must exhaustively
subsume all melodic events.

motif discovery Focuses on segment boundary detection on monophonic and polyphonic music.
Segment granularities targeted are commonly at the sub-phrase level. The
analysis assumes segments do overlap, and hence boundaries need to be paired.
The analysis also attempts to identify perceptually salient segments (‘motives’
in terms of music theory), and thus segment labelling and filtering is also
required. The resulting set of segments is not required to subsume all the
events events constituting the piece of music.

structural segmentation Focuses on segment boundary detection and segment labelling mainly of poly-
phonic music. Segment granularities targeted are commonly at the section
level. Analysis assumes sections do not overlap, and hence boundary pairing
is not necessary. The resulting set of segments must exhaustively subsume all
the musical events constituting the piece of music.

Table 3: Some areas of computational segmentation.

Other tasks in music information processing and retrieval might also be seen as ways to seg-
ment music: finding note onsets/offsets or chord boundaries as part of transcription systems,
finding metric bars, identifying instants/regions with certain affective qualities (e.g. points of high
‘tension’ or sounding ‘triumphant’). Yet, in this survey, we are concerned with segments which
are sequentially coarser than individual notes or chords, and we consider that segments delimited
by bars or bounding regions with an specific affective content do not always comply with our defi-
nition of segments (for a short description and discussion of metric induction and other perceptual
structuring processes that work in parallel or in combination to segmentation see Appendix A).

5Computer segmentation models targeting the segmentation of music recordings commonly employ the term
“structural segmentation”, which in itself might imply many (or all) segment granularity levels, yet as observed in
[84], the segment granularity and time scale of analysis has been approximately the same in surveyed publications,
and refers to musical form.
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3 Segment Perception

In this section we define, taxonomise, and comment on musical ‘cues’ hypothesised to influence
segment boundary perception. Our main goal is to use the taxonomy of cues to classify computer
models of segmentation in subsequent sections.

In §3.1 we first provide an operational definition of segment boundary cue, and subsequently,
in §3.2, introduce a taxonomy of segment boundary cues. Both the definition and taxonomy are
based mainly on theoretical work on segment perception as well as intuitions of scholars from music
theory. In §3.3 we provide examples of phrase-level and form-level segment formation. In §3.4 we
summarise and discuss observations made in respect to the cues included in our taxonomy, focusing
on the number of cues observed, the ways in which cues seem to interact, and how stable they
might be across different listeners. Finally, in §3.5 we outline section conclusions in respect to how
these cues are relevant for computational modelling of phrase-level and form-level segmentation.

3.1 Segment Boundary Cues: Definition

In this survey we employ the term boundary cue to refer to the musical factors that suggest to
the listener the temporal location of a given segment boundary. In the words of Deliège [34, p.
214]:

“A cue should [...] facilitate the formation of [...] groups at various [...] levels and
enable the totality of the work to be circumscribed. These cues are nothing other than
input tags. Most of them are temporary and fleeting.”

To provide an operational definition of boundary cue we resort to basic terminology of music
cognition (such as entities, attributes, and so on, see Table 1, Appendix 2.1.1). Prior to our
definition is important to reiterate that we focus on the messo and macro time scales of music, with
segments granularities coarser than individual basic musical events (coarser than notes in music-
theoretic terms).6 At these granularities we can expect segments to have internal organisation
dependent on constituent segment entities. That is, segments at one level of granularity can be
decomposed into sequences of segments at finer granularity levels.

With the previous in mind, we define a boundary cue as a relationship perceived between (two
or more) musical entities. The relationship can be ‘categorical’, e.g. the assessment of similarity
or dissimilarity between two melodic motive entities, or ‘functional’, i.e. the functional association
of an entity in respect to contextual factors, arising from the same piece or from previously heard
music (such as hearing an entity as being stressed due to its metrical position, or the recognition
of a specific tonal cadence). In Figure 3 we provide a visual depiction of boundary cues.

Cue
Musical Entity

Cause of boundary perception

Musical  Entity
Relationship

Contextual musical factors  

Relationship

musical piece being listened to
start end

a given extension of time
( (

( (

Cue

Figure 3: Diagram depicting boundary cues.

6In this section we consider only music related cues, therefore excluding, for example, cues related to linguistic
factors in vocal music, such as the possible influences that word co-articulation (or the phrase and syntactic structure
of the text) have in vocal melody segmentation.
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3.2 Segment Boundary Cues: A Taxonomy

In Figure 4 we present a taxonomy of segment boundary cues hypothesised to influence segment
perception at the messo and macro time scales (from sub-phrases to sections). Our taxonomy
draws from traditional (e.g [69, 82]) as well as more recent (e.g. [50, 56, 7]) theories of music
and segment perception (all briefly described in Appendix B). In Figure 4 we present a segment
boundary cue as a an {Entity, Relationship} dupple. We provide information of the source (per-
ceived in the piece being listened to or in respect to previously heard music), the relationship-type
(the cause or ‘trigger’ of boundary perception, highlighted using a bounding-box in the figure),
and a general description of the musical entities involved (attribute-class of the relevant feature
describing the entity, and the approximate time span of the entity). We elaborate on each of these
aspects of our taxonomy in §3.2.1 and §3.2.2.

closure
continuation

sameness
difference

Source
Attribute Class

due-to

Segment Boundary Cue

performance
related

composition
related

stimulus
(piece being listened to)

schema
(previously heard music)

tonal

entities >= a figure

templatesidiomatic

entities <= 2-3 notes

closure
continuation

Musical Entities

gap

contrast between

between pitch
timbral
dynamic

rhythmic

tonal
pitch
rhythmic

timbral
rhythmic

dynamic
due-to

rhythmic
pitch
harmonic
timbral

Relationship-type
Time-Span

feature-in

feature-in

entities >= a figurefeature-in

entities >= a figurefeature-in

entities >= 2 notesfeature-in

entities >= a phrasefeature-in

others **

timbral
dynamic

between

metrical&

Figure 4: Taxonomy of cues influencing the segmentation of music. The taxonomy is organized left to
right. Each taxonomisation class is highlighted in bold on the top. Concrete examples how cue causes
affect the perception of segments are given in §3.3. All cues listed are hypothesised to occur in both
polyphonic and monophonic music. Cues stressed with ** are not discussed in §3.2.1.

3.2.1 Entity Description and Source

Entity description: In our taxonomy we describe entities in respect to the attribute classes
which contain the relevant features for comparison, and the time-span of the entities. The musical
attribute classes considered in the taxonomy are described using standard terminology of music
theory. However, one exception can be observed, a class we have termed ‘idiomatic templates’,
which refers to segment structures found often enough in a given style to allow human listeners to
form or abstract templates of these strucutures. Idiomatic templates are often at the level of form
(e.g. verse-chorus form in pop, or strophic form in folk), but can also refer to global aspects of
segments (e.g. prototypical pitch contours of melodic phrases). The time-span of entities consid-
ered is relatively brief (single intervals or at most 2-3 consecutive notes) or larger (such as figures,
motives, phrases, or longer entities).

Source: We distinguish the information source from which the attributes describing the entities
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relevant for cue formation are abstracted. We classify the source of information as stimulus
(internal) or schema (external) to the piece being segmented.7 In the case of stimulus-related cues,
the taxonomy distinguishes between composition-related and performance-related cues. The former
refers to the case where the attributes used to describe entities are observable in conventional
western music notation, and the latter to the case where the attributes are related to performance
expression and body gesture.

3.2.2 Segment Boundary Cues

Below we describe the two aspects of cues as a {Entity, Relationship} dupple.

Relationship-types: We sort cues according to the terminology employed in the literature to
verbalize the cause of boundary perception, i.e. the relationship-type between entities. In our
taxonomy we employ four terms (presented as a pair of dualities) to denote the cause of a cue:
sameness/difference [33, 6], and closure/continuation [81, 78]. Both sameness/difference and clo-
sure/continuation involve the assessment of a relationship between entities, the main distinction
between the two is that the former places emphasis on the entities themselves, while the later
places emphasis on the function of an entity in a given musical context.

Sameness/difference relationships: are related to semiotic paradigmatic analysis.8 A paradig-
matic analysis of a piece involves the examination of similarities (sameness) and dissimilarities
(difference) between musical entities perceived within the piece [6]. We distinguish two types of
differences, dependent on the time scale for the entities to be perceived, and the temporal proxim-
ity between entities. For brief and temporally-proximate entities differences are perceived as gaps
in the flow of music, while for larger and not necessarily temporally-proximate entities differences
are perceived as a contrast in musical material, i.e. a perceptually noticeable deviation of one or
more attributes describing an entity discerned earlier within the current segment.

Sameness/difference examples: An example of a sameness cue is the recognition of a
melodic figure listened to earlier in the piece. An example of gap type differences are musical rests
or caesura, and, in the case of performance related in formation, vocal breaths. An example of a
contrast type difference is the perceived contrast between two rhythmic motives characteristic on
segment, e.g. a galloping rhythmic pattern and a ‘shuffle’ rhythmic pattern.

Closure/continuation relationships: are, on the other hand, related to semiotic syntagmatic
analysis. A syntagmatic analysis of a piece involves the examination of local functional relations
between musical entities found within the piece [6].9 Functional relations between entities relevant
to segmentation have been commonly formulated in respect to musical expectation. Points of
conclusion are hypothesised associated to a disruption in expectation [90], and conversely points
of continuation are associated to generation of expectation [59, 111].

Closure/continuation examples: An example of a point of closure is the identification of
the end of a cadence. An example of a point of generation of expectation is the recognition of a
chord progression common within a style.
As a final note, is important to stress that although we explain and depict sameness/difference
and closure/continuation cues separately, this by no means is intended to suggest that these two

7 The distinction between information from the piece being listened-to and information from previously heard
pieces is recurrent in the literature of computational models of music perception, with Justus and Bharucha [64]
referring to this as veridical or schematic knowledge, Crawley et al [31] classifying parsing modes into stimulus- or
scheme- driven, and Pearce et al [88] proposing the use of short- and long- term models for data-driven segmentation.
In this document we use the terminology of Crawley et al [31].

8Sameness has also been often referred to as musical parallelism in the literature of music cognition and symbolic
music research [69, 15] (see GTTM’s grouping rule 6 in Table 11), and self-similarity (or plainly repetition) in the
literature of segmentation of musical audio [84].

9It seems pertinent at this point to stress that while the assessment of the ‘relationship type’ between two entities
is local, the source of knowledge required is commonly non-local (related to the previous exposure to music of a
given listener as well as entities that might be located far apart within the piece).
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cue groups are independent. In fact, quite the opposite, it has been noted a number of times (e.g.
in [74]), that local functional relationtips are most likely to influence our perception of similarity.

3.3 Boundary Cues in Musical Phrases and Sections

In Figures 5 and 6 we present two examples of how the cues listed in our taxonomy might help
shaping phrase-level and form-level segments, respectively.

3.3.1 Boundary Cues in Phrases

First, in respect to phrase-level segments, Spiro [111] provides a classification of the structure
of (mostly polyphonic) phrases in Common Practice Period music. Spiro distinguishes between
simple (non-overlapping) phrases and complex (overlapping) phrases. In Figure 5 we present a
diagrammatic view of a prototypical simple phrase, which we comment and explain below.10

closure
continuation

closure
continuation

sameness
difference

(contrast)
difference

(gap)

START MIDDLE END

musical piecestart end

previous segment subsequent segment( (

( (

GAP

Figure 5: Anatomy of a ‘simple’ phrase-level segment (based on the work of Spiro [111, ch. 13]). In the
diagram a musical piece is depicted as a bounded-time line, a slice of time of the piece is depicted using
parenthesis, and three subsequent phrase-level segments within the time slice are depicted as rectangles.

In the following we elaborate on the sections identified in Figure 5 :

• START: The phrase start refers to a region including the ‘first few’ notes of a phrase.
According to Spiro “The phrase start can establish the thematic and tonal centre of the
phrase” [111, p.402]. In our diagram, we associate phrase starts to sameness/difference type
cues. In respect to sameness, it has been proposed that recognizing the first few notes of an
entity spotted earlier in a piece (e.g. a melodic figure), may help identifying, in retrospect,
the starting point of a new phrase [2, 15]. Similarly, identifying contrasts between contiguous
phrases (e.g. a change of key or a change of instrumentation), has been seen to, again in
retrospect, help the identification of the starting points of phrases [27].

• MIDDLE: The phrase middle refers to the section of the phrase where an expectation for
the end begins. This seems to be mostly determined by continuation type cues (e.g. voice
leading), which give a sense of ‘direction’ to the evolution of music and thus might cause
listeners to generate expectations of the overall length and point of conclusion of a phrase.

• END: The phrase end refers to a region including the ‘last few’ notes of a phrase. Spiro
considers phrase ends to be determined mostly by closure/continuation type cues, hypoth-
esising that the starting point of the END region is perceptually identified when there is a
clear expectation for the end. This might be cued, for example, by the identification of the
beginning of a cadential progression (a continuation type cue in our taxonomy). Spiro argues
that the end point of simple phrases is most often cued by the music-theoretic concept of
resolution11 (which corresponds with a closure type cue in our taxonomy). We would add
to her observations that the presence of performance-related cues might also be of signifi-
cance for END region perception, e.g. it would agree with intuition for the combination of

10Spiro’s complex phrases are not straightforward to summarise and are therefore left out of this example.
11Move from a dissonant or unstable sound in respect to the local key, to a consonance or stable sound in respect

to the local key.
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expressive tempo fluctuations (e.g. a ritardando) and a gradual change in dynamics (e.g.
a decrescendo) to both generate expectations for the end of a segment, and give a sense of
closure marking the end of a segment.

• GAP: Spiro proposes GAP as a delimiter which may be found after the end of a phrase. We
identify GAP with our difference of type gap cue. Spiro argues that gap related cues do not
inform the listener of aspects of a phrase, and thus can not be considered as determinant of
the internal structure of a phrase.12

3.3.2 Boundary Cues in Sections

For our second example, this time in respect to form-level segments, we refer to Deliège [34]
Deliège proposes form-level segment formation (in non-tonal music) as a bottom-up recursive pro-
cess. The recursive process starts by identifying relatively brief segments (sub-phrases, phrases),
and then organise the identified segments into larger segments (sections). Deliège argues that
brief segments are mainly determined using gap related cues, and that larger segments are cued
by sameness and contrast. Deliège suggests that sameness is used to perceptually ‘cement’ seg-
ments, and contrarily that contrast is used to ‘demarcate’ segments. In Figure 6, we present
a diagram illustrating this paradigm. Even though Deliège hypotheses are tested only on non-
tonal polyphonic music, there is some supporting evidence for her hypotheses holding in Common
Practice Period music [27]. Also, a similar (yet more elaborate) paradigm has been proposed by
Bimbot et al [6] for Pop music segment annotation.

musical piecestart end
( (

( (sameness

difference
(contrast)

previous segment subsequent segment

Figure 6: Form-level segment formation (based on the work of Deliège [34]). In this diagram a musical
piece is depicted as a bounded-time line, a slice of time of the piece is depicted using parenthesis, and
three adjacent form-level segments within the time slice are depicted as rectangles. The two smaller
rectangles represent segments at one level (phrases), while the larger rectangle enclosing the two smaller
ones represents segments at at a higher level (sections).

3.4 Empirical Work On Testing of Boundary Cues

In this section we discuss observations made in listening studies of segmentation with respect to
segment boundary cues.

The perceptual studies surveyed in this section are summarised in Table 4, page 15. The table
contains information of: (a) the study (focus, etc.), (b) the stimulus (duration, etc.), (c) the test
subjects (number of subjects, etc.), and (d) the results (type of cues observed, etc.).

We centre our discussion of the surveyed studies in respect to segment boundary cues (§3.4.1),
and how consistent human subjects are when segmenting music (§3.4.2). In our discussion we also
refer to comparative studies of computational models of melody segmentation (Table 10, page 32),
and three other survey publications [36, 115, 91] of music segment perception.

12Spiro sees gaps as the equivalent of ‘white space’ in written language, so that just as white-space is not
informative of a word’s morphology, she considers gaps not informative of a phrase’s morphology.
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3.4.1 General Observations in Relation to Boundary Cues

We approach our summary of observations of segment cues by attempting to give answers to the
following questions:

How many cues are commonly at play when listening to music?

- The average number of distinct cues reported to influence boundary perception for pieces longer than
5 minutes is normally larger than 10 [27, 110, 12]. In short excerpts (≈ 30 seconds or less), normally
8-9 cues have been observed [34, 35].

(Cue Importance 1) Which cues seem to be used most often by listeners to determine segments?

To determine how often a cue is employed by a subject, perceptual studies either ask participants to
give a description of the cues they employed for each boundary (e.g. [12]), or collect music where the
locations of potential cues are known, and then during analysis the researchers check if the location of
annotated boundaries coincides with the location of a potential boundary cue (e.g. [33]). In respect
to this we can observe:

- Cues used more often seem to be those associated to temporal proximity gaps, primarily in respect
to musical silence (rests, caesura, vocal breaths, etc.), and to a slightly lesser degree to prolonged
note durations. Temporal proximity gaps have been observed to cue phrase-level segment boundaries
in a range of (polyphonic and monophonic) musical genres, including Folk, Pop, Jazz, and Common
Practice Period.

- Also, in experiments using Common Practice Period music [34, 27], cues associated to gaps in timbre
and gaps in dynamics appear to play an important role.

(Cue Importance 2) is there evidence of a primacy effect of single cues over other cues? 13

Cue combination and primacy in a given situation is difficult to test empirically due to the natural
trade-off that arises between ecological validity (i.e. using ‘real’ music) and parametric control. Hence,
studies that investigate cue combination and primacy effects often employ artificial ‘music-like’ stimuli.
In these studies we can observe:

- A primacy of temporal gap cues (prolonged durations) and dynamic gap cues over pitch proximity gap
cues in artificial monophonic tone sequences [126].

- A primacy of temporal gap cues (musical silence) over sameness cues (pitch patterns) in artificial
monophonic tone sequences [36].

(Cue Importance 3) Is there evidence of primacy of a given cue class over other cue classes? (i.e.
stimulus (composition, performance), or schema)

- In respect to stimulus (score) related cues and schema related cues, perceptual studies have found no
definitive evidence which might suggest primacy of one class over the other. The class and number of
cues have been observed to vary for each perceived boundary within a stimulus, and the importance
of each cue involved has also been observed to vary: “cues can be of several kinds [...] it is the specific
instance which is the determining factor” [34, p. 228]. In computational research of segmentation,
cues derived directly from the stimulus are often considered of higher importance than those reflecting
scheme derived information [15, 43, 86]. Notwithstanding, in [106, 8] the authors show the strong
importance of style specific listening experience in vocal folk songs, evaluating the influence of having
internalised the segment structure of previously heard pieces.

- In respect to stimulus (performance) related cues, it has been observed that, while the positions of
boundaries tend to be determined primarily by stimulus (composition) related and schema related
cues, it seems that performance related cues can have an effect on the overall number of boundaries
listeners perceive [112].

13 Is a particular cue preferred when a conflict between two or more cues occur (where by conflict we mean that
to cues might be suggesting different groupings).

12



3.4.2 Observations in Respect to Test Subject Behaviour

We approach our summary of test subject behaviour by giving answers to the following questions:

Are human listeners self-consistent in detecting segment boundaries and labelling segments?

- Subject annotation self-consistency, i.e. whether subjects agree with their own boundary annotations in
subsequent trials of an experiment, has not been broadly investigated. However, some studies suggest
that subjects are only moderately self-consistent when annotating segment boundaries for Pop [11,
Ch.2] and Common Practice Period music [112].

Do human listeners agree with other listeners in detecting segment boundaries?

- Boundary locations with high inter-annotator agreement (IAA) are normally reported to correspond
to form-level boundaries. For phrase-level granularity, on the other hand, the level of agreement seems
to be linked to the complexity of the melodies. As an example, high IAA was observed in the study of
de Nooijer [32, 127] where pop melodies where used for testing. Conversely, the studies of Thom [121]
and Pearce [88], in which the test sets included jazz and classical melodies, report low IAA.

- Performance related cues influence IAA in such a way that perceived segmentation between two per-
formances of the same piece may vary in both the number of boundaries and the position of those
boundaries, in a manner proportional to the number of cues present in the music (i.e. the more boun-
dary cues, the higher the variation) [110].

Does musical training influences segment perception?

- Musical training seems to not have a big influence between musicians (subject plays an instrument)
and non-musicians (subject does not play any instrument). On the other hand, between degree-level
musicians and non-musicians the studies surveyed report contradictory findings. As an example we
can mention Deliege [33] who reports that non-musicians present a lower fit to GTTM principles than
musicians, while Schaefer [106] reports the opposite. Also, in respect to the amount of segments iden-
tified by each type of subject, e.g. Deliège [33] observes that non-musicians perceive more boundaries
than musicians, while Spiro [110] reports the opposite.

3.5 Section conclusions

3.5.1 Directions for Computational Segmentation Models

Studies have mostly investigated cues in non-tonal music, common practice period music, folk,
and pop. In these genres, a number of boundary cues have been identified which we have grouped
into families in our cue taxonomy (Figure 4). Perhaps more importantly, listening studies point to
the diversity of cues, and diversity of situations in which a boundary cue might take precedence
over others. Hence, these studies point to the need of models that are able to include more than
one cue, and to combination mechanisms that are able to adapt to specific circumstances . That
is, model cue ‘prevalence’ as a dynamic process that reacts and adapts as musical circumstances
change. The modelling of this dynamical process needs the simulation of both real-time and
retrospective listening, as well as information gathered from multiple listens of a piece and from
previously heard music.

How many sources of information might we need to model boundary detection computationally?
It seems that, for metrical music, beat level information has a big influence. For tonal music, tonal
and harmonic14 factors seem to be of importance. For both tonal and non-tonal music, subphrase-
level segments (figures and motives) seem to be the entities upon which we perceive something
being the same or different. Also for tonal and non-tonal music, conventions of style regarding
segments, i.e. length, functional templates (phrase rhythm in jazz, sonata form for sections) -
it seems that when a listener is aware that the music (s)he is listening to belongs to a specific
style, the listener uses stylistic conventions to disambiguate possible segmentations that might be
suggested by different cues.

14Both explicit (present in polyphonic music) or implied (suggested in monophonic music through voice leading
and other methods).
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3.5.2 Future Directions Perceptual Studies

Below we discuss future directions regarding perceptual studies. We divide our discussion in
respect to studies focusing on testing a statistically significant number of participants (under
‘listener studies’), and those focusing on coverage (under ‘corpus analysis of segmentation cues’).

In respect to listening studies: In Table 4 we can see that, from the mid 1990s onward,
perceptual studies have normally employed ‘ecologically valid’ stimuli (i.e. audio recordings
or music synthesised including performance related information). However, using ecologically
valid stimuli is non-trivial to test (a) how and when cues combine, and (b) in which situations
one cue might take precedence over others. Consequently, there is a need to complement
perceptual studies that employ audio recordings or expressive synthesis with perceptual studies
in which stimuli can offer a greater degree of control (i.e. permit parametric manipulation, and
allow to focus on a relatively small amount of musical dimensions). As an alternative, [94, 1]
proposed to use minimalist music as a test bed for perceptual segmentation studies, arguing
that the systematic compositional strategies used to create these works offer a good trade-off
between ecological validity and the need for focused, controlled test environments. Moreover,
the systematic processes employed for the creation of minimalist works allows to generate new
musical material for testing.

Corpus analysis of segmentation cues: The number of studies investigating the generality
of principles hypothesised to act as cues of boundary perception in freely accessible annotated
corpora is not large (we are aware of only three studies [100, 108, 10]). While the fact that
boundary indications in large corpora commonly represent the perception of only a handful
of annotators does limit the validity of the conclusions of such experiments (on their own),
if these experiments are seen as a complement to (the previously discussed) listening studies,
corpus analysis can be used to refute or support observed segment perception behaviour. Some
aspects that have been already studied in corpus based analysis are: statistical evidence for
the presence of closure related cues at melodic phrase-ends in vocal melodies [10], statistical
evidence for the presence of pitch and duration gap-related cues at melodic phrase ends in
vocal melodies [100], statistical evidence for the presence of contrast related cues in polyphonic
pop music [108]. Some questions that could be addressed in corpus based studies are: the role
of pitch expectation in pitch related discontinuity perception at melodic phrase boundaries, or
the role of motivic pattern repetition for both melodic/polyphonic form/phrase boundaries.
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Table 4: Perceptual studies of monophonic & polyphonic segmentation. Fields (columns from left to right): Authors - of the perceptual study, Date - of publication, Focus -
main topic of experimental research, Segs - segment granularity addressed, Test set - number and type of music used as stimuli, Texture - Monophonic|Polyphonic|Homophonic texture of
stimuli, Genre - of stimuli, Duration - of stimuli, Format - in which stimuli was presented, Q - onsets & durations are quantized (yes|no) # - number of subjects, E - degree of musical training
(DL, M, N, I), Cues - number and type of segment cues described by subjects, ATA - reported level of agreement across different trials of experiment for a single subject, ASA - reported level
of agreement across different subjects for stimuli, Conclusions - of study, Abbreviations: record - audio recording, synth - synthesised audio, EX - experiment number, DL - degree level
musician, M - amateur musician, N - non-musician, SR - cues observable in a conventional western score, PR - performance-related cues, ATA - across trial agreement, ASA - across subject
agreement. Symbols: X- yes, × - no, 	 - not clearly specified, � - does not apply.

Study Stimulus Subjects Results
Authors Date Focus Segs Test set Texture Genre Duration Format Q # Training Cues ATA ASA Conclusions

Deliège et al [33] 1987
experimental testing of
GPRs 2a,b & 3a,b,c,d plus 2
extra rules

phrases

EX1: 32 phrases
EX2: 108 artificial
sequences

H
M

baroque
classical
romantic
early 20th C

EX1: 3-16
notes
EX2: 9 notes

record

synth
�
X

60 M,N 8 SR � fair

N subjects less in agree-
ment with GTTM,
differences between M

and N are “not abismal”.
Observed several conflicts
among rules.
Suggested the use of extra
rules is necessary.

Deliège [34] 1989 recognition of form
in complete pieces

form 2 pieces P mid 20th C
≈ 7 mins
≈ 9 mins

record �
EX1:36
EX2:32
EX3:24

DL,N 	 � �

No difference between M

subjects and NM subjects.
No evidence of invariants.
Caesura is a strong cue.

Clarke et al. [27] 1990
perception of temporal
organization on
relatively large pieces

form 2 piano pieces P mid 20th C
classical

≈ 10 mins
(both)

record � EX1:23
EX2:24

M

M,DL
14 SR,PR
10 SR,PR

� �
Segmentation criteria
broadly consistent with
GTTM grouping rules.

Deliège et al. [35] 1996 identify salient elements
in a piece (cues)

� 1 piece P
early
romantic

16 bars
(30 sec)

record � 7 N 9 SR fair �

Surface cues dominated
segmentation of piece.
Presence of cue does not
warrants salience (context
dependent).

Weyde [124] 2003
assess combination of
cues for melodic
segmentation

2-3
notes,
phrases

EX1: 25 artificial
sequences
EX2: 20 artificial
sequences

M �
EX1: 12 notes
EX2: 6-7
notes

synth X EX1: �
EX2: 6

EX1: �
EX2: M

ex1: 3 SR

ex2: 7 SR

�
�

�
fair

Linear model inadequate
for segment cue combina-
tion.

Schaefer et al. [106] 2004 exceptions to
Gestalt principles

phrases
10 children’s
songs

M folk
30.95 secs
average

synth X 30 DL,M,N � 	 �

Difference between DL

and N is significant
Structural grouping mech-
anisms are influenced by
musical experience.
DL rely on experience, N

rely on Gestalts.

Spiro [110] 2006
study performance-related
segmentation cues

phrases
5 pieces
(2 performances
of each)

M,P
baroque
classical
romantic

excerpts record � 45 DL,M,N
13 SR

2 PR
� fair

PR do affect boundary
location perception.
Perceived locations where
PR are active vary accross
performances.

Weyde [126] 2007
assess role of pitch inter-
vals for melodic segmenta-
tion

2-3
notes

150 artificial
sequences

M � 12 notes synth X 10 M ex1: 4 SR
�
�

�
fair

size of pitch intervals have
little influence in segmen-
tation, when compared to
timing and dynamics.

Bruderer et al [12] 2009 characterize temporal
boundaries in western pop

phrases
sections
passages

6 songs M pop 5 mins
average

synth × 21 M,N
> 50 SR

> 3 PR
fair low

Salience ratings are con-
sistent, indicated by
voting agreement.
Correlation to Gestalt
based predictions is mod-
erate.
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4 Segmentation Models of Symbolic Encodings of Music

In this section we taxonomise, describe, and discuss computational models of segmentation. In
§4.1 we start by establishing the scope, motivation, and task definition of symbolic segmentation
models. In §4.2 we continue by outlining the fundamental characteristics of a prototypical com-
putational model of monophonic music segmentation, aiming to provide the reader with a general
idea of its input/output behaviour, as well as pre/post processing stages. Finally, in §4.3 we clas-
sify and discuss models of segmentation of symbolically-encoded music.

All the models surveyed in this section have been summarised in Tables 5, 8, & 9.

4.1 Scope and Task Description of Symbolic Music Segmentation

Type of music: Most computer models of segmentation surveyed in this section have focused
on the segmentation of monophonic music, i.e. music where elementary structural events are
perceived as organized in a strictly sequential fashion. What is more, nearly all have constrained
their scope to the segmentation of melodies. Melody segmentation models have been most often
tested on vocal folk music.

Level of Music Representation: The segmentation models reviewed in this section also as-
sume that the input is represented in symbolic form, i.e. any computer readable format where
basic events correspond roughly to notes as notated on a score. This assumption is commonly
justified arguing that monophonic music seems to be mentally represented in a way comparable
to conventional western notation [80].

Task: To infer segment boundary positions, i.e. locate time points that divide adjacent seg-
ments. The models reviewed in this section assume segments do not overlap and hence is not
necessary to distinguish between starting and ending boundaries. Also, in general no labelling
of segments is required, yet some symbolic segmentation models also define a hierarchy of the
resulting segments (e.g. [55, 130]).

4.2 I|O Description of a Melody Segmentation Model

In this section we describe the most generally employed pipeline in segmentation models starting
from symbolic input (depicted in Figure 7). Due common constrains and limitations acknowledged
in §4.1, the described pipeline corresponds to that of a melody segmentation model. We focus on
the description of the input, output, and pre/post processing stages of the architecture. The
boundary detection models are classified and described in §4.3.

inputinput outputMelody Segmentation Model
pre-processing post-processing

Model
Boundary Detection

0 0 0 1 0 00 0

a priori info

72 120 144 192 216 264 28848
121143 191 215 263 287 33571
67 69 67 66 67 69 6766

onset :
offset :
cpitch :

e1 . . . ei . . . eN

48 24 48 24 48 24 4824ioi :

1 2 -2 -1 1 2 -2cp-iv  :
7 9 7 6 7 9 76pcls  :

67 69 67 66 67 69 6766cpitch :

e1 . . . ei . . . eN

e1 . . . ei . . . eN

e1 . . . ei . . . eN

Figure 7: Input-output diagram of a prototypical computational model of melody segmentation. From
left to right: input: melody and piano-roll representation, pre-processing stage: attribute computation,
boundary detection model, post-processing stage: peak picking, output: boundary list where a 1 represents
a border.

4.2.1 Input:

The input to a melody segmentation model typically consists of a sequence of temporarily ordered
note events e = e1, . . . ei, . . . , eN . In e each note event is commonly represented by a discrete pitch,
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an onset time, and an offset time, i.e. if we take ξ to be a discrete and finite event space and ⊗
as the Cartesian product operator, then ei ∈ ξ = pitch⊗ onset⊗ offset.15 This representation
is commonly referred to as “piano roll”. A depiction of a piano roll type input can be seen in the
far-left of Figure 7.

4.2.2 Pre-processing:

During pre-processing the melodic sequence is normally converted into a number of parametric
attribute profiles, hypothesized to hold higher perceptual relevance. The profiles are represented
as a set of sequences of size M, xk = x1, . . . , xi, . . . , xM , where k denotes the attribute (e.g.
chromatic pitch, inter-onset-interval, etc.), i ∈ {1, 2, . . . ,M}, and M ≤ N . A depiction of the
melodic sequence represented as a set of parametric profiles can be seen as the first stage of model
of Figure 7. A common choice of attribute profiles describe melodies as a sequence of chromatic
pitch intervals and inter-onset-intervals. Some segmentation algorithms might also attempt an
estimation of attributes corresponding to higher levels of description, such as representing pitch
information in respect to a diatonic scale, or as a scale degree (e.g. in [23, 2]), or estimating a
metrical rather than an event-based description of time (e.g. in [118, 5]). Given that the estimation
of higher level attributes is generally non-trivial, some algorithms assume that this information is
known a priori or that is supplied by the user (e.g. in [18, 23]).16

In Table 7, we define and classify melodic attributes employed by the computational segmen-
tation models reviewed in this paper. The classification considers three levels of description (low,
mid, high), based on the attribute taxonomisation proposed in [70]. The attributes are moreover
organized into rhythmic, pitch, density, metric, harmonic, and tonal categories.

4.2.3 Post-processing:

As a post-processing step, many of the surveyed algorithms compute what can be described as a
segment boundary profile (sbp) [13, 87, 122, 1]. A sbp is a vector of length N in which each element
takes a value = [0, a], where a is some finite upper limit that varies depending on the algorithm.
(A depiction of a sbp is provided towards the right end of Figure 7.) The interpretation of the
numerical value assigned to each note event position in a sbp is model-specific. As an example, in
Camboroupoulus’ LBDM [16, 14], numerical values correspond to the strength of duration- and
pitch- related ‘local discontinuities’, while in the case of Chew’s Argus [23] the values reflect the
amount of tonal contrast in a selected local context, and in the case of Pearce’s IDyOM [91, 87]
the values are related to the amount of (information-theoretic) surprise. As a consequence, the
aspects of the sbp that may indicate a segment boundary depend on the nature of profile itself,
so that boundaries might be associated to local maxima [16, 13, 18, 91, 87, 94], local minima
[91, 43], or points of inflection or discontinuity [44]. The process of selecting peaks/troughs/others
as boundary indicators has been commonly implemented computationally using heuristics. In
Appendix C we list commonly used heuristics.

4.2.4 Output:

The output of a segmentation algorithm generally constitutes a single list of boundary locations,
yet in some occasions it can be a ranked set of lists [5, 4] (each reflecting a different segmentation),
or simply a set of lists reflecting different possible interpretations of segment structure [2, 19].

A list of segment boundary locations is normally encoded in vector form as s =
(s1, . . . , si, . . . , sN ) ∈ {0, 1}N . In s value of 1 represents a segment boundary (whether the boun-
dary corresponds to the starting or ending point depends on the model). In general s1 and sN
are treated as trivial cases which correspond, respectively, to the beginning and ending notes of a
melodic phrase.

15Is common for melody segmentation algorithms to assume quantized duration values, i.e. that the onsets-to-
offset interval matches duration values used in score notation.

16Another type of a priori information that is on occasion required is that specific to melodic segment structure,
as for example an estimate for preferred phrase-level segment length (e.g. in [118]).
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4.3 Classification of Symbolic Segmentation Models

In this section we present and discuss two classification schemes of symbolic music segmenta-
tion models. In the first, Figure 8, we organise models in a two-dimensional plot in respect to:
(a) whether they employ knowledge-driven or data-driven methodologies, and (b) whether they
embody lower or higher levels of cognitive processing. In the second classification, Table 6, we
present a taxonomy that classifies models in respect to which segment boundary cues they attempt
to model.

4.3.1 Surveyed Segmentation Models

In Table 5 we list the segmentation models surveyed in this section. The list considers the names
or acronyms provided by the authors of the models. If a name for the model was not provided,
we constructed an abbreviation (in order to sort models with more efficiency in Figure 8).

Model Year Acronym definition Reference

TPG 1980 TemPoral Gestalt grouping [120]
AGA 1989 Automated Grouping Analysis [5]
GRAF 1989 GRouping Analysis with Frames [4]
ESMS 1990 Expert System for Musical Segmentation [19]
Cypher 1992 [102]
RAAM 1995 Recursive Auto-Associative Memory [65]
LBDM 1997 Local Boundary Detection Model [16, 14]
SPIA 1998 String Pattern Induction Algorithm [13]
MPM 1998 Music Punctuation Model [47]
RPF 1999 Representative Phrase Finder [117] [21]
PSS 2000 Piece-Sensitive Segmentation [68]
Grouper 2001 [118]
DOP 2002 Data Oriented Parsing [8]
ISSM 2002 Integrated Segmentation and Similarity Model [125]
MDSM 2003 Melodic Density Segmentation Model [43]
E4MS 2003 Entropy for Melodic Segmentation [44]
SONNET 2003 Self-Organizing Neural NETwork [57]
EME 2004 Entropy-based learning for Melody Segmentation [63]
qGPRs 2004 quantification of GTTM’s GrouPing Rules [46]
Modus 2004 [2, 3]
ATTA 2005 AutomaTic span-Tree Analyser [53, 54]
Argus 2006 [23]
PAT 2006 PATtern boundary strength profile [15, 18]
IDyOM 2006 Information Dynamics of Music [91, 94]
IR4S 2006 Information Rate for Music Segmentation [38]
JS4S 2007 Jensen-Shannon Divergence for Music Segmentation [130]
AMS 2008 Adaptive Melodic Segmentation [128]
HOSS 2009 Heuristic Optimization for Symbolic Segmentation [95]
PIR4S 2009 Predictive-Information Rate for Music Segmentation [1]
E4SS 2010 Entropy for Structural Segmentation [30]
MTSSM 2010 Multi-Track Segmentation of Symbolic Music [97]
SASS 2013 Structural Analysis of Symbolic Music [129]

Table 5: List of surveyed models of symbolically-encoded music segmentation. The models listed focus
on subphrase-level segmentation or coarser-levels.
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4.3.2 A Two-dimensional Classification
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Figure 8: Taxonomy of symbolic segmentation models according to knowledge encoding and processing, as
well as level of cognitive processing assumed required for segmentation (which is referred to as ‘reasoning’
in the figure for brevity). Model abbreviations and acronyms corresponds to those defined in Table 5.

In Figure 8 we present a two-dimensional classification of symbolic segmentation models ac-
cording to knowledge encoding and processing, as well as level of cognitive processing assumed
required for segmentation (which is referred to as ‘reasoning’ in the figure for brevity). In the figure
models listed in Table 5 are grouped into quadrants in accordance to the following criteria:17

ordinate axis classification

The knowledge-driven and data-driven classes are used to discriminate models in respect to the
strategies used to acquire, encode, and manipulate the knowledge required to segment music.
Our criteria to rank models in the ordinate axis is:

- knowledge acquisition, i.e. whether automatic (−) or manual (+).

- domain knowledge dependence, i.e. if explicit encoding of music theory or music
perception (+), e.g. by using production rules, was used in the model. Also whether
domain information is assumed available (+), e.g. if the average segment length is
assumed known a priori.

- processing, i.e. whether grammar-based (+), distance-based (±), statistics-based
(−) approaches where used to process the data.

(we mark with a ‘+’ if its a knowledge-driven characteristic, with a ‘−’ if its a data-driven characteristic,

and with a ‘±’ if its somewhere in between.)

17All models within a quadrant comply with the same criteria, the relative position of model acronyms within a
quadrant was chosen only to improve ineligibility and should not be seen as meaningful.
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abscissa axis classification

Our classification along the abscissa sorts models in respect to the level of cognitive processing
assumed necessary for the perception of segments in music. Lower-level models support the view
of segmentation as a mostly universal, style-independent phenomenon. Conversely, higher-level
models see segment perception as a (unconscious) reasoning process.

In the figure models are sorted from low to high levels of cognitive processing. Our criteria to
rank models in the abscissa axis is:

- modelling more than one cue, i.e. the model attempts to combine influence of more
than one cue (+).

- multiple sources of information, i.e. the model uses both stimulus (local and non-
local) and schema related information (+).

- adaptivity, i.e. the model combines information from different attributes and dif-
ferent cues in a context-aware fashion at run time (+).

(we mark with a ‘+’ if its a high-level characteristic.)

4.3.3 Taxonomisation Based on Cue Modelling

In Table 6 we classify models in respect to the perceptual cue(s) of Figure 4 they attempt to
model, as well as the techniques used for modelling these cues. The cue classes in Table 6 are:
difference (gap), difference (contrast), sameness, closure, continuation. We have also made a class
‘others’ to group models which have a different modelling strategy.

In the following we describe the surveyed segmentation models in respect to the aforementioned
classes. We also have a class for models that handle multiple cues simultaneously.

Difference (gap) Modelling

distance metrics
& quasi metrics

qGPRs [46], LBDM [14], AMS [128],

PSS [68],TPG [120], RPF [117],
MDSM [43],ESMS [19], Cypher [102],
Grouper [118], ATTA [54]

difference (gap)

These models have focused on the segmentation of melodies into phrases, and in some cases
sub-phrases.18 They most often approach melody segmentation by proposing quantifications for
grouping principles of Gestalt psychology, generally proximity and similarity. However, most often
the focus in on proximity (the emphasis is on the segregative rather than the unifying aspects of
the principles).

Description: Difference (gap) models hypothesise that segment boundaries are cued by abrupt
changes in a melody’s dynamic evolution. Hence, most models of gap cues refer to the task
of segmentation as ‘discontinuity’ detection. For discontinuity detection melodies are normally

18Quite often the music theory terms ‘phrase’ and ‘subphrase’ have been explicitly avoided, e.g. Tenney and
Polansky [120] refer to segments as ‘clangs’ or ‘sequences’, and Cambouropoulos [16], who even avoids talking
about segments altogether, speaks instead of models that detect ‘local melodic boundaries’. Nevertheless, the
models proposed in these studies have been tested in boundary annotated melodies which contain segments that
comply with our definition of phrase and subphrase (see §2.4.1).
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Model Modelled cues Modelling technique

TPG [120] gap distance measure
AGA [5] gap, sameness, others distance measure, grammars
GRAF [4] gap, sameness, closure/continuation distance measure, grammars, frames
ESMS [19] gap, sameness grammars
Cypher [102] gap, others distance measure, grammars
RAAM [65] others neural networks
LBDM [16, 14] gap distance, similarity measure
SPIA [13] sameness string pattern search
MPM [47] others grammars, neural networks
RPF [117, 21] gap, sameness similarity measure, grammar
PSS [68] gap, sameness distance measure
Grouper [118] gap, idiomatic template, others distance measure, dynamic programming
DOP [8] idiomatic templates probabilistic grammars
ISSM [125] gaps, similarity fuzzy neural network
MDSM [43] gap distance measure
E4MS [44] closure/continuation information theory
SONNET [57, 58] others self organising maps
EME [63] idiomatic templates information theory, optimisation
qGPRs [46] gap, sameness distance measures
Modus [2, 3] gap, sameness grammar
ATTA [53, 54] gap, sameness, others distance measures, grammars
Argus [23] contrast distance measure
PAT [15, 18] sameness string pattern finding
IDyOM [91, 94] closure/continuation markov models, information theory
IR4S [38] closure/continuation information theory
JS4S [130] contrast probabilistic distance measure
AMS [128] gap distance measure
HOSS [95] sameness genetic algorithms
PIR4S [1] closure/continuation information theory
E4SS [30] closure/continuation neural networks
MTSSM [97] sameness string pattern extraction
SASS [129] sameness shortest path finding

Table 6: List of surveyed models with information of modelled cues and modelling technique

represented as a sequence of intervals rather than a sequence of notes. Localising points of dis-
continuity often boils down to a search for large intervallic distances among smaller ones (i.e.
local maxima) in different intervallic attribute parametrisations of a melody, often pitch intervals,
inter-onset-intervals, or inter-offset-intervals. The temporal context defined to search for maxima
commonly comprises at most three intervals (or equivalently four consecutive notes), hence the
term ‘local’.1920 Most measures of intervallic distance used for discontinuity detection are based
on the L1-norm [120, 46, 16, 14, 68, 128, 55].

Discussion: At present LBDM and Grouper have performed best in comparative studies.
These two models rely on discontinuity detection.21 However, it has been observed that, when
targeting phrase-level segmentation, these two models, as well as discontinuity detection models in
general, have a tendency to over segment the input melodies. Moreover, recent empirical studies
have questioned the relevance [124, 126, 100] of pitch related discontinuities to segment boundary
detection, which is generally considered of prime importance in discontinuity detection models.

The approach to modelling discontinuity detection taken by most models can be criticised from

19The only exception to the local constraint described is MDSM [43], which measures pitch discontinuity as
low ‘cohesion’ between all possible pitch intervals within a short-term memory window, rather than only between
adjacent note events.

20The experiments on context size conducted in [127] suggest that longer contexts did not improve phrase-level
boundary detection in pop melodies. In fact, it was observed that in some cases taking longer contexts was even
detrimental to the performance of discontinuity detection models.

21Grouper does not only rely on discontinuity detection (it has a rule based on metric parallelism and a rule
based on preferred segment length). However, the experimentation and results presented in [89, 127] suggest that
the model’s performance is driven by its discontinuity detection component.
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three perspectives: (1) in respect to assumptions related to the choice of distance measure, (2)
assumptions related to cross dependencies between attribute spaces, and (3) assumptions on how
to aggregate discontinuities detected in different attribute dimensions. Regarding (1), intervallic
distances are often measured using the L1 norm, hence assuming interval spaces are symmetric and
non-directional. Yet, symmetry might be an oversimplification of how humans perceive intervallic
distances in a loudness space (as mentioned in [16] the loudness interval perceived when passing
from pp to ff should be larger than passing from ff to pp). Also, non-directionality might be
inadequate to model the perception of intervallic distances in pitch spaces (experimental evidence
has shown that human estimates of pitch interval size are larger for descending intervals than
for ascending intervals [105]). Regarding (2), most models seem to assume total absence of cross
dependencies in the perception of interval size between different attribute dimensions. However,
there is experimental evidence showing such correlations are actually common, e.g. in [104] it is
shown that changes in timbre can expand or contract the perceived size of pitch intervals for both
musically untrained and trained listeners. Regarding (3), discontinuity detection models often as-
sume the combination of discontinuities detected in different attribute dimensions can be achieved
using a linear, non-adaptive model. That is, combination models consist of a weighted sum of
the discontinuity profiles obtained for each attribute dimension, where the weights (representing
the relative salience of different melody parametrisations) are set at initialization and remain con-
stant throughout the analysis.22 Yet, experimental studies suggest attribute combination might
be non-linear and moreover vary in time [124, 126].

4.3.4 Difference (contrast) Modelling

distance metrics
& quasi metrics

Argus [23]

JS4S [130]
difference (contrast)

To the best of our knowledge, only two models, Argus and JS4S, have pursued segmentation
by modelling contrast related cues. These models have focused on the segmentation of polyphonic
pieces into form level sections (JS4S), and ‘tonally stable’ passages (Argus).

Description: Contrast detection models are conceptually similar to models of discontinuity de-
tection, employing distance measures to quantify difference. However, they differ in two respects:
(1) the length of context needed (normally longer than 4 notes), and (2) the type of attributes
used (normally of higher description level than intervals).

Regarding (1), Argus employs a sliding window approach with a minimum window size of 16
notes, yet in experiments the model performed best with larger window sizes (32-48 notes). In the
case of JS4S, a global windowing approach is used. That is, a binary split at each time point of
the musical sequence is performed, and all past and future note events comprising the piece are
used to measure contrast.

Regarding (2), both JS4S and Argus consider segment boundaries occur when there is a sig-
nificant break in the ‘stability’ of pitch content. In Argus stability breaks are taken to occur if
the distance between the tonal centres of the left and right sections of the sliding window is large.
The tonal centers are estimated using a geometric model of tonality (see [22]). In JS4S stability
break are taken to occur if the (Jensen-Shannon) divergence between the pitch-class distributions
of the left and right global windows is maximal.

Discussion: JS4S was tested on a classical piano sonata. The test showed a fair degree of corre-
spondence between the boundaries predicted by JS4S and a form analysis of the sonata. Similarly,
Argus was tested on three piano pieces of the romantic period, and the predicted boundaries
matched to a great extent the key changes found in the scores. However, none of the models have
been tested systematically and thus generalisation capacity is unknown. Moreover, These models

22No mechanisms to adapt to context specific circumstances have been proposed. Exceptions being [128, 68], yet
none of the two approaches has been systematically tested.
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assume a number of high level attributes to be known a-priori (e.g. pitch spelling was assumed
known for the experiments with Argus, and tempo was assumed known for the experiments of
JS4S). This restricts their applicability in scenarios where supplying these information manually
is unfeasible.

4.3.5 Sameness Modelling

string matching
& extraction

distance measure
optimisation
similarity matrix

text based

grammar based

PAT [15], SPIA [13] , RPF [117], AGA [5], MTSSM [97]

ESMS [19], Modus [3]

ATTA [54]

Grouper [118], HOSS [95]

SASS [129]

sameness

These models have mostly focused on the segmentation of melodies into phrases and sub-
phrases.23 Some models rely entirely on sameness based cues (e.g. [15, 13, 3, 95]), while others
incorporate sameness cues into multi-cue frameworks.

They operate under the assumption that repetitions of melodic material aid the perception of
segment structure. In this context a ‘repetition’ is the recognition of a melodic fragment as been
‘similar enough’ to be considered an ‘instance’ of another melodic fragment listened elsewhere in
the melody. As discussed in §3.3, some authors suggest the repetition of melodic figures might aid
the perception of the starting point of melodic phrases [3, 15, 111].

Description: The modelling of melodic repetition for boundary detection has been attempted
from a number of perspectives. Some have formulated the problem as a string pattern extraction
problem [15, 13], where similarity is assessed within sliding local window, using a representation
of inter-onset-interval contours and diatonic pitch interval information. Suffix trees are usually
used to compute and store all string patterns. Others have tried optimization procedures (com-
monly genetic algorithms [95, 96] and dynamic programming [129]), using in some cases only pitch
and in others multi-attribute graph representations [71] of melodies. Melodic self-similarity for
segmentation has also been modelled using approaches based solely on generative grammars [3, 66].

Discussion: In most cases the testing of these models has been reduced to case studies. Despite
successful application to the respective test cases, a number of authors acknowledge that evaluating
when a similarity-based approach is determinant to segment structure is not trivial. In some cases
authors have suggested combining similarity-based models with discontinuity-detection models
[3, 15], yet results have been inconclusive.

4.3.6 Closure/Continuation Modelling

melodic closure

idiomatic templates

information theory

grammars, heuristics

ES4MS [44], E4SS [30]
IDyOM [19],PIR4S [91, 94]
IR4S [38]
Grouper [118],GRAF [4],
DOP [8]

closure/continuation

The modelling of closure/continuation related cues has been carried out in two respects:
melodic closure, and idiomatic templates.

23Two exceptions are SASS, which aims to infer form-level segments in polyphonic music (although it must be
noted that during preprocessing SASS reduces polyphony to a monophonic representation), and MTSSM which
takes as input multi-part polyphonic music.
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Closure

Models focusing on musical closure have normally made use of information-theoretic measures [90,
38, 1], hypothesising that segment boundary closure cues might be correlated to the time-varying
behaviour of these measures. Different information measures have been used to determine segment
boundaries at different granularities, for example, form-level structural boundaries [1, 30] (in
melodies and polyphonic pieces, respectively), and phrase-level structural boundaries [87]. Current
systems developed following this idea are commonly composed of two main modules, one that scans
the piece from beginning to end, estimating at each point a distribution over the set of possible
note events, and another that analyses the resulting distributions using information-theoretic
measures, aiming to construct a information profile from which to infer segment boundaries.24

The former can be said to simulate a probabilistic listener, the output distributions a ‘snapshot’
of the listener’s instantaneous belief of music continuation, and the latter a monitoring stage that
traces and characterizes the evolution of these beliefs.

In most works using information-theoretic measures, methodologies for the extraction of boun-
dary locations are not explicitly explored, often only presenting graphs that visually expose a
relation between the obtained profiles and a given ground truth (as an exception see [87]).

The second limitation is related to data sparsity. Statistical models often assume that pre-
dictability in a sequence is strongly determined by context, so they attempt to statistically char-
acterise patterns comprising a given observation (present) a number events preceding it (finite
past). In [86], the statistical regularity of these patterns in musical corpora of folk and classical
music was shown to be rarely high for contexts longer than 4 or 5 events, making these approaches
mostly insensitive to long range dependencies, which in music analysis is naturally suboptimal.

Idiomatic Templates

To the best of our knowledge, the only published approach addressing the phrase-segmentation
problem attempting to model idiomatic-temples is [8], which uses the method of Data-Oriented
Parsing (a probabilistic grammar approach) to learn melodic phrase structural templates. DOP
operates by creating a a phrase structure class for each distinct phrase in a melodic corpus with
annotated phrase boundaries (The Essen Folk Song Collection). The phrase classes are soft (i.e.
a phrase can be generated by more than one class), and a parsing algorithm is used to compute
the phrase class sequence that fits an input melody with maximal probability.

The publication reports the highest segmentation performance to date on a large number of
melodies (81% mean-F1 score on 1000 melodies). Yet it operated with absolute melodic attributes
(i.e. chromatic pitch and onset-to-offset interval for duration). This raises the question of how
much the algorithm is over-fitting to the set. The rules learnt by DOP from the Essen collection
might be expected to hold little significance for the analysis of other styles. Given that anno-
tated corpora for symbolic segmentation are at present hardly available, the approach can not be
expected to be applicable to mixed melodic corpora in the short term.

24Here an ‘information profile’ is analogous to the sbp mentioned in §4.2.3.
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Level Type Abbreviation Meaning

low II basic

onset note onset time
offset note offset time
pitch note pitch
intens note dynamic
timbre note timbre

mid

rhythm

rest duration of a musical rest: offset-to-onset (ooi) interval
dur note duration1: onset-to-offset interval
ioi note duration2: inter-onset interval
speed note duration3: classification into slow, medium, or fast

dur-rat duration ratio of ei relative to ei−1

dur-rat-ctr contour of dur-rati relative to dur-rati−1 (longer, same, shorter)

pitch

cpitch note chromatic pitch

cp-cls chromatic pitch class (chroma under octave equivalence)
cp-iv chromatic pitch interval of ei relative to ei−1

sl-cp-iv “step-leap” (step (±s), a leap (±l), or a unison (±u)) classification of cp-iv
p-ctr pitch contour of cp-ivi relative to cp-ivi−1 (up, down, same)
p-reg pitch register classification of ei relative to central c octave

density
v-dens∗ local/global vertical density (number & spacing between simultaneous events)
h-dens local/global horizontal density (number & spacing between successive events)

high I

metric
beat tactus or main pulse
bar metric measures

tempo pace of music, in beats per minute (BPM)

harmony
chord∗ chord estimated to harmonize note
ch-lbl∗ chord label (e.g. major, minor)
ch-pos∗ chord position (e.g. root, inversions)

tonal

key local/global key
mode local/global mode
dpitch note diatonic pitch (requires pitch spelling)
dp-cls diatonic pitch class (assumes octave equivalence)
dp-iv diatonic pitch interval of ei relative to ei−1

sl-dp-iv “step-leap” (step (±s), a leap (±l), or a unison (±u)) classification of dp-iv
sc-deg note scale degree (e.g. I-VII)

Table 7: Descriptive attributes of a monophonic musical sequence of events e = e1 . . . ei . . . eN of length N .
Here a note event ei of a sequence e is here defined in respect to a multidimensional attribute space ξ, such
that ei ∈ ξ = {onset⊗offset⊗pitch⊗timbre⊗intensity}, where ⊗ is the Cartesian product operator.
The attributes listed correspond to those used by the surveyed computational models of segmentation.
The abbreviations proposed for sequence attributes at low to high levels of description used by reviewed
segmentation algorithms (Tables 8 and 9). The attributes considered might be specific to an event (e.g.
cpitch), two or four note event patterns (e.g. cp-iv, p-ctr), or longer spans which can be global (the
whole sequence e) or local (a time window of predefined length). The attribute level of description is
classified as low II, mid and high I according to the level classes established in [70]. The attributes are
classified as low- mid- level descriptors if they are readily available in the symbolic description or can
be obtained through simple numerical analysis requiring only a context of local temporal information
(e.g. cp-iv = ei − ei−1, for i = 2 . . . N). The attributes are classified as high-level descriptors if they
need to be estimated using more sophisticated computational analysis and require information spanning a
larger or global temporal context (e.g. the key estimation algorithm described in [73]). The attributes are
moreover classified as to whether they correspond to basic, rhythmic, pitch, density, metric, harmonic, or
tonal information. Basic information describes a single note event. All other information might describe
melodic sub-sequences of more than one event. In the case of the pitch and rhythm classes, the horizontal
line separating the attribute list discriminates absolute from relative attributes. Finally, attributes with
a ∗ are special cases in which the musical surface considered for segment analysis is polyphonic. This
is always the case for v-dens, but not necessarily so for the harmonic attributes considered (in principle
harmony could be estimated from a single melodic line by consider it as “implied”).
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Table 8: Knowledge-driven models of symbolic segmentation. Fields (columns from left to right): Acronym - by authors/taken from title (see Table 5), Date - of publication,
Q - quantization required, # of rules - used for local analysis of boundaries, Context window - used by bottom-up heuristic rules, Attributes - of the input melody (low and mid level),
Additional - high level attributes and a priori knowledge, Pre/post - processing steps employed, Cues - classes used to infer segments, S - “boundary strength” at position, B - segment
at position yes/no (binary), O - other, Description/Interpretation - what the score/binary output suggests or, in case the output differs from a boundary strength profile, provides a
description, Test set - used for case study, Performance - of model, Claim - or assumptive conclusion. Abbreviations: tp - true positive (found boundaries), fp - false positive (inserted

boundaries), R - Pearson’s correlation coefficient, R - mean recall, P - mean pressision, F1 - mean F-measure, attribute abbreviations are depicted in Table 7. Symbols: 	 - unspecified,
� - does not apply, > - performs better than, ≫ - take precedence over, ≈ - performance compares to, � - complements.

Model Input Analysis Output Evaluation
Acronym Date Encoding Q Attributes Additional # of rules Context window Pre/Post Cues S B O Description test set performance claim

TPG [120] 1980 	

cpitch

dur

intens

timbre

2 main
clang: 2 notes
seque: 2 clangs

local X clang/sequence
boundaries

3 20th century
pieces of
classical music

qualitative
assessment

all other things equal,
TPGs model segmenta-
tion.

AGA [5] 1989 MIDI X
cpitch

onset

bar & beat
chord lexicon
harmonic rhythm
figuration

4 main 	
tonal analysis
reduction analysis
pattern analysis

local
parallelism
tonal closure

X
ranked list of
tonally well-formed
phrase sets

� � “tonal motion” & paral-
lelism ≫ GTTM GPRs
2a,b & 3a,d

GRAF [4] 1989 MIDI X
cpitch

onset

bar & beat
chord lexicon
key
harmonic rhythm
figuration
genre

4 main 	 tonal analysis
matching analysis

local
tonal closure
schema

X
ranked list of
tonally well-formed
phrase sets

English nursery
tunes

qualitative
assessment

schematic knowledge ≫
GTTM GPRs 2a,b & 3a,d

Cypher [102] 1992 MIDI

cpitch

p-reg

dur

speed

h-dens

v-dens

beat
chord
key
phrase length

	 	
key & chord finder
beat tracker
harmonic analysis

local
tonal closure
heuristics

X real-time boundary � � context necessary for
phrase-segmentation

LBDM [16] 1997 MIDI

cp-iv

ioi

ooi
2 main 5 4 notes local X

local proximity
& identity
phrase strength

52 excerpts
of [47]

74% tp
49% fp

LBDM ≈ MPM-rule

SPIA [13] 1998 MIDI

cp-iv

dur

onset
3 main � parallelism X

boundary due
to similar patterns

1 pop
song

qualitative
assessment

SPIA � LBDM

MPM-rule [47] 1998 	 X cpitch

dur
chord label
tonal function

7 main
6 revision

5 5 notes 	 local
tonal closure

X
insert comma
marking at position

52 excerpts
classical music
(26 for tuning
26 for testing)

66% tp
34% fp

MPM-rule > MPM-NN

RPF [117] 1999 MIDI X
cpitch

ooi
2 main
2 revision

	 pattern analysis
local X

discontinuity
similarity phrases

96 songs
Japanese pop

0.77 R
0.79 P
0.78 F1

Grouper [118] 2001 MIDI X onset

offset

bar & beat
phrase length

3 main 2 notes metric analysis
local
parallelism

X

proximity
& similarity
phrase boundary

65 E4SSC songs
0.76 R
0.74 P
0.75 F1

phrase structure in
folk largely
inferable from
quantized
rhythmic info

Argus [23] 2006 	 X dpitch

dur

beat
pitch spelling

� = 2 bars
local tonal
discrepancy

X key modulation
boundaries

3 romantic
period pieces

qualitative
assessment

qGPRs [46] 2004 MIDI X
cpitch

dur 4 main 5 4 notes local X
GTTM
phrase boundaries

4 nursery-rhymes
2 tonal melodies

GPR2b: R = 0.80
GPR2a: R = 0.54
GPR3a: R = 0.14
GPR3d: R = -0.09

only 2a,b needed to
explain boundaries
of test set

MODUS [2] 2004 MIDI X

cp-iv

p-ctr

dur

beat
MPC (see [2])

> 15 	 metric analysis
MPC (see [2])

local
parallelism
global

X

similarity (start)
discontinuity (end)
phrase boundaries

> 200 western
& non-western
melodies

qualitative
assessment

MODUS > LBDM

ATTA [53] 2004 MIDIXML X

cp-iv

ioi

ooi
beat 8 main 3 notes

metric analysis
reduction analysis

local
parallelism
segm. length

X

combined GTTM
rules for
phrase boundaries

100 extracts
classical melodies 0.67 F1

PAT [18] 2004 MIDI
p-ctr

dur-rat
tempo
pitch spelling

4 main 10-12 secs pattern analysis parallelism X
similarity-based
boundary strength

5 extracts of
classical music

qualitative
assessment PAT+LBDM > LBDM

AMS [128] 2008 MIDI X

cpitch

p-ctr

onset

offset

intens

2 main
2 revision

4 notes
adjustable weight
analysis

local
global

X
local discontinuity
boundary strength � � �
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Table 9: Data-driven models of symbolic segmentation. Layers (row divisions): Upper - focus on motifs-level/reduced representations, Middle - focus on phrase-level, Bottom - focus
on form-level or other, Fields (columns from left to right): Acronym - proposed by authors/derived from title (see Table 5), Date - of publication, Type - underlying learning algorithm,
Learning type - (Un)Supervised | Incremental/Static, Learning source(s) - current piece and/or corpus of melodies, Learning corpus - details of the corpus (if applies), Pattern statistics
- ngram patterns for which statistics are collected (if applies) also mentions if n-grams, fixed upper-bound, or adaptable upper-bound techniques are used, Encoding - used in publication,
Q - Xif quantization is required, T - Polyphonic|Monophonic texture, Attributes - of the input melody (higher level attributes in upper-case), S - “boundary strength” at position, B -
segment at position yes/no (binary), O - other, Description - what the score/binary output suggests or, in case the output differs from a boundary strength profile, provides a description,
Test set - used for case study, Performance - of model, Claim - or assumptive conclusion. Abbreviations: tp - true positive (found boundaries), fp - false positive (inserted boundaries),

R - Pearson’s correlation coefficient, R - mean recall, P - mean pressision, F1 - mean F-measure, PG - probabilistic grammars, MMM - mixed order Markov models, VLMM - variable length
Markov models, MM - Markov models (of fixed length), ME - Maximum Entropy, RNNs - Recurrent neural networks, NNs - neural networks. Attribute acronyms are depicted in Table 7.
Symbols: 	 - unspecified, � - does not apply, > - performs better than, ≈ - performance compares to, ⊗ - interacting with (see [85]).

Model Input Output Evaluation
Acronym Date Type Learning Pattern Encoding Q T Attributes S B O Description25 Test set performance claim

Type Source Corpus statistics

RAAM [65] 1995 NNs U/S piece

25 melodies
(18 unique
7 variations)

� 	 X M

cp-cls

p-ctr

beat
bar

X
reconstruction of
salient fragments 3 melodies

qualitative
assessment

RAAM reconstructions
of structurally important
fragments parallel those
of human improvisers

EME [63] 2004 ME U/S corpus

2323 songs
Hungarian
folk

uni-grams
bi-grams

MIDI M cp-iv X stable motifs � �
stable motifs
in folk correspond
to pentatonic scales

MPM-NN [47] 1998 NNs S/S piece � � 	 X M
cpitch

dur
X

insert comma
marking at
position

52 excerpts
classical music
(26 for tuning
26 for testing)

39% tp
69% fp

MPM-rule > MPM-NN

DOP [8] 2002 PG S/S piece
corpus

5251 songs
from E4SSC

fixed
upper bound
(five-grams)

EsAC X M
cpitch

dur X � 1000 folk songs
form the E4SSC

0.81 F1
previous exposure
relevant for boun-
dary identification

E4MS [44] 2002 MMM U/I piece �
fixed
upper bound
(tri-grams)

MIDI M
cp-iv

dur-rat X
melodic predictive
uncertainty

1 20th-century
performed
flute piece

0.69 P
0.79 R
0.73 F1

�

SONNET [57] 2003 NNs U/I piece � � MIDI 	 M

cp-iv

ioi

beat
X

reconstruction of
melodic fragments

10 pop
melodies

qualitative
assessment

fragments learnt
by SONNET
correspond to
melodic phrases

MDSM [43] 2003 � U/I piece � � MIDI M

cp-iv

onset

tempo
X

local
change in melodic
interval density

7 mixed
genre melodies

0.93 P
0.88 R
0.91 F1

MDSM ≈ LBDM
Yet, MDSM more
precise

IDyOM [94] 2006-07 VLMM U/I piece
corpus

900 tonal
melodies

adaptable
upper bound

MIDI X M

cpitch

cp-iv

cp-cls

cp-iv ⊗ cp-cls

rests

X melodic surprise
2 minimalist
music pieces

qualitative
assessment

�

IR4S [38] 2006 MM U/I piece � tri-grams MIDI P
cpitch

timbre26 X
melody
“interestingness”

4 performances
of a Bach prelude

qualitative
assessment

IR of symbolic and
audio derived
attributes relevant
to interesting point
detection

JSD4S [130] 2007 MM U/I piece 	 uni-grams MIDI P cp-cls X global contrast
1 classical
piano sonata

qualitative
assessment

inferred segments
are similar to those
in form analysis of
the piece by experts

PIR4SS [1] 2009 MM U/I piece � bi-grams MIDI X M cpitch X
melody
“interestingness”

2 minimalist
music pieces

qualitative
assessment

PIR4SS > LBDM
PIR4SS > GPR3a
for form-level
segments

E4SS [30] 2010 RNNs U/S piece
corpus

6 J.Haydn
Quartets

	 MIDI X P

cpitch

onset

timbre
X sense of tension

1 J.Haydn
Quartet

qualitative
assessment

H-profile correlates
to music-theoretic
analyses of tension
& release
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5 Evaluation

Quantitative evaluations of symbolically encoded music segmentation have focused on monophony
(most often melodies). Thus in this section we describe evaluation of melody segmentation. First,
in §5.1 we discuss the main strategies proposed to evaluate melody segmentation models within
music information retrieval. Next, in §5.2 we discuss common metrics used for evaluation. Finally,
in §5.4 we describe the comparative studies carried out to date and discuss their results.

5.1 How to Evaluate Segmentation Models

To evaluate the output of segmentation models the question of what constitutes a valid segmen-
tation of music? arises. In MIR this question has been commonly dealt with in two ways, each
with its own pros/cons.

A comparing to human annotations
In this setting the evaluation seeks to assess how ‘perceptually valid’ the output of a segmen-
tation model is. Thus, the original question is generally reformulated to: are automatically
derived segment boundaries similar to those perceived by humans? Generally, this type of
evaluation compares the output of segmentation models to human annotated boundaries for
a particular piece of music. This requires availability of a music corpus where each piece has
been annotated with segment boundaries by human listeners. While giving a more or less
direct link to human perception, this method of evaluation is constrained by the diversity of
music in the boundary annotated corpora, the number of human annotators per piece, and
level of detail of the annotations (e.g. location of a boundary, musical cues that influenced
the perception of a boundary, ‘notoriety’ of the boundary, etc).

B Using segmentation models in an MIR task
This type of evaluation seeks to assess the usefulness/relevance of a given segmentation
model in practice. Thus, the original question is reformulated to: What is the influence of
automatically derived segment boundaries in a specific MIR task? (e.g. query-by-humming).
Generally, this type of evaluation is carried out by having models segment a number of
pieces, and then using the output segments as indexes for classification/other MIR tasks.
This type of evaluation can measure the effects of segments in the task at hand (e.g. how
segmentation affects ranking in a classification task), or the effect that one perceptual pro-
cess may have in another process (e.g. the role of segmentation in similarity computation).
However, in this type of evaluation is often non-trivial to distinguish between effects due to
segmentation and effects related to the evaluation chain.

5.2 Evaluation of Melody Segmentation Models

This section describes the steps taken to compare boundaries identified by humans to boundaries
identified by segmentation models, when a binary vector encoding of boundary positions is used.

5.2.1 Comparing Segmentations of a Melody using Binary Vectors

To make the output of segmentation algorithms and human annotations comparable, all out-
puts/annotations are usually reduced to binary classification of each event in the melody (boun-
dary at position yes/no). We can hence encode the output of a model that generates boun-
dary markings, henceforth a prediction, as a vector p = (p1, . . . pi, . . . , pN ), and the phenom-
enal data collected, henceforth our ground truth, as a vector g = (g1, . . . gi, . . . , gN ), where
pi, gi ∈ {0, 1},∀i ∈ {1, ..., N}.

Once this procedure is carried out, we can formulate the problem of comparing the predicted
segmentation to a ground truth segmentation as the computation of the similarity between two
binary vectors. Below we review ways in which binary vectors are created for prediction and
ground truth in comparative studies of melodic segmentation.
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Preparing the Prediction:

Processing of model outputs is needed when boundary vectors indicate boundary presence using
some form of scoring or likelihood mechanism, so that b ∈ [0, 1]N . In this case, processing
is required to obtain binary boundary classifications. The most common assumption to convert
boundary scoring into binary form is to take peaks in b as boundary indicators. Hence, converting
model outputs into binary vectors is generally carried out using heuristic peak selection methods.
The heuristics used in comparative studies of melody segmentation are described in Appendix C.

Preparing the Ground Truth:

The preparation of a ground truth set, i.e. a vector g for each melody in the test database,
commonly consists of the following steps:

1. Test Database Compilation: Compilation of a representative sample of melodies or melody
excerpts, for one or more musical genres of interest.

2. Gathering Annotators: Gathering a group of annotators, ideally composed of equal-size
subgroups representing varying degrees of musical expertise. Have annotators indicate the
temporal instants where they perceive segment boundaries.

3. Inter-Annotator Agreement : Measuring the degree to which annotators performed segmen-
tation consistently, so that annotated boundary locations can be used as a reference for
comparison.

4. Boundary Selection: Selecting the annotated boundary locations that are more likely to
represent a ‘valid’ segmentation of each melody in the test database. The selected boundary
annotations are finally encoded as binary flags in g.

The column field Test Corpora of Table 10 lists information describing how steps 1-3 described
above were conducted in comparative studies of melody segmentation. The methods employed in
comparative studies to carry out step 4, i.e. convert the human annotations into binary boundary
decisions, are described in Appendix D.

5.3 Comparing Binary Vectors

Many measures have been proposed to compare equal length binary vectors. As an example, [24]
presents a survey that reports on 69 different measures employed in various fields to determine
the similarity/distance between binary vectors. However, as the survey indicates, the relevance
of a specific measure depends on the task for which the comparison is needed and on the nature
of the data. The measures described in [24] use as input statistics collected for co-occurrences
between elements of p and g. Element co-occurrences are classified as either true positives (also
hits), true negatives (also correct negatives), false positives (also false alarms), or false negatives
(also misses). The statistics collected for this co-occurrences and their use in evaluation measures
is described in Appendix E.

5.3.1 Evaluation Measures for Melodic Segmentation

The measures for binary vector comparison used in comparative studies of melody segmentation
models are described in detail in Appendices E.2 and E.1.

In melodies the proportion of segments boundaries to note event positions is generally small, so
our evaluation measure needs to minimize (or completely neglect) the influence of true negatives,
otherwise a model that predicts no boundaries would still obtain a relatively high score. Hence,
in most comparative studies [88, 89, 127, 121] the use of precision, recall, and F1 has become a
standard, since these measures do not consider true negatives for the evaluation of segmentation.
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5.3.2 Problems with Common Evaluation Measures

Most of the measures proposed for comparison of binary vectors, including the F1-measure, operate
under the assumption that the dimensions of each vector are independent. It is only then that
the statistics on co-occurrences can be taken as a complete and sufficient description of the binary
vectors to compute similarity/distance [72]. In melody segmentation we deal with a sequence in
time, so that event positions can not be considered independent dimensions. In case independence
is assumed, a prediction vector p = (1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0) compared to a ground truth g =
(1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0) could receive a relatively high score, even though is very rare for humans
to perceive boundaries only one event apart, or in contiguous events. In other words, by assuming
independence between boundaries aspects such as segment length and boundary position within
the melody are discarded from the evaluation.

5.4 Comparative Studies of Melody Segmentation Models

In this section we first outline the results of evaluations of single models that have used large test
sets. Subsequently we discuss comparative studies of melodic segmentation. This section feeds
from Tables 8, 9, & 10.

5.4.1 Single Model Evaluation

Ahlbäck [2], collected and examined approximately 200 western and non-western melodies, and
Bod [9] tested his DOP model in 1000 melodies of the Essen Folk Song Collection. The examina-
tion carried out by Ahlbäck is qualitative and on a case-by-case basis, so it is difficult to summarise
and does not allow to get an overall idea of the performance of the model. Conversely, Bod’s DOP
evaluation is mostly quantitative, reporting on a mean-F1 of 0.81. This is the highest performance
on large-scale melodic corpora to date. However, to hit the 0.81 mark, DOP was trained on ∼85%
of the corpus (5251 melodies), using moreover absolute melody attributes consisting of chromatic
pitch and quantised duration. If ∼50% (3000 melodies) of the corpus is used for training, the
performance of DOP drops to 73.2%. This drop in performance suggests that the model might
have been overfitting the corpus. Since DOP has not been included in comparative studies, its
generalisation capability is unknown.27.

5.4.2 Comparative Studies

Below we group comparative studies in small-scale and large-scale. The former refers to studies
that use small datasets for evaluation, focusing on stylistic diversity and on statistically significant
number of human annotators to determine the ground truth (∼20 annotators per melody). Con-
versely, large-scale studies refer to studies where large melodic corpora have been used to compare
the performance of models. In these studies the focus is on generalisation capability of the models.

In the following each case is discussed in turn.

Small-scale: The small-scale studies considered here are [121, 127, 88, 12]. These studies con-
sider small test sets (6-15 melodies) comprising a mix of styles (folk, pop, classical, jazz). The
studies include segment boundary annotation by participants with musical training, and by degree-
level musicians. Human segment annotations are used as a ground truth for comparison. Inter-
annotator agreement of was ranked high in [127], and low in [121, 88, 12]. In [88] an effort was
made to find the optimal clusters of annotation agreement to use it as a ground truth, as a result
the mean F1 values reported are higher than in the other studies. The number of models evaluated
are 2 in [121], 6 in [127], and 6 in [88]. Performance evaluations commonly have at top ranking

27In [127] The implementation of DOP that was used corresponded to that of [42], which, as we have come to
learn from the authors of [42], was made only for demonstration purposes and hence can not be taken as reliable
enough for comparison.
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Grouper and LBDM. Grouper’s performance ranges between mean F1 = 0.73 − 0.83 when folk
and pop melodies are considered, and drops to mean F1 = 0.61 when classical and jazz melodies
are included. LBDM, on the other hand, performs with a mean F1 = 0.66 − 0.78 when folk and
pop melodies are considered, and drops to mean F1 = 0.54 when classical and jazz melodies are
included.

Large-scale: The large-scale studies surveyed here are [89, 83]. These studies consider test sets
of 1004 pop and 1705 (EFSC) vocal folk melodies, respectively. The evaluation in each study has
different goals, and so they will be reviewed in turn.

In [83] segment boundary estimation is evaluated in a MIR scenario: melody retrieval based
on index terms. In the evaluation the index terms correspond to the melodic segments bounded
by the estimated boundary locations. The melody retrieval engine was based on a vector space
model, using the tf · idf measure to compute similarity between melodic query and stored melody.
Performance was evaluated as the percentage of queries with matching documents within the
first k positions (with k ∈ {1, 5, 10, 20}), and a special percentage class representing ‘not-found’
queries. Experimental results showed that simple ngram extraction constituted the best choice of
index terms, outperforming the indexes obtained using the TPG and LBDM segmentation models.
The ngram indexes where obtained by extracting all note sequences of lengths 1-4 notes, allowing
sequences to overlap. The inferior performance obtained using LBDM and TPG based indexes
was hypothesized as the result of local mismatches between query and stored melodies. In that
respect ngrams indexes proved more robust due to the abundance of possibilities resulting from
allowing ngrams to overlap.

In [89] segment boundary estimation is evaluated comparing predicted boundaries to annotated
boundaries using the precision, recall, and the F1 measure. The test set corresponded to the Erk

database of the Essen Folk Song Collection, which has phrase boundary annotations for each
melody. (In the following mean-F1 values are given in parenthesis.) Experimental results show
that Grouper (0.66) and LBDM (0.63) perform best. They are followed by the IDyOM model
(0.58) and the quantification of the GTTM rule GPR2a proposed by [46] (0.58). Statistical
tests show that all pairwise differences between models F1 performances are significant, except
those between LBDM and GPR2a. Models IDyOM and GPR2a exhibited the highest precision
performance, while Grouper and LBDM had the highest recall. The high average F1 performance
of GPR2a confirms the large influence that rests have as boundary predictors in the germanic folk
songs collected in the Essen collection.

A logistic regression based hybrid model (including Grouper, LBDM, IDyOM, and GPR2a),
shows an average F1 performance equal to that of Grouper. However, statistical signed tests
showed that the hybrid model achieved better F1 scores in significantly more melodies than any
other model included in the study. This suggests that, although marginally, there is a benefit in
considering not only different cues, but also different quantification/modelling of a specific type
of cue (e.g. temporal gap distances as computed by Grouper and LBDM).
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Table 10: Comparative Studies of Melodic Segmentation. Fields (columns from left to right): Study - Authors and Year of study, Models - Model Acronyms (specified in Table 5)
and parameter Setting used, Test Corpora - Melodies: F: # of files & format, G: genre(s), T: texture, C: compilation procedure, O: other details, Ground Truth: A: # of annotators, E:
annotator’s level of expertise (DL - degree level, M - musical training, N - non musician) IAA: inter-annotator agreement, Results - Rank of 5 top models, Performance obtained, Measure
of performance, Range between performance of the best and the worst model, Symbols: 	 - unspecified, R - Pearson’s correlation coefficient. Abbreviations: R - Pearson’s correlation

coefficient, R - mean recall, P - mean pressision, F1 - mean F1-measure,

Study Models Test Corpora Results
Author Year Models Setting Melodies Ground Truth Best models Performance Measure Range

Thom et al. [121] 2002
Grouper
LBDM

k = 0.5
	

set 1
F: 10 MIDI
S: folk, classical, jazz
T: Monophonic
C: Manual

set 2
F: 2612 MIDI files
S: folk
C: Subsets of the E4SSC

A: 19
E: DL & M
IAA: low

A: ESFC annotations
E: DL
IAA: high

set 1
Grouper
LBDM

set 2
Grouper
LBDM

0.61
0.54

0.62
0.50

F1

F1

0.54− 0.61

0.50− 0.62

Orio et al. [83] 2005

fix-win
NGRAMs
TPG
LBDM

= 3 notes
5 5 notes
clangs
k = 0.5

F: 1004 MIDI
S: pop
T: Polyphonic
O: made use of a

melody extraction
algorithm

36 annotated queries
(tested on a VSM
-based retrieval
engine)

NGRAMs
fix-win
TPG
LBDM

12.6
15.1
5.6
2.8

% of queries
with correct
document at
top rank

2.8− 12.6

Wiering et al. [127] 2009

TPG
Grouper
LBDM
MODUS
DOP28

IDyOM

segs
length 8
max(4,3)
low, end
k = 0.6
	

F: 10 MIDI
S: pop
T: Monophonic
C: sampled (internet)

A: 20
E: DL & M
IAA: high

Grouper
LBDM
IDyOM
MODUS

0.73
0.66
0.45
0.42

F1 0.23− 0.73

Bruderer et al. [12] 2009

GPRs
Grouper
LBDM

	
	
	

F: 6 MIDI
S: pop
T: Monophonic
C: manual

A: 21
E: DL & M
IAA: low

LBDM*
GPRs*
Grouper*
(* + timbre rule)

0.50
0.45
0.40 R 0.20− 0.50

Pearce et al. [88] 2010

Grouper
LBDM
GRP 2a,b,d & 3a
TP
PMI
IDyOM

default
k = 0.5
k = 0.5
k = 0.25
k = 0.2
k = 1

F: 15 MIDI
S: folk, pop
T: Monophonic
C: Manual

A: 25
E: DL
IAA: low
O: used clusters

with high IAA

Grouper
LBDM
IDyOM
GRP2a

0.83
0.78
0.64
0.58

F1 0.11− 0.83

Pearce et al. [89] 2010

Grouper
LBDM
GRP 2a,b,d & 3a
TP
PMI
IDyOM
Hybrid

k = 0.5
k = 0.5
k = 2.5
k = 0.25
k = 0.2
k = 2

F: 1705 MIDI
S: folk
T: Monophonic
C: Subset of the E4SSC

A: E4SSC annotations
E: DL
IAA: high

Hybrid
Grouper
LBDM
GRP2a
IDyOM

0.66
0.66
0.63
0.58
0.58

F1 0.22− 0.66
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6 Conclusions

In this paper we have presented a survey of computer models developed to identify cognitively
plausible segments in digital music files, with a focus on models segmenting melodies into phrases,
and whole polyphonic pieces into sections. In our survey we have discussed segmentation models
processing symbolic input, and have centred our discussion on a fundamental aspect of segmenta-
tion: boundary detection (i.e. localising the time points bisecting contiguous segments).

Since the conclusions of this survey are multiple we discuss them separately: In §6.1 we sum-
marise general conclusions, in §6.2 we outline specific areas in which current computer segmen-
tation models can be improved, and finally in §6.3 we draw conclusions and outline future work
possibilities in respect to evaluation methodologies of segmentation.

6.1 General Conclusions

1. The automatic segmentation of symbolic encodings of music into phrases and sections has been
an active topic of research for over three decades. Yet, relative to research of musical audio
segmentation, the number of models and overall research effort that has gone into segmenting
symbolic music encodings is small. Given the fundamental nature of segmentation for music
perception and cognition [69, 81, 56], and hence for music information processing, research ef-
forts towards modelling music segmentation should integrate both audio and symbolic domains.
As a step on this direction, in this paper we present a boundary-cue-centred taxonomisation
of segmentation models, and furthermore extensively discuss aspects related to terminology
divergence across domains. The organisation and description of models in this survey reveals
possibilities of integration not only between models designed for symbolic segmentation, but
also in respect to models designed for audio segmentation.

2. Most models proposed for the segmentation of symbolic encodings of music have been designed-
for and tested-on melodies. Results of comparative studies show that, at least for the segmen-
tation of melodies into phrases, a fully automatic solution to the problem of segment boundary
detection has not been yet achieved. Thus, in §6.2 and §6.3 we propose alternatives to im-
prove model performance in phrase and section level segmentation of monophonic pieces and
melodies. We also discuss what would be needed to move into segmenting polyphonic pieces,
and suggest ways in which polyphonic segmentation could be tackled.

6.2 Suggestions for Computational Segmentation Model Design

Combining information sources in phrase and form level segmentation: The analy-
sis of performance results in systematic evaluation studies points to the inability of current
phrase and form level segmentation models to make ‘musically sensitive’ decisions in respect to
(a) the situations in which a given musical attribute (harmony, pitch intervals, etc.) should take
precedence over others, and (b) the situations in which a given cue model (discontinuity detec-
tion, contrast detection, repetition detection, etc.) should be employed. Hence, development
of inferential engines for context-aware decision is urgently needed.

Cognitive plausibility and adaptability in phrase and form level segmentation:

Symbolic music segmentation models rely mainly on local segmentation strategies when tar-
geting phrase-level segments, and off-line segmentation strategies when targeting form-level
segments. However, human music perception is a dynamic process with access to both local
and global information, and segment perception does not seem to be exempt of these charac-
teristics. Models relying only on local information are missing cues related to both longer time
spans within the music being listened to (such as similarity between musical entities located
far apart in a piece), and the effect of previously listened music (such as phrase and form level
structure templates that a listener might have learnt during his/her musical listening expe-
rience). On the other hand, models that use purely off-line processing mechanisms (such as
similarity matrices), might violate human memory constrains (e.g. a similarity matrix might be
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said to represent a listener with eidetic memory, i.e. a ‘perfect’ recall of all similarities present in
a piece of music). Therefore, some alternatives that might prove beneficial for future modelling
of segment perception are: (1) models that are able to make use of global and local information
simulating real-time listening of music, (2) models that are able to dynamically keep track of
identified segments and include this information in the identification of subsequent segments,
(3) models that are able to re-evaluate past events in the presence of new information (react
in retrospection), and (4) models that are able to ‘forget’ information as they carry out a
segmentation analysis.

High-level descriptors in phrase level melody segmentation:
Models segmenting symbolically encoded melodies commonly do not use information from
other structuring processes, e.g. metric (bar, beat), or harmony/tonal (cadence, key). That is,
with some exceptions [5, 4, 47], computational models of melody segmentation rely mainly on
low-level description attributes when processing melodies. However, the modest performances
obtained in comparative studies using large test databases suggests that the inclusion of higher
level descriptors needs to be re-visited. Moreover, opening to the use of higher-levels of de-
scription might give ways to tackle polyphony in symbolic segmentation, e.g. for certain types
of music polyphony could be reduced to a melody-plus-harmony representation.

6.3 Suggestions for Computational Segmentation Model Evaluation

6.3.1 Evaluation Campaigns for Symbolic Segmentation

A relatively high number of models have been proposed to tackle the problem of segmentation
in symbolic encodings of music (> 30), with a large part of these models focusing on segmenting
melodies into phrases. So far evaluation of symbolic music encoding segmentation has covered only
a small portion of the models proposed. Evaluation campaigns, such as the MIREX structural
segmentation track,29 are thus urgently needed to both stimulate development and have a better
idea of the performances of these (and new) models.

6.3.2 Annotated Corpora for Evaluation

Below we discuss future directions regarding the current state of development and music coverage
of boundary annotated corpora.

In respect to phrase-level segmentation: at present large annotated corpora are mainly
comprised of vocal folk songs (largest corpora available contains ∼6000 melodies). There
is hence an urgent need to develop corpora of mixed styles, instrumentation, and textures
(polyphonic, homophonic, and monophonic music).

In respect to form level segmentation: recent annotation studies on audio data have
developed corpora of mixed styles (pop, jazz, classical, and world music) and in sizeable quan-
tities (largest corpora available contains a total of ∼1300 pieces). However, similar corpora for
symbolic music encodings are at present non-existent.

For both phrase and form level annotations it is also necessary to expand the number of
annotations per melody/piece, given that in most cases boundary and label annotations are made
at most by two human listeners.

6.3.3 Deepening Analysis in Evaluations:

The question of which measures to use to evaluate segmentation models is an ongoing topic of
debate [88, 89, 109]. However, a more fundamental aspect of evaluation has been missing from

29MIREX is a campaign for evaluating music information retrieval algorithms where the evaluation tasks are
defined by the research community. As part of this campaign the first evaluation of music segmentation models was
conducted in 2009 (http://www.music-ir.org/mirex/2009/index.php/Structural_Segmentation), and has been
carried out every year since.
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comparative studies, which is the systematic analysis of causes of failure in the models. That is,
the examination of which specific pieces or melodies have proven difficult for segmentation models
to parse ‘correctly’. This type of analysis could provide insights into which specific musical traits
might be challenging the models.

Also, systematic analysis of annotated corpora is needed to better understand the nature of
the annotated segments therein, i.e. understand why the human annotators decided to segment
the music in a particular way. This type of analysis can be used to enrich the original boundary
annotations, e.g. provide estimates of what types of cues might be driving the perception of specific
boundaries, or estimates of which types of musical attributes might be more determinant for the
perception of a particular boundary or the global segmentation of a given piece. Some work along
these lines has been conducted on annotated databases of music recordings (e.g. [108]), and to a
lesser extent on databases of symbolically encoded melodies (e.g. [100]).
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APPENDIX

A About Musical Structures

Here we briefly mention cognitive structuring processes that work parallel or in combination to
segmentation. In Figure 9, we illustrate an analysis of a musical piece using the cognitive struc-
turing processes proposed in the Generative Theory of Tonal Music (GTTM) [69]. In this theory
segmentation is considered one of the four main structuring processes of music, the other three
being metric induction, time-span reduction, and prolongational reduction.

musical
piece

functional level

time-span reduced level

prolongational reduction level

metric level
beat
bar

grouping level

start endmusical piece

surface level

metric

grouping

time-span reduced

prolongational reduction

Figure 9: Music analysis depicting GTTM structuring processes (in bold). The analysis illustrates
the levels of representation resulting from each structural analysis and considers dependencies
among processes.

Short Description of Musical Structuring Processes

According to GTTM the analysis of a piece can be seen as the construction of a tree, where the
the root of the tree (uppermost level) represents the entire piece, the intermediate branches the
result of analyses of hierarchy between nodes, and the terminal nodes, the ‘leaves’, represent notes
as notated on a score. On the left we mention the levels of structural description resulting with
each analysis. The arrows indicate the interrelationships between the depicted levels of structural
description. The grouping analysis results in a nested set of segments (represented by horizontal
curly brackets), ordered hierarchically so that each group of notes is enclosed in a larger group
of notes. The metric analysis results in a grid of strong/weak accent positions, hierarchically
ordered as either subdivision or multiples of a central pulse or “beat”. The time-span reduction
analysis uses the metrical and grouping analyses, and as a result retains tree nodes considered
more important in respect to rhythmic stability. Finally, the prolongational reduction analysis
continues the categorization of nodes in the tree, this time in respect to tension/relaxation (by
incorporating tonal knowledge).

The Musical Surface

In Figure 9 we assume that the structuring process occurs over a ‘surface level’, yet we have not
properly introduced the term. The musical surface can be thought of as the lowest (represen-
tational) level of detail that holds ‘musical significance’[69]. An alternative definition, which is
perhaps less controversial, is to think of the musical surface as the lowest level of detail that is of
interest for a given task [85]. In Figure 10 we present an example of common musical attribute
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descriptors and the surface level commonly used for analysis by computational segmentation mo-
dels.

key

low-level II 

mid-level

high-level I

symbolic

waveform

metric bar

metric beat

pitch intervals
duration intervals

pitch
onset

tempo

scale degree

levels
description example 

musical 
attributes 

offset

70 7574 77
+4 +1 +2

low-level I rms energy
spectral centroid

surface level

Figure 10: Diagram illustrating levels of description and types of music structures. The description levels
and example musical attributes have been organized following the taxonomization of musical attributes
proposed in [70].

B Theories of Segment Perception

In this section we comment on two theories of music perception used to construct our taxo-
nomy: Leardahl & Jackendoff’s Generative Theory of Tonal Music (GTTM) [69], and Narmour’s
Implication-Realisation (IR) theory [81, 82].30 We have chosen to use these theories due to their
strong influence both on music cognition research and on the development of computational mo-
dels of music segmentation. Below we give a short description of the theories, focusing the aspects
directly related to music segmentation.

GTTM: short description

The GTTM theory attempted to thoroughly (yet not formally) describe the cognitive principles
a listener develops in order to acquire the musical grammar necessary to understand a particular
musical idiom. The model is strongly influenced by the generative grammars of Chomsky [25, 26],
and as such presents arguments for the universality and innateness of the principles proposed.
These principles are assumed to represent “the final state of (...) understanding” [69, pp. 3-4] of
an experienced listener of tonal music, rather than on-the-fly mental processes.

GTTM: grouping principles

A summary of the principles of the theory related to segmentation is presented in Table 11.
The segmentation principles, called ‘Grouping Preference Rules’ (GPRs) in GTTM, are generally

30Both theories enjoy wide popularity, and have been thoroughly described and critically reviewed in a number of
publications. For the sake of brevity we omit a thorough description and refer the reader to the original publications
for details. Also, we recommend [89] for a succinct, yet well-balanced summary covering the two theories.
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classified into three types: The first type of rules, GPRs 2a,b and 3a,b,c,d, are based on the Gestalt
principles of proximity and similarity (change). The second type of rules, GPRs 5 and 6, are based
on symmetry and motivic similarity. The third type, GPR 7, is based on grouping effects of pitch
structure (time-span reduction and prolongation stability). In addition to the above mentioned
groups, there are two extra rules, GPRs 1 and 4, which give, respectively, a general guideline
concerning length of segments, and a suggestion on how to classify segment boundaries.

GPR Name Description

1 - Avoid analyses with very small groups –the smaller the less preferable.
2 Proximity Consider a sequence of four notes n1 n2 n3 n4. Ceteris paribus, the transition n2-n3 may be

heard as a group boundary if:
a. Slur/Rest the interval of time from the end of n2 to the beginning of n3 is greater than that from the

end of n1 to the beginning of n2 and that from the end of n3 to the beginning of n4.
b. Attack-point the interval of time between the attack points of n2 and n3 is greater than that between n1

and n2 and that between n3 and n4.
3 Change Consider a sequence of four notes n1 n2 n3 n4. Ceteris paribus, the transition n2-n3 may be

heard as a group boundary if:
a. Register the transition n2 to n3 involves a greater intervallic distance than both n1 to n2 and n3 to n4.
b. Dynamics the transition n2 to n3 involves a change in dynamics and n1 to n2 and n3 to n4 do not.
c. Articulation the transition n2 to n3 involves a change in articulation and n1 to n2 and n3 to n4 do not.
d. Length n2 and n3 are of different lengths, and both pairs n1, n2 and n3, n4 do not differ in length.

4 Intensification Where the effects of Group Preference Rules 2 and 3 are relatively more pronounced, a larger
level group boundary may be placed.

5 Symmetry Prefer grouping analyses that most closely approach the ideal subdivision of groups into two
parts of equal length.

6 Parallelism Where two or more segments of the music can be construed as parallel, they preferably form
parallel parts of groups.

7 Time-Span and prefer a grouping structure that results in more stable time-span prolongation and/or
prolongation reductions.

Table 11: GTTM grouping rules [69] as summarized by Frankland & Cohen [46]. GPR stands for
‘Grouping Preference Rule’.

IR: short description

In the IR theory music listening is approached as a dynamical process. This theory has a narrower
scope than that of GTTM, focusing solely on melody structure. Influenced by the writings of
Meyer [77], the theory proposes to understand melodic perception as a process of fulfilled and
unfulfilled expectations. The theory formalises melodic structure perception as the mediation
between two systems, one encoding the musical experience of a listener (top-down), and another
acting as a set of innate rules (bottom-up).

IR: grouping principles

In the IR theory segment boundaries are hypothesized determined mainly by melodic closure.
Melodic closure indicates points where an ongoing cognitive process of melodic expectation is
disrupted [91], i.e. points in a melody that provide a listener with a sense of completion. The
bottom-up rules proposed by Narmour to estimate the degree melodic closure are presented in
Table 12. These rules operate considering pairs (and in one case triplets) of contiguous melodic
intervals.
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Name Description

1 Rest Closure An interval is followed by a rest.
2 Durational Closure The second tone of an interval has greater duration than the first;.
3 Registral Direction Closure A change in registral direction between the two intervals described by three successive

notes.
4 Metrical Closure The second note of an interval occurs in a stronger metrical position than the first.
5 Interval size closure Three successive notes create a large interval followed by a smaller interval.
6 Tonal closure The second note of an interval is less dissonant in the established key/mode than the

first.

Table 12: Melodic closure rules of the I-R theory [81, 82] as summarized by Pearce [87].

C Peak Picking Heuristics

Below we list common heuristics used by symbolic segmentation models to decide on the location
of a boundary from a segment boundary profile sbp.

- Simple thresholding [16, 14, 18, 46], where T ∈ Z is a threshold selected by the user.

s(i) =

{
1 if sbp(i) > T
0 everywhere else

(1)

- Highest peak within a symmetric window [23, 127], where a ∈ Z is window length selected
by the user.

s(i) =

{
1 if sbp(i− a) < sbp(i) > sbp(i+ a)
0 everywhere else

(2)

- Highest peak within an asymmetric window [127], where a, b ∈ Z are parameters selected by
the user.

s(i) =

{
1 if sbp(i− a) < sbp(i) > sbp(i+ b)
0 everywhere else

(3)

- Highest peak in respect to a weighted mean context [87, 88, 89].

s(i) =


1 if sbp(i) > sbp(i− 1)

sbp(i) > sbp(i+ 1)
sbp(i) > W (i, sbp)

0 everywhere else

(4)

Where,

W (i, sbp) = k

√√√√∑i−1
j=1

(
wjsbpj − sbp1,...,i−1

)2∑i−1
j=1 wj

+

∑i−1
j=1 wjsbpj∑i−1

j=1 wj
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D Computing a Ground Truth From Multiple Annotations

Below we list criteria used to determine a benchmark boundary set or “ground truth”, from human
boundary-annotated melodies. The idea is to have, for each melody in the annotated corpus, a
single reference segmentation rather than the multiple annotations obtained from humans.

Notation: In this section a melody is taken to be a sequence of note events e = e1, . . . , ei, . . . , eN ,
where each note event ei consists of a finite set of attributes, and each attribute may take a
numerical value drawn from an alphabet ξ. The methods assume that a set of binary vectors
A = {a1, . . . ,aj , . . .aM} is available as the result of having M human listeners annotate segment
boundaries for each melody in the corpus. In A an annotated melody is represented in binary
vector form as a = (a1, . . . ai, . . . , aN ) ∈ {0, 1}N , so boundary marking is encoded using a 1, and
boundary absence is encoded as a 0. The task is to merge annotations of a A into single binary
ground truth vector g = (g1, . . . gi, . . . , gN ).

1. Aggregating boundary annotations and establishing a threshold [12, 43, 76, 127]. In this case,
the resulting histogram H of human boundary judgments per note in e is used to create binary
boundary decisions by thresholding the number of annotators that agree a certain position i is a
boundary, that is:

H(i) > THR (5)

Where,

- H(i) =
M∑
j=1

aj(i)

- THR is a numerical threshold.

2. Stochastic boundary selection criterion proposed in [76]. In this criterion boundary selection is
made by requiring that the probability that a boundary is perceived, given that annotators have
selected boundaries on the immediate neighborhood of position i (one note event to the left/right
of i) , is greater than 0.5:

Pr(Bi = 1|Xi) >
1

2
(6)

Where,

- Pr(Bi = 1|Xi) =
∑
x∈A

Pr (Xi = xi) =
M∏
j=1

2∏
k=0

p
xijk

ik (1− pik)xijk

Bi = 1 indicates boundary presence at position i

Xi = {{a1(k)}, . . . , {aj(k)}, . . . , {aM (k)}}, with k = i+ δ − 1 and δ ∈ {0, 1, 2}
A = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}

pik =

∑
j=1 Mxijk

M

3. Evaluate models by comparing to an ‘optimal’ cluster of annotations [89]. To do so the following
steps are needed: (a) cluster annotations to obtain C, (b) create a binary ground truth g′ for each
cluster A′ using the k-means algorithm, (c) for each melody, select the highest F1 performance of
step (b) to compare to the other models.

Step (b) is computed as follows:

arg min
S

K∑
k=1

∑
j∈Sk

‖A′j − µk‖2 (7)

Where,
- C = {A′1, . . . ,A′h, . . . ,A′H} is a set of clusters of A constructed using hierarchical agglomerative clustering,

so that each annotated ground truth aj included in A′h is taken from A.

- The k-means algorithm takes K = 2, basically classifying each note as {boundary, no-boundary}.
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E Measures Used for Binary Evaluation

Below we list measures used to evaluate computational segmentation models of melodies. The
measures assume that both model predictions and annotated ground truth are encoded as equal-
size binary vectors p and g, respectively.

gi
i 1 0

pi
1 tp fp
0 fn tn

Table 13: Outcomes of comparing prediction and ground truth binary data. Table classifies co-
occurrences of binary values of pi and gi as a true positive tp, true negative tn, false positive fn,
or a false negative fn.

Table 13 shows how co-occurrences between elements in the binary vectors p and g are com-
monly classified. In the table co-occurrences of binary values of pi and gi are classified as a tp, if
both ground truth and prediction indicate a value of 1, and tn, if both values are 0. Conversely,
fn and fn indicate instances where ground truth and prediction differ. In the first case, the
prediction contains a 1, while the ground truth contains a 0. The later case indicates the reverse
situation. Using this classification of co-occurrences we can then determine:

- TP = p · g

- FP = p · g

- FN = p · g

- TN = p · g

Where · is the dot product operator of two binary vectors a, b, and a denotes the complement
operation of a binary vector a.

In the list the true positives (TP) value is the number of tp occurrences, the true negatives
(TN) value the number of tn occurrences. Likewise, false positives (FP) and false negatives (FN)
correspond to the number of fp and fn occurrences.

We moreover use the notation G+ and G− to denote, respectively, the number of occurrences
of 1s and 0s in g. Likewise, P+ and P− are used to denote the number of occurrences of 1s and
0s in p.

E.1 Measures Used When Ground Truth is a Single Binary Vector

The measures presented below assume that, for each melody in the test database, a single binary
vector encodes a prediction and a single binary vector encodes the ground truth.

1. The F1 measure as computed in [109, 127, 88, 89, 87]

F1 =
2 · precision · recall
precision+ recall

=
1

1 + FN+FP
2TP

∈ [0, 1] (8)

Where,

- precision = TP
TP+FP

- recall = TP
TP+FN
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2. The accuracy measure as computed in [88]

accuracy =
TP + TN

G+ + G−
∈ [0, 1] (9)

3. The kappa statistic κ as computed in [88]

κ =
Pr − Pre
1− Pre

∈ [0, 1] (10)

Where,

- Pr = TP+TN
G++G−

- Pre = Pr21 + Pr20

- Pr1 = G++P+

2
(
G++G−

)

- Pr0 = G−+P−

2
(
G++G−

)
4. The sensitivity index d′ measure as computed in [88]

d′ = z(
TP

TP + FN
)− z( FP

FP + TN
) (11)

Where,

- z(p), p ∈ [0, 1] is the inverse of the cumulative Gaussian distribution.

- Effective limit values for d′ are [−3.61, 4.65] for z(0.01)− z(0.99) and z(0.99)− z(0.01), respectively.

5. The co-occurrence agreement probability (CoAP) measure as computed in [76]

P (agreement) =
∑

1≤i≤j≤N

D(i, j)δG(i, j)δP (i, j) ∈ [0, 1] (12)

Where,
- i, j are two notes from the melody

- G,P stand for ground truth segments and predicted segments, respectively

- δG,P (i, j) = 1, if i, j belong to the same segment, and 0 otherwise

- D(i, j) = 1, if i, j are k notes apart and 0 otherwise

- k is taken to be half the average length of a segment in the annotated corpus

The co-occurrence agreement error rate probability (CoAER), can be measured simply as 1−
P (agreement). However, to obtain a more detailed view of the error, in [76] the CoAER measure
is decomposed in the aggregation of two conditional probabilities:

P (error rate) = P (miss)P (segment) + P (false alarm)(1− P (segment)) ∈ [0, 1] (13)

Where,
- P (miss) is probability of missing a boundary in P

- P (false alarm) is probability of wrongly estimating a boundary P

- P (segment) is the prior probability of having different segments according to G

This allows an interpretation close to that of precision and recall (where TP = hit, FP =
false alarm, FN = miss, and TN = correct negative). In the publication the average length of
a segment was measured to be 15.08 notes, k was then set to 8 notes, and P (segment) = 8

15.08 =
0.532.
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E.2 Measures Used When Ground Truth is a set G
Below we list measures used evaluate computational segmentation models of melodies. The
listed measures assume that the prediction is a binary vector, and that a set of binary vectors
G = {g1, . . . ,gM} is available as ground truth. The two first measures correspond to probability
distributions and the last measure is normalized, so they all output values in the range [0, 1].

All measures below where proposed in [109].

1. The Position Model (PM) measure

PM = Pr(p|Hs)
1
k ∝ (

k∏
i=2

Hs(p
′
i))

1
k (14)

Where,

- Hs histogram of boundary indication (yes/no) per position i for each g ∈ G
- k is the total number of segments in prediction p

- p′ = (p′1, . . . , p
′
j , . . . , p

′
k) is a boundary index vector, where p′j = i iff pi = 1

2. The Position Length Model (PLM) measure

PLM = Pr(p|Hs, Hl, Hn)
1
k ∝ Hn(k)(Hl(lk)

k∏
j=2

Hs(p
′
j)Hl(lj−1))

1
k (15)

Where,

- k is the total number of segments in prediction p

- Hs histogram of boundary indication (yes/no) per position i for each p ∈ G
- Hl histogram of the number of notes per segment k for each p ∈ G
- Hn histogram of the number of segments per melody in the corpus for evaluation

- p′ = (p′1, . . . , p
′
j , . . . , p

′
k) is a boundary index vector, where p′j = i iff pi = 1

- l = (l1, . . . , lj , . . . , lk) is a segment lengths vector, where lj = p′j+1 − p′j

3. The Average F Score Model (AFM) measure

AFM =
1

G
∑
g∈G

F1(g,p) (16)

For more details on the computation of histograms used in the PM and PLM measures, please
refer to [109].
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F Description Summary Tables

In this appendix we provide more detailed descriptions of the segmentation models surveyed in this
paper. We have separated the approaches in machine learning driven, and non-machine learning
driven (‘knowledge’ based) using Tables 14 & 15, respectively. The summaries provide information
of the main goals of the models (purpose), a brief account of their inner-workings (description),
and critical commentary (discussion). For convenience the models names have been abbreviated,
the meaning of the abbreviations is listed in Table 5, page 18.

Table 14: Description of knowledge-based segmentation models

Acronym Year Description

TPG 1980 [120]

Purpose: TPG aims to identify segment boundaries at two
time-scales, ‘clangs’ (∼subphrases) and ‘sequences’ (∼phrases).
Description: The TemPoral Gestalt grouping model was the first
to propose a formalization of visual Gestalt principles to predict mu-
sical segment boundaries. The model provides a quantification of the
Gestalt principles of proximity and similarity. The quantification fo-
cuses on the segregative rather than the unifying aspects of the prin-
ciples, i.e. they focus on measuring ‘change’ in a local context along
a given parametric representation of a melody. Distance metrics are
proposed to formally assess change in two melody parametrisations:
chromatic pitch intervals and inter-onset-intervals. To identify clang
boundaries, the models searches for local maxima, i.e. an interval
being larger than the intervals immediately preceding and following
it. If a local maxima is detected it correponds to the starting point
of a clang. The computation of clang boundaries uses the L1 norm:
d[i] = ioi[i] + |pitch[i + 1] − pitch[i]|, for i = 1 . . . N − 1, with i the
time index of the melodic sequence, and N the total length of the se-
quence. To identify sequence boundaries, again the L1-norm is used,
this time to measure the distance between the mean pitch and du-
ration content of contiguous clangs. If a local maxima is detected it
corresponds to the starting point of a sequence. Discussion: In [16],
Cambouropoulos argues that, by considering intervals as symmetrical
and non-directional (use of the L1 norm), the TPG model can fre-
quently miss grouping boundaries due to the natural asymmetry of
musical entities (examples are given in the publication). Also, in [68]
Lefkowitz critiques the inflexibility and (apparent) arbitrariness of
the weighting system used in TPG to combine information measured
in the two (pitch, duration) melodic parametrisations considered.

Continued on next page...
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Table 14 continued from previous page

Acronym Year Description

AGA 1989 [5]

Purpose: The Automated Grouping Analysis system was created to
identify melodic phrases. The main aim was to combine aspects
of harmony, time-span reductions, and local heuristics to segment
melodies. Description: The system has a serial modular architec-
ture consisting of: a lexical analyser, a chord function parser, a re-
ductions analyser, and an evaluation module. The final output is a
ranked list of possible phrase parses for an input melody. AGA pro-
ceeds by first computing an estimate of a chord for each metric unit
in the melody. Then it generates sets of possible chord parse trees
of the melody. The parser employs a context-free grammar based
on music theoretic rules of tonal harmony. Chord parses are taken
to identify phrase boundaries. The combinatorial explosion on the
number of possible chord progression parses is constrained by only
allowing parses producing phrase boundaries that agree both with
local heuristics (GPRs 2a,b, 3a,d) and genre specific constraints (a
phrase-level structure template referred as ‘normal form’) . Subse-
quently the melody is time-span reduced (non important pitch values
are eliminated). Then the melodic contour of the time-span reduced
melody is computed. The resulting list of phrase parse hypothe-
ses is finally ranked giving a high score to solutions where phrases
show high similarity. Similarity is measured as the maximal match
of melodic contour between estimated (time-span reduced) phrases.
Discussion: The author acknowledges two main limitations: (1)
poor generalization capacity, and (2) psychological implausibility. In
respect to (1) the system assumes that the ‘normal form’ (phrase-
level structure template) of the melody, which drives the grammar,
is known. Also the ranking and evaluation mechanism seems highly
sensitive to the properties of the music genre/style. In respect to (2)
the system assumes complete and exhaustive perception of possible
harmonizations, which violates limits of psychological processing and
known human memory limitations.

Continued on next page...
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Table 14 continued from previous page

Acronym Year Description

GRAF 1989 [4]

Purpose: The GRouping Analysis with Frames system was created
to identify melodic phrases. Description: GRAF was developed as
an extension to the AGA system [5]. In AGA ‘schematic’ knowledge
is coded in the form of processing constraints (GTTM local group-
ing rules and music theoretic rules). In GRAF this is extended by
using a system of “frames” [79]. GRAF’s frames represent possible
phrase-level structure templates found in a given genre/style of music
(called “normal forms” in the publication). Frames are stored in a
knowledge-base of styles/genres referred to as a ‘context space’. As
in AGA, the output of GRAF is a list of hypothesised grouping struc-
tures for an input melody. The system in this case processes the input
sequentially (from beginning to end, a note at a time). It evaluates at
each step if a boundary is likely to happen according to GPRs 2a,b,
3a,d. If the GPRs indicate the current note is a boundary, GRAF
attempts to match the hypothesized segment’s tonal progression (us-
ing AGAs parser) to the normal forms stored in frames. If there
is a match the frame is retrieved from long-term memory (context-
space) and stored in working memory. Frames are scored according
to the degree of match between melody and frame. The system takes
into consideration working memory restrictions, maintaining only a
limited set of frames in memory. If working memory is exceeded
the frames with the lowest scores are eliminated. The final output
is ranked according to the phrase structures that most resemble a
‘normal form’ structure. Discussion: GRAF seems to make for a
more cognitively plausible system than AGA, taking careful consid-
eration of human memory restrictions, yet it does so at the expense
of increasing the amount of knowledge that is assumed available (key,
meter, and genre information is required). Moreover, as in the case
of AGA, no systematic evaluation of the model is presented.

Continued on next page...
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Table 14 continued from previous page

Acronym Year Description

ESMS 1990 [19]

Purpose: The Expert System for Musical Segmentation was cre-
ated as a preprocessing step to tonal analysis of melodies, and had
the purpose of testing possible interaction among grouping mecha-
nisms. Description: The system quantifies GTTM grouping prin-
ciples (with an special focus on the metric/rhythmic aspects of the
theory), and adds heuristic rules based on experimental psychological
studies of segment perception. ESMS weights the role of GTTM rules
across several attribute parametrizations of the melody. ESMS uses
forward/backward inference strategies (common in expert systems)
for the combination/selection of rules. The strategies are dynamically
activated during processing, by recalling control statements. Visual
display is provided to the user to provide control statements at any
point of processing. The output of the system is a list of grouping
hypothesis which have been activated by different cues. Discussion:
Only an abstract and short descriptions of this model were found
at the time this survey was conducted. Thus the model can not be
discussed in detail.

Cypher 1992 [102]

Purpose: The Cypher system was created for real-time machine im-
provisation. Cypher is composed of two macro modules: one for
listening (i.e. analysing musical input) and another for reacting (i.e.
generating a musical response). Cypher accepts monophonic and
polyphonic MIDI input, and, as part of the listening sub-module,
contains a phrase segmentation module. Description: The segmen-
tation sub-module assigns phrase boundaries in real-time (analysing
MIDI stream chunks of roughly 10 seconds). Cypher takes pitch, ve-
locity, duration, and onset times directly from the MIDI data, and
computes a (absolute) classification of these events into registers, note
speed (horizontal density), number of chord notes (vertical density),
and loudness classes. Also, Cypher automatically derives informa-
tion of key, beat, and functional harmony degree. To detect phrases,
Cypher checks these attribute dimensions for the presence of local
discontinuities. Since Cypher uses a metrical representation of time,
it checks for discontinuity presence on each beat. If a discontinuity
is detected for a given attribute, the attributed is flagged with a 1,
otherwise the flag stays as 0 (the default). If an attribute has a flag of
1, a (hard-coded) weight value is assigned, supposedly reflecting the
perceived strength of the discontinuity. A beginning-of-new-phrase
signal is fired if the sum of weights across all attributes for a given
beat is greater than a threshold. The threshold adapts to the in-
put in real-time by checking if the generated phrases are either too
short or too long, trying to maintain a balance. For high-level (har-
monic, key and metric) attributes, strength weights are treated with
special care, increasing the weight value according to heuristics rules
derived from music theory (e.g. tonic, dominant events as well as
events on strong beats are given more weight). For lower level at-
tributes the manner in which the discontinuities are detected, and
also what the weights reflect, is not explicitly described in the pub-
lication. Discussion: The author acknowledges than the analysis
agents dealing with key, chord, and beat processing are limited, and
perform optimally only for “well-behaved” tonal input, hence making
the approach genre/style specific.

Continued on next page...
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Table 14 continued from previous page

Acronym Year Description

MPM 1998 [47]

Purpose: The aim of the Music Punctuation Model is to identify
the boundaries of ‘small structural units’ (∼subphrases). It must be
noted that in MPM boundary identification is seen from the perspec-
tive of music performance, i.e. the task is to provide advice for a per-
former (by adding ‘comma’ symbols to a score) rather than directly
model the grouping mechanisms of human listeners. Description:
MPM was created as part of the KTH rule-based system of auto-
matic music generation [48]. MPM takes as input an encoded music
score, from which it uses only the pitch and duration information of
note events as specified in the encoding. It also requires harmonic
information, which for testing was manually derived and provided to
the model. Music punctuation was modelled using 13 rules, coded
by a single expert performer. Seven rules are used to identify possi-
ble comma positions (PCPs), using a short context of maximum five
contiguous notes (three notes before and two notes after the poten-
tial coma location). The seven rules provide each PCP with a score
that reflects their plausibility as comma locations. Initial score va-
lues were coded by the expert performer. The remaining six rules
are used to revise PCPs, by either altering their score or completely
eliminating them. The criteria used to revise the rules depends on
very diverse factors, which range from music theory rules, the scores
awarded to preceding PCPs, to statistics of note attributes over the
whole input piece of music. MPM was tested on 52 melodic excerpts
(extracted from western ‘art’, folk, and popular music pieces). The
excerpts were annotated with comma locations by an expert per-
former. From these, 26 excepts were used to optimise the scoring
values of the rule system of MPM (the optimisation strategy was
to minimise the number of insertions made by MPM, which during
initial examination was found to produce an overly large amount of
commas). The results over the 26 melody test set where found to be
66% hits and 33% insertions. No explicit information about misses
is given and so the performance cannot be evaluated in terms of the
common precision and recall measures. Discussion: The authors
acknowledge that, while the system of rules is relatively compact,
the weights assigned to each rule are hard to define and also that es-
timating the instances in which the revision rules need to be applied
is not trivial. In respect to the testing, the rules were derived by a
single expert performer (one of the authors), from the same database
used for testing. Also, the comma annotations used as ground truth
where marked by the same performer. This introduces a considerable
bias in the evaluation. In respect to applicability of the model in in-
formation retrieval scenarios, MPM requires detailed information of
the the underlying harmonisation of the melody, such as chord label
(name, major/minor), and position (root or inversion), which needs
to be provided manually, and hence limits the number of databases
in which in can be applied. On a final note, MPM was the last
model, among those reviewed in this survey, that attempted to seg-
ment melodies using only expert derived rules.

Continued on next page...
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Table 14 continued from previous page

Acronym Year Description

SPIA 1998 [13]

Purpose: The String Pattern Induction Algorithm was developed as
part of the GCTMS system. The purpose of the algorithm is to iden-
tify pattern boundaries. Description: The algorithm takes as input
a sequence of scale-step pitch intervals (although can admit other
surface representations). SPIA starts by matching patterns of two el-
ements, and finishes once it has found the longest possible matching
patterns. Discussion: This was the first attempt by the author to
combine LBDM with a pattern analysis segmentation algorithm, later
refined into the PAT algorithm. SPIA is a more simple, brute-force
pattern extraction algorithm.

RPF 1999 [117]

Purpose: The Representative Phrase Finder system extracts “repre-
sentative” melodic phrases to index music files for MIR. RPF con-
sists of a phrase identification module, and a phrase “representa-
tiveness” classification module. Description: The idea driving the
phrase boundary identification module is that phrase beginnings are
often similar. The task is then to locate short melodic fragments
roughly corresponding to subphrases, and then check (a) which of
those melodic fragments are significantly similar, i.e. can be consid-
ered repetitions, and (b) estimate whether they correspond to the first
subphrase, i.e. the aforementioned ‘beginning’, of a phrase. This task
is implemented in three stages. First RPF estimates the locations of
temporal gaps in the melody (long note durations or rests), which are
used as ‘sub-phrases’ boundaries; second, it uses approximate match
and a automatic thresholding method to identify which of the esti-
mated subphrases can be considered repetitions; third, it estimates
which subphrases are the first subphrase in a phrase using two prefer-
ence rules: (a) the subphrase starts after a long temporal gap, (b) the
subphrase starts the beginning of the melody. The starting points of
repetitions in which one repeated instance complies with either (a)
or (b) are taken as phrase boundaries. Discussion: The authors
of RPF acknowledge that the first step finds too many sub-phrase
boundaries (over-segmentation), which affects all subsequent compu-
tation. Also, they report that, in many cases, the merging method
tends to wrongly consider adjacent phrases that are too similar as a
single phrase (under-segmentation).

Continued on next page...
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Table 14 continued from previous page

Acronym Year Description

PSS 2000 [68]

Purpose: The Piece-Sensitive Segmentation Model aims to infer seg-
ment boundaries of relatively short duration (∼ 3-5 notes), for mono-
phonic music (though it claims to be generalizable to polyphonic mu-
sic). The main contributions of PSS are to be able to handle a rich
set of musical attributes, and moreover be able to combine the con-
tribution of each attribute to discontinuity detection in a cognitively-
meaningful way. Description: PSS assumes segment boundaries
are cued by discontinuities in the flow of music. PSS models discon-
tinuity by detecting “change-in-the-rate-of-change” of a given musical
parameter. Musical parameters considered for analysis are grouped
into 4 categories: pitch-related, rhythm-related, timbre-related, and
articulation-related, with each category containing up to 4 differ-
ent attributes. PSS operates by first locating discontinuities along
every dimension. Subsequently, PSS computes weights for each of
the attribute dimensions by examining the length of segments. At-
tribute dimensions where the identified boundaries produce segments
of length closer to an ‘ideal’ segment length (4-5 notes) are given more
weight. Discussion: In PSS all monophonic information (pitch, du-
ration, timbre, and articulation) is assumed known a priori, which
greatly restricts its applicability to real life scenarios. Moreover,
PSS has not undergone systematic evaluation in large music corpora,
thus its generalization capability is unknown. Also, the computed
weights are given for the whole melody, rather than on a boundary-
by-boundary basis. Lastly, the algorithmic description of the core
process of PSS (the discontinuity detection module) is incomplete,
making the implementation of the model impossible.

Continued on next page...

50



Table 14 continued from previous page

Acronym Year Description

LBDM 1996-01 [16, 14]

Purpose: The Local Boundary Detection Model was initially proposed
as the segmentation module of the GCTMS music analysis system
[13]. The aim of LBDM is to identify local (∼phrase-level) boundaries
on melodies. Description: LBDM assumes segment boundaries are
cued by discontinuities in the flow of a melody. LBDM computes dis-
continuity strength values for pitch/duration interval representations
{cp-iv, ioi, ooi} of a melodic sequence. Peaks in the resulting
sequence of strength values are taken as potential phrase bounda-
ries. In LBDM a discontinuity strength value is assumed to represent
a local measure of the degree of change between intervals. The lo-
cal context taken to analyse intervallic change is three intervals, or
equivalently four note events. The model computes strength values
by first applying a change rule (CR), and subsequently a proximity
rule (PR). The CR computes the degree of change of each interval in
respect to the preceding and succeeding intervals, using a L1-based
distance measure. The PR simply multiplies each interval by the
computed degree of change associated to that interval. Discussion:
The model uses a simple weighted average to combine the discontinu-
ity strength profiles of the {cp-iv, ioi, ooi} representations, however
there is evidence that the relationship among these dimensions is
non-linear [124]. Also, even if a linear model is adequate, the weights
are static (set at initialization), and more recent studies suggest that
weights might need to change over the course of music [128].

Continued on next page...
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Acronym Year Description

eLBDM1 1999 [75, 76]
Propose minor extensions to the LBDM model, in the form of nor-
malization factors.

Grouper 2001 [118]

Purpose: Grouper is the segmentation module of the Melisma music
analysis system. Grouper was created to identify melodic phrases.
Description: Grouper accepts as input a melody as a note list
(onset/offset time, chromatic pitch), and metric information at the
bar and beat level. The output is a list of binary boundary (yes/no)
judgements for each note in the melody, i.e. an exhaustive partitioning
of the melody into non-overlapping groups. The model assigns boun-
daries through the application of three preference rules: a temporal
gap rule, placing boundaries at large IOIs and OOIs, a phrase-length
rule, giving preference to phrase segments of about 10 notes, and a
metrical parallelism rule, preferring that successive segments begin at
parallel points in the metric grid (first beat of a bar or the first beat of
a hyper-metric structure). The optimal phrase-level segmentation of
a melody is computed using dynamic programming, evaluating can-
didate phrases according to a linear combination of the three rules.
Discussion: Rules two and three of the model require a priori knowl-
edge of phrase length and metric structure, respectively. Estimation
of metric structure, especially at the bar level, can be problematic,
since it has been shown that phrase structure influences the concep-
tion of metrical structure at that level [2]. Also, priors for phrase
length can only be determined experimentally, requiring annotated
corpora. Lastly, Grouper might fail to find phrases in melodies of mu-
sical styles that are characterized by low rhythmic contrast (where
rule one fails to give meaningful boundary candidates).

Continued on next page...
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MDSM 2003 [43]

Purpose: The Melodic Density Segmentation Model aims infer ‘low-
level’ (∼phrases) segment boundaries in melodies. To locate segment
boundaries, MDSM proposes a quantization of the Gestalt rule of
proximity applied to pitch. Hence, MDSM defines the task of lo-
cating boundaries as a search for large intervals (‘discontinuities’) in
respect to surrounding intervals. However, differently from previous
models of pitch discontinuity in melodies (e.g LBDM [16, 14], TPG
[120]), MDSM assumes pitch intervals are perceived between all notes
occurring over an interval of time (short term memory window) and
not just between consecutive notes. Thus it is postulated that pitch
discontinuity should be measured in respect to all intervals rather
than just in respect to the previous and subsequent intervals as done
by [14, 120]. Moreover, the model hypothesizes that the perceptual
salience of a pitch interval’s size is related to the ‘familiarity’ of that
interval within a specific style (the more familiar the interval, the
more stable a mental representation might be, and thus the more
important as a reference to assess discontinuity). The familiarity of
a pitch interval is assumed related to the frequency of appearance of
that interval in a style (in the publication the major/minor model of
[13] was used, but the author suggests that a better model might be
collecting interval frequency counts extracted from a melodic corpus).
Description: MDSM uses information of pitch, onset, and tempo of
a melody. MDSM provides a measure of the “accumulated melodic
cohesion (density)” between pitch intervals, and then identifies lo-
cal boundaries as points of low melodic cohesion. MDSM computes
melodic cohesion at each note event point using a sliding window ap-
proach, where the window’s size is defined in respect to short-term
memory restrictions, using the tempo information (4 seconds in the
publication’s experiments). Within the window, melodic cohesion is
computed as a sum of the salience of each pitch interval. In addition,
each salience value is weighted by an attenuation function, which
is meant to model the effects of ‘recency’ (i.e. recent note events
are given higher weight than distant note events). Discussion: In
a small evaluation (7 melodies), MDSM proves more selective than
LBDM (higher precision). The ground truth however, was given by
boundaries that correspond to the starting points of melodic patterns
(for which patterns where computed by an algorithm instead of been
annotated by a human). In [43] two main problems are discussed:
(1) There is a smoothing effect due to the window size and the at-
tenuation function, which affected the ‘reaction time’ on the location
of boundaries, i.e. in some cases MDSM would predict boundaries
a couple of note events late, and (2), since MDSM uses a constant
length window set at initialization, is only robust to small changes in
tempo.

Continued on next page...
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eRPF 2004 [21]

Purpose: Extension of RPF [117]. Used to find segment boundaries
and labels in melodies at the phrase and sentence level. Description:
Three types of segments are defined: ‘music fragments’, ‘phrases’,
‘sentences’. Music phrases and sentences comply with their mu-
sic theoretic definitions in respect to their approximate length (i.e.
figures/cells<phrases<sentences<sections, where< is read ‘of shorter
duration than’). Conversely, music fragments are more formally de-
fined, i.e. fragments are melodic segments with boundaries indicated
by ‘terminative notes’. Where terminative notes are notes where the
inter-onset-interval between the terminative note and the following
note is excessively large. Music fragments might be either larger or
shorter than phrases. The approach to segmentation of eRTF is to:
(1) segment the melody into music fragments, (2) estimate phrases
using the identified music fragments, and (3) estimate segments by
estimating which phrases are the starting units of segments. For (1)
terminative notes are identified by using LBDM model applied only
to duration values. For (2) music fragments are made compliant with
respect to two attribute of phrases. To this end two formal constraints
are enforced in the definition of phrases: (a) phrases are longer than
6 notes and shorter or equal to 12 notes, (b) the melodic contour
of the phrase must correspond to one of the four most typical arch
shapes defined by Huron [60]. For (3) the starting phrases of sen-
tences are assumed similar, and are also assumed to comply with the
rules outlined in [117]. The similarity between all estimated phrases
is estimated. Phrase similarity is computed as a weighted combi-
nation of the longest-common-subsequence algorithm and a heuris-
tic algorithm. All phrase pairs sharing one phrase and exceeding
a similarity threshold are given are clustered. Each cluster group
is given a unique label. Finally, Using the information of possible
starling phrases and the sequence of class labels, a repeated pattern
finding algorithm is used to identify repeating sentences. Repeating
sentences are also given a unique class label. The segmentations pro-
duced by eRPF are tested using a corpus of 50 folk melodies from
Taiwan. The corpus was annotated (boundary markings and labels)
at the phrase and sentence level by music experts. The automatically
detected boundaries at the phrase level obtained 0.68 mean precision
and 0.78 mean recall. Discussion: No performance values are given
for the labelling of phrases, nor for boundary detection at the sen-
tence level. Only mean recall performance (0.63) is provided as the
evaluation of labelling at the sentence level. Overall, the analysis of
the model provides little discussion in respect to the heuristics em-
ployed for determining segment boundaries, the strategies to assess
similarity, and the algorithm to find repeated sentences. The eRPF
model has not been included in comparative studies, hence in respect
to other models and in respect to melodies of difference styles and
traditions is unknown.

Continued on next page...
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Modus 2004 [2, 3]

Purpose: The Modus system is the computational counterpart of a
theory of melodic structure proposed by Ahlbäck [2]. Description:
Modus is entirely coded using cognitively inspired rules. Modus per-
forms two types of analysis, one based on discontinuity rules similar to
those found in the GTTM, and another based on melodic parallelism
computed using preference rules over abstractions of pitch and dura-
tion. For the computation of melodic parallelism Modus performs an
analysis of pitch (similar but not equal to pitch spelling), and met-
rical analysis at the tactus level. Discussion: The system has been
mainly criticized by its inflexibility in terms of decision making (all
parameters are hard-coded), and interpretability of the results.

ATTA 2004-06 [53, 54, 55]

Purpose: The AutomaTic span-Tree Analyser is a full computational
implementation of the generative theory of tonal music GTTM [69].
As such, the system proposes quantifications for the segmentation
rules established in the theory. The implementation is restricted to
the analysis of melodies. Description: In ATTA GPRs 1, 2a,b,
3a,b,c,d,, 4, 5, and 6, are quantified. In addition a set of 15 weights
are assigned to provide control over the different parameters of the
rules, and control the way in which rules combine. The segmentation
analysis module of ATTA consists of two stages. Stage one estimates
the locations ‘low-level’ segment boundaries. The location estimates
are computed using a quantification of GPRs 1, 2a,b, 3a,b,c,d,, and
6. Subsequently, relative strengths are assigned by weighting each
rule (weights are to be set manually). Finally, a threshold method is
applied, and only those boundary locations with values above the
threshold are considered for the second stage of analysis. Stage
two estimates a hierarchical organization of the boundary locations.
Boundaries are re-computed in a top down fashion, using again the
quantification of GPRs 1, 2a,b, 3a,b,c,d,, and 6, but this time using
GPRs 4 and 5 to guide the process. Strength weights are computed
automatically for each re-computed boundary. Strength weights from
stages one are two are merged into a single weight by multiplying
them (that is, only for those boundary locations of stages one and
two that match). The hierarchy is computed by selecting the boun-
dary locations with higher weight. Discussion: the ATTA system
has been criticised because rules are non-adaptive, i.e. are set during
system initialization and do not automatically react to changes in the
input piece analysed [128]. The approach was tested in 100 classical
melody extracts (up to 10 measures in length), achieving a mean-F1
performance of 0.67. It was reported in [55] that the procedure to
manually optimize weights by ATTA experts took on average 10 min-
utes per melody excerpt. The goal of the manual optimization was
to top the F1 measure obtained by a random assignation of weights.

Continued on next page...
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eLBDM2 2004 [20]

Purpose: Extend de LBDM segmentation algorithm to be used as
a pre-processing step to melody extraction. Description: The ap-
proach assumes that LBDM can be used to accurately find segment
boundaries. By means of a few heuristic rules, the authors attempt to
classify boundaries computed by LBDM. The classification separates
boundaries in end-of-melody <EOM> and phrase-boundary <PB>.
Segments separated by <PB> are merged. Melodies are identified
as everything between to consecutive <EOM> boundaries. The per-
formance of the approach is evaluated in a set of 80 pop music MIDI
files. Discussion: The heuristic rules employed to classify boun-
daries are very inflexible, and moreover require knowledge of metric
structure at the bar-level.

PAT 2004-06 [15, 18]

Purpose: The PATtern boundary strength profile model attempts
to complement LBDM in the detection of melodic phrases by mod-
elling the effects of identifying repetitions in boundary perception.
Description: The model first identifies repetitions using an exact-
match string pattern search algorithm. Second, the model scores the

salience of identified repetitions using a heuristic function h = LlFf

10oTO ,
based on repetition length L, frequency F, and temporal overlap TO,
where l, f, o are user defined weights. Third, the model selects mean-
ingful repetitions using a ‘boundary strength profile’. A boundary
strength profile is a vector of length equal to the input melody length.
In the profile each element value encodes the strength with which a
segmentation model ‘perceives’ a boundary at the temporal location
of the element. The profile is computed by (a) assigning the salience
score of a given set of repeated fragments to each instance of the
set, and (b) summing the salience scores of all instances of different
sets that begin and/or finish at the same time point. Peaks in the
profile mark the starting and/or ending points of the most salient
repetitions. Discussion: PAT is not quantitatively evaluated, and
combination strategy between PAT and LBDM is proposed. Instead,
a range of situations in which the PAT might be detecting boundaries
that LBDM misses and vice-versa are presented.

Continued on next page...
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AMS 2008 [128]

Purpose: This publication presents an algorithm for Adaptive
Melodic Segmentation, to search for phrase-level segments and subse-
quently motives in melodies. Description: AMS models boundaries
as discontinuities computed in respect to intervallic representations
of pitch, duration, and intensity attributes of a melody. For each note
event in a melody, a weighted combination of the sizes of the attribute
intervals in a local (4 note) context is used to describe the boundary
strength at that point (in a way similar to the LBDM model). The
novelty of the algorithm relies in that the threshold to determine
the strength above which a boundary is computed adapts to data.
The threshold value is updated at each time step using low-order
statistics derived from past events. Essentially the threshold is set
to match the standard deviation sd of the melodic attribute values
along a specific dimension (attribute values are normalized so the sd
is enough as a measure of dispersion). The threshold adapts to data
using heuristics, raising or lowering its value by requiring that 15%
- 45% of the note event attribute values are below it. The threshold
is used to dynamically change the values of the attribute weights,
the manner in which the change in weight is computed is not clearly
explained in the publication. Discussion: The choice percentage
range value used to adapt the threshold is not justified. This range is
a rough estimate on the expected number of phrases. The influence of
percentage range settings are not studied systematically. Moreover,
no systematic assessment of the performance of the model has been
published.

Continued on next page...
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MTSSM 2010 [97]

Purpose: Compute the optimal segmentation of instrumental parts
within a polyphonic piece by considering the segmentation of each
part in respect to the ‘global’ segmentation of the piece (i.e. the seg-
mentation suggested by all other instrumental parts in the piece).
MTSSM aims to identify segments at multiple levels of granularity,
ranging from form/section to subphrase level segments (in the pub-
lication it is mentioned that a single instrumental part can have up
to five segment granularity levels). Description: The input to the
MTSSM is a MIDI encoding of polyphonic pieces. The encoding is
assumed to be composed of different tracks, one for each instrumen-
tal part. The MTSSM system is composed of two main modules.
The first module computes several candidate segmentations for each
track. In this module the segmentation analysis uses only informa-
tion contained within the track being analysed. This is called the
‘local’ segmentation. To compute a local segmentation, MTSSM as-
sumes the main cue for segment perception is repetition, and hence
uses exact and approximate string matching algorithms to detect re-
petitions. The repetitions are detected over four different representa-
tions of the musical material: chromatic pitch values, pitch intervals,
pitch contour, and event durations measured in beats. Detected non-
overlapping sequences of musical material deemed ‘similar enough’
are taken to correspond to segments at one level of granularity (e.g.
in a monophonic part, all repeated sequences of pitch intervals with
a length of four beats are taken as segments with a granularity of
four). The output of module one is a set of possible segmentations at
multiple granularity levels. The second module of MTSSM attempts
to find the local segmentations that fit best with the segmentation
suggested by all other tracks in the piece. In the publication the
later segmentation is referred to as the ‘global’ segmentation. The
best fit analysis is carried out by computing a local segmentation
score, a global segmentation score, and then selecting the best seg-
mentation for each track as the segmentation that maximises the
combination of local and global scores. The local score is calculated
by performing a pairwise comparison of all local segmentations of a
track. The global score is calculated based on the correlation between
the segmentation in one track to the segmentations of other tracks.
A heuristic function is used to compute the fitness between global
and local segmentations. The resulting optimal segmentation of each
track comprises a hierarchy of non-overlapping segments, which en-
compasses segment granularities ranging from subphrases to sections.
Discussion: Each part is allowed to be polyphonic, yet the similarity
assessment methods seem to be monophonic. It is unclear how the
reduction of polyphony to monophony is computed within the sys-
tem. Also, the heuristic function used to assess the fitness between
global and local segmentations is complex (it requires the tuning of 10
parameter weights, in the publication parameter weights are tuned
manually by experts). No systematic evaluation of the system is
presented in the publication, hence performance and generalisation
capability is unknown.
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RAAM 1995 [65]

Purpose: To learn ‘reduced representations’ of melodies. In
doing so RAAM estimates melodic segments at two levels of
granularity: (a) longer than a bar (∼phrases), and shorter than
a bar (∼subphrases). Description: RAAM is inspired by re-
ductionist theories, which postulate that listeners judge the
structural importance of musical events while forming mental
representations. As a consequence, reduced memory repre-
sentations can be expected retain only the ‘gist’ of the mu-
sic listened to. Large then proposed a neural network with
a Recursive Auto-Associative Memory (RAAM) architecture
to test this hypothesis. The idea is to have RAAM ‘learn’ a
melody, i.e. encode a compressed version of the melody, and
then check if it is possible to accurately reconstruct the melody
from the encoding. The reconstruction accuracy was tested
in respect to pitch structure and segment structure. For this
two simple melodies where first annotated with pitch structure
(GTTM-like prolongational time spans, see Appendix A), and
segment structure (approximately at the level of subphrases
and phrases). Segment boundaries at the smaller constituent
levels (less than a measure) were annotated to align with the
locations of strong metrical beats. GTTM grouping rules (see
Appendix B) were used to annotate segments boundaries at
levels larger than the single measure. Each melody was first
compressed using the annotations, and was then reconstructed
by the decoder network. The model is evaluated using the
original annotations as ground truth. Discussion: RAAM
is supervised, i.e. needs melodies with annotated structure to
learn from. The performance of RAAM in melodies not used
for training has not been systematically tested, thus generali-
sation capacity is unknown.

Continued on next page...
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MPM(NN) 1998 [47]

Purpose: The aim of the Music Punctuation Model is to iden-
tify the boundaries of ‘small structural units’ (∼subphrases).
It must be noted that in MPM boundary identification is seen
from the perspective of music performance, i.e. the task is to
provide advice for a performer (by adding ‘comma’ symbols to
a score) rather than directly model the grouping mechanisms
of human listeners. Description: A rule based version of this
model was described in Table 14, here we describe a artificial
neural network (NN) model developed for the same task, and
so we refer to this version of the model as MPM(NN). The aim
of MPM(NN) was to investigate whether the rather complex
rule system hand crafted for MPM(rule) could be simplified.
The NN architecture consists of three feed-forward layers, two
output neurons, and two feedback neurons connecting output
and input neurons. The first layer takes as input chromatic
pitch intervals, harmonic information, and duration informa-
tion. The second layer mixes pitch and harmonic information.
The third layer mixes the combined pitch/harmonic informa-
tion with duration information. The two output neurons re-
flect the punctuation judgement: insert comma, do not insert
comma. The input and hidden layers are arranged to represent
a five note context, i.e. for each time of information (pitch, har-
monic, duration) five neurons are used. The NN was trained in
37 examples, each consisting of a five notes containing an an-
notated comma after the third note. Discussion: MPM(rule)
was found to outperform the MPM(NN).

Continued on next page...
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DOP 2002 [8]

Purpose: Compute boundaries for phrase-level segments using
the DOP (Data Oriented Parsing) method. DOP is a natu-
ral language parser that was extended to work with symbolic
musical input. DOP uses a supervised probabilistic grammar
method to parse melodic input into segments, i.e. it needs
a corpus with annotated segment structure to learn from.
Description: The idea is that human listeners with listening
experience in a given musical tradition form ‘phrase structure
templates’, and that these templates influence segment percep-
tion. To model the formation of phrase structure templates,
first a phrase ‘class’ for each distinct phrase in a phrase an-
notated corpus is computed (classes are soft in that a given
phrase can be a member of more than one class). The classes
are computed based on absolute melodic attributes (i.e. chro-
matic pitch and onset-to-offset interval for duration). To seg-
ment melodic input a probabilistic grammar parsing algorithm
(DOP) is used to determine the phrase class sequence with
maximal probability. To compute the most probable phrase
class sequence the parser uses a Markov model of phrase class
sequences, i.e. it uses a corpus to estimate the conditional
probability distribution of a phrase sequence given a phrase
class sequence. The parser also conditions the phrase sequence
on the total number of phrases in the piece. Discussion: The
publication reports the highest segmentation performance to
date on a large number of melodies (81% mean-F1 score on
1000 melodies of the Essen Collection). However, DOP uses
as input absolute melodic attributes, which raises the question
of how much the learning method is over-fitting to the cor-
pus. If so, the rules learnt by DOP from the Essen collection
might be expected to hold little significance for the analysis of
other styles. Given that annotated corpora for symbolic seg-
mentation are at present hardly available, the approach can
not be expected to be applicable to mixed melodic corpora
in the short term. Also, DOP has not been included in com-
parative studies, and thus its performance relative to that of
segmentation models in the same corpus is unknown. (In [127]
the implementation of DOP provided within the MIDI toolbox
[42] was used for comparison, but we learned from the authors
of this implementation that is was made only for demonstra-
tion purposes and hence can not be considered reliable.)

Continued on next page...
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ISSM 2002 [125]

Purpose: Compute boundaries for sub-phrase segments, and
assess similarity between sub-phrases. Description: ISSM
operates by generating different segmentations of a melody,
and subsequently rating the interpretations looking to find
the most ‘perceptually preferable’ one. ISSM first generates
all possible segments of consecutive notes (limited to 10-note
melodies due to computational complexity issues). Prior to
ranking, segments are filtered if they don’t comply with GPRs
2a,b, 3a,b,c,d. The non-filtered segments are rated using a neu-
ral network augmented with fuzzy logic. The network com-
bines rules defined by the user with rules derived automati-
cally by training the network with segment (boundary, label)
annotated data. The rules to rate segments are based both
on features of the individual segments (e.g. number of notes,
duration of a segment), and features between segments (e.g.
similarity of two segments in respect to pitch contour, pitch
interval, tempo, and loudness). Discussion: The ranking
module of ISSM requires training data annotated with both
segment boundaries and labels indicating perceptually similar
segments, which is expensive and time-consuming to produce.
Moreover, the 10-note maximum does not allow the system
access to long-term correlations (which is especially desirable
for assessing the similarity between segment candidates). Fi-
nally, ISSM was trained and tested using only 15 melodies, and
the results presented are only qualitative, hence generalisation
capacity is unknown.
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E4MS 2003 [44]

Purpose: identify boundaries for segments in melodies us-
ing a ‘entropy’ based model (hence the acronym: Entropy for
Melodic Segmentation). It is not specified whether the model
is meant to identify the boundaries of phrases, subphrases, or
larger segments. Description: The idea behind E4MS is that
the perception of segment boundaries in melodies is related
to the unpredictability of melodic continuation (points of ‘clo-
sure’ in terms of the implication-realisation theory of Narmur,
see Appendix B). E4MS uses an unsupervised machine learn-
ing technique (mixed-order Markov models) to model melodic
continuation and information-theoretic entropy to measure un-
predictability. The input to the model is a chromatic pitch
interval and duration ratio melodic attribute representation.
The Markov model parameters are: order ∈ {1, . . . , 6} and
training corpus = input melody. Also, E4MS uses an ite-
rative procedure common in text processing to estimate the
mixing coefficients of the model. The model first processes
each attribute stream separately, aiming to obtain, for each
event position in the melody, a distribution of the possible
attribute continuations at that position. Then it computes
the entropy value at each melodic event position. This way of
measuring entropy results an ‘unpredictability profile’ which is
assumed reflects the uncertainty of melodic continuation of a
modelled listener. Abrupt changes in the profile are assumed to
correspond to segment boundaries. Discussion: E4MS was
not evaluated quantitatively. Instead, a visual depiction the
correspondence between identified boundaries and human an-
notated boundaries are shown for one 20th Century melodic
composition. Moreover, the implementation of the model is
rather limited in that only the input melody is used for ‘train-
ing’, hence essentially modelling a listener that has only heard
the input melody. Also, the preceding context to compute con-
tinuation distributions is of only 4-5 events. All in all, E4MS
constitutes a first step in using information-theoretic measures
for melody segmentation. More refined models (e.g. [87]) fol-
lowed.

Continued on next page...
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SONNET-MAP 2003 [57]

Purpose: SONNET-MAP is a neural network model devel-
oped to learn melodies. The model combines two architectures,
namely a Self-Organizing Neural NETwork and a ARTMAP.
The SONNET-MAP combination is used to detect segment
boundaries in a collection of 50 melodies composed by The
Beatles. The author establishes that the boundaries detected
correspond to phrases, but most segments identified are rel-
atively brief (≤6 melodic events), and so are closer to sub-
phrases. Description: The input melody representation is
pitch intervals and (quantised) IOIs. These attributes are
first processed independently using different SONNET mod-
ules and then integrated using a associate map fields tech-
nique. The model operates by iteratively learning a melody,
after a user defined number of iterations the learning process
is stopped, the pitch interval and IOI sequences the network
has learned are assumed to correspond to phrases. This se-
quences are ‘chunked out’ and the learning process is reini-
tialised. The chucking-out/reinitialise cycle is iterated until
there are no more events in the melody (heuristics are used if
the network fails to learn any of the melodic material). A final
SONNET module aggregates the identified subphrases forming
a hierarchical memory structure that encompasses the entire
input melody. Discussion: The author argues that the seg-
mentations performed by SONNET-MAP are consistent with
many aspects of melody perception. To validate his claims,
the author analyses the decisions made by SONNET-MAP to
segment 50 melodies composed by The Beatles. The decisions
are shown to correspond to grouping mechanisms identified in
the field of music cognition, such as: the influence of previ-
ously chunked-out segments, dimension (pitch, rhythm) which
dominated the formation of the segment, temporal gap, posi-
tion (beginnings found to be more important), pitch proximity,
pitch-interval sequence repetition, and IOI sequence repetition.
The author does not directly evaluates the segment boundaries
detected by SONNET-MAP. Yet, it conducts a retrieval ex-
periment using the automatic segmentation of the melody and
which obtains a higher performance than the retrieval system
operating over whole melodies, which indirectly shows that the
segments learnt by SONNET-MAP might correspond to those
perceived by humans.

Continued on next page...
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EME 2004 [63]

Purpose: Compute boundaries for subphrase-level segments
in melodies using a ‘maximum entropy’ based learning sys-
tem. Description: The idea behind EME is that subphrase
segment structure becomes intelligible to human listeners (by
a large extent) due to musical enculturation. EME proposes
modelling the effects enculturation on subphrase segmentation
using an unsupervised machine learning approach. The ap-
proach aims to identify the sequence of non-overlapping sub-
phrases in a given melody that best agrees with an optima-
lity criterion. The optimality criterion is based on the notion
that predictability of the next event in a sequence of musical
events within a subphrase is high, while predictability of the
next event at a subphrase boundary is low. To quantify this
notion information theoretic entropy is used (entropy results
in high values when event continuations are unpredictable).
Thus, the optimality criterion is that the ‘most intelligible’ se-
quence of subphrases is that which results in the highest total
entropy over the phrase. To learn which sequences of melodic
events are more predictable (within a given cultural tradition),
a corpus of 2323 Hungarian melodies is used. Melodies are
represented as sequences of chromatic pitch intervals, and sub-
phrases are considered to be sequences of up to 6 consecutive
pitch intervals. EME computes the frequency of occurrence
of pitch interval sequences containing up to 6 contiguous in-
tervals (i.e. unigrams to 6-grams) in the corpus. It then uses
these frequencies to compute the probability distribution of
unigrams up to 6-grams. An adaptive gradient search algo-
rithm is used to compute the maximum entropy sequence of
subphrases, taking as input the ngrams and their associated
probabilities. Discussion: EME is tested using only a single
representation of the melody (pitch intervals). The model also
requires as input boundaries of stanzas and phrases, which
in the publication are assumed known a priori. Some expe-
riments are conducted to investigate how the model decides
what a clear subphrase structure is. It was found that the
model prefers boundaries with intervals following the penta-
tonic scale (intervals of a 2nd, a 4th, and a 5th are found to be
specially important to discern subphrase segment structure).
However, due to the fact that subphrase boundary annotated
corpora do not exist, no systematic testing of the model’s pre-
dictions was conducted, and thus it is uncertain as to whether
the boundary predictions match those perceived by humans.

Continued on next page...

65



Table 15 continued from previous page

Acronym Year Description

IDyOM 2006-07 [91, 94]

Purpose: IDyOM (Information Dynamics of Music) is a ma-
chine learning model of melodic expectation, which has been
extended to detect melodic segment boundaries. The segment
granularity IDyOM is able to detect has been left open (the au-
thors imply it can detect boundaries at various segment gran-
ularities), yet it has only been tested for phrase boundary de-
tection. Description: IDyOM’s segmenter is based on the
idea that predictability of the next event in a sequence of mu-
sical events within a segment is high, while predictability of
the next event at a segment boundary is low (in this context
unpredictability can be understood as ‘closure’ in terms of the
implication-realisation theory of Narmur, see Appendix B). To
model this idea, IDyOM uses a two step process. First, it com-
putes the probability distribution of melodic continuation at
each point in the melody. Second, it processes the obtained
distributions using an information-theoretic measure. The re-
sult of the later step is a real value for each event position
in the melody. The sequence of real values is interpreted as a
‘surprise’ profile. Segment boundaries are assumed reflected as
local maxima in the profile (points of high surprise). To pre-
dict the distributions of possible continuations for each melodic
event, IDyOM uses a variable-length Markov model (VLMM)
framework. The framework has a number of features: (a) is un-
supervised, i.e. it does not require the training set of melodies
to be annotated with segment structure. (b) it estimates conti-
nuation distributions by combining information collected both
from a melodic corpus and the input melody itself. The for-
mer is called the long term model (LTM), which simulates the
musical listening experience an artificial listener has prior to
processing the input melody. The later is called the short term
model (STM), and is meant to simulate ongoing ‘real time’
music listening. That is, the statistics necessary to estimate
continuation distributions are collected incrementally, at run
time. (c) IDyOM models the multidimensionality of melody
perception by considering ‘multiple viewpoints’ of the melody
during processing. That is, the continuation distributions are
estimated by simultaneously processing (and combining the
contributions of) a set of melodic attribute streams. Moreover,
IDyOM simulates attention by emphasising or diminishing the
contribution of the different attribute streams when estimating
continuation distributions. This procedure is automatic and
dynamic, i.e. contribution relevance is inferred from data and
updated for the estimation of each continuation distribution.
(d) IDyOM is able to estimate how much preceding context is
necessary to obtain the optimal continuation distribution esti-
mation (i.e. it defines what the optimal Markov model order
is at each point in the melody at run time). Discussion: The
model has already participated in various comparative studies.
Its performance is competitive, but not state-of-the-art. More-
over, despite is sophistication, the current implementation of
IDyOM also has the following limitations:

Continued on next page...
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(1) it has high time space complexity. This is a commonly ac-
knowledged downside of using Markov models. The high mem-
ory requirements can be waived using compression techniques
(IDyOM uses suffix trees). The high time complexity can be
somehow waved by minimising the number of melodic attribute
streams chosen for processing (as well as preferring attribute
streams will smaller alphabets). (2) it offers no way of au-
tomatically estimating which attribute representations might
be more relevant (the set of melodic attribute representations
is a present set by the user). (3) despite the sophisticated
mechanisms to improve probability estimation, IDyOM’s event
prediction (and consequently segment prediction) capacity is
limited by data sparseness. That is, it was shown in [85] that
the average context used for prediction in folk and classical
melodic corpora is of 3-4 note events. These contexts fall
short if compared to those thought to be used by humans.
(4) IDyOM has no explicit model of working memory. That
is, when needed, long term statistics are fetched directly from
the LTM and combined with those of the STM to estimate
continuation distributions. Moreover, the LTM is essentially
a model of eidetic memory. That is, the LTM stores statistics
for melodic patterns consisting of, among others, absolute at-
tribute sequences (e.g. inter-onset-interval or chromatic pitch
sequences) of virtually any length (IDyOM’s LTM stores pos-
sess no restriction on the patterns stored). (5) IDyOM does
not consider segment formation at runtime. That is, during
processing of a melody, the influence of previously determined
boundaries in the melody is not used to determine subsequent
boundaries. (6) it has been noted in [87] that extending the
model to use a metric-based representation of time rather than
a event-based representation of time (as it currently does) is
not trivial.

Continued on next page...
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IR4S 2006 [38]

Purpose: The focus of the paper is not on music segmentation
per se, but rather on proposing extensions of a information-
theory measure of statistical complexity: the information rate
(IR) (originally introduced in [39]). In the [38] different mo-
dels employing the IR measure are used to provide examples of
its dynamic behaviour when processing audio/symbolic poly-
phonic music. By analysing of these examples it is argued that
the IR measure can be used to detect time points of ‘structural
importance’ in music (among them segment boundaries). The
IR measure has been used to detect different types of struc-
turally important points. For example, in [41] the time varying
behaviour of the IR was compared to human emotional judge-
ments when listening to music, and results suggested the IR’s
behaviour is related to emotional fluctuations over the course
of a musical composition. Also, in [40] the IR measure was
used to detect points of ‘interestingness’. Finally, and perhaps
most importantly for this survey, an extension of the IR mea-
sure proposed in [1] was used to determine phrase and section
boundaries in minimalist musical compositions. Description:
For this survey we focus on the description of the model used
to proces symbolic input. The model takes as input a sequence
of chromatic pitch values. First, the sequence is divided using
windows of 40 notes (roughly three seconds), with an overlap
of 30 notes between successive windows. Second, ‘marginal’
and a ‘conditional’ entropies are estimated for each window.
Marginal entropies are estimated using a 0th-order Markov
model. Conditional entropies are estimated using a low-order
Markov model. Third, IR measure is computed as the dif-
ference between marginal and conditional entropy estimates.
Discussion: The model of symbolic sequence prediction is
rudimentary, making the entropy estimates unreliable. Also,
the ability of the model to predict segment boundaries was not
explicitly investigated nor tested.

Continued on next page...
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JSD4S 2007 [130, 99]

Purpose: In [130] a model originally proposed by [52] to seg-
ment biological sequences is used to predict form-level bounda-
ries in a polyphonic piece [130] In [99] the model was extended
to better deal with musical data, and used to predict melodic
phrase boundaries [99]. Description: To identify segments,
the model iteratively searches for segment boundaries using a
multi-branched recursion strategy. The recursive strategy em-
ploys the following algorithm: (1) scan the complete symbolic
sequence in search for the boundary that bisects it into two seg-
ments of maximal contrast; (2) iterate (1) over each resulting
segment until a halting criterion is met. To quantify contrast
between adjacent segments, the Jensen-Shannon divergence is
used. Discussion: In [99], the extensions to the original model
where tested by using the model to predict phrase boundaries
in a corpus of 100 folk melodies. The results show that the ex-
tensions are able to outperform the original formulation of the
method. However, its performance in respect to other phrase
and form level segmentation models is unknown.

PIR4S 2009 [1]

Purpose: The focus of the paper is to introduce a new informa-
tion theory measure: the predictive information rate (PIR). A
simple probabilistic modelling stategy is used to test the ability
of the measure to aid automatic analysis in two scenarios: mu-
sic segmentation and music generation. In respect to music seg-
mentation, the measure was used to locate form level segment
boundaries in two pieces of minimalist music. Description:
The publication first presents a description and motivation for
the application of information theory measures to the analysis
of temporal structure in music. The description is complete
and can serve as a theoretical basis for similar approaches re-
viewed in this appendix (E4SS, JSD4S, IDyOM, and IR4S).
Abdallah defines predictive information (PI) in a musical con-
text as the information a musical event carries with it about
the yet unheard future, given what has already been listened to
until that point. The PI is formalised as the Kullback-Leibler
divergence between the predictive distribution over ‘the future’
before and after a musical event considered to represent ‘the
present’ is heard. Averaging over ‘all possible presents’ and ‘all
possible pasts’ results in the PIR. Two monophonic pieces of
composer Philip Glass are used to analyse what type of tem-
poral structure might the PIR reveal. The monophonies where
described only as a sequence of chromatic pitch values. A sim-
ple 0th-order Markov model is used to determine continuation
distributions for each event in the sequences. The PI and three
other variants (among them the PIR) where used to compute
‘information profiles’ for the two pieces. Similarly, the classic
information content and three variants (entropy among them)
where used to compute profiles for the two pieces.

Continued on next page...
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Also, the LBDM model [14] and the quantification of the
GTTM GPR3a proposed in [46] where used to compute boun-
dary strength profiles of the pieces. Evaluation of segmentation
is qualitative, corresponding to an analysis of the observable
interrelationships between the information profiles, the boun-
dary strength profiles produced by LBDM and GPR3a, and the
form level structure of the pieces (annotated by one human ex-
pert). The analysis shows that visually salient aspects of the
information profiles, such as points of discontinuity or long in-
creasing/decreasing trends are somewhat aligned to form-level
segments boundaries. The analysis also shows a better fit of the
information profiles than that of the boundary strength pro-
files. Discussion: The publication emphasised the ‘proof of
concept’ status of the experimental section, as both the proba-
bilistic model used to obtain continuation distributions as well
as the number and type of music pieces used to test the model
are very restricted. The extension of PI related measures to
more sophisticated predictive models is not straightforward,
this hinders their applicability for music segmentation in the
short term.
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E4SS 2010 [30]

Purpose: Use a neural network based model to detect points
of (tonal) tension and segment structure at the level of form
in a polyphonic piece. Description: The premise in this in-
vestigation is that segment structure and ‘high level’ temporal
structure in music is observable in an entropy profile. (Here
by ‘high level’ temporal structure we mean time instants that
mark moments of high semantic content, e.g. moments that
can be described as ‘triumphant’, ‘dramatic’, or ‘shocking’.
Below we refer to this type of structure as ‘dramatic’ struc-
ture.) The main contribution of the article is that, instead
of the common Markov model prediction strategy, a recurrent
neural network (RNN) is used to compute continuation pro-
babilities. Just as in IDyOM, continuation distributions are
estimated as a combination of distributions computed using a
short-term model (STM), representing ‘veridical’ knowledge,
and a long-term model (LTM) representing ‘schematic’ knowl-
edge. The paper focuses on the analysis of a string quartet
written by Haydn. The piece is represented as a set of instru-
mental parts, and each part is processed individually. Basic
events (∼notes) comprising each part are represented in terms
of chromatic pitch and onset. The STM estimates distribu-
tions based on the quartet itself, and the LTM makes estima-
tions using a set of 6 string quartet movements also written by
Haydn. Once the continuation distributions combining STM
and LTM predictions are estimated, entropy is computed at
each time point, resulting in a dynamic entropy profile of the
piece. The obtained entropy profile is compared to a music
theoretical analysis of the piece in terms of its formal and dra-
matic structure. The comparison is qualitative, corresponding
to an analysis of the observable interrelationships between pro-
file and annotated structure. The analysis shows that visually
salient aspects of the profile, such as points of discontinuity
or long increasing/decreasing trends are somewhat aligned to
both dramatic points (climaxes, cadences, or tonal tension)
and form-level segments boundaries. Discussion: The author
acknowledges that: “while RNNs enable the analysis of music
that is not amenable to other modelling techniques [referring
to polyphonic music], they are slow to train, limited in the size
of the corpus on which they can be trained, and [. . . ] cannot
generalize to other ensemble types.”

Continued on next page...

71



Table 15 concluded from previous page

Acronym Year Description

Moreover, close examination of the obtained entropy profile
reveals that discontinuities and rising/declining trends can also
be observed at points where there is no structure annotated.
This suggest that many ‘false positive’ boundaries would be
detected using a peak selection algorithm, if the profile was to
be used for form-level boundary detection.
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