
A formalisation of argumentation
schemes for case-based reasoning in
ASPIC+

Henry Prakken

Adam Z. Wyner

Trevor J.M. Bench-Capon

Katie D. Atkinson

Technical Report UU-CS-2013-002
January 2013

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl



ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands



A formalisation of argumentation schemes for case-based
reasoning in ASPIC+

Henry Prakken1, Adam Wyner2∗, Trevor Bench-Capon2, and Katie Atkinson2

1University of Utrecht, Department of Information and Computing Sciences and
University of Groningen, Faculty of Law

2University of Liverpool, Department of Computer Science

Abstract

In this paper we offer a formal account of reasoning with legal casesin terms of argumentation schemes.
These schemes, and undercutting attacks associated with them, are formalised as defeasible rules of
inference within the ASPIC+ framework. We begin by modelling the style of reasoning with cases de-
veloped by Aleven and Ashley in the CATO project, which describes casesusing factors, and then extend
the account to accommodate the dimensions used in Rissland and Ashley’searlier HYPO project. Some
additional scope for argumentation is then identified and formalised.
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1 Introduction

Legal case-based reasoning (LCBR) has long been a topic of interest in AI and Law, and a variety of
approaches have evolved. One important line of work on LCBR began with HYPO [? ], developed by
Edwina Rissland and her student, Kevin Ashley at Amherst. HYPO represented reasoning with legal cases
as the exchange of arguments and counter arguments based ondimensions, legally significant aspects of
the cases. Subsequently the ideas of HYPO were further developed by Ashley at Pittsburgh where he
worked with his student, Vincent Aleven, on CATO [? ], which introduced the notions offactorsand a
factor hierarchy, and with another student, Steffi Bruninghaus, on IBP [? ] which attempted to predict
case outcomes instead of simply identifying the arguments for the two sides. Like HYPO these systems
were applied to US Trade Secrets law. Meanwhile Rissland stayed at Amherst where she worked with
her student, David Skalak, on CABARET [? ], which was based on Home Office Deduction cases and
embedded the case based reasoning within a structure of rules modelling the relevant legislation, and with
Skalak and Timur Friedman on BankXX [? ]. which generated arguments about Home Office Deduction
through heuristic search. The model of case based reasoningused in this paper is largely based on the
model developed in CATO, although we shall also draw on theseother systems where convenient. More
theoretically-oriented research related to this general approach appears in [? ], [? ], and [? ]. In all these
approaches, a current undecided case is decided by comparing and contrasting features in the current case
against precedent cases in a case-base that have similar features. The decision in the “best” precedent case
is then taken as the decision into the current case followingthe legal reasoning principle ofstare decisis.

In [? ], a number of novel argumentation schemes designed to reflect reasoning with factors as in Aleven
and Ashley’s CATO [? ] were described, where the focus is to determine how and in what way a precedent
case does (or does not) argue in support of a determination inthe current case. However, the presentation in
[? ] was semi-formal and not set in an analytic framework which supports reasoning about these schemes.
In this paper, we reanalyse and formalise legal case-based argumentation schemes in terms of the formal
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argumentation framework of ASPIC+ [? ]. Formalising these schemes clarifies them and makes them more
precise, while formalising them in ASPIC+ makes the metatheory of the ASPIC+ framework available for
our account. In particular, we shall use its metatheory to prove that our specification satisfies the rationality
postulates of [? ]. A formalisation in ASPIC+ also illustrates the potentialof that framework for formalising
reasoning with argumentation schemes.

[? ] was also limited in that it did not consider additional aspects about reasoning with factors, nor
reasoning with dimensions as in HYPO. An attempt to rectify these deficiencies was made in [? ], but this
paper represents a rewritten, revised and extended versionwhich improves markedly on both the formal
representation and the analysis.

The current paper advances the state-of-the-art in severalrespects: legal case-based reasoning with
factors is clarified, defeasible legal case-based reasoning is represented and formalised in argumentation
schemes, the arguments are compatible with and evaluated ina formally defined argumentation framework,
and the analysis presents a well-developed and justified instantiation of defeasible argumentation schemes
in a formal framework. Furthermore, the analysis provides auniform representation language into which
various alternative proposals for LCBR can be cast, compared, integrated, and reasoned with. Finally, the
paper as a whole provides a demonstration of how an aspect of domain expertise, in this case reasoning
with legal precedents, can be fruitfully captured and represented as a set of argumentation schemes, and
the specific domain conceptualisation required to support them. This technique is generally applicable to
expertise which comprises the ability to reason in a particular way.

The organisation of the paper is as follows. We first set out elements of the formal framework for argu-
mentation that we are assuming. In section 3, we discuss case-based reasoning as in CATO. We introduce
our running example and the elements of the language we need for the argumentation schemes before pre-
senting CATO style argumentation schemes in the formal framework. In section 4, the analysis is extended
to reasoning about dimensions, the relationship between facts and factors, and factor incompatibility. Sec-
tion 5 offers some additional discussion.

2 The Formal Setting

We first briefly summarise the formal frameworks used in this paper. Anabstract argument framework, as
introduced by Dung, [? ] is a pairAF = 〈A, defeat〉, whereA is a set of arguments anddefeata binary
relation onA. A subsetB of A is said to beconflict-freeif no argument inB defeats an argument inB
and it is said to beadmissibleif it is both conflict-free and also defends itself against any attack, i.e., if an
argumentA1 is inB and some argumentA2 in A but not inB defeatsA1, then some argument inB defeats
A2. A preferred extensionis then a maximal (with respect to set inclusion) admissibleset. Dung defines
several other types of extensions but they are not used in ourmodel.

Dung’s arguments are entirely abstract, with no features other than the defeat relation. A general
framework for giving structure to arguments is the ASPIC framework, most fully defined as ASPIC+ in [?
? ]. The ASPIC+ framework first defines the notion of anargumentation system, which consists of a logical
languageL with a binary contrariness relation− and two sets of inference rulesRs andRd of strict and
defeasible inference rulesdefined overL, written asϕ1, . . . ,ϕn → ϕ andϕ1, . . . ,ϕn ⇒ ϕ. Informally, that
an inference rule is strict means that if its antecedents areaccepted, then its consequent must be accepted
no matter what, while that an inference rule is defeasible means that if itsantecedents are accepted, then
its consequent must be acceptedif there are no good reasons not to accept it.

In the present paper we use an argumentation system in whichL is a first-order language with equality
further specified in the coming sections, its contrariness relation corresponds to classical negation, the strict
rulesRs are all valid first-order inferences overL and the defeasible rulesRd are as specified in the coming
sections.

Arguments are in ASPIC+ constructed from a knowledge baseK, which contains two disjoint kinds of
formulas: theaxiomsKn and theordinary premisesKp. The formal definition of an argument is as follows:

Definition 2.1 [Argument] AnargumentA on the basis of a knowledge baseK in an argumentation system
(L,−,Rs,Rd) is:

1. ϕ if ϕ ∈ K with: Prem(A) = {ϕ}; Conc(A) = ϕ; Sub(A) = {ϕ}; TopRule(A) = undefined.
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Figure 1: An argument

2. A1, . . . An →/⇒ ψ if A1, . . . , An are arguments such that there exists a strict or a defeasiblerule
Conc(A1), . . . , Conc(An) →/⇒ ψ in Rs/Rd.
Prem(A) = Prem(A1)∪. . .∪Prem(An); Conc(A) = ψ; Sub(A) = Sub(A1)∪. . .∪Sub(An)∪{A};
TopRule(A) = Conc(A1), . . . , Conc(An) →/⇒ ψ.

An argument isstrict if all its inference rules are strict anddefeasibleotherwise, and it isfirm if all its
premises are inKn andplausibleotherwise.

Arguments can be displayed as inference trees. An example argument,A2, is shown in Figure 1.A2

has premisesP1, P2, P3, and conclusionC1. A single and double bar stand for, respectively, a strict and
defeasible inference. ArgumentA2 has three subarguments, namelyA1, which has premisesP1 andP2

and conclusionP3, and the formulasP1, P2 andP4 as atomic subarguments.
An argumentation system and a knowledge base are combined with an argument orderinginto an

argumentation theory. The argument ordering could be defined in any way, for example, in terms of
orderings onRd andKp.

Definition 2.2 [Argumentation theories] Anargumentation theoryis a tripleAT = (AS ,K,�) where
AS is an argumentation system,K is a knowledge base inAS and� is a partial preorder on the set of all
arguments on the basis ofK in AS (below denoted byAAT ).

Arguments can be attacked in three ways: attacking a conclusion of a defeasible inference, attacking the
defeasible inference itself, or attacking a premise. To define how a defeasible inference can be attacked,
a functionn is assumed that assigns to each element ofRd a well-formed formula inL. Informally,n(r)
(wherer ∈ Rd) means thatr is applicable. For our argumentation system, ASPIC+’s definitions of attack
can be simplified as follows:1

Definition 2.3 [attacks]A attacksB iff A undercuts, rebutsor underminesB, where:

• A undercutsargumentB (onB′) iff Conc(A) = −n(r) for someB′ ∈ Sub(B) such thatB′’s top
rule r is defeasible.

• A rebutsargumentB (onB′) iff Conc(A) = −ϕ for someB′ ∈ Sub(B) of the formB′′

1
, . . . , B′′

n ⇒
ϕ.

• ArgumentA underminesB (onϕ) iff Conc(A) = −ϕ for some ordinary premiseϕ of B.

In Figure 1, argumentA2 can only be rebutted or undercut on its defeasible subargumentA1.
Attacks combined with the preferences defined by an argumentordering yield three kinds of defeat.

Definition 2.4 [Successful rebuttal, undermining and defeat]

• A successfully rebutsB if A rebutsB onB′ andA 6≺ B′.

• A successfully underminesB if A underminesB onϕ andA 6≺ ϕ.

• A defeatsB iff A undercuts or successfully rebuts or successfully underminesB.

The success of rebutting and undermining attacks thus involves comparing the conflicting arguments at
the points where they conflict. The definition of successful undermining exploits the fact that an argument
premise is also a subargument. For undercutting attack no preferences are needed to make it succeed, since
undercutters state exceptions to the rule they attack.

ASPIC+ thus defines a set of arguments with a binary relation of defeat, that is, it defines abstract
argumentation frameworks in the sense of [? ]. Formally:

1In the definitions below,−¬ϕ denotesϕ, while if ϕ does not start with a negation,−ϕ denotes¬ϕ.
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Definition 2.5 [Argumentation framework] Anabstract argumentation framework (AF ) corresponding to
an argumentation theoryAT is a pair< A, Def> such that:

• A is the set of arguments on the basis ofAT as defined by Definition 2.1,

• Def is the relation onA given by Definition 2.4.

Thus any semantics for abstract argumentation can be applied to ASPIC+.

3 CATO Argumentation Schemes

In this section, formal argumentation schemes for CATO style case-based reasoning are provided. We give
a brief overview of CBR as represented in CATO in section 3.1,introduce our running example in section
3.2, present elements of the language in section 3.3, formalise the argumentation schemes in 3.4, and report
the results with respect to our example in 3.5. In section 3.6we prove that our ASPIC+ argumentation
theories satisfy [? ]’s rationality postulates of strict closure and consistency.

3.1 Case-based Reasoning as in CATO

CATO [? ], which we focus on in this section, analyses cases in terms of factors, where a factor is a
prototypical fact situation that predisposes the decisionin favour of one party or the other in the case;
for trade secret law, the domain CATO is designed for, the factors concern trade secret misappropriation
and are derived fromRestatement of Torts First, Sec. 757and theUniform Trade Secret Act(see [? ?
]). As different precedents have different distributions of factors, finding and reasoning about precedents
with respect to a current case requires one to examine the combinations of and counter-balancing between,
factors in the cases. In addition to the factors themselves,there is afactor hierarchyin which anabstract
factor has factors as children; in reasoning with the abstract factors and the factors of a case, differences
between the cases can sometimes be reconciled. The argumentation schemes discussed in this paper make
such reasoning patterns explicit and formal.

A case comparison method for LCBR was introduced in [? ], where cases are analysed in terms of
partitionsof case factors. Various distributions of factors amongst the partitions can be used to support or
undermine the plaintiff’s argument that the current case should be decided in the plaintiff’s favour. [? ]
provided some informally expressedargumentation schemesfor this partition method, where the schemes
aredefeasible reasoning patternsand the partitions are sets of CATO factors and the factor hierarchy is
used. This paper formalises, articulates, and extends thisline of research on LCBR.

3.2 Running Example

To clarify the discussion, we provide a running example using Mason v Jack Daniels Distillery(indicated
with Mason) andM. Bryce and Associates v Gladstone(indicated withBryce) as analysed in CATO, based
on the factors and factor hierarchy in [? ].

Mason v Jack Daniels Distillery2, is a well known case, so well known that an episode of the Simpsons3

was based on it. A bartender, Tony Mason, invented a cocktail, Lynchburgh Lemonade comprising Jack
Daniel’s whiskey, Triple Sec, sweet and sour mix, and 7-Up. It proved surprisingly popular. Mason met
Winston Randle, a sales representative for Jack Daniel Distillery, and they talked about the drink, and
its possible use in a promotion. Approximately one year later the defendants were developing a national
promotion campaign for Lynchburg Lemonade. Mason claimed that he had parted with the recipe because
he had been told that his band would be used in the promotion. In fact Mason received nothing. The jury
found for the plaintiff, but awarded only a dollar in damages. Here we will treatMasonas the current case
under consideration.

2518 So.2d 130, 1987 Ala. Civ. App.
3Flaming Moe’s, the tenth episode of the third season.
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In M. Bryce and Associates v Gladstone4 Bryce was a software company with a product bearing the
registered trademark “Pride”. “Pride” is a complete methodology for the design, development and imple-
mentation of an information system. Bryce made a presentation of “Pride” to the defendants, hoping to
make a sale, after which the defendants designed and implemented a manual that duplicated its procedures,
forms and standards.Bryce thus also involves disclosure in negotiations and was foundfor the plaintiff,
and so can serve as a possible precedent.

We give the factors for each case, as used in CATO, (the factoridentifiers,F1 and so on are those used
in [? ] and adopted in other work discussing CATO). We also indicate the side favoured by the factors:

• Mason

– F1 Disclosure-In-Negotiations (d)

– F6 Security-Measures (p)

– F15 Unique-Product (p)

– F16 Info-Reverse-Engineerable (d)

– F21 Knew-Info-Confidential (p)

• Bryce

– F1 Disclosure-In-Negotiations (d)

– F4 Agreed-Not-To-Disclose (p)

– F6 Security-Measures (p)

– F18 Identical-Products (p)

– F21 Knew-Info-Confidential (p)

In subsequent sections, we illustrate the formalism with this example.

3.3 Elements of a Language

We begin by defining the language that we shall use to talk about our cases and which will be used in our
underlying knowledge base. We assume a many-sorted first-order language with sorts for parties, cases
(with subsorts for current cases and precedents), factors and factor sets. We trust that the types of the terms
and predicate and function symbols will be clear from the context and wording.

We first discuss some preliminaries. To correctly representand reason with set-theoretic expressions,
the following definitions are assumed to be inKn:

1. ∀s, s′.(s ⊆ s′ ≡ ∀x(x ∈ s =⇒ x ∈ s′))5

2. ∀x, s, s′.(x ∈ s ∩ s′ ≡ (x ∈ s ∧ x ∈ s′))

3. ∀x, s, s′.(x ∈ s ∪ s′ ≡ (x ∈ s ∨ x ∈ s′))

4. ∀x, s, s′.(x ∈ s \ s′ ≡ (x ∈ s ∧ x 6∈ s′))

In expressions likepFactors(Mason) = {F6 ,F15 ,F21} the brackets{ and} are together a function
symbol operating on the termsF6 , F15 andF21 . To preserve the meaning of the function symbol the
following axiom is added toKn:

5. ∀s, x1, . . . , xn.s = {x1, . . . , xn} ≡ ∀y(y ∈ s ≡ (y = x1 ∨ . . . ∨ y = xn))

Here the variables ranges over sets. This definition assumes that sets are finite, which in our domain is a
safe assumption.

Factors are inKp declared to be either pro-plaintiff or pro-defendant, with:

4107 Wis. 2d 241
5In this paper the long double arrow=⇒ denotes the material implication.
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• pFactor(factor), meaning thatfactor is a pro-plaintiff factor;

• dFactor(factor), meaning thatfactor is a pro-defendant factor.

In our running example we have at least the following formulas inKp:

• pFactor(F4 )

• pFactor(F6 )

• pFactor(F15 )

• pFactor(F18 )

• pFactor(F21 )

• dFactor(F1 )

• dFactor(F16 )

No factor can be both pro-plaintiff and pro-defendant, expressed by adding toKn:

6. ∀factor¬(pFactor(factor) ∧ dFactor(factor))

We next turn to the representation of cases. We will not talk about cases directly, but cases as analysed for
use by the CATO system, which is the system that provides the paradigm on which our argumentation will
be based. For CATO, a case has a name, a set of factors in favourof the plaintiff, a set of factors in favour
of the defendant, and (if the case is a precedent) an outcome,which is one of plaintiff or defendant. We
describe cases as follows. First for each case the sets of (plaintiff and defendant) factors in the case are
specified with the following predicates:

• hasFactor(case, factor), meaning thatfactor is a factor incase.

• hasPfactor(case, factor), meaning thatfactor is a plaintiff factor incase.

• hasDfactor(case, factor), meaning thatfactor is a defendant factor incase.

Moreover, the following definitions are added toKn.

7. ∀case, factor .hasPfactor(case, factor) ≡ hasfactor(case, factor) ∧
pFactor(factor)

8. ∀case, factor .hasDfactor(case, factor) ≡ hasfactor(case, factor) ∧
dFactor(factor)

The idea is thathasFactor(case, factor) statements are added toKp and that they together with the spec-
ifications of the types of factors inKp give rise to strict arguments forhasPfactor(case, factor) and
hasDfactor(case, factor) conclusions. In our running example we thus have strict arguments for the fol-
lowing conclusions:

• hasPfactor(Mason,F6 )

• hasPfactor(Mason,F15 )

• hasPfactor(Mason,F21 )

• hasDfactor(Mason,F1 )

• hasDfactor(Mason,F16 )

• hasPfactor(Bryce,F4 )

• hasPfactor(Bryce,F6 )
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• hasPfactor(Bryce,F18 )

• hasPfactor(Bryce,F21 )

• hasDfactor(Bryce,F1 )

To ensure that a factor belongs to a case if and only if specified as such, the predicate completions of
the predicatehasFactor and the unique-names and domain-closure axioms for objectssatisfying these
predicates are added toKn. This makes, for example, the following pairs of formulas mutually inconsistent:

• pFactors(Mason) = {F6 ,F15 ,F21} andpFactors(Mason) = {F4 ,F21}

• pFactors(Mason) = {F6 ,F15 ,F21} andhasPfactor(Mason,F4 )

In our running example the predicate completion formulas are as follows:

• ∀case, factor .hasFactor(case, factor) ≡
((case = Mason ∧ (factor = F1 ∨ F6 ∨ factor = F15 ∨ F1 ∨ factor = F21 ))∨
(case = Bryce ∧ (factor = F1 ∨ F4 ∨ factor = F6 ∨ factor = F18 ∨ factor = F21 )))

The unique-names and domain closure axioms are:

• ∀case.case = Mason ∨ case = Bryce

• Mason 6= Bryce

• ∀factor .factor = F1 ∨ . . . ∨ factor = F115

• F1 6= . . . 6= F115

The following three function expressions are used to denotea case’s sets of pro-plaintiff and pro-
defendant factors and its outcome:

• pFactors(case) = setOfFactors.

• dFactors(case) = setOfFactors.

• outcome(case) = party .

We then add the following axioms toKn to link expressions with thehasPfactor , hasDfactor andhasfactor

predicates to expressions with the∈ symbol. It is these axioms that enable set-theoretic operations on fac-
tors and factor sets.

9. ∀case, f.f ∈ Factors(case) ≡ hasFactor(case, factor)

10. ∀case, f.f ∈ pFactors(case) ≡ hasFactor(case, factor) ∧ pFactor(factor)

11. ∀case, f.f ∈ dFactors(case) ≡ hasFactor(case, factor) ∧ dFactor(factor)

With respect to our running example, we then have strict arguments for the following conclusions:

• pFactors(Mason) = {F6 ,F15 ,F21}

• dFactors(Mason) = {F1 ,F16}

• pFactors(Bryce) = {F4 ,F6 ,F18 ,F21}

• dFactors(Bryce) = {F1}

We also have inKp:

• outcome(Bryce) = Plaintiff

7



Additionally a feature of CATO is that factors are organisedinto a factor hierarchy, with factors being
the children of more abstract factors. Thus for every factorwe can have relations of the form:

• parentFactor(factor , abstractFactor)

While CATO has some intermediate layers in the factor hierarchy, we omit some of them for our current
purposes as well as the label of these higher level factors. The abstract factors are also associated with a
side, with the following formulas inKp:

• pFactor(F102 )

• pFactor(F115 )

• dFactor(F105 )

Note that cases are described only in terms of base level factors: thuspFactors(case) anddFactors(case)
do not return any abstract factors. The factor hierarchy wasoriginally built by Aleven starting from the
base level factors, and in principle it would be possible to construct different factor hierarchies, using dif-
ferent abstract factors and/or differentparentFactor relations, in which case paternity could even be the
subject of dispute, andparentFactor(factor , abstractFactor) would need to be the conclusion of some
rule, rather than a premise. We will, however, consider the factor hierarchy to be fixed to that used in [? ],
and useparentFactor only as it is defined there.

• parentFactor(F1 ,F102 )

• parentFactor(F4 ,F102 )

• parentFactor(F4 ,F115 )

• parentFactor(F6 ,F102 )

• parentFactor(F15 ,F105 )

• parentFactor(F16 ,F105 )

• parentFactor(F21 ,F115 )

A factor hierarchy can be specified by adding a formula of the following form toKp:

• ∀factor1 , factor2 .parentFactor(factor1 , factor2 ) ≡ (factor1 = Fi1 ∧
factor2 = Fj1 ) ∨ . . . ∨ (factor1 = Fin ∧ factor2 = Fjn)

If desired, axioms can be added toKn to exclude cycles in the factor hierarchy, but multiple parents
must be allowed to represent the hierarchy of [? ].

Cases are compared with one another in terms of their factors. This gives rise to a further six functions
of the following type:

commonPfactors : currentcases × precedents −→ 2 factors

The six functions are defined as follows as elements ofKn.

∀f, curr , prec:

12. commonPfactors(curr , prec) = pFactors(curr) ∩ pFactors(prec)

13. commonDfactors(curr , prec) = dFactors(curr) ∩ dFactors(prec)

14. currPfactors(curr , prec) = pFactors(curr) \ commonPfactors(curr , prec)

15. currDfactors(curr , prec) = dFactors(curr) \ commonDfactors(curr , prec)

16. precPfactors(curr , prec) = pFactors(prec) \ commonPfactors(curr , prec)

8



17. precDfactors(curr , prec) = dFactors(prec) \ commonDfactors(curr , prec)

With respect to our running example, we have:

• commonPfactors(Mason,Bryce) = {F6 ,F21}

• commonDfactors(Mason,Bryce) = {F1}

• currPfactors(Mason,Bryce) = {F15}

• currDfactors(Mason,Bryce) = {F16}

• precPfactors(Mason,Bryce) = {F4 ,F18}

• precDfactors(Mason,Bryce) = ∅

These relations are the building blocks for our arguments. The first two are the basis for a comparison
and represent what is common between the two cases. The remaining four represent differences, and their
effect will depend on the outcome of the previous case and theside for which we are arguing. Suppose we
are arguing for the plaintiff: then we can only use precedents with the outcome plaintiff. For such cases,
currPfactorsandprecDfactorswill strengthen the plaintiff’s position, since they represent, respectively,
plaintiff reasons incurr not available in theprecand defendant reasons in theprecwhich are not available
in curr. On the other hand,currDfactorsandprecPfactorsweaken the plaintiff’s position incurr. Simi-
larly, if arguing for the defendant in thecurr, currDfactorsandprecPfactorsstrengthen the position and
currPfactorsandprecDfactorsweaken it. The precise nature of the strengthening and weakening will be
made clear when we consider the argumentation schemes basedon these different partitions.

Next we need to express that one set of factors,factorSet1, is preferred over another,factorSet2.

• preferred(factorSet1,factorSet2).

In our analysis, the preference is the claim of a defeasible argumentation schemeCS2, which only appears
later. We cannot, then, straightforwardly provide the preference in our running example until section 3.4.

Finally, we need another relation between factors. If factors for a given party share the same ancestor,
then both factors get their force from the fact that the same abstract factor is present in the case. This means
that, if they favour the same party to the case, it may be possible to substitute one for another. Similarly if
they favour different parties, they may cancel each other out so as to remove the abstract factor from the
case. Therefore we have two additional predicates:

• substitutes(factor1 , factor2 )

• cancels(factor1 , factor2 )

To define these predicates, the following definition of the ancestor relation between factors is added toKn:

18. ∀f1, f2.ancestor(f1, f2) ≡ parentFactor(f1, f2) ∨ ∃f3(ancestor(f1, f3) ∧
parentFactor(f3, f2))

We define substitution and cancellation of factors that would benefit the plaintiff as follows, where substi-
tutions applybetweencases and cancellations applywithin cases. Substitutions and cancellations for the
defendant would be similar, though switching the predicates (and factor sets). The following definitions
are inKn:

19. ∀f1, f2.substitutes(f1, f2) ≡
((pFactor(f1) ∧ pFactor(f2)) ∨ (dFactor(f1) ∧ dFactor(f2))) ∧
∃f3(ancestor(f1, f3) ∧ ancestor(f2, f3))

20. ∀f1, f2.cancels(f1, f2) ≡
((pFactor(f1) ∧ dFactor(f2)) ∨ (dFactor(f1) ∧ pFactor(f2))) ∧
∃f3(ancestor(f1, f3) ∧ ancestor(f2, f3))

9



In our running example, we have:

• substitutes(F4 ,F6 ) sinceprecPfactors(Mason,Bryce) = {F4 ,F18} andF4 ∈ {F4 ,F18} and
pFactors(Mason) = {F6 ,F15 ,F21} and
F6 ∈ {F6 ,F15 ,F21} andparentFactor(F4 ,F102 ) and
parentFactor(F6 ,F102 ).

• cancels(F15 ,F16 ) sincecurrPfactors(Mason,Bryce) = {F15} andF15 ∈ {F15} anddFactors(Mason) =
{F1 ,F16} andF16 ∈ {FF1 ,F16} andparentFactor(F15 ,F105 ) andparentFactor(F16 ,F105 ).

Intuitively, we want to argue that we should decideMasonfor the plaintiff on the basis ofBryce. The
argument will be thatMasonandBryceshare several factors (both for plaintiff and defendant), and so,
sinceBrycewas decided for the plaintiff, so too shouldMasonbe decided, provided that any differences
between them can be argued away by substitution and cancellation.

In the next section we will present the argumentation schemes built from this language.

3.4 CATO style Argumentation Schemes

In this section we specify the defeasible inference rulesRd of our ASPIC+ argumentation system. For
readability we will not specify them with the rule symbol⇒ but asargumentation schemes, i.e., with a
double horizontal inference bar. Rule schemes will be namedby expressionsName(x1, . . . , xn) where the
predicateName stands for the informal name of the rule andx1, . . . , xn are all free variables occurring
in the scheme. These variables are replaced by ground terms for each instance of the scheme, resulting
in closed formulas that are the names of the scheme instancesaccording to the functionn mentioned just
before Definition 2.3.

In this section we will always suppose that we wish to argue the curr for the plaintiff. Arguments
for the defendant are similar, except that the strengthening and weakening factor partitions are reversed as
discussed above. The argument is that thecurr should be decided for the plaintiff because the commonp

factors were preferred to the commond factors in theprec.6

CS1(cur , prec, p, d):

commonPfactors(curr , prec) = p,

commonDfactors(curr , prec) = d,
preferred(p, d)

outcome(curr) = Plaintiff

Instantiating CS1, where ourcurr is Masonand ourprec is Bryce, we have the following argument, indi-
cated withMason(Bryce)A1:

Mason(Bryce)A1

commonPfactors(Mason,Bryce) = {F6 ,F21},
commonDfactors(Mason,Bryce) = {F1},

preferred({F6 ,F21}, {F1})

outcome(Mason) = Plaintiff

Note that strictly speaking some of these premises are derived fromKn ∪ Kp. However, to keep the
arguments reasonably readable we will leave strict derivations from the knowledge base implicit.

We will assume at this point that the information about casesin our KB is correct, or at least beyond
dispute; this is relaxed in section 4.2. In ASPIC+ terms thismakes the case factsaxiomsand so the first two
premises cannot be questioned. The third, however, needs tobe established, and this will be done using
CS2, which we will describe after considering undercuttersto CS1.

6Note that CS1 uses only a subset of the factors from the precedent: this is because CS2 also encapsulates the rule broadening
move as discussed in [? ], which is necessary to adapt theprecso as to match thecurr.
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There may, of course, be rebuttals, using a variety of argumentation schemes, but we need to recognise
that even if such a preference has been established in theprec, it may not be applicable to thecurr, because
the defendant has arguments in thecurr that were not available in theprec. We therefore have the under-
cutting attack for arguments using CS1.

U1.1(cur , prec, p, d):

f ∈ currDfactors(curr , prec)

¬CS1(cur , prec, p, d)

Instantiating U1.1 withMason, Bryceand the relevant sets, we have an undercutter argument:

Mason(Bryce)A2:

F16 ∈ currDfactors(Mason,Bryce)

¬CS1(Mason,Bryce, {F6 ,F21}, {F1})

While this presents a challenge to the plaintiff, the argument for the plaintiff can be defended if the
distinctions between the cases can bedownplayed. The undercutting move of U1.1 is one way of distin-
guishing the two cases, and in CATO the abstract factor hierarchy allows us to downplay distinctions. This
downplaying can be done in two ways,substitutionor cancellation, corresponding to the two different
kinds of extra strength thecurr may have. Accordingly we introduce two schemes that can be used to
provide undercutters of U1.1:

U1.1.1(curr , prec, f1, f2, p, d):

f1 ∈ currDfactors(curr, prec),
f2 ∈ dFactors(prec),
substitutes(f1, f2)

¬U1.1(cur , prec, p, d)

U1.1.2(curr , prec, f1, f2, p, d):

f1 ∈ currDfactors(curr, prec),
f2 ∈ pFactors(curr),

cancels(f1, f2)

¬U1.1(cur , prec, p, d)

The idea here is that as the undercutting factor in thecurr has the same parent as a factor inprec, we can
substitute for the undercutting factor, where the point is that the abstract factor can be seen to have been
applied also in theprec; alternatively, the undercutting factor in thecurr is cancelled out by some other
factor incurr, so that the abstract factor does not apply. Instantiating U1.1.2 with our running example and
given that we previously determined thatcancels(F15, F16), we can form the following argument:

Mason(Bryce)A3:

F16 ∈ currDfactors(Mason,Bryce),
F15 ∈ pFactors(Mason),

cancels(F15 ,F16 )

¬U1.1(cur , prec, p, d)

We now turn to the argumentation scheme to establish the preference between two sets of factors, re-
quired to justify the third premise of CS1.

CS2(cur , prec, p, d):

11



commonPfactors(curr , prec) = p,

commonDfactors(curr , prec) = d,
outcome(prec) = Plaintiff

preferred(p, d)

Note that CS2 establishes a preference between two particular sets. It might seem natural to add that from
preferred(p, d) we should be able to derivepreferred(p′, d) wherep′ ⊃ p andpreferred(p, d′) where
d′ ⊂ d, as in, for example [? ]. This, however, would be to go beyond CATO. Moreover it would arguably
go against the spirit of CATO-style reasoning, which insists that all claims about preferences are based on a
specificprecedent. CATO always argues using a particular precedent, never with a set of precedents. If the
current case does in fact contain additional pro-plaintifffactors or fewer pro-defendant factors, these are
made use of in different arguments employing the argumentation schemes CS3 and CS4 discussed below.

Instantiating CS2, we have an argument for the preference, as mentioned above:

Mason(Bryce)A4:

commonPfactors(Mason,Bryce) = {F6 ,F21})
commonDfactors(Mason,Bryce) = {F16})

outcome(Bryce) = Plaintiff

preferred({F6 ,F21}, {F16})

All of the premises of CS2 are taken from our database, or straightforward set operations on such data
and so represent ASPIC+ axioms which cannot be questioned. It is, however, possible to both rebut and to
undercut the argument.

R2.1(cur , prec, prec2 , p, d):

p ⊆ commonPfactors(curr , prec2 ),
d ⊆ commonDfactors(curr , prec2 ),

outcome(prec) = Defendant

¬preferred(p, d)

Attacks made using R2.1 offer counter examples in which the same comparison was available in a case
decided for the defendant, suggesting that the preference is opposite, and so providing a rebuttal. We do
not consider such rebuttals further in this paper, but in arguing a case they would be subject to attacks us-
ing the schemes introduced in this paper, just like CS2. The following scheme can be used to undercut CS2.

U2.1(curr , prec, p, d):

f ∈ precPfactors(curr , prec)

¬CS2(curr , prec, p, d)

Instantiating U2.1 withMasonandBryce, we have two arguments, one for each factor in precPfactors:

Mason(Bryce)A5:

F4 ∈ precPfactors(Mason,Bryce)

¬CS2(Mason,Bryce, {F6 ,F21}, {F1})

Mason(Bryce)A5’:

F18 ∈ precPfactors(Mason,Bryce)

¬CS2(Mason,Bryce, {F6 ,F21}, {F1})

U2.1 undercuts the argument by suggesting that it may have been the additional plaintiff factors available
in the prec that tipped the balance, and so distinguishing thecurr and theprec. Like U1.1, U2.1 can be
undercut if we can downplay the distinction.

U2.1.1(curr , prec, f1, f2, p, d):
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f1 ∈ precPfactors(curr , prec),
f2 ∈ pFactors(curr),
substitutes(f1, f2)

¬U2.1(curr , prec, p, d)

U2.1.2(curr , prec, f1, f2, p, d):

f1 ∈ precPfactors(curr , prec),
f2 ∈ dFactors(curr),

cancels(f1, f2)

U2.1(curr , prec, p, d)

We instantiate U2.1.1, which undercuts U2.1:

Mason(Bryce)A6:

F4 ∈ precPfactors(Mason,Bryce),
F6 ∈ pFactors(Mason),

substitutes(F4 ,F6 )

¬U2.1(Mason,Bryce, {F6 ,F21}, {F1})

At this point we have: the main argument for the plaintiff based on a particularprec, comprising an
application of a preference and an argument for the preference; undercutters of these two subarguments;
and undercutters of some of these undercutting arguments. We may still, however, have some strengths of
thecurr unused, and so we can add some supplementary arguments.

CS3(curr , prec, f1, p, d):

commonPfactors(curr , prec) = p,

commonDfactors(curr , prec) = d,
preferred(p, d),

f1 ∈ currPfactors(curr , prec),
¬∃f2(f2 ∈ dFactors(curr) ∧ cancels(f2, f1)),

¬∃f3(f3 ∈ pFactors(prec) ∧ substitutes(f1, f3))

outcome(curr) = Plaintiff

CS4(curr , prec, f1, p, d):

commonPfactors(curr , prec) = p,

commonDfactors(curr , prec) = d,
preferred(p, d),

f1 ∈ precDfactors(curr , prec),
¬∃f2(f2 ∈ currPFactors(curr) ∧ cancels(f2, f1)),
¬∃f3(f3 ∈ dFactors(curr) ∧ substitutes(f1, f3))

outcome(curr) = Plaintiff

These arguments make use of the factors not used to substitute or cancel factors cited to undercut the
arguments for the plaintiff based on theprec. Thus CS3 points to additional plaintiff factors in thecurr
that were not used to cancel or substitute for factors otherwise used.CS4 does the same thing in terms of
factors that made the defendant’s case stronger in theprec. Note that both require thepreferred(P, D)as a
premise, and so must use CS2 to establish this. This seems, from a logical point of view, somewhat odd,
since the premises of CS1 are a subset of CS3 and the conclusion is the same. Traditionally in work on
computational argumentation, arguments are defined so thatthe premises should be a minimal subset from
which the conclusion may be derived [? ]. Yet these are presented as arguments in CATO, and so we need
schemes for them if we are to reconstruct CATO. Essentially these arguments, which appear in CATO as
the moveemphasise strengths, are intended to have a kind of rhetorical force, rather thana logical force.
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Figure 2: Mason(Bryce) partial Argument Graph

From a logical point of view, the case is already won, but in order to stress how superior the plaintiff’s
position is, his advocate adds that not only has the preference been established, but there remains all this
unused ammunition which could have countered stronger arguments against the position. The idea seems
to be to reassure the judge deciding for the plaintiff that the decision is not a close one, but quite clear and
convincing.

3.5 Running Example Result

We have the following defeat relations between arguments, which are represented in Figure 2, where we
indicate thatMason (Bryce) A4 is a subargument ofMason (Bryce) A1:

• defeat(Mason(Bryce)A2, Mason(Bryce)A1)

• defeat(Mason(Bryce)A3, Mason(Bryce)A2)

• defeat(Mason(Bryce)A5, Mason(Bryce)A4)

• defeat(Mason(Bryce)A5′, Mason(Bryce)A4)

• defeat(Mason(Bryce)A6, Mason(Bryce)A5)

Following [? ] and the assumption in ASPIC+ that an attack on a subargumentis an attack on
the argument, there is a unique extension, containing {Mason(Bryce)A6, Mason(Bryce)A5′ and Ma-
son(Bryce)A3}. In particular, Mason(Bryce)A1 does not appear in any extension as its subargument is
defeated by the unattackedMason(Bryce)A5′. While the cases have common factors,Brycewas decided
in favour of the plaintiff, and the preference for the decision holds, we have not succeeded in eliminating
all significant distinctions; in particular, we have not found a substitution forF18 . Were we to have found
such a substitution, then we would have a successful attack on Mason(Bryce)A5′, in which case the ex-
tension would contain {Mason(Bryce)A6, Mason(Bryce)A4, Mason(Bryce)A3, Mason(Bryce)A1} but
not Mason(Bryce)A2, Mason(Bryce)A5andMason(Bryce)A5′, so in this caseBrycewould have been a
good precedent forMasonas informally discussed previously.

Though this might appear to be a negative result, we can transform it into a positive result by finding an
argument againstMason(Bryce)A5′, which requires that we substitute or cancelF18 based on comparable
factors in the factor hierarchy. We might argue thatF18 Identical-Productsholds in both cases, but was too
obvious to be explicitly mentioned inMason, and so was omitted from the initial analysis performed for
CATO. Alternatively, we could argue thatF18 should be seen as providing too weak a factor to distinguish
the cases. As another possibility, we can argue thatMason(Bryce)A6should rest on resolving the relative
strength ofF4 andF6 , if that becomes an issue. In all three instances, we would need to argue about the
factors themselves, which is the subject of the next section.

3.6 Rationality postulates

To prove that our argumentation theory satisfies the rationality postulates of consistency and strict closure,
the following properties need to be proven ([? ? ]):

• Rs is closed under contraposition or transposition.
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• Strict consequence isc-classicalin that if S ⊢ ϕ,¬ϕ, then any maximal subset ofS strictly implies
the negation of the remaining element. (HereS ⊢ ϕ means that there exists a strict argument forϕ

with all premises taken fromS.)

• AT is well-formed in that ifϕ is a contrary ofψ thenψ 6∈ Kn andψ is not the consequent of a strict
rule.

• The argument ordering isreasonableas defined in [? ? ].

• The closure ofKn under strict rules is consistent.

The first three properties are immediate from the fact thatL is a first-order language and⊢ in our case
corresponds to first-order consequence. Above we used an argument ordering in which all strict-and-firm
arguments are preferred over all other arguments and all non-strict-and-firm arguments have equal strength:
given this it is easy to show that the argument ordering is reasonable. It remains to show that the closure of
Kn under strict rules is consistent. Since in our caseL is a first-order language andRs and⊢ correspond
to first-order consequence, this can be proven by specifyinga first-order model in which all our axioms are
true.

Proposition 3.1 The closure ofKn under strict rules of the argumentation theory specified above is con-
sistent.

Proof:
We construct a model and then verify that all elements ofKn are true in the model. Then completeness

of first-order logic implies the proposition. The model contains just one factor, one precedent and one
current case, where both cases share the factor as a pro-plaintiff factor and both cases are won by the
plaintiff7.

For ease of notation, we equate below the various model elements with the language elements that
denote them, letting the context disambiguate. CapitalI stands as usual for the interpretation function of
the language in the model.

• The sorts, relations and functions of the model are those corresponding to, respectively, the sorts,
predicates and function symbols ofL.

• Individuals:

– Curr of sortcurr andPrecof sortprec(recall that both are subsorts of the sortcase)

– Plaintiff andDefendantof sortparties

– F1 of sortfactors

– ∅ and{F1} of sortsets

• Interpretation of predicates (those not listed are empty):

– I(pFactor) = {F1}

– I(outcome) = {Plaintiff }

– I(hasPfactor) = {(Curr ,F1 ), (Prec,F1 )}

– I(hasFactor) = {(Curr ,F1 ), (Prec,F1 )}

– The interpretation of⊆ and∈ is obvious and left implicit.

• Interpretation of functions:

– Factors(Curr) = {F1}

– pFactors(Curr) = {F1}

7Although this example is minimal it is not unrealistic. It wouldfit, for example, the representation ofPierson v Postin [? ].
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– Factors(Prec) = {F1}

– pFactors(Prec) = {F1}

– dFactors(Curr) = ∅

– dFactors(Prec) = ∅

– commonPfactors(Curr ,Prec) = {F1}

– commonDfactors(Curr ,Prec) = ∅

– currPfactors(Curr ,Prec) = ∅

– currDfactors(Curr ,Prec) = ∅

– precPfactors(Curr ,Prec) = ∅

– precDfactors(Curr ,Prec) = ∅

– outcome(Curr) = Plaintiff

– outcome(Prec) = Plaintiff

– The interpretation of{}, ∪, ∩ and\ is obvious and left implicit.

We now verify that all axioms are true in this model.

• Axiom 1 is clearly true for the following three cases:I(s) = I(s′) = ∅; I(s) = I(s′) = {F1};
I(s) = ∅ while I(s′) = {F1}. Since these are all cases that can arise, Axiom 1 is universally true.
In the same way it is easy to verify that Axioms 2 - 4 are true.

• For axiom 5 note first that this axiom is in fact a scheme for a set of axioms and that in our case we
only need to consider the version with two variabless andx1. Then two cases have to be considered,
in both of which we haveI(x1) = F1 . The first case is whenI(s) = ∅. Then the left-hand side
of the equivalence equals to∅ = {F1}, which is false in the model. In this case the right-hand side
reduces toF1 ∈ ∅, which is also false in the model, so the equivalence is true.The second case is
when if I(s) = {F1}. Then the left-hand side of the equivalence equals to{F1} = {F1}, which is
true in the model. In this case the right-hand side reduces toF1 ∈ {F1}, which is also true in the
model, so the equivalence is again true.

• Axiom 6 is true sinceI(dFactor) = ∅.

• Axiom 7 is true since there is only one individual of sortfactor, namelyF1 , and we have that
I(pFactor) = {F1} andI(hasPfactor) = I(hasFactor) = {(Curr ,F1 ), (Prec,F1 )}. Likewise,
Axiom 8 is true sinceI(dFactor) = I(hasPfactor) = ∅.

• Axiom 9 is true since our model contains only one factor and two cases. For the first case we have
Factors(Curr) = {F1} soF1 ∈ Factors(Curr) and we have(Curr ,F1 ) ∈ I(hasFactor). The
second case (withPrec) is identical. So both sides of the equivalence are true for all f andcase.
Axiom 10 can be verified in the same way. Axiom 11 is true since the model has no pro-defendant
factors.

• For axioms 12-17 note that all three variables can be instantiated in only one way. Then axiom 12 is
true sincecommonPfactors(Curr ,Prec) = {F1}, pFactors(Curr) = pFactors(Prec) = {F1}
and{F1} ∩ {F1} = {F1}. Similarly, axiom 12 is true sincecommonDfactors(Curr ,Prec) =
∅, dFactors(Curr) = dFactors(Prec) = ∅ and ∅ ∩ ∅ = ∅. Axiom 14 is true since
currPfactors(Curr ,Prec) = ∅, pFactors(Curr) = {F1}, commonPfactors(Curr ,Prec) =
{F1} and{F1} \ {F1} = ∅. Axioms 15, 16 and 17 can be verified in the same way.

• Axioms 18-20 are true since the interpretations of the predicatesancestor, parentFactor, substitutes
andcancelsare all empty.

• Finally, the domain-closure and unique-names axioms must be verified. The relevant domain closure
axioms are:
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– ∀case, factor .hasFactor(case, factor) ≡
((case = Curr ∧ factor = F1 ) ∨ (case = Prec ∧ factor = F1 ))

– ∀case.case = Curr ∨ case = Prec

– Curr 6= Prec

– ∀factor .factor = F1

It is straightforward to show that these are true in the model.

Corollary 3.2 The Dung-style argumentation framework corresponding to the argumentation theory de-
fined above satisfies all four rationality postulates as formulated in [? ].

4 Beyond Factor-Based Reasoning

Thus far we have considered reasoning from cases represented as sets of factors to their outcomes. This has
been the focus of most work on cased-based reasoning in AI andLaw, and the understanding of this aspect
of reasoning with cases is quite mature. This has enabled us to propose a set of argumentation schemes to
capture this reasoning with some confidence. There is, however, a lot more to reasoning with legal cases
than this: cases do not arrive neatly packaged as bundles of factors, but as rather messy collections of facts.

Once the facts of a case have been established - and this may not be straightforward since the move
from evidence to facts is often itself the subject of debate,legal reasoning can be seen, following Ross [?
] and more recently [? ], as a two stage process, first from the established facts to intermediate predicates,
and then from these intermediate predicates to legal consequences. CATO has been explicitly identified
with the second of these steps (e.g. [? ]). Finding these intermediate predicates is by no means simple,
and different intermediate concepts require different strategies. Some can be given by listing facts, which
supply sufficient, and possibly collectively necessary, conditions but others require consideration of a range
of facts, none of which supply sufficient or necessary conditions. However, as argued in [? ], which factors
hold of a case or which side is favoured by a particular fact may be the whole point. It is even sometimes
necessary to argue about what factors there are. To tell the whole story of reasoning with cases, therefore,
it is necessary to consider the step from facts to factors. Inthis section we will propose some initial
argumentation schemes for this step of the process. Since there is no well understood model to work with,
our proposals will be more tentative than was the case in the previous section. None the less, we hope
that they will provide useful pointers as to the way forward.Argumentation schemes for reasoning about
what factors hold in a case relative to the facts of a case are introduced in section 4.2. Further schemes
for reasoning about exclusory relations between factors are discussed in section 4.3. Finally, section 4.4
presents schemes for reasoning about factors along dimensions.

4.1 Dimensions in Legal Case-Based Reasoning

Dimensions, rather than discrete factors, were used in Rissland and Ashley’s HYPO [? ], the system from
which CATO was developed. Since factors as in CATO predominate in the literature [? ? ? ], some
background discussion on and justification for dimensions is warranted. Dimensions have anextentand
values along the extent. In contrast to factors, which are either simply present or absent, a dimension, if
present, may favour the plaintiff or defendantto a particular degree. Dimensions encompass a range of
values, with the extreme pro-plaintiff value at one end and the extreme pro-defendant value at the other.
Thus, at some unspecified point along the range the dimensionwill cease to favour the plaintiff and start to
favour the defendant. Dimensions and factors are, however,related.

In one relationship, while a dimension may be continuous, factors are intervals along the dimension and
ordered with respect to one another; in other words as in [? ], factors can be taken as thevaluespositioned
along a dimension.8 For example, one dimension in HYPO isSecrets-Voluntarily-Disclosed, and ranges
from 0 to 10,000,000 disclosees, 0 being the pro-plaintiff direction. In CATO, this dimension is expressed

8This is related to a general phenomena in cognition ofcategorial perception[? ].
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as factors that are ranked in strength. There is a pro-defendant factorSecrets-Disclosed- Outsiders, which is
present if any disclosure at all had been made, effectively stating that the dimension favours the defendant
rather than the plaintiff if a single person is disclosed to,and after that no further force is given to the
defendant if there are a million disclosures. In this respect it is a relatively weak factor for the defendant.
In addition, there is aDisclosure-In-Public-Forumfactor, which is intended to cover extensive non-specific
disclosure. This is a stronger factor for the defendant. If the latter, stronger, factor applies, then the former
does not. Thus, we must reason not only with respect to the factors that hold of a case, but also with
the relative strengthof the factors one to the other. A number of HYPO dimensions are Boolean and
counted as present only for one end of the range (e.g.Common-Employee-Sole-Developer), and these map
straightforwardly to a single CATO factor.

Some other dimensions found in HYPO and used as the basis for CATO factors are not related by a
strength ordering relative to some measurable parameter. Most interesting is the HYPO dimensionSecurity-
Measures-Adopted, which has a range (from pro-defendant to pro-plaintiff):

• Minimal measures, Access to premises controlled, Restrictions on Entry by Visitors, Restrictions
on Entry by Employees, Product Marked Confidential, Employee Trade Secrets Program Exists,
Restrictions on hardcopy release, Employee non-disclosure agreements.

In CATO, this translates into several factors without reference to relative strength or position along some
continuous parameter:No- Security-Measures, Security- Measures, Outsider-Disclosures- Restricted, and
Agreed-Not-To-Disclose. The increasing support for the plaintiff’s cause is indicated by additional factors,
in effect, a cumulative reading, rather than by an ordering of the factors according to strength, and which
associates them with a point along a HYPO dimension.

Although factors dominated thinking about this style of reasoning in AI and Law for some time (e.g.
[? ? ? ]), the need for dimensions was argued for in [? ]. Chief amongst the reasons was that the key
issue of the case may be about where along the dimension a factor falls and, having situated it, whether
the factor favours the plaintiff or defendant. The classicPierson v Postis an example: the dispute turns
on when pursuit can be counted as justifying possession, forwhich different degrees of progress towards
bodily possession need to be recognised.9 Contrast this with the representation based on factors in, for
example [? ], where the case is assigned the factorcaught, and Post is then left without an argument10

We can further illustrate the issues usingPierson v Postas basis for further reasoning about the factors
and schemes that apply in cases. We will take Post as the plaintiff, as in the original action. In [? ], the only
factors present arenotCaughtandOpenLand, both of which are pro-defendant. Thus any case found for
the defendant where the incident had taken place on open landand the plaintiff had not caught the animal
would serve as a precedent; the plaintiff had nothing on which to base the plaintiff’s case, all additional
factors in the chosen precedent strengthening the defendant’s case. In fact the argument put forward for the
plaintiff was that Post was sufficiently close to, and sufficiently certain of, taking bodily possession of the
fox that it should becounted ascaught.

Essentially this is an argument against the presence of a factor favouring the defendant, and an argument
in favour of the presence of a factor favouring the plaintiff. What this means in ASPIC+ terms is that
the status of the factors attributed to the case cease to be axioms and become instead premises requiring
justification. What form might this justification take?

In Pierson v Post, the defendant’s argument was in terms of particular authorities.11 Tompkins, arguing
for the defendant, cites Justinian, Fleca, and Bracton, allof whom seem to say that actual bodily posses-
sion is required, and Puttendorf and Barbeyrac, who seem to allow some latitude, but still require mortal
wounding. Livingston, arguing for the plaintiff, claims that certain capture would also be enough for Bar-
beyrac, but also says that it should be so found in this case for the teleological purpose of encouraging the
destruction of vermin. Neither of these lines of argument are case based or reasoning on the basis of the
relationship of facts and factors per se, but make use of generic argumentation schemes such asArgument
from AuthorityandSufficient Condition Scheme for Practical Reasoningfound in works such as [? ].

9In brief the facts were these. Post was chasing a fox with horse and hounds and had cornered it when Pierson intervened and killed
it with a fence pole. Post sued Pierson for taking his fox. On appeal, Pierson won on the grounds that only by mortally wounding or
seizing the animal can one acquire possession of it, not simplyby pursuing it.

10For a more recent attempt to representPierson v Postwith factors see [? ].
11For a detailed reconstruction of the arguments in this case see [? ].
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4.2 Reasoning from Facts to Factors

There is, however, one argumentation scheme for case-basedreasoning from facts to factors that can be
articulated. Suppose an undecided case concerning capturing a wild animal is being argued where the
plaintiff claims that the animal wascaughton the basis of hot pursuit and inevitable capture. Moreover,
we takePierson v Postas aprecedent. Yet, though the argument was put forward in the precedent that the
plaintiff should be counted as having caught the animal, this was not sustained, but rather the precedent
establishes that the factornot-Caughtapplies to the benefit of the defendant. To argue thus, even ifunsuc-
cessfully, requires that cases are not only represented in terms of summarising factors (e.g.not-Caught)
but also to the underlyingfactswhich, in effect, support the factor (e.g.hot pursuitandinevitable capture).
In addition, it indicates that we must reason aboutschemesfor relationships between case facts and factors;
that is, inPierson v Post, it is argued thathot pursuitandinevitable capturedo not implycaught, whereas
in our hypothetical case, it is argued that they do.

In HYPO there are some procedures that determine whether a dimension applies in terms of facts stored
about the case, in effect, providing schemes to reason aboutthe factor category in the case. These schemes
are not provided with any justification and no source is given, but are simply hard-coded into the dimension
frames. We could therefore expect our KB also to contain schemes relating factors to facts. To our previous
notation, we add a binary relationhasFactbetween a case and a fact:

• hasFact(case, fact); e.g.hasFact(PiersonVPost ,HotPursuit)

We also add a corresponding sort forfactstoL.
We also introduce a five-place rule relation:

• rule(rulename, fact , factor , justifier , justificationtype),
wherefact is a fact, ajustifier is some (or none)judicial authority or case decision, and thejustifica-
tion typeis fromAuthority, Definition, or Contention.

Accordingly, we add toL sorts forrules, justifiersandjustificationtypes.
We have a sample of five rules, which are discussed further below.

• rule(Rule1 ,NoBodilyPossession,NotCaught , Justinian,Authority)

• rule(Rule2 ,MortallyWounded ,Caught ,Puttendorf ,Authority)

• rule(Rule3 ,NoPursuit ,NotCaught ,None,Definition)

• rule(Rule4 ,HotPursuit ,NotCaught ,None,Contention)

• rule(Rule5 ,HotPursuit ,Caught ,None,Contention)

These legal rules will be included as facts inKp. The last argument of therule predicate stands for
the legal justification type of the rule.Rule3needs no further justification: it is true simply in virtue of
the standard English meaning of the words. The other rules, however, do need some justification. In [?
] three types of justification were suggested: authority, legal practice and precedent cases. Of the above
Rule1andRule2are justified by authorities, Justinian and Puttendorf respectively; if we accept Justinian
(Puttendorf) as an authority we acceptRule1(Rule2). RulesRule4andRule5are not justified by authority
or legal practice. At the time ofPierson, there were no precedent cases to provide justification, andthe
dispute was whetherRule4or Rule5should hold. Following the decision ofPierson v Post, we assume that
Rule4holds, though Livingston argued forRule5. This, however, remains an interpretation of the analyst:
all talk of factors, and the attribution of factors to cases comes from the analyst, not the judge.

The analyst would therefore need to record this interpretation in the knowledge base based on a family
of argumentation schemes:

CS5(rulename, fact , factor , justifier , justificationtype, curr , prec):

hasFact(curr , fact)
rule(rulename, fact , factor , justifier , justificationtype)

hasFactor(curr , factor)
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Note that CS5 can be instantiated using bothRule4andRule5, with the resulting arguments rebutting
one another. Undercutters would be, for example, argumentsto the effect that the justifier was not an
acceptable authority. InPierson v PostLivingston argues that Justinian cannot be considered a legitimate
authority as he is too ancient, and society has changed too much since he was current.

A technical complication is that since nowhasFactor(curr , factor) expressions are defeasibly deriv-
able, the method with predicate completion does not work anymore. An alternative (taken from [? ]) is to
replace the predicate completion with the following defeasible rule and to give this rule lower priority than
any other rule:

• ⇒ ¬hasFactor(curr , factor)

The unique-names and domain-closure axioms are retained and are now also formulated for rules and
facts. Then any argument for an unnegatedhasFactor conclusion will strictly defeat any argument using
this defeasible rule. With this method any argument for, forinstance,

(*) ∀factor .hasFactor(Mason, factor) ≡
factor = F1 ∨ F6 ∨ factor = F15 ∨ F16 ∨ factor = F21

is justified if and only if the formulashasFactor(Mason,F1 ), hasFactor(Mason,F6 ), hasFactor(Mason,F15 ),hasFactor(Mason

andhasFactor(Mason,F21 ) have justified arguments. This is since (*) is strictly derived from these five
formulas and the unique-names and domain-closure axioms, so any defeater of an argument for (*) defeats
an argument for any of these five formulas.

Reasoning about facts, factor sets, and factors requires this additional level of representation, which is
reflected in differences between HYPO and CATO. HYPO stores case facts and calculates the applicability
of dimensions on the basis of these. HYPO deterministicallyassigns dimensions on the basis of facts and
does not support argument about them. CATO does not store case facts, and provides a descriptive rather
than a computational characterisation of factors, relyingon an analyst to assign them to cases; it does not
support either argument or justification. We need make no further assumptions here about what additional
information the knowledge bases contains, but there may be alist of possible facts along particular dimen-
sions as in, e.g. [? ] and [? ], or, perhaps, some more complicated ontology representing the domain. For
arguments from authority and teleological arguments for the presence of a factor, we rely on the standard
argumentation schemes. As noted above, there are some similarities with the validity rules of [? ], but
whereas there the validity in question was a legal rule, hereit is the qualification of facts as factors used
in rules, which are used by the analyst and are not themselveslegal rules. Note that these arguments for
and against the presence of factors conflict through rebuttal, and so preferences, among sources, purposes,
precedents, or a combination of these, may be required to determine which argument is accepted, in the
light of a specific audience [? ].

4.3 Reasoning about Factor Incompatibility

In section 3.4, we provided rules for arguing about substituting or cancelling factors in relation to the factor
hierarchy. In this section, we discuss other ways to reason about factors. In CATO, when analysing cases
the analyst is required to respect the fact that some pairs offactors are incompatible, so that the presence of
one factor in a case provides an argument against the presence of another factor in that case. This is obvious
in the case of clearly dichotomous factors such ascaughtandnotCaught, but it is much more widespread
than this in CATO. In [? ] each factor has a textual explanation of when it does and does not apply. Often
the latter includes circumstances where some other factor does apply. In [? ] we have:

F20 InfoKnownToCompetitors (d)

Description: Plaintiff’s information was known to competitors.

This factor shows that plaintiff’s information was known inthe industry or available from
sources outside plaintiff’s business.

The factor applies if: The information plaintiff claims as its trade secret is general knowledge
in the industry or trade.

The factor does not apply if: Competitor’s knowledge of plaintiff’s information results solely
from disclosures made by plaintiff. (In this situation,F10 applies.) Or if the information could

20



be compiled from publicly available sources, but there was no evidence that competitors had
actually done so. (In this situation,F24 applies.)

F10 is Secrets-Disclosed-OutsidersandF24 is Info-Obtainable-Elsewhere. ThusF10 andF24 are in-
compatible withF20 and with one another.

To express the relationship of exclusion, we need an additional predicate:

• excludes(factor1 , factor2 )

excludesis a symmetric relation, so we add the following axiom to toKn:

21. ∀factor1 , factor2 .excludes(factor1 , factor2 ) =⇒ excludes(factor2 , factor1 )

Now if one side argues thatF2 is present, but the other believes thatF20 more appropriately describes
the facts, it is important to ensure that both are not taken aspresent. This gives rise to an additional axiom:

22. ∀case, factor1 , factor2 .hasFactor(case, factor1 ) ∧
excludes(factor1 , factor2 ) =⇒ ¬hasFactor(case, factor2 )

There are other argumentation schemes that can be used to establish that a factor is or is not in a case,
such as those based on authority or purpose. Also note that ifthere is an argument forfactor1excluding
factor2, there will also be a rebutting argument forfactor2excludingfactor1. Which will be accepted will
depend on which is supported by the stronger arguments.

In section 4.1, we recognised that factors may favour their party to different extents. In light of this,
we need to reconsider our notions of cancellation and substitution. Arguments based on substitution and
cancellation were used to undercut arguments distinguishing cases. Given that undercutters always win,
these are powerful arguments. But suppose the factors in question wereF20 andF24 , as defined above. It
is clear from the description thatF20 is intended to be more pro-defendant thanF24 , for F20 represents an
actual rather than a merely possible state of affairs. Thus if we haveF24 in acurr andF20 in aprec, there
is no problem in substitution: when considering the two under the common abstract factor the plaintiff’s
case is stronger, because the factor for the defendant is weaker in thecurr. But if plaintiff attempts to argue
thatF24 in a precsubstitutes forF20 in a curr, undercutting an instance of U1.1, the issue is less clear.
The defendant can at least argue thatF24 is not strong enough to be substituted forF20 .

This has been handled in different ways in different applications: CATO indicated different degrees
of influence by distinguishingthin andfat links in the factor hierarchy. IBP [? ], which developed from
CATO, introduced the idea of knock-out factors, which couldbe neither substituted for nor cancelled -
indeed were entirely decisive with regards to a particular issue. The most quantitative approach can be
found in [? ], in which a limited number of dimensions, essentially corresponding to IBP issues, were each
considered to have twenty slots, ten pro-plaintiff and ten pro-defendant, and every factor was assigned one
of these slots. This enabled the difference in importance aswell as the ordering to be considered. The
positions were then mapped into weights in several ways, so that differences in the relative importance of
the dimensions could also be considered. These issues require us to reason with dimensions, which is the
topic of the next section.

4.4 Reasoning along Dimensions

Turning to dimensions, we want to introduce arguments aboutsubstitutionandcancellation. As substitution
and cancellation were defined using axioms and always held offactors sharing the same abstract factor, we
cannot attack statements that one factor substitutes or cancels another. While we might recast the original
axioms as defeasible rules, we prefer to leave the language established originally untouched as far as
possible, instead proposing undercutters of the rules U1.1.1 and U1.1.2.

First we introduce some additional language and sorts to relate to dimensions. We have new sorts for
dimensions and numbers and we add a function symbolPositionwhich takes two arguments: a dimension
name and a factor name, and returns the position of that dimension occupied by the factor. How the position
is expressed needs some serious consideration, but here we simply adopt the approach of [? ] and use a
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number between ten and minus ten. Ten is the extreme plaintiff position, minus ten is the extreme defendant
position and zero indicates that the point is in the centre ofthe dimension, and so could be used to indicated
the absence of any factor on the dimension.

• Position(dimension, factor) = position

For example:

• Position(OutsideDisclosure,F20 ) = −6

• Position(OutsideDisclosure,F24 ) = −4

Using thePosition function symbol we now introduce the notion of one factor being stronger than
another. For cancellation, we are interested in comparing the pro-plaintiff degree of a factor with the pro-
defendant degree of another factor. Therefore we will be interested in theabsolutevalue of the positions
along the dimension. Accordingly, the following formula isadded toKn.

23. ∀factor1 , factor2 , dimension, degree.

stronger(factor1 , factor2 , dimension, degree) ≡
(degree = |Position(dimension, factor1 )| − |Position(dimension, factor2 )|
∧degree > 0)

Definitions of the arithmetic notation can be added toKn as it was done above in section 3.3 for set-theoretic
notation.

Now we can undercut arguments made using U1.1.1 and U1.1.2.

U7(curr , prec, f1, f2, p, d, dimension, degree):

stronger(f1, f2, dimension, degree)

¬U1.1.1(curr , prec, f1, f2, p, d)

U8(curr , prec, f1, f2, p, d, degree):

stronger(f1, f2, dimension, degree)

¬U1.1.2(curr , prec, f1, f2, p, d)

This, however, means that any amount of additional strength, however small, is sufficient to prevent
substitution and cancellation: that is, onlya fortiori arguments will succeed. This rather conservative point
of view may be what we want, but we may equally wish to allow thepossibility of a small difference being
discounted. We therefore need a notion of a significant difference. We design the predicate to allow that
this may vary according to the dimension under consideration.

• significantDifference(dimension, threshold)

This allows for an undercutter to arguments made usingU7.

U7.1(curr , prec, f1, f2, p, d, dimension, threshold):

significantDifference(dimension, threshold)
degree < threshold

¬U7(curr , prec, f1, f2, p, d, dimension, degree)

Suppose we are considering the number of disclosures. It would be possible to regard each different
number of disclosures as a factor on this dimension. Now the difference between 3 and 4 disclosures is
not significant, but the difference between 3 and 40 is. So suppose the threshold is 20. Then while 4
disclosures is stronger ford than 3 disclosures the difference is not significant, and so we would not want
to differentiate between cases with these different numbers of disclosures. We need, however, to be able
to differentiate between 3 and 23 (or more). But while 20 disclosures is good for this dimension, 20 days
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would not be significant for the dimension decreased development time. There the threshold might be 60
days. Thus the threshold is relative to the dimension, and the degree of difference needs to be compared
to the relevant threshold. This perhaps holds true even whenthe numbers are normalised: if factors are
assigned to 10 slots as in [? ], for some dimensions we might regard any gap as significant,while for others
we would need two or three slots between factors to make the difference.

Where do the thresholds come from? In most cases they will needto be simply assumed or be deter-
mined by some feel for legal practice or even rely on personalpreference [? ]. For example, we can try to
rescueBryceas a precedent forMasonby setting the threshold above the degree ofF18 , so undercutting
A5′. Disagreement here is quite natural. It would be possible touse a case based argument to set bounds on
the threshold, provided one could find a pair of precedent cases in which, using the argumentation schemes
defined here, it was possible to show that a substitution for,or cancellation of, a stronger factor had been
made successfully. This is, in itself, quite a complex argument, and we will not attempt to reduce it to an
argumentation scheme here, but rather take the threshold asgiven.

5 Discussion

By articulating the process of reasoning with precedent cases in this way, we can see it as a sequence of
stages in a dialogue betweenPlaintiff andDefendant, which are as follows, where every option is available:

1. P: Assert that the decision should be in favour of the plaintiff since factors favouring the plaintiff are
preferred to factors favouring the defendant;

(a) D: Cite additional points in favour of the defendant

(b) P: Substitute for, dismiss, or cancel these additional strengths

(c) D: Dispute strength of substituting or cancelling factors

2. P: Identify a precedent case that justifies a preference applicable to the current case;

(a) D: Cite additional points in favouring the plaintiff in the precedent

(b) P: Substitute for, dismiss, or cancel these additional strengths

(c) D: Dispute strength of substituting or cancelling factors

(d) D: Identify a precedent case that justifies a preference for thedefendant applicable to the current
case

i. P: Cite additional points in favouring the defendant in the precedent:
ii. D: Substitute for, dismiss, or cancel these additional strengths

iii. P: Dispute strength of substituting or cancelling factors

3. D: Dispute which factors are present in the current case

(a) P: Defend original factors

Different systems will support more or fewer of these stages. At one extreme we have a neural network
style system such as that described in [? ] in which the system acts as a black box taking factors (or facts)
as an input and expressing a preference based on its internalisation of the set of precedents. Such a system
supports only step 1. CATO, from which our discussion began,supports the identification of the preference
in 2, the distinguishing moves in 1a and 2a (although it does not discriminate between them), and the
counter example move of 2d. CATO also supports the downplaying of 1b and 2b, but does not distinguish
between substitution and cancellation. HYPO links facts and dimensions, and so can explain 3, but not
support argument about it. Hypothetical arguments in HYPO were intended to explore the issues raised
in 1c, 2c, and 2d(iii), but this aspect of HYPO was never fullydeveloped in [? ]. These considerations
are also used internally in the most advanced version of Chorley’s AGATHA [? ], although the resulting
arguments are not transparent to the user.

Our representation in terms of ASPIC+ identifies the underlying knowledge base required by each
stage. Given such knowledge in the KB, the specification of the argumentation schemes in this paper would
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permit straightforward implementation, using a defeasible reasoner to instantiate the schemes from the KB,
identifying the attack relations, and then evaluating themas in a Dungian argumentation framework. The
first of these steps, identifying the arguments, is achievedfor stages 1, 1a, 1b 2, 2a and 2b, using Prolog as
the defeasible reasoner in a program described in [? ].

Another benefit from representing these arguments in terms of ASPIC+ is that we can regard cases
described under factors as but one source of arguments. At the top level, stage 1, there may be arguments
for the defendant rebutting our case based argument for the plaintiff and these arguments may be based on
cases, authority, purpose, or whatever other kind of argument our opponent wishes to advance. Similarly,
the premises of our arguments often require other, generic,argumentation schemes, such as authority and
purpose, to justify them. By providing a framework in which all kinds of argument can be represented
equally, we can readily provide a framework in which reasoning of many different kinds can be deployed.
Note that this is done without recasting the various distinctive case based aspects of CATO style arguments
uniformly as ordinary rules, as was the case in e.g. [? ].

A final important insight is gained by recognising that the above indicates at which points choice is
possible, and at which points the judgement is constrained.Let us relate this to the steps above. At step
1 we may get arguments, constructed with a variety of schemes, for and against deciding for the plaintiff,
which conflict through rebuttal and so can be decided throughpreferences. The attack of 1a, however,
cannot be rejected on the grounds of preference, but can onlybe defeated by 1b, which in turn can only be
defeated by an argument from 1c. Arguments in stage 1c itself, however, may be resolved on grounds of
preference. Similarly although the rebuttals arising at 2dmay be decided by preferences, 2a can only be
defended by 2b, and 2b by 2c, at which stage preferences may beused to resolve competing arguments.
When considering 2d, only at 2d(iii) do preferences play a role. Thus although we may think of case based
reasoning as involving a choice between the plaintiff and the defendant arguments, in fact, choice operates
at a number of quite specific, fine-grained points in the debate.

6 Concluding Remarks

In this paper, we have clarified a range of aspects of legal case-based reasoning with factors using formal
defeasible arguments modelled within the ASPIC+ framework. The choice of ASPIC+ has made it possible
to prove consistency and closure results for our formalisation by exploiting the metatheory of ASPIC+. Our
formalisation has also illustrated the potential of the ASPIC+ framework for formalising reasoning with
argumentation schemes. The schemes reconstructing CATO are proposed as definitive, but those in Section
4 are rather more tentative and will require further work to validate and refine them. Still, we feel that we
have made a contribution, given that this aspect of legal reasoning has not yet been investigated with any
real success. In future work, we will look to further extend this approach, integrating additional aspects
and examples of legal case based reasoning, such as theissuesof IBP. In particular, we will consider how
to argue comparatively about precedents to find the most on-point cases using the claim lattice of HYPO
and CATO, which we would reconstruct as a tree of arguments inattack relations.
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