
Compositional Compiler Construction:
Oberon0

Marcos Viera

S. Doaitse Swierstra

Technical Report UU-CS-2012-016

October 2012

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Compositional Compiler Construction: Oberon0

Marcos Viera

Instituto de Computación
Universidad de la República

Montevideo, Uruguay
mviera@fing.edu.uy

S. Doaitse Swierstra

Department of Computer Science
Utrecht University

Utrecht, The Netherlands
doaitse@cs.uu.nl

Abstract

We describe an implementation of an Oberon0 compiler using the techniques proposed in
the CoCoCo project. The compiler is constructed out of a collection of pre-compiled, statically
type-checked language-definition fragments written in Haskell.

1 Introduction

As a case study of the techinques proposed in the CoCoCo project1, we participated in the LDTA
2011 Tool Challenge2. The challenge was to implement a compiler for Oberon0, a small (Pascal-
like) imperative language designed by Nicolas Wirth as an example language for his book “Com-
piler Construction” [?].

The goal of the challenge is to contribute to “a better understanding, among tool developers and
tool users, of relative strengths and weaknesses of different language processing tools, techniques,
and formalisms”. The challenge is divided into a set of incremental sub-problems, that can be seen
as points in a two dimensional space. The first dimension (Table 1) defines a series of language
levels, each building on the previous one by adding some new features. The second dimension

L1 Oberon0 without procedures and with only primitive types.
L2 Add a Pascal-style for-loop and a Pascal-style case statement.
L3 Add Oberon0 Procedures.
L4 Add Oberon0 Arrays and Records.

Table 1: Language Levels.

(Table 2) consists of several traditional language processing tasks, such as parsing, pretty-printing,
static analysis, optimizations and code generation.

This incremental design has two main reasons. First, participants were able to provide partial
solutions, choosing the most suitable tasks to show the characteristics and features of their tool

1http://www.cs.uu.nl/wiki/Center/CoCoCo
2http://ldta.info/tool.html

1

http://www.cs.uu.nl/wiki/Center/CoCoCo
http://ldta.info/tool.html

T1 Parsing and Pretty-Printing
T2 Name Binding
T3 Type Checking
T4 Desugaring
T5 C Code Generation

Table 2: Processing Tasks.

or technique. The possible software artifacts generated to solve any of the 25 proposed problems
range between a L1 T1, a parser and pretty-printer of a simple subset of Oberon0, and L4 T1-5,
the full proposed system. In order to be able to compare participant’s artifacts, a list of suggested
software artifacts to be completed (Table 3) is provided. The second reason of the design is to

Artifact Level Tasks Description
A1 L2 T1-2 Core language with pretty-printing and

name binding
A2a L3 T1-2 A1 plus pretty-printing and name bind-

ing for procedures
A2b L2 T1-3 A1 plus type checking
A3 L3 T1-3 A2a and A2b
A4 L4 T1-5 Full language and all tasks

Table 3: Artifacts.

show how the different techniques for modularity provided by the participants can be used in the
implementation of a growing system.

We have provided an implemention of all the proposed problems, and made it available in
Hackage as the oberon03 package.

2 Architecture

Figure 1: Architecture of the Oberon0 Implementation

The architecture of our implementation of Oberon0 is given in Figure 1; boxes represent Haskell
modules and arrows are import relations4, where every module can be compiled separately and

3http://hackage.haskell.org/package/oberon0.
4For example, module L2 .SemT1 imports from (i.e. depends on) modules L2 .Decl and L1 .SemT1 .

2

http://hackage.haskell.org/package/oberon0

results in a set of normal Haskell value definitions. The design is incremental: rows corresponds
to syntactic extensions (language levels) and columns corresponds to semantic extensions (tasks);
each artifact in the challenge corresponds to a dashed box surrounding the modules involved in
it. For each language level L1 to L4 :

• Gram modules contain syntax definition in the form of first-class grammar fragments, as
introduced in [?]

• Decl modules contain the definition of the type of the semantics’ record, and thus the
interface to the corresponding part of the abstract syntax of the language at hand

• Sem modules implement the semantics of each task in the form of rules which together
construct an attribute grammar, as introduced in [?].

Notice that we do not include modules to implement Task 4. In Subsection 4.3 we will explain
how by using attribute grammar macros when defining L2 we get this task almost for free.

To build a compiler, e.g. Artifact 4 (Figure 2), we import the syntax fragments (l1 , l2 , l3 and
l4 from L4 .Gram) and their respective semantics (l1t4 , l2t4 , l3t4 and l4t4 from L4 .Sem), combine
them and build the compiler in the form of a parser which calls semantic functions. In Figure 3

Figure 2: Architecture of Artifact 4

gl4t5 = closeGram $ emptyGram +>>

l1 l1t5 +>>

l2 l2t5 +>>

l3 l3t5 +>>

l4 l4t5

pA4 = (parse . generate kws) gl4t5

Figure 3: A Parser for Artifact 4

we show how the parser of Artifact 4 is generated. The left-associative operator (+>>) composes
an initial grammar with an extension; we start with an empty grammar (emptyGram) and extend
it with the different language fragments. The function closeGram closes the constructed grammar
and applies the left-corner transform in order to remove potential left-recursion; as a consequence
straightforward combinator-based top-down parsing techniques can be used in building the parser.
Then generate kws generates a parser integrated with the semantics for the language starting
from the first non-terminal, where the list kws is a list of keywords extracted from the grammar
description. This takes care of the problem caused by the fact that some identifiers in earlier
challenges may become keywords in later challenges. The function parse performs the parse of
the input program and computes the meaning of that program. In the actual implementation of
Oberon0 we generate scanner-less uu-parsinglib parsers.

3 Syntax

Using our combinator library murder5 we describe the concrete syntax of each language fragment
as a Haskell value. A fragment of the code constructing the CFG of the initial language L1
(module L1 .Gram) is given in Figure 4; the complete definition of the concrete grammar of the
four languages can be found in Appendix A. The parameter sf contains the “semantics of the
language”; its type is defined in the module L1 .Decl and is derived from the abstract syntax of
which we show a fragment in Figure 5. The full abstract syntax of the four languages can be
found in Appendix B. We use the Template Haskell function deriveLang6 to derive the type of the

5http://hackage.haskell.org/package/murder
6Provided by the package AspectAG.

3

http://hackage.haskell.org/package/murder

l1 sf = proc → do
rec

modul ← addNT ≺ ...
...
ss ← addNT ≺ T (pSeqStmt sf)

stmt
(pFoldr (pSeqStmt sf , pEmptyStmt sf)

(T ";" stmt U)) U
stmt ← addNT ≺ T (pAssigStmt sf) ident ":=" exp U

<|> T (pIfStmt sf)
"IF" cond
(pFoldr (pCondStmtL Cons sf , pCondStmtL Nil sf)

(T "ELSIF" cond U))
mbelse
"END" U

<|> T (pWhileStmt sf) "WHILE" exp "DO" ss "END" U
<|> T (pEmptyStmt sf) U

cond ← addNT ≺ T (pCondStmt sf) exp "THEN" ss U
mbelse ← addNT ≺ pMaybe (pMaybeElseStmt Nothing sf

, pMaybeElseStmt Just sf)
(T "ELSE" ss U)

exp ← addNT ≺ ...
...

exportNTs ≺ exportList modul $ export cs Expression exp
. export cs StmtSeq ss
. export cs Statement stmt
. export cs MaybeElseStmt mbelse
. ...

Figure 4: Fragment of the concrete syntax specification of L1

record, given the list of data types together composing the abstract syntax tree. For example, for
the example fragment we call:

$ (deriveLang "L1" [“Module, “Statement , “Expression
, “CondStmtL, “CondStmt , “MaybeElseStmt])

For each production of the abstract syntax tree a field is produced, with name the name of the
production prefixed by a p and as type the type of the semantic function, which is defined in terms
of the semantics associated with the children of the production. For example, the field generated
for the production AssigStmt is:

pAssigStmt :: sf id AssigStmt → sf exp AssigStmt → sf AssigStmt

For the cases of List or Maybe type aliases, fields are produced using the name of the non-
terminal (i.e. the type) to disambiguate. In our example, for CondStmtL we generate the fields
pCondStmtL Cons and pCondStmtL Nil , and for MaybeElseStmt we generate pMaybeElseStmt Just
and pMaybeElseStmt Nothing .

The code of Figure 4 defines the context free grammar of the language fragment, using the
record sf to add semantics to it. We use the murder combinators pFoldr and pMaybe to model
repetition and option, respectively. These combinators are analogous to the respective foldr and
maybe functions.

4

data Statement = AssigStmt {id AssigStmt :: String
, exp AssigStmt :: Expression }

| IfStmt {if IfStmt :: CondStmt
, elsif IfStmt :: CondStmtL
, else IfStmt :: MaybeElseStmt }

| WhileStmt {exp WhileStmt :: Expression
, ss WhileStmt :: Statement }

| SeqStmt {s1 SeqStmt :: Statement
, s2 SeqStmt :: Statement }

| EmptyStmt

type CondStmtL = [CondStmt]

data CondStmt = CondStmt {exp CondStmt :: Expression
, ss CondStmt :: Statement }

type MaybeElseStmt = Maybe Statement

data Expression = ...

Figure 5: AS of the statements of L1

Grammars defined in this way are extensible, since further transformations may be applied to
the grammar under construction in other modules. Each grammar exports (with exportNTs) its
starting point (e.g. modul) and a table of exported non-terminals, each consisting of a label (by
convention of the form cs ...) and a reference to the current definition of that non-terminal, again
a plain Haskell value which can be used and modified in future extensions. Figure 6 contains a
fragment of the definition of L2 (from module L2 .Gram), which extends the L1 grammar with
a FOR-loop statement. We start by retrieving references to all non-terminals which are to be

l2 sf = proc imported → do
let ss = getNT cs StmtSeq imported
let stmt = getNT cs Statement imported
let exp = getNT cs Expression imported
let ident = getNT cs Ident imported
...

rec
addProds ≺ (stmt , T (pForStmt sf) "FOR" ident ":=" exp dir exp mbexp

"DO" ss "END" U)

dir ← addNT ≺ T (pTo sf) "TO" U <|> T (pDownto sf) "DOWNTO" U
mbexp ← addNT ≺ pMaybe (pCst1Exp sf , id) (T "BY" exp U)

...

exportNTs ≺ imported

Figure 6: Fragment of the grammar extension L2

extended or used (using getNT) from the imported non-terminals. We add new productions to
existing non-terminals with addProds; this does not lead to references to new non-terminals. New
non-terminals can still be introduced as well using addNT . The Haskell type-system ensures that
the imported list indeed contains a table with entries cs StmtSeq , cs Statement , cs Expression

5

and cs Ident , and that the types of these non-terminals coincide with their use in the semantic
functions of the extensions.

The definition in Figure 6 may look a bit verbose, caused by the interface having been made
explicit. Using some Template Haskell this can easily be overcome.

Figure 7 shows the abstract syntax tree fragment corresponding to the FOR-loop extension. The
prefix EXT indicates that this definition is extending a given non-terminal.

data EXT Statement
= ForStmt {id ForStmt :: String , start ForStmt :: Expression

, dir ForStmt :: ForDir , stop ForStmt :: Expression
, step ForStmt :: Expression, ss ForStmt :: Statement }

| ...
data ForDir = To | Downto

data EXT Expression = Cst1Exp

...

Figure 7: AST of the FOR-loop of L2

4 Aspect Oriented Semantics

The semantics of Oberon0 were implemented using the AspectAG7 embedding of attribute gram-
mars in Haskell. In order to be able to redefine attributes or to add new attributes later, it
encodes the lists of inherited and synthesized attributes of a non-terminal as an HList-encoded
[?] value; each attribute is associated with a unique type which is used as an index in such a
“list”. The lookup process is performed by the Haskell class mechanism. In this way the closure
test of the attribute grammar (each attribute has a single definition) is implicitly realised by the
Haskell compiler when trying to build the right instances of the classes. Thus, attribute grammar
fragments can be individually type-checked, compiled, distributed and composed to construct a
compiler.

4.1 Name analysis

Error messages produced by the name analysis are collected in a synthesized attribute called
serr .The default behaviour of this attribute for most of the productions is to combine (append)
the errors produced by the children of the production. This behaviour is captured by the function
use from the AspectAG library, which takes as arguments the label of the attribute to be defined
(serr), the Haskell list of non-terminals (labels) for which the attribute is defined (serrNTs), an
operator for combining the attribute values (++), and a unit value to be used when none of the
children has such an attribute ([] :: String).

serrRule = use serr serrNTs (++) ([] :: [String])

When a new name is defined we check for multiple declarations and at name uses we check for
incorrect uses or uses of undefined identifiers, producing error messages when appropriate. The
code below shows the definition of serr for the use of an identifier represented by a production
IdExp, which has a child named ch id IdExp of type (DTerm String)8.

7http://hackage.haskell.org/package/AspectAG
8DTerm a is the type used by murder to represent attributed terminals (i.e. identifiers, values); it encodes the

value (value) and position in the source code (pos) of the terminal.

6

http://hackage.haskell.org/package/AspectAG

serrIdExp = syn serr $ do
lhs← at lhs
nm ← at ch id IdExp
return $ checkName nm (lhs # ienv) ["Var", "Cst"] "an expression"

With the (plain Haskell) function checkName we lookup the name (nm) in the symbol table
(inherited attribute ienv coming from the left-hand side) and, if it is defined, we verify that the
name represents either a variable ("Var") or a constant ("Cst") and generate a proper error
message if not.

The symbol table is implemented by the pair of attributes senv and ienv . The synthesized
attribute senv collects the information from the name declarations and the inherited attribute
ienv distributes this information through the tree.

In order to perform the name analysis, the type of the symbol table could have been Map String NameDef ,
which is a map from names to values of type NameDef representing information about the bound
name. However, since we want to use the same symbol table for future extensions, we keep the
type “non-closed” by using a list-like structure:

data SymbolInfo b a = SI b a
type NMap a = Map String (SymbolInfo NameDef a)

For the current task the symbol table includes values of type NMap a, parametric in a, the
“the rest of the information we might want to store for this symbol”. In the example below, for
declarations of constants, the table consists of a map from the introduced name to a SymbolInfo
which includes the information needed by the name analysis (constructed using cstDef) and some
other (yet unknown) information, which is represented by the argument the rule receives:

senvCstDecl r = syn senv $ do
nm ← at ch id CstDecl
return $ Map.singleton (value nm) (SI (cstDef $ pos nm) r)

Similarly to how we used use for the default cases of synthesized attributes, we capture the
behaviour of distributing an inherited attribute to the children of a production with the function
copy :

ienvRule = copy ienv ienvNTs

The various aspects introduced by the attributes are combined using the function ext :

aspCstDecl r = senvCstDecl r ‘ext ‘ ienvCstDecl r ‘ext ‘ serrCstDecl ‘ext ‘
T1 .aspCstDecl

In this case, for the production CstDecl , we extend T1 .aspCstDecl , which is imported from
L1 .SemT1 and includes the pretty-printing attribute, with the attributes implementing the name
analysis task (serr , ienv and senv).

Once the attributes definitions are composed, the semantic functions for the productions may
be computed using the function knit . For example, the semantic function of the production
CstDecl in the case of L1 .SemT2 is knit (aspCstDecl ()). The use of () (unit) here is just to “close
the symbol table”, since no further information needs to be recorded for Task 2.

4.2 Type checking

Type error messages are collected in the synthesized attribute sterr . For type checking we extend
the symbol table with the type information (TInfo) of the declared names. This is done by
updating the value of the attribute senv with the function synupdM , which is similar to syn but
redefines it making use of its current definition. In the following example we update the symbol

7

table information for the production VarDecl , where sty is an attribute defined for expressions
and types, computing their type information:

senvVarDecl ′ r = synupdM senv $ do
typ ← at ch typ VarDecl
return $ Map.map (λ(SI nd)→ (SI nd $ SI (typ # sty) r))

The previous definition of the type information is just ignored and only used to indicate the type
of the symbol table. Thus, thanks to lazy evaluation, when extending the aspects of Task 2 we
only need to pass an undefined value of type SymbolInfo TInfo a, where a is the type of even
further information to be stored in the symbol table (for future extensions):

undTInfo :: a → SymbolInfo TInfo a
undTInfo = const ⊥
aspVarDecl r = (senvVarDecl ′ r) ‘ext ‘ sterrRule ‘ext ‘

(T2 .aspVarDecl $ undTInfo r)

To represent type information we have to deal again with the lack of open data types in Haskell,
since we want to keep some specific information for each of the types of the extensible type system
we are implementing, and we have decided to resort to the use of Haskell’s Dynamic type. A
TInfo, with the information of a certain type, consists of: the representation trep of the given
type, encapsulated as a Dynamic value, a String with its pretty-printing (tshow), and a function
teq that, given another type information indicates if the actual type is compatible with the given
one.

data TInfo = TInfo {trep :: Dynamic
, tshow :: String
, teq :: (TInfo → Bool)}

The main task we perform during type checking is to verify whether the actual type of an expression
is compatible with the type expected by its context. For example if the condition of an IF statement
has type BOOLEAN.

check pos expected got
= if (teq expected got) ∨ (teq got unkTy) ∨ (teq expected unkTy)

then []
else [show pos ++ ": Type error. Expected " ++ show expected ++

", but got " ++ show got]

If either the expected or the obtained type is unknown (unkTy) we do not report a type error,
because unknown types are generated by errors that have been already detected by the name
analysis process.

A very simple case of type information is the elementary type BOOLEAN, where we do not provide
any extra information than the type itself. Thus, the type representation is implemented with a
singleton type BoolType.

data BoolType = BoolType

boolTy = let d = toDyn BoolType
bEq = (≡) (dynTypeRep d) . dynTypeRep . trep . baseType

in TInfo d "BOOLEAN" bEq

To construct the corresponding TInfo we convert a BoolType value into a Dynamic with the
function toDyn. A type is compatible with BOOLEAN if its base type9 is also BOOLEAN, i.e. is
compatible if both types are represented with BoolType values. With the function dynTypeRep we

9In case of a user type, the type it denotes.

8

extract a concrete representation of the type of the value inside a Dynamic that provides support
for equality.

There exist some other cases were a more involved type representation is needed. For example,
in the case of ARRAY we include the type information of its elements and the length of the array, if
it can be statically computed.

data ArrType = ArrType (Maybe Int) TInfo

Then, by using the type-safe cast function fromDynamic we can get access to this information
provided the dynamic typed value represents an array. Thus, when trying to index a variable, we
can for example check if the index is out of range; in case the cast does not succeed we indicate
that the variable we are trying to access is not an array:

checkSelArray pos ty ind
= case (fromDynamic . trep . baseType) ty of

Just (ArrType l)→ checkIndex pos ind l
→ [show pos ++ ": Accessed variable is not an array"]

We use the same technique to keep information about the fields of a RECORD and the parameters
of a PROCEDURE.

4.3 Source-to-source transformation

In [?] we extended AspectAG with an agMacro combinator that enables us to define the attribute
computations of a new production in terms of the attribute computations of existing productions.
We defined the semantics of the extensions of the language level L2 using this macro mechanism.
The FOR-loop is implemented as a WHILE-loop and the CASE statement is defined in terms of an
IF-ELSIF-ELSE cascade.

Figure 8 contains the macro definition for the FOR-loop, which is parametrized by the attributes
(semantics) of:

• SeqStmt : sequence of statements

• AssigStmt : assign statement

• IntCmpExp: integer comparison expression

• IdExp: identifier expression

• IntBOpExp: integer binary operation expression

We use the combinator withChildAtt to obtain the value of the self attribute of the child ch dir ForStmt ,
with the direction of the iteration. In case the value is To the loop counter is incremented (Plus)
on each step while is less or equal (LECmp) the stop value. In other case (Downto) we use Minus
to decrement the counter and GECmp (greater or equal) to compare it it with the stop value. In
Figure 9 we show the structure of the macro (i.e. the FOR-loop in terms of the original AST) for
the To case. That can be seen as a code translation from:

FOR id := start TO stop BY step DO

ss
END

to:

id := start ;
WHILE id <= stop DO

ss ;
id := id + step

END

9

macroForStmt aspSeqStmt aspAssigStmt aspWhileStmt
aspIntCmpExp aspIdExp aspIntBOpExp

= withChildAtt ch dir ForStmt self $ λdir →
let (op stop, op step) = case dir of

To → (LECmp,Plus)
Downto → (GECmp,Minus)

initStmt = (aspAssigStmt , ch id AssigStmt ↪−→ ch id ForStmt
<.> ch exp AssigStmt ↪−→ ch start ForStmt)

whileStmt = (aspWhileStmt , ch exp WhileStmt =⇒ condWhile
<.> ch ss WhileStmt =⇒ bodyWhile)

condWhile = (aspIntCmpExp , ch op IntCmpExp − op stop
<.> ch e1 IntCmpExp =⇒ idExp
<.> ch e2 IntCmpExp ↪−→ ch stop ForStmt)

idExp = (aspIdExp , ch id IdExp ↪−→ ch id ForStmt)

bodyWhile = (aspSeqStmt , ch s1 SeqStmt ↪−→ ch ss ForStmt
<.> ch s2 SeqStmt =⇒ stepWhile)

stepWhile = (aspAssigStmt , ch id AssigStmt ↪−→ ch id ForStmt
<.> ch exp AssigStmt =⇒ expStep)

expStep = (aspIntBOpExp , ch op IntBOpExp − op step
<.> ch e1 IntBOpExp =⇒ idExp
<.> ch e2 IntBOpExp ↪−→ ch step ForStmt)

in withoutChild ch dir ForStmt
(agMacro (aspSeqStmt , ch s1 SeqStmt =⇒ initStmt

<.> ch s2 SeqStmt =⇒ whileStmt))

Figure 8: Macro definition of the FOR-loop

In the cases were specialized behaviour is needed, like for example pretty-printing, it is still
possible to redefine the attributes involved on these aspects. As such, our mechanism is much more
expressive than conventional macro mechanisms, which only perform a structure transformation.
Using the library we get Task 4 almost for free.

Our approach is not very suitable for some other kind of source-to-source transformations like
optimizations, because we do not represent the AST with values (if we want to keep the AST
extensible) and we (still) do not have higher-order attributes. Although a possible approach is to
generate an AST of a fixed core language and perform the optimizations in this language.

4.4 Code generation

We generate the C abstract syntax representation provided by the language-c10 package. This
package also includes a pretty-printing function for the abstract syntax.

Since ANSI C does not include nested functions we have to lift all the procedures, types and
constants definitions to top-level when generating the C code required by the challenge (note that
the lifting as specified is trivial, since the exercise does not require bindings to be lifted properly).
In order to avoid name clashes with C keywords or due to the lifting process, we rename every
identifier to make it unique. New names are composed by: a character ’_’ (assuring no clashes
with C keywords), the path (module and procedure names) to the scope were the name is defined
and the actual name. Thus, if we have the following Oberon0 program:

10http://hackage.haskell.org/package/language-c

10

http://hackage.haskell.org/package/language-c

Figure 9: The FOR-loop in terms of the original AST

Lang. / Task Common T1 T2 T3 T5 Total

Common - 42 14 - 23 79
L1 128 156 147 220 228 879
L2 187 98 69 65 56 475
L3 94 75 75 134 145 523
L4 48 67 56 197 95 463

Total 457 438 361 616 547 2419

Table 4: Code sizes (in lines of code) of the components of the compiler

MODULE A ;
VAR BC : INTEGER ;
PROCEDURE B ;
PROCEDURE C ;
END C

END B

END A .

The names are mapped: the variable name BC to A BC , the procedure name B to A B and
the procedure name C to A B C . Since underscore is not allowed in Oberon0 identifiers, this
renaming does not introduce new clashes, like the one we could have had with C if the variable
BC was called B C .

To implement the renaming we extend the symbol table with the name mapping.

5 Artifacts

In Table 4 we show the complexity (in lines of code without comments) of our implementation
of the compiler, disaggregated into the different tasks and language levels. The Common column
includes the Gram and Decl files, while the Common row includes some code used by the Main
modules.

The code includes 26 lines of Template Haskell, calling functions defined in the libraries to
avoid some boilerplate.

We have implemented all the combinations from L1-T1 to L4-T5, including the artifacts pro-
posed by the challenge.

11

6 Conclusions

The most important aspect of our approach is the possibility to construct a compiler out of a col-
lection of pre-compiled, statically type-checked, possibly mutually dependent language-definition
fragments written in Haskell, but with a DSL taste.

When looking at all the aspects we have covered we can conclude that we managed to find
solutions for all aspects of the problems; we were rescued by the fact that we could always fall
back to plain Haskell, in case our libraries were not providing a standard solution for the problem
at hand. We have seen such solutions for dealing with flexible symbol tables, generating new
identifiers and types.

We mention again that our implementation is quite verbose, since each module contains quite
some code “describing its interface” in the collection of co-operating modules. This is the price we
have to pay for getting the extreme degree of flexibility we are providing. By collapse the modules
the amount of linking information shrinks considerably. Other option to reduce verbosity is to use
uuagc to generate AspectAG code [?].

Another cause of the verbosity is that we have not used the system itself or Template Haskell
to capture some common patterns. We have chosen to reveal the underlying mechanisms, the
role of the type system, the full flexibility provided, and have left open the possibility for further
extensions.

The lack of open data types in Haskell makes it hard to implement AST transformations in
extensible languages using our technique. Semantic macros solve some of these problems. A
possible approach is to use our technique to implement the front-end of a compiler, translating to
a core fixed language, and then use other more traditional approaches (like uuagc) to implement
the back-end. Another option is to use data types à la carte [?] to simulate open data types (and
functions) in Haskell.

References

[1] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heterogeneous collections.
In Proc. of the 2004 Workshop on Haskell, pages 96–107. ACM Press, 2004.

[2] Wouter Swierstra. Data types à la carte. J. Funct. Program., 18(4):423–436, July 2008.

[3] Marcos Viera and S. Doaitse Swierstra. Attribute grammar macros. In XVI Simpósio Brasileiro
de Linguagens de Programação, LNCS, pages 150–165, 2012.

[4] Marcos Viera, S. Doaitse Swierstra, and Atze Dijkstra. Grammar Fragments Fly First-Class.
In Proc. of the 12th Workshop on Language Descriptions Tools and Applications, pages 47–60,
2012.

[5] Marcos Viera, S. Doaitse Swierstra, and Arie Middelkoop. UUAG Meets AspectAG. In Proc.
of the 12th Workshop on Language Descriptions Tools and Applications, 2012.

[6] Marcos Viera, S. Doaitse Swierstra, and Wouter Swierstra. Attribute Grammars Fly First-
Class: How to do aspect oriented programming in Haskell. In Proc. of the 14th Int. Conf. on
Functional Programming, pages 245–256, New York, USA, 2009. ACM.

[7] Niklaus Wirth. Compiler construction. International computer science series. Addison-Wesley,
1996.

A Concrete Grammar

A.1 L1

$ (csLabels ["cs_Module", "cs_Declarations", "cs_Expression", "cs_Factor"
, "cs_StmtSeq", "cs_Statement", "cs_MaybeElseStmt"

12

, "cs_Ident", "cs_IdentL", "cs_Type"])

l1 sf = proc → do

rec

modul ← addNT ≺ T (pModule sf)
"MODULE" ident ";"
decls
(pMaybe (pEmptyStmt sf , id) (T "BEGIN" ss U))
"END" ident "." U

decls ← addNT ≺ T (pDeclarations sf)
(pMaybe (pDeclL Nil sf , id) (T "CONST" cstDeclL U))
(pMaybe (pDeclL Nil sf , id) (T "TYPE" typDeclL U))
(pMaybe (pDeclL Nil sf , id) (T "VAR" varDeclL U)) U

cstDeclL ← addNT ≺ pFoldr (pDeclL Cons sf , pDeclL Nil sf)
(T (pCstDecl sf) ident "=" exp ";" U)

typDeclL ← addNT ≺ pFoldr (pDeclL Cons sf , pDeclL Nil sf)
(T (pTypDecl sf) ident "=" typ ";" U)

varDeclL← addNT ≺ pFoldr (pDeclL Cons sf , pDeclL Nil sf)
(T (pVarDecl sf) idL ":" typ ";" U)

idL ← addNT ≺ T (pIdentL Cons sf) ident
(pFoldr (pIdentL Cons sf , pIdentL Nil sf)

(T "," ident U)) U
typ ← addNT ≺ T (pType sf) ident U
exp ← addNT ≺ T sexp U

<|> T (eExp sf) exp "=" sexp U
<|> T (neExp sf) exp "#" sexp U
<|> T (lExp sf) exp "<" sexp U
<|> T (leExp sf) exp "<=" sexp U
<|> T (gExp sf) exp ">" sexp U
<|> T (geExp sf) exp ">=" sexp U

sexp ← addNT ≺ T signed U
<|> T (plusExp sf) sexp "+" signed U
<|> T (minusExp sf) sexp "-" signed U
<|> T (orExp sf) sexp "OR" signed U

signed ← addNT ≺ T term U
<|> T (posExp sf) "+" term U <|> T (negExp sf) "-" term U

term ← addNT ≺ T factor U
<|> T (timesExp sf) term "*" factor U
<|> T (divExp sf) term "DIV" factor U
<|> T (modExp sf) term "MOD" factor U
<|> T (andExp sf) term "&" factor U

factor ← addNT ≺ T (trueExp sf) (kw "TRUE") U
<|> T (falseExp sf) (kw "FALSE") U
<|> T (pParExp sf) "(" exp ")" U
<|> T (notExp sf) "~" factor U
<|> T (pIdExp sf) ident U <|> T (pIntExp sf) int U

ss ← addNT ≺ T (pSeqStmt sf) stmt
(pFoldr (pSeqStmt sf , pEmptyStmt sf)

(T ";" stmt U)) U
stmt ← addNT ≺ T (pAssigStmt sf) ident ":=" exp U

13

<|> T (pIfStmt sf)
"IF" cond
(pFoldr (pCondStmtL Cons sf , pCondStmtL Nil sf)

(T "ELSIF" cond U))
mbelse
"END" U

<|> T (pWhileStmt sf) "WHILE" exp "DO" ss "END" U
<|> T (pEmptyStmt sf) U

cond ← addNT ≺ T (pCondStmt sf) exp "THEN" ss U
mbelse ← addNT ≺ pMaybe (pMaybeElseStmt Nothing sf

, pMaybeElseStmt Just sf)
(T "ELSE" ss U)

ident ← addNT ≺ T var U <|> T con U
exportNTs ≺ exportList modul $ export cs Declarations decls

. export cs Expression exp

. export cs Factor factor

. export cs StmtSeq ss

. export cs Statement stmt

. export cs Ident ident

. export cs IdentL idL

. export cs MaybeElseStmt mbelse

. export cs Type typ

A.2 L2

l2 sf = proc imported → do
let ss = getNT cs StmtSeq imported
let stmt = getNT cs Statement imported
let exp = getNT cs Expression imported
let ident = getNT cs Ident imported
let mbelse = getNT cs MaybeElseStmt imported

rec
addProds ≺ (stmt , T (pForStmt sf) "FOR" ident ":=" exp dir exp mbexp

"DO" ss "END" U
<|> T (pCaseStmt sf) "CASE" exp "OF"

c cs mbelse "END" U)

dir ← addNT ≺ T (pTo sf) "TO" U <|> T (pDownto sf) "DOWNTO" U
mbexp ← addNT ≺ pMaybe (pCst1Exp sf , id) (T "BY" exp U)

cs ← addNT ≺ pFoldr (pCaseL Cons sf , pCaseL Nil sf) (T "|" c U)
c ← addNT ≺ T (pCase sf) labels ":" ss U
labels ← addNT ≺ T (pLabelL Cons sf) label

(pFoldr (pLabelL Cons sf , pLabelL Nil sf)
(T "," label U)) U

label ← addNT ≺ T (pExpreLbl sf) exp U
<|> T (pRangeLbl sf) exp ".." exp U

exportNTs ≺ imported

A.3 L3

l3 sf = proc imported → do
let decls = getNT cs Declarations imported

14

let stmt = getNT cs Statement imported
let ss = getNT cs StmtSeq imported
let exp = getNT cs Expression imported
let ident = getNT cs Ident imported
let idl = getNT cs IdentL imported
let typ = getNT cs Type imported

rec
addProds ≺ (stmt , T (pProcCStmt sf) ident params U)

params ← addNT ≺ T "(" paraml ")" U <|> T (pExpressionL Nil sf) U
paraml ← addNT ≺ T (pExpressionL Cons sf) exp

(pFoldr (pExpressionL Cons sf , pExpressionL Nil sf)
(T "," exp U)) U

<|> T (pExpressionL Nil sf) U
updProds ≺ (decls, λdeclarations → T (pExtDeclarations sf) declarations

procDeclL U)

procDeclL← addNT ≺ pFoldr (pDeclL Cons ′ sf , pDeclL Nil ′ sf)
(T procDecl U)

procDecl ← addNT ≺ T (pProcDecl sf) "PROCEDURE" ident fparams ";"

decls
(pMaybe (pEmptyStmt ′ sf , id)

(T "BEGIN" ss U))
"END" ident ";" U

fparams ← addNT ≺ T "(" fparaml ")" U <|> T (pParamL Nil sf) U
fparaml ← addNT ≺ T (pParamL Cons sf) fparam

(pFoldr (pParamL Cons sf , pParamL Nil sf)
(T ";" fparam U)) U

<|> T (pParamL Nil sf) U
fparam ← addNT ≺ T (fpVar sf) "VAR" idl ":" typ U

<|> T (fpVal sf) idl ":" typ U
exportNTs ≺ imported

A.4 L4

l4 sf = proc imported → do
let stmt = getNT cs Statement imported
let exp = getNT cs Expression imported
let factor = getNT cs Factor imported
let ident = getNT cs Ident imported
let idl = getNT cs IdentL imported
let typ = getNT cs Type imported

rec
addProds ≺ (typ , T (pArrayType sf) "ARRAY" exp "OF" typ U

<|> T (pRecordType sf) "RECORD" fieldl "END" U)

fieldl ← addNT ≺ T (pFieldL Cons sf) field
(pFoldr (pFieldL Cons sf , pFieldL Nil sf)

(T ";" field U)) U
field ← addNT ≺ T (pField sf) idl ":" typ U <|> T (pEmptyField sf) U
addProds ≺ (factor , T (pSelExp sf) ident selector U)

selector ← addNT ≺ T (pSelectL Cons sf) sel
(pFoldr (pSelectL Cons sf , pSelectL Nil sf)

15

(T sel U)) U
sel ← addNT ≺ T (pSelField sf) "." ident U

<|> T (pSelArray sf) "[" exp "]" U
addProds ≺ (stmt , T (pAssigSelStmt sf) ident selector ":=" exp U)

exportNTs ≺ imported

B Abstract Syntax

B.1 L1

data Module = Module {idbgn Module :: String
, decls Module :: Declarations
, stmts Module :: Statement
, idend Module :: String }

data Declarations = Declarations {cstdecl Declarations :: DeclL
, typdecl Declarations :: DeclL
, vardecl Declarations :: DeclL}

type DeclL = [Decl]

data Decl = CstDecl {id CstDecl :: String , exp CstDecl :: Expression }
| TypDecl {id TypDecl :: String , typ TypDecl :: Type }
| VarDecl {idl VarDecl :: IdentL, typ VarDecl :: Type }

data Type = Type {id Type :: String }
data Statement = AssigStmt {id AssigStmt :: String

, exp AssigStmt :: Expression }
| IfStmt {if IfStmt :: CondStmt

, elsif IfStmt :: CondStmtL
, else IfStmt :: MaybeElseStmt }

| WhileStmt {exp WhileStmt :: Expression
, ss WhileStmt :: Statement }

| SeqStmt {s1 SeqStmt :: Statement
, s2 SeqStmt :: Statement }

| EmptyStmt

type CondStmtL = [CondStmt]

data CondStmt = CondStmt {exp CondStmt :: Expression
, ss CondStmt :: Statement }

type MaybeElseStmt = Maybe Statement

type IdentL = [String]

type GHC IntCmp = IntCmp
data IntCmp = ECmp | NECmp | LCmp | LECmp | GCmp | GECmp
type GHC IntBOp = IntBOp
data IntBOp = Plus | Minus | Times | Div | Mod
type GHC IntUOp = IntUOp
data IntUOp = Ng | Ps

type GHC BoolBOp = BoolBOp
data BoolBOp = Or | And
type GHC BoolUOp = BoolUOp
data BoolUOp = Not

data Expression = IntCmpExp {op IntCmpExp :: GHC IntCmp
, e1 IntCmpExp :: Expression

16

, e2 IntCmpExp :: Expression }
| IntBOpExp {op IntBOpExp :: GHC IntBOp

, e1 IntBOpExp :: Expression
, e2 IntBOpExp :: Expression }

| IntUOpExp {op IntUOpExp :: GHC IntUOp
, e IntUOpExp :: Expression }

| BoolBOpExp {op BoolBOpExp :: GHC BoolBOp
, e1 BoolBOpExp :: Expression
, e2 BoolBOpExp :: Expression }

| BoolUOpExp {op BoolUOpExp :: GHC BoolUOp
, e BoolUOpExp :: Expression }

| IdExp {id IdExp :: String }
| IntExp {int IntExp :: Int }
| BoolExp {bool BoolExp :: Bool }
| ParExp {e ParExp :: Expression }

$ (deriveAG “Module)
$ (deriveLang "L1" [“Module, “Declarations, “DeclL, “Decl , “Type

, “Statement , “CondStmtL, “CondStmt , “MaybeElseStmt
, “Expression, “IdentL])

eExp sf = pIntCmpExp sf (sem Lit ECmp)
neExp sf = pIntCmpExp sf (sem Lit NECmp)
lExp sf = pIntCmpExp sf (sem Lit LCmp)
leExp sf = pIntCmpExp sf (sem Lit LECmp)
gExp sf = pIntCmpExp sf (sem Lit GCmp)
geExp sf = pIntCmpExp sf (sem Lit GECmp)

plusExp sf = pIntBOpExp sf (sem Lit Plus)
minusExp sf = pIntBOpExp sf (sem Lit Minus)
timesExp sf = pIntBOpExp sf (sem Lit Times)
divExp sf = pIntBOpExp sf (sem Lit Div)
modExp sf = pIntBOpExp sf (sem Lit Mod)

posExp sf = pIntUOpExp sf (sem Lit Ps)
negExp sf = pIntUOpExp sf (sem Lit Ng)

orExp sf = pBoolBOpExp sf (sem Lit Or)
andExp sf = pBoolBOpExp sf (sem Lit And)

notExp sf = pBoolUOpExp sf (sem Lit Not)

trueExp sf t = pBoolExp sf (λr → DTerm (pos (t r)) True)
falseExp sf f = pBoolExp sf (λr → DTerm (pos (f r)) False)

B.2 L2

data EXT Statement
= ForStmt {id ForStmt :: String , start ForStmt :: Expression

, dir ForStmt :: ForDir , stop ForStmt :: Expression
, step ForStmt :: Expression, ss ForStmt :: Statement }

| CaseStmt {exp CaseStmt :: Expression, case CaseStmt :: Case
, cases CaseStmt :: CaseL, else CaseStmt :: MaybeElseStmt }

data ForDir = To | Downto

type CaseL = [Case]

data Case = Case { label Case :: LabelL, ss Case :: Statement }

17

type LabelL = [Label]

data Label = ExpreLbl {exp ExpreLbl :: Expression }
| RangeLbl {e1 RangeLbl :: Expression

, e2 RangeLbl :: Expression }
data EXT Expression = Cst1Exp

$ (extendAG “EXT Statement [“Statement , “MaybeElseStmt , “Expression])
$ (extendAG “EXT Expression [])

$ (deriveLang "L2" [“EXT Statement , “ForDir , “CaseL, “Case
, “LabelL, “Label , “EXT Expression])

B.3 L3

type GHC KindParam = KindParam
data KindParam = VarP | ValP

data Param = Param {kind Param :: GHC KindParam
, idl Param :: IdentL
, typ Param :: Type }

type ParamL = [Param]

data EXT Decl = ProcDecl {id ProcDecl :: String
, params ProcDecl :: ParamL
, decls ProcDecl :: Declarations
, stmts ProcDecl :: Statement
, idend ProcDecl :: String }

data EXT Declarations
= ExtDeclarations {decls ExtDeclarations :: Declarations

, prcdecl ExtDeclarations :: DeclL}
type ExpressionL = [Expression]

data EXT2 Statement = ProcCStmt {id ProcCStmt :: String
, params ProcCStmt :: ExpressionL}

$ (extendAG “EXT Decl [“Declarations, “Statement , “IdentL, “Type])
$ (extendAG “EXT Declarations [“Declarations, “DeclL])
$ (extendAG “EXT2 Statement [“Expression])
$ (deriveLang "L3" [“EXT Declarations, “EXT Decl , “Param, “ParamL

, “EXT2 Statement , “ExpressionL])

B.4 L4

data EXT Type = ArrayType {exp ArrayType :: Expression
, typ ArrayType :: Type }

| RecordType {fields RecordType :: FieldL}
type FieldL = [Field]

data Field = Field {idl Field :: IdentL, typ Field :: Type }
| EmptyField

data EXT2 Expression = SelExp {id SelExp :: String , sel SelExp :: SelectL}
type SelectL = [Select]

data Select = SelField {id SelField :: String }
| SelArray {exp SelArray :: Expression }

data EXT3 Statement = AssigSelStmt {id AssigSelStmt :: String

18

, sel AssigSelStmt :: SelectL
, exp AssigSelStmt :: Expression }

$ (extendAG “EXT Type [“Expression, “IdentL, “Type])
$ (extendAG “EXT2 Expression [“Expression])
$ (extendAG “EXT3 Statement [“SelectL, “Expression])

$ (deriveLang "L4" [“EXT Type, “FieldL, “Field , “EXT2 Expression
, “SelectL, “Select , “EXT3 Statement])

19

	1 Introduction
	2 Architecture
	3 Syntax
	4 Aspect Oriented Semantics
	4.1 Name analysis
	4.2 Type checking
	4.3 Source-to-source transformation
	4.4 Code generation

	5 Artifacts
	6 Conclusions
	A Concrete Grammar
	A.1 L1
	A.2 L2
	A.3 L3
	A.4 L4

	B Abstract Syntax
	B.1 L1
	B.2 L2
	B.3 L3
	B.4 L4

