
A DSL for Describing the Artificial Intelligence in
Real-Time Video Games

Tom Hastjarjanto

Johan Jeuring

Sean Leather

Technical Report UU-CS-2013-003

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands
www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands

A DSL for Describing the Artificial Intelligence in
Real-Time Video Games

Tom Hastjarjanto1, Johan Jeuring1,2, and Sean Leather1
1Utrecht University, 2Open University, The Netherlands

Abstract—Many games have computer-controlled agents that
play against a player. The behavior of these computer-controlled
agents is described by means of the artificial intelligence (AI)
in the game. The AI is an important component of the game,
and needs to be developed carefully, and adapted regularly. This
paper introduces a novel language for describing the decision
making process of the AI in real-time video games. We develop
a declarative, domain-specific language (DSL) embedded in the
functional programming language Haskell for real-time video
games. We use the DSL to describe the AI of a prototype real-
time video game.

I. INTRODUCTION

The computer games industry is huge, and new titles appear
on a daily basis. Developing a game involves developing many
aspects, such as the physics, art, graphics, sound, and the artifi-
cial intelligence (AI). Game AI is used to produce the illusion
of intelligence in the behavior of computer-controlled agents
(or non-player characters, bots). In many games, the game-
play code, including the AI, is implemented in a scripting
language on top of a game engine. To increase productivity
in the development of games, it is important to look at how
the AI is modelled and implemented. Recent research suggests
that the AI should be modeled separately from aspects such
as performance, memory management, and physics [24], [25],
[7]. Modelling the AI separately gives fewer opportunities
to introduce bugs, and better opportunities to inspect, reuse,
adapt, analyze, optimize, and parallellize code, and to support
concurrent behavior.

In this paper we introduce a novel domain-specific language
embedded in the higher-order lazy functional programming
language Haskell [23], for modelling the decision making
process of the AI in real-time video games.

This paper is organised as follows. Section II reviews
existing approaches to implementing AI in real-time video
games. Section III introduces domain-specific languages, and
describes some domain-specific languages for games. Sec-
tion IV develops a novel embedded domain-specific language
with which we model game AI. Section V shows how we
use the DSL for game AI to select actions for computer-
controlled agents. Section VI presents an example in which
the language is used to model the AI of a simple video game,
and Section VII concludes and describes future work.

II. IMPLEMENTING AI

There are several approaches to implementing game AI.
The approach to developing game AI depends on the nature
of the game. For example, the state space of tic-tac-toe is

much smaller than the state space in Pacman. For games with
a limited number of states it is possible to explore a set of
future states using the minimax algorithm, which determines
the next step with the greatest payoff. The alpha-beta pruning
algorithm can be used to reduce the number of states explored.
Alpha-beta pruning cannot be used in games in which the
state changes multiple times per second, because the number
of possible states becomes too large.

Game AI determines agent behavior: the actions an agent
takes in reaction to the game state. Game AI should sup-
port [15]:

• A variety of behaviors: an agent should react differently
to different situations.

• Behavior integrity: an agent should react as a human
would in the same situation.

For these requirements, a number of challenges have to be
tackled:

• Coherence: can the behavior of an agent be adjusted
smoothly during state transitions?

• Transparency: can a player make reasonable predictions
about an agent’s behavior?

• Mental bandwidth: is the behavior and implementation of
an agent comprehensible by a designer?

• Usability: can the behavior of an agent be customized for
different scenarios?

• Variety: can an agent do different things?
• Variability: can an agent choose between a set of appli-

cable responses given a certain situation?

AI decisions are often modeled using tree- or graph-like data
structures [21] and implemented by scripts using if-then-else
statements. The following sections describe some approaches
to modeling decision making.

A. Behavior Trees

The designers of Halo [15] use a behavior tree or hier-
archical finite state machine (more specifically, a behavioral
directed acyclic graph) to implement the AI of computer-
controlled agents. In a behavior tree, a node is indexed by the
state and contains a behavior. Agent behavior is determined
by a path of nodes in the tree. When an agent can choose
between multiple transitions from a node, the AI ranks nodes
by priority and the agent moves to the node with the highest
priority.

B. Goal-Oriented Action Planning

Goal-Oriented Action Planning (GOAP) is a decision-
making architecture developed for the game No One Lives
Forever 2 [22]. Using GOAP, we specify how decisions are
taken. The key concepts of GOAP are:

• Action: a step performed by an agent. An action may
have preconditions and may have an effect on the state,
and takes some time to complete.

• Plan: a sequence of actions determined by an agent.
• Goal: a desired state. Based on the goal an agent can

produce a plan of actions that results in reaching the goal.
• Planner: the planner takes the most relevant goal of an

agent and creates a plan to go from the current state
to a state satisfying the goal. The planner is similar to
pathfinding, and a planner implementation may be based
on the A* algorithm.

Using GOAP, state transitions are obtained as part of a
plan and not hard-coded. Consequently, it is possible to find
solutions to problems that were not anticipated in the initial
game design. A plan to reach a goal is generated using a
runtime search based on the current state and preconditions
of available actions. An advantage of this approach is that
actions can be coded in a smaller scope. Hard-coded plans
are more difficult to maintain and less fault-tolerant than an
automated, machine-generated plan constructed by the planner.
GOAP also offers a solution to obtaining varied behavior. A
programmer may add multiple actions to achieve the same
goal, with different preconditions. The planner will then select
the most suitable action based on the current state.

C. Hierarchical Task Networks

A hierarchical task network (HTN) [16] offers an alter-
native approach to planning and executing strategies. An
HTN specifies various compound high-level tasks, which each
consist of a set of subtasks. The leaves of the hierarchy are
primitive tasks. An HTN contains methods that describe how
to reach the current goal, and the prerequisites and subtasks
necessary to complete the goal. An HTN has advantages from
both a planning and scripting perspective. The plans can be
calculated automatically using a planner component based on
the prerequisites of subtasks to achieve a goal. The scripts
containing the plans are generated offline by using the results
from the planner. The scripts can be put in the game engine
to run at runtime using the current state of the game as input.

This is not a complete overview of approaches to mod-
elling AI in games. Other recent work includes work on
statecharts [3], [4], and embedded scripting languages [2].

For each of the approaches described above, the decision-
making model is translated to software. The software obtained
is integrated with the other software components of the game.
Thus, every change in decision making requires adapting the
model, translating the model to software, and integrating the
software with the other components.

III. DOMAIN-SPECIFIC LANGUAGES FOR GAMES

A domain-specific language (DSL) is a type of program-
ming language (or specification language in software devel-
opment and domain engineering) dedicated to a particular
problem domain, a particular problem representation tech-
nique, and/or a particular solution technique. A DSL can allow
a problem or solution to be expressed more clearly than a
general-purpose language, especially if that type of problem
reappears sufficiently often. DSLs introduce special notation
for domain-specific concepts [20].

To avoid developing a complete tool chain for a new
DSL, designers often embed a DSL in a sufficiently powerful
host programming language that can model the DSL abstrac-
tions [14]. The existing tool chain for the host programming
language can then be used to analyse and type-check software
written using the DSL, and the host language can be used to
implement aspects that cannot be modelled in the DSL. Code
generation and documentation capabilities come for free from
the host language.

Furtado, et al. [6] describe an approach to developing DSLs
for games. First, decide on the target game subdomain. Then,
select several example games which are used to identify the
common features of the subdomain. Implement the DSL for
these features, and validate the result by implementing the
example games in the DSL.

In general, using a DSL makes it easier to inspect, reuse,
adapt, analyze, optimize, and transform programs. Game-play-
specific code is carefully tuned and often rewritten in the
development of games, which is more easily done if the game
AI is developed in a high-level DSL. With a DSL for game
AI, a developer can concentrate on developing the AI and does
not need to be concerned with performance, compilation, or
other orthogonal aspects when developing the AI.

A number of domain-specific languages are used to describe
the AI in games. Many game engines contain a scripting
component tailored to producing game-play-specific code.
Often, these languages are general-purpose languages, such as
Lua (World of Warcraft) or Javascript (the Unity game engine),
which interact with the low-level game engine. The low-level
game engine, which contains functionality for networking,
rendering, sound, input, math and physics, is often developed
in C++. Sometimes, the scripting component offers a custom-
designed scripting language, such as Unrealscript for the
Unreal Engine1, and Game-Oriented Object Lisp (GOOL) [7].

IV. A DSL FOR GAME AI

To make it worthwhile to develop a DSL for game AI, the
DSL should satisfy a number of requirements:

• The DSL is general: the language can be used to describe
(sequences of) actions in any video game, with any kind
of state. This ensures that the DSL can be used for many
games.

1http://udn.epicgames.com/Three/UnrealScriptReference.html

• We can interpret game AI written in the DSL to calculate
the next action of an agent based on the AI description
and the state.

• Game AI expressed in the DSL is readable by game AI
developers. If the game AI is transformed, this happens
behind the scenes, and can only be adapted by adapting
the transformation process, not by updating the trans-
formed AI.

• The DSL is compositional: game AI can easily be com-
bined to form new game AI or reused as part of other
game AI.

These requirements are partially derived from requirements
for specifying how to solve interactive exercises in learning
environments [11]. The kind of interactivity of learning en-
vironments is not unlike that of games. We have not found
DSLs for describing game AI that clearly satisfy the last two
requirements. This paper develops a DSL that satisfies all of
the above requirements.

We want to develop an embedded DSL for game AI with
which we can implement the behavior of computer-controlled
agents in real-time video games such as Pacman, Space
Invaders, etc. These games have a number of characteristics:
• A game may have multiple computer-controlled agents.
• An agent performs actions.
• Actions of different agents in a game may happen con-

currently and influence a single state.
• Time plays a crucial role in many actions: a bullet

(usually) travels faster than a running character.
• The game state may be updated multiple times per

second.
• Actions may be interrupted: for example, the actions

of other agents may have made them unnecessary or
impossible.

The lazy, higher-order, functional programming language
Haskell [23] offers excellent possibilities to define embedded
DSLs using higher-order domain-specific combinators [14].
Furthermore, there exist several libraries for Haskell for
binding with external components useful for games, such as
Hipmunk and GLUT. For this reason we decided to embed
our DSL in Haskell.

The AI of an agent is specified by a value of the Haskell
datatype GameAI , which defines the core language with a set
of constructors:

data GameAI s
= Action (s → s)
| Idle
| GameAI s :?: GameAI s
| GameAI s :|: GameAI s
| GameAI s :|>: GameAI s
| Fix (GameAI s → GameAI s)

The datatype GameAI abstracts over the type s of the game
state, which may take very different forms for different games.
The basic element of game AI is an Action . An Action takes
as an argument a function of type s → s , which transforms

the state in some way. For example, the actions of shooting a
gun or detecting an enemy can be modelled by:

data GameState = ...

shoot :: GameAI GameState
shoot = Action ...

detectNearestEnemy :: GameAI GameState
detectNearestEnemy = Action ...

The exact implementation of an action on the state is part of
the game-specific implementation of a game and is omitted.

The Idle constructor represents AI that does not perform
any action. This constructor may not look very useful, but it
serves a purpose when combining GameAI .

We combine GameAI s to construct more advanced
GameAI s using combinators. The binary sequence combina-
tor (:?:) is used to specify that a (sequence of) action(s) a is
followed by another (sequence of) action(s) b: a :?: b. Idle is
an algebraic zero of :?:, and Succeed a unit. The binary choice
combinator (:|:) is used to specify that an agent can choose
between a (sequence of) action(s) a and another (sequence of)
action(s) b: a :|: b. The interpretation of a :|: b randomly
chooses between a and b. If we want to try the left argument
a before the right argument b, we use the left-biased choice
a :|>: b instead. Idle is a unit of :|: and :|>: . The following
code shows how to implement combined game AI for moving
in two different ways to a flag using atomic move actions.

move :: (Float ,Float)→ GameAI GameState
move (x , y) = Action ...

moveToFlag :: GameAI GameState
moveToFlag = move (20, 30)

:?: move (50, 60)
:?: move (70, 80)

:|: move (20, 60)
:?: move (70, 80)

Note that :?: binds stronger than :|: .
The Fix combinator introduces recursion in the game AI

language. It can be used to repeat an action multiple times
(many), or until a certain condition is satisfied.

many :: GameAI s → GameAI s
many s = Fix (λx → Action id :|: s :?: x)

shootEnemies :: GameAI
shootEnemies = many (detectNearestEnemy

:?: shoot
)

In addition to the basic constructs defined above, we include
support for interleaving actions [11]. Interleaving is necessary
when describing several separate (sequences of) actions(s) for
which the order does not matter. We extend the core language
with the following constructors:

data GameAI s
= ...
| Atomic (GameAI s)

| GameAI s :‖: GameAI s
| GameAI s :bb: GameAI s

The Atomic constructor prevents a game AI from being inter-
leaved with other game AI for the same agent. The interleave
construction a :‖: b allows the (non-atomic) actions from a
and b to be interleaved in any order. For example, if we want
to capture a flag and shoot enemies, but the order in which
we perform these actions does not matter, we declare

goal :: GameAI GameState
goal = shootEnemies

:‖: moveToFlag :?: ...

The left-interleave construction a :bb: b first performs an
action from a and then interleaves actions from the rest of
a and b.

A game can have multiple agents performing actions con-
currently, with a different GameAI value for each agent. To
allow for asynchronous responses to actions (which can take
variable lengths of time), we use an event-based system. An
event is fired whenever one of the agents in the game may
need to reevaluate its actions. Examples of events are “goal
completed,” “enemy detected,” and “agent shot.” Our datatype
GameAI requires each agent to “know” the result of a game
state update: the construction Action f , where f has the type
s → s , only allows synchronous (pure) updates to the state,
since the result of the update must be immediately available
to the acting agent.

Haskell functions of the type GameState → GameState
are pure and cannot involve randomness or network com-
munication or call C++ functions that change the state. The
asynchronous event system and the typically imperative game
components (such as the physics engine) dictate that the game
state cannot be updated with a pure function. However, Haskell
does have a loophole for all of these things called the IO
monad. A function of the type GameState → IO GameState
allows for an update to the state that may involve side effects.

With an event-based system, it is important to be able to
analyze actions. But we cannot inspect an action if it is defined
as a function; the only thing we can do with a function is apply
it to an argument. So, we relax the definition of an action
to allow for a non-function type. For example, the following
datatype supports the actions we have already described:

data Action
= Move (Float ,Float)
| Shoot (Float ,Float)
| DetectNearestEnemy
| ...

This has the added advantage that we separate actions from
their implementation. Now that an action is a value of a
datatype instead of a function, we need to specify how an
action is performed. For this purpose we introduce a class
PerformAction , with a single method perform of type

perform :: a → s → IO ()

To use a datatype Action in a game, we need to provide an
implementation of perform for it in an instance of the class
PerformAction .

To abstract over both the state (s) and the action (a) types,
we rename the datatype to GameAI s a .

Asynchronous events also mean that an agent may need
to “change its mind.” For example, consider what needs to
happen when agent A shoots agent B while B is running
towards a goal. If B is shot but not killed, it may decide to stop
running and return fire. An action must be interruptible, and an
agent may run its strategy again to obtain a new sequence of
actions. Consequently, the type Action → IO (GameAI s a)
is more appropriate for an agent to act on.

With the above insights in mind, we replace the constructor
Action in the GameAI datatype by a constructor Act for
describing impure actions, and a constructor Succeed for
describing pure actions:

data GameAI s a
= Act (s → ActionContext → IO (GameAI s a))
| Succeed a
| ...

One useful addition is ActionContext , a finite map from
strings to arbitrary values, which allows the function to
query any extra, non-state data. For example, we can use the
ActionContext to remember which agent we tried to shoot in
a previous action. Since the type of this data may vary widely,
we use the type Dynamic for the values:

type ActionContext = Map String Dynamic

Succeed x now includes an action x .
When an agent is under attack, it might be better to elimi-

nate the enemy instead of continuing to move towards a flag.
To constrain actions, we extend our DSL with a conditional
combinator:

data GameAI s
= ...
| (s → ActionContext → IO Bool) :?:

GameAI s a

The above example can be written as the following GameAI :

underAttack :?: shootEnemies
:|>: flagAvailable :?: moveToFlag
:|>: ...

If the underAttack condition evaluates to False , the next
condition (flagAvailable) is evaluated, and if it holds the
moveToFlag actions are performed. The condition uses the
IO monad since it needs to look at the current state and
possibly use information from the physics engine to evaluate
its condition.

Different actions may take a different amount of time to
complete. In the central game loop, we schedule the actions
of the different agents based on their time. If an action of
one agent completes while another agent is still performing
its action, the first agent will start on its next action.

Since the state is updated multiple times per second, at the
lowest level it does not matter how actions are ordered, since
different orders cannot be perceived by a player.

The GameAI DSL satisfies the requirements listed at the
beginning of this section. Since both the game state and
the type of actions are type parameters of GameAI , the
GameAI is general in the sense that it can be used to describe
(sequences of) actions in any video game with any kind of
state. As we will show in the following section, we can
calculate the next step of an agent based on a GameAI
description and the state. GameAI is easily readable since
the AI is specified by means of constructors from a datatype
which can be shown, inspected and pattern matched. As a
consequence, it is easy to transform GameAI , for example to
optimize or parallelize it. Finally, the examples given in this
section show that GameAI is compositional: we can reuse
previously define game AI (such as moveToFlag) in other
game AI (such as the extended game AI for an agent under
attack above).

V. IMPLEMENTATION

The DSL in the previous section describes the game AI for
a computer-controlled agent. To use the GameAI we define
functionality to select actions given a GameAI description
and the current state.

Function firsts is the central function for dealing with
GameAI . It returns a list of actions that can be taken as
the first step by the computer-controlled agent. We define a
simplified version of firsts to show the central idea behind it.
The function firsts takes a GameAI description as argument,
and returns a list of pairs consisting of a possible action,
together with the remaining GameAI descriptions:

firsts :: GameAI s a → [(a,GameAI s a)]
firsts g = [(r , x :?: y)

| Atomic (r :?: x) :?: y ← split g
]

The function firsts uses a function split , which takes a
GameAI , and returns all ways it can be split into an initial
atomic part and a remaining part. An atomic sequence of
actions cannot be interleaved with other actions. By definition,
each single basic action is performed atomically. We then take
the first action of the atomic part. The definition of split
is omitted, but is very similar to the definition of the same
function for rewrite strategies for interactive exercises [11].
We also have a variant of firsts that takes context information
into account.

Sometimes, state changes are relevant for more than one
agent. For example, when an agent captures a flag, the game
sends an event to all agents to notify that the flag has
been captured. For some agents, this might mean that they
have to reconsider their actions. The code for performing an
action fires an event as soon as an action completes. The
datatype Event distinguishes between a CompletedEvent and
an InterruptEvent . An event specifies the recipients of the
event with a list EventAgents .

data Event = CompletedEvent EventAgents
| InterruptEvent EventAgents

data EventAgents = EventAgent [String]
| All

To keep track of events, we use an EventChannel , a list of
unhandled events in a game. In its simplest form, the function
fireEvent inserts an event in the channel.

type EventChannel = [Event]

fireEvent :: EventChannel → Event → EventChannel
fireEvent evChan event = event : evChan

However, the game loop uses the event channel, updating
it continuously to handle asynchronous events. Thus, we
maintain a reference to the event channel in the IO monad
using an IORef . We use the following modified version of
fireEvent :

fireEvent ′ :: IORef EventChannel → Event → IO ()
fireEvent ′ evChanRef event = do

evChan ← readIORef evChanRef
writeIORef evChanRef (fireEvent evChan event)

The function fireEvent ′ is used in the game-play code to fire
events when agents complete their action or when external
events happen that influence the game AI of agents.

We have a component that listens to incoming events and
responds to state changes by notifying agents. The function
processEvents is called by the game loop, which runs every
frame. The function calls the appropriate response handler
to respond to changes in the state that influence the actions
of the agents. The response handler is implemented as the
eventResponse function which is called with the function
next or interrupt given below. In the following definitions,
the implementations of eventResponse and State both depend
on the game.

processEvents :: EventChannel → State → IO State
processEvents [] state = return state
processEvents (x : xs) state = do

state ′ ← processEvent x state
processEvents xs state ′

processEvent :: Event → State → IO State
processEvent (CompletedEvent e) state =

eventResponse e completed state
processEvent (InterruptEvent e) state =

eventResponse e interrupt state

The function eventResponse takes as arguments a list of
agents involved, a function (completed or interrupt), and a
state, and it calculates the next actions of the agents involved.
In the case of an interrupt event, the current action from the
GameAI of an agent is cancelled, and a new first action is
calculated. In the case of a completed event, we calculate the
next action of the agents. The implementation of the functions
eventResponse , completed , and interrupt is omitted here and
can be found in the first author’s MSc thesis [9].

Fig. 1. Screenshot of the (counter-)terrorists game

VI. EXAMPLE GAME

We have implemented a small 2D real-time action game
that contains agents that use GameAI to compute actions
to complete the game. The game is played by a team of
terrorists who want to capture a flag and a team of counter-
terrorists who want to prevent this. The game area contains
a spawning location for terrorists, a spawning location for
counter-terrorists, and two locations where a flag can be
captured. The screenshot below shows part of a game window.
Players are rendered as circles, walls as purple lines and the
navigation structure as green lines.

The game has been implemented2 in Haskell using the
OpenGL library to render the game on screen and to schedule
the game loop. On top of OpenGL, we use GLUT which pro-
vides input handling. The physics calculations are performed
using the Chipmunk physics library via the Haskell binding
Hipmunk. The game State contains information about the
Chipmunk space, and the various physical objects.

A. Actions

The agents in our game can perform a number of basic
actions, such as shoot, move, and take the flag. We have an
Action datatype in which the different basic actions are listed.

B. Game AI

The terrorists want to capture the flag, and the counter-
terrorists want to prevent that from happening. The main game
AI for all computer-controlled agents takes the position of the
flag as argument and returns the GameAI .

mainGameAI :: Pos → GameAI State Action
mainGameAI pos = combat :|>: moveToFlag pos

To capture or defend the flag, agents try to shoot the members
of the other team. This is described by the game AI combat .

combat = enemiesInTheSameRoom :?:
(shootNearestEnemy

2Source download: http://intellicode.nl/thesis.html

:|: throwGrenade
:|: takeCover
)

The function enemiesInTheSameRoom checks the state to
determine if there are any enemies in the same room. If this
condition holds, the game AI following :?: is performed.
This game AI randomly chooses between the actions to shoot
the nearest enemy, throw a grenade, or take cover. The def-
initions of enemiesInTheSameRoom , shootNearestEnemy ,
throwGrenade and takeCover are omitted. The final action
generated by these functions fires a CompletedEvent when
it has been completed. If there are no enemies in the room,
combat fails, and the moveToFlag game AI is used to move
to the location of the flag.

Both teams start in locations from which they need to move
to the location of the flag. An agent moves to a location by
navigating via several waypoints in the map to reach a target.
We can either manually construct this path, or use a path
finding algorithm in our game AI, as is usually done in video
games. We have implemented the A* path finding algorithm
in the function shortestPath to generate a list of waypoints
to navigate to a target destination. This also demonstrates
that we can easily embed other technologies in our game AI.
The function moveToFlag takes a position and uses function
moveToWaypoint to construct game AI that consist of a
sequence of move actions to the waypoints on the shortest
path to the flag.

moveToFlag :: Pos → GameAI State Action
moveToFlag pos =
let moves waypoints =

case waypoints of
[p] → arriveAtTarget p
(p : ps)→ moveToWaypoint p :?: moves ps

in Act
(λstate context →

moves (shortestPath state pos)
)

The function moveToFlag is a slightly simplified ver-
sion of the function used in the implementation of the
game, but it shows the essential aspects. The defini-
tions of moveToWaypoint and arriveAtTarget are omitted.
arriveAtTarget is an action that fires a CompletedEvent .

The function mainGameAI is not a complete description of
the game AI. We also have to implement game AI for returning
to base when the flag is captured by a terrorist, and for counter-
terrorists to try to retrieve the flag when the flag is captured by
a terrorist, or defend the flag. Both teams need to react in case
the flag is captured. This is triggered by an InterruptEvent
for all agents. Because the game AI is similar for both teams
except for the game AI after the flag has been captured by a
terrorist, we can take advantage of the combinators and the
fact that we can directly reuse values of GameAI to simply
create new game AI.

VII. CONCLUSION AND FUTURE WORK

A. Conclusion

This paper describes a domain-specific language for de-
scribing artificial intelligence in real-time video games. The
DSL offers domain-specific notation to specify game AI. We
have chosen to embed the DSL in Haskell, giving us an
implementation for free, and access to the full functionality
of a programming language. The design of our DSL builds
upon previous work on a DSL for describing interactive
exercises [10], [12], [11], and offers constructs similar to those
present in behavior trees and hierarchical task networks. The
DSL for describing interactive exercises has been adapted in
various ways.
• An event system has been added to facilitate the com-

munication between various agents and to implement the
effect of actions from one agent on other agents.

• The DSL has a number of constructors useful for describ-
ing game AI. In particular, we use the combinator :?: to
describe conditional actions, and the Act constructor to
describe actions that need information from the state, and
possibly an action-specific context.

• The basic components produced by game AI are actions,
which have a duration attached.

• Using the game AI, we generate actions of computer-
controlled agents, instead of parsing steps.

• The game-play code applies actions to the state. This
implies that the handling of actions can take advantage of
other components such as physics or animation libraries
which are accessible from the game play code.

The example game in Section VI shows how we successfully
used this DSL to describe and implement the game AI of
computer-controlled agents in a real-time video game.

Our DSL can be an attractive alternative to existing methods
for specifying game AI that mostly rely on using general-
purpose control flow elements or use tree- or graph-like data
structures. Our DSL offers a convenient and concise way to
describe, include, transform, and reuse strategies in real-time
video games, and does not require a graphical user interface
to conveniently adjust, prototype, and maintain the game AI.
Furthermore, our game AI DSL can be directly executed.

B. Future Work

We want to investigate if we can use our DSL to describe
other components of a game too, such as animations, the story
line, or the behavior of groups of agents.

We want to further experiment with our DSL by imple-
menting other kinds of games. In the near future, we hope to
develop a serious game for practicing communication skills.

To illustrate the power of our DSL, we want to implement
behavior trees, GOAP, and HTN, in our DSL.

At the moment the game AI and action implementors are
responsible for firing an event upon completion of a series
of actions. The events list the agents that should be notified.
Future work will focus on the relationship between actions
and events, to determine if we can further integrate events

and actions to remove the need for firing events and listing
agents involved.

REFERENCES

[1] E.M. Avedon. The structural elements of games, In The Study of
Games, John Wiley, 1973.

[2] A. Calleja and G. Pace. Scripting Game AI: An Alternative Approach
using Embedded Languages, Proceedings WICT 2010, University of
Malta, 2012.

[3] C. Dragert, J. Kienzle, and C. Verbrugge. Toward High-Level Reuse of
Statechart-based AI in Computer Games, Proceedings GAS’11, pages
25-28, ACM, 2011.

[4] Christopher Dragert, Jorg Kienzle, ans Clark Verbrugge. Statechart-
Based AI in Practice, Proceedings AIIDE’12, AAAI Press, 2012.

[5] T. Fullerton. Game design workshop: a playcentric approach to
creating innovative games, Morgan Kauffmann, 2008.

[6] A.W.B. Furtado, A.L.M. Santos and G.L. Ramalho. SharpLudus
revisited: from ad hoc and monolithic digital game DSLs to effec-
tively customized DSM approaches, Proceedings of the SPLASH ’11
Workshops, pages 57-62, ACM, 2011.

[7] A. Gavin. Making the solution fit the problem: AI and character
control in Crash Bandicoot, Computer Game Developers Conference
Proceedings, 1997.

[8] A. Gerdes, B. Heeren and J. Jeuring. Properties of exercise strategies,
Proceedings of IWS 2010: 1st International Workshop on Strategies
in Rewriting, Proving, and Programming. Electronic Proceedings in
Theoretical Computer Science 44, pages 21-34, 2010.

[9] T. Hastjarjanto Strategies for real-time video games, MSc. thesis,
Computing Science, Utrecht University, to appear, 2013.

[10] B. Heeren and J. Jeuring. Recognizing strategies, In A. Middeldorp
(Ed.), Proceedings of WRS 2008: 8th International Workshop on
Reduction Strategies in Rewriting and Programming, Electronic Notes
in Theoretical Computer Science, Volume 237, pages 91-106, 2009.

[11] B. Heeren and J. Jeuring. Interleaving strategies, In J.H. Davenport et
al (Eds.), Proceedings of Calculemus/MKM 2011, LNAI 6824, pages
196-211, Springer, 2011.

[12] B. Heeren, J. Jeuring and A. Gerdes. Specifying Rewrite Strategies for
Interactive Exercises, Mathematics in Computer Science, 3 (3), pages
349-370, 2010.

[13] H. Hoang, S. Lee-Urban and H. Muñoz-Avila. Hierarchical plan rep-
resentations for encoding strategic game AI, Proceedings of Artificial
Intelligence and Interactive Digital Entertainment Conference, AAAI
Press, 2005.

[14] P. Hudak. Building domain-specific embedded languages, ACM
Computing Surveys - Special issue: position statements on strategic
directions in computing research, 28 (4), 1996.

[15] D. Isla. Handling Complexity in the Halo 2 AI, Proceedings of the
Game Developers Conference, 2005.

[16] J.P. Kelly, A. Botea and S. Koenig. Offline planning with hierarchical
task networks in video games, Proceedings of the Artificial Intelligence
and Interactive Digital Entertainment Conference, 2008.

[17] R. Laemmel, E. Visser and J. Visser. The essence of strategic
programming, draft, Computing Science, VU Amsterdam, 2002.

[18] D. Leijen. The λ Abroad, Ph.D. Thesis, Computing Science, Utrecht
University, 2003.

[19] D. Leijen, E. Meijer and J. Hook. Haskell as an automation con-
troller, In 3rd International Summerschool on Advanced Functional
Programming, LNCS 1608, pages 268-288, Springer, 1999.

[20] M. Mernik, J. Heering and A. M. Sloane. When and how to develop
domain-specific languages, ACM Computing Surveys, 37 (4), pages
316-344, 2005.

[21] A. Nareyek. AI in computer games, ACM Queue, 1 (10), pages 58-65,
2004.

[22] J. Orkin. Applying Goal-Oriented Action Planning to Games In Steven
Rabin (Ed.), AI Programming Wisdom 2, pages 217-229, 2003.

[23] S. Peyton Jones et al. Haskell 98, Language and Libraries. The Revised
Report, Cambridge University Press, Cambridge, England, 2003.

[24] T. Sweeney. The next mainstream programming language: A game
developers perspective, Invited talk at POPL ’06: the 33rd Annual
ACM SIGPLAN - SIGACT Symposium on Principles of Programming
Languages Languages, 2006.

[25] W. White, C. Koch, J.Gehrke and A. Demers. Better scripts, better
games, Communications of the ACM, 52 (3), pages 42-47, 2009

