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Abstract. This paper describes the history of finding palindromes in
computer science. The problem of determining whether or not a string
is a palindrome is one of the oldest computer science problems, and al-
gorithms for this problem have been constructed since the early years of
computer science. This paper describes the contributions to solving al-
gorithmic problems related to finding palindromes and variants of palin-
dromes.

1 Introduction

Fig. 1. The Sator square, from a Swedish manuscript, 1722, Skara, Sweden [34]

Since 1998 I have worked in the group ”SDS”, the name used for the Software
Technology group in internal documents of the department of Information and
Computing Sciences of Utrecht University. The group is called after the initials
of Doaitse Swierstra. The most remarkable aspect of these initials is that they
constitute a palindrome. Until a successor of Doaitse has been appointed, I will



be group leader of the Software Technology group, and, preserving all properties,
its name should probably change to ”JTJ”.

Doaitse thinks palindromes are boring. He and I wrote a set of lecture notes
together on ‘Languages and compilers’ [23], which uses palindromes as one of
its first examples. One of Doaitse’s returning remarks about these notes is that
it is so boring to use palindromes as an example. In this paper I show that
palindromes have a rich history, also in computer science, and that they are a
worthwhile object of study. I will refer to many books and papers about formal
languages, computing models, and algorithms, in which palindromes are used
as first or second example, or as inspiration for other results. The books and
papers in the list of references of this paper have been cited almost 40.000 times,
and this is probably my paper with the most cited citations. I doubt it will be
sufficient for Doaitse to change his mind, however. Since Doaitse will hopefully
not be the only reader of this paper, I will also include some descriptions of
concepts of which Doaitse is well aware, so that readers with a different computer
science background can also learn something about the history of palindromes
in computer science.

The palindrome concept has a long history. Already around 2000 years ago,
the palindrome ‘Rotas opera tenet arepo sator’, see also Figure [1} was written
on the walls of Pompeii. Its precise meaning is unclear. Some 300 years before
that, around 250 BC, Sotades reportedly wrote the first verses that also made
sense if read backwards. Unfortunately, none of the palindromic verses of Sotades
survived.

The oldest Dutch palindrome I could find is ‘Neder sit wort trow tis reden’,
from 1584, see Figure [2| The meaning of this sentence is unclear too, one possi-
bility is ‘Humility is the word, loyal the intellect’

Rever fit wozt trow tis reden)

Fig. 2. Dutch palindrome (‘letter-kreeftdicht’) from 1584 [33]

Palindromes have long been considered interesting curiosities used in word-
plays. We now know that palindromes play an important role in DNA. If I search
for the keyword palindrome in the electronic publications available at the library
of Utrecht University, I get more than 500 hits. The first ten of these hits are
all about palindromes in DNA. My guess is that at least 90% of these 500 pub-
lications are about palindromes in DNA. For example, the male DNA contains
huge approximate palindromes with gaps in the middle [30]. Some of these palin-
dromes are more than a million base-pairs long. The genes for male testes are
encoded on one of these palindromes. The male chromosome, XY, consists of
a single X and a single Y, and is the only chromosome that does not have two



copies of the same DNA string. An important reason why chromosomes have two
copies of the same string is to repair possible errors in DNA. Since the Y chro-
mosome lacks a copy, it needs to resort to other mechanisms for repairing itself.
The Y chromosome uses palindromes for this purpose: the important genetical
information in Y appears in palindromes. Thus palindromes play an important
role in saving males from extinction...

We need software to find palindromes in large pieces of text, or approximate
palindromes with gaps in DNA. Algorithms for determining whether or not a
string is a palindrome, and finding palindromes in strings have a long history
in computer science, longer than Doaitse’s career. On the occasion of Doaitse’s
retirement I want to look back to a very small part of the history of computer
science, and revisit the history of algorithms for finding palindromes.

2 Finding palindromes

2.1 Formal language theory

Palindromes have been used as examples in formal language theory, and to il-
lustrate the power of various computing models.

The classic book of Noam Chomsky introducing syntactic structures for lan-
guages from 1957 [6] uses palindromes as its second example. The first example of
a formal language in Hopcroft and Ullman’s Introduction to Automata Theory,
Languages and Computation [20] is the language of palindromes. A predecessor
of this book [19] shows that the language of even-length palindromes is a nonde-
terministic context-free language: a context-free language that can be recognized
by means of a pushdown automaton, but not by a deterministic pushdown au-
tomaton. This implies that this language is context-free, but ‘of a more involved’
kind.

Stephen Cole showed how to recognize palindromes on iterative arrays of
finite-state machines in 1964 [7I8], and so did Seiferas on iterative arrays with
direct central control [29]. Alvy Ray Smith IIT used cellular automata to rec-
ognize palindromes in 1971 [32]. Also in the 1970s, Fréjvald [13] and Yao [36],
independently, looked at recognizing palindromes by means of probabilistic Tur-
ing machines. In 1965, Fréjvald [12] and Barzdins [3] independently showed that
it requires a number of steps quadratic in the length of the input string on a
Turing machine with a single head and a single tape to determine whether or
not a string is a palindrome. In his review of these papers, Mullin [27] conjec-
tured that this problem can be solved in linear time on a machine with two
heads. Eight years later in 1973, Slisenko [31] showed that if you are allowed to
use more than one head on a tape, or multiple tapes, then indeed a palindrome
can be determined in a number of steps linear in the length of the input string.
Looking at these results from a distance of around 40 years, it seems like in
those days it was a sport to study programming with various restrictions, like
not using your left hand, or tying your legs together.

The English translation of Slisenko’s paper is a 183 page, dense mathematical
text. Slisenko announced his result already in 1969, and given the form and



the length of his paper (with 183 pages this is more a book than a paper), I
find it highly likely that it took him a couple of years to write it. Slisenko’s
result was a surprisingly strong result, and people started to study and trying
to improve upon it. One of these people was Zvi Galil, then a postdoc IBM
Yorktown Heights. He had a hard time understanding Slisenko’s paper, which I
fully understand, but in 1978 he obtained the same result, only he needed just
18 pages to describe it. The problem of finding palindromes efficiently started
off an area within computer science now known as stringology, which studies
strings and their properties, and algorithms on strings.

2.2 Stringology

A nice example of how palindromes influenced the development of well-known
algorithms is given by Knuth in Knuth, Morris and Pratt’s paper about fast
pattern matching in strings [24]. Daniel Chester had developed a program to
recognize strings beginning with an even-length palindrome using a two-way
deterministic pushdown automaton. Knuth had just learned about Cook’s the-
orem, which stated that any language recognizable by a two-way deterministic
pushdown automaton can be recognized in linear time on a Random Access Ma-
chine (RAM) [9]. After he had successfully applied Cook’s procedure to obtain
a linear-time RAM algorithm for finding even-length palindromes at the start
of a string, he realised that he could use a similar procedure to obtain a fast al-
gorithm for pattern matching. This algorithm later became know as the Knuth,
Morris, Pratt (KMP) pattern matching algorithm. Around the same time, and
in a similar way by moving between different computation models, Galil found
a linear-time algorithm for finding initial palindromes of any length [15].

Some of the machine models on which algorithms for palindromes were de-
veloped have rather artificial restrictions, which gives rather artificial algorithms
for finding palindromes. But some of the algorithms on the more realistic ma-
chine models, such as the RAM model, contain the essential components of a by
now relatively well-known linear-time algorithm for finding palindromes. Man-
acher [26] gives a linear-time algorithm on the RAM computing model finding
the smallest initial palindrome of even length. The difference with the algo-
rithms described above is that this algorithm is ‘on-line’: it finds palindromes as
it reads input symbols, and it doesn’t need to see the complete input string. He
also describes how to adjust his algorithm in order to find the smallest initial
palindrome of odd length longer than 3. He did not realize that his approach
could be used to find all maximal palindromes in a string in linear time. Zvi Galil
and Joel Seiferas did, in 1976. They wrote a paper, titled ‘Recognizing certain
repetitions and reversals within strings’ [I7], in which they develop an algorithm
that finds all maximal palindromes in a string in linear time. As far as I know,
this is the first description of this algorithm.

Twelve years later I rediscovered this algorithm. I published a paper on ‘The
derivation of on-line algorithms, with an application to finding palindromes’ [22],
in which I show how to obtain the efficient algorithm for finding palindromes
from the naive algorithm for finding palindromes using algebraic reasoning. The



method at which I arrive at the algorithm is completely different from the way
Galil and Seiferas present their version. I presented the algorithm and the method
I use to construct it to several audiences. I was only 22 years old at the time,
and I am afraid my presentation skills were limited. Several people that saw me
presenting the efficient algorithm for finding palindromes thought they could do
better. An example can be found in the book ‘Beauty is our business’ (which
isn’t about models, or escort services, but about computer science, and dedicated
to the Dutch Turing award winning computer scientist Edsger Dijkstra on his
sixtieth birthday), in which Jan Tijmen Udding derives the same algorithm using
Dijkstra’s calculus for calculating programs [35].

The stringology community went on to develop algorithms with even more
refined features for finding palindromes, such as a real-time algorithm, an algo-
rithm that finds all palindromes in a string, but only uses a constant amount of
time after reading each input symbol [14].

2.3 Finding palindromes in parallel

Zvi Galil developed algorithms for almost all problems related to palindromes
in his series of papers on palindromes. In 1985, he developed an algorithm for
finding initial, even-length, palindromes using a parallel machine [I6] in time
logarithmic in the length of the input string. Turing machines, and the other
machine models mentioned above, are sequential machines: computations are
performed in sequence, and not at the same time. Parallel machines allow com-
putations to be performed at the same time, in parallel. In the previous century
few parallel machines were available, but nowadays, even the laptop on which
I am typing this text has four cores, and can do many things in parallel. The
importance of parallel machines has increased considerably, also because it is
expected that increasing the speed of computers by increasing the clock speed
is not going to work anymore in the next couple of years. Extra power of com-
puters has to come from the possibilities offered by using multiple cores for
computations. To give an example: I searched for palindromes in the human Y
chromosome using the efficient, linear-time, on-line algorithm. Since this chro-
mosome has more than 20 million base-pairs, it takes quite some time (in the
order of minutes) to find palindromes in it.

To put multiple cores to good use, we need efficient parallel algorithms for
the problems we want to solve. Apostolico, Breslauer, and Galil improved upon
Galil’s first parallel algorithm for finding palindromes in their paper on ‘Optimal
Parallel Algorithms for Periods, Palindromes and Squares’ in 1992 [I], based on
an approach to use overhanging occurrences of strings to find initial palindromes
introduced by Fischer and Paterson [I1]. This optimal algorithm takes log (log n)
time using n (log n) processors, where n is the length of the input string. The
number of processors available to a user is usually fixed, and does not depend
on the length of an input string. My machine has four cores, and it is impossible
to change that number. Given the number of available processors, Breslauer
and Galil determine how much time a parallel algorithm takes to find initial
palindromes [4].



There are quite a few different different parallel architectures, depending on
for example whether or not two or more processors can read or write a sym-
bol from memory simultaneously. If we want to use one of these architectures
to find palindromes, we need an algorithm specifically developed for this archi-
tecture, and we can construct different algorithms that optimize time, space,
or use a particular number of processors. Further algorithms for finding palin-
dromes on various parallel architectures have been developed by Crochemore
and Rytter [I0] and, again, Apostolico, Breslauer, and Galil [2].

2.4 Gapped and approximate palindromes

Since the discovery that DNA contains many palindromes, people working on
bioinformatics have developed algorithms for finding palindromes in DNA. The
first description of these algorithms I could find are in the book Algorithms on
Strings, Trees and Sequences: Computer Science and Computational Biology, by
Dan Gusfield [18]. This is one of the standard works in computational biology.
Gusfield shows how to compute all maximal palindromes in a string using a
suffix tree. He then moves on to discuss gapped palindromes (called separate
palindromes in Gusfield’s book), and approximate palindromes. A gapped palin-
drome is a palindrome with a gap in the middle, and an approximate palindrome
is a palindrome after a limited number of symbols is changed, deleted or inserted.
These kinds of palindromes are important in computational biology, because, for
example, the very long palindromes in the Y chromosome all have gaps, and a
limited number of ‘errors’. Gusfield leaves it to the reader to construct an al-
gorithm that returns approximate palindromes in which only symbols can be
changed (not deleted or inserted) in time linear in the product of the maximum
number of errors and the length of the input.

After Gusfield, several other scientist have worked on finding gapped and
approximate palindromes, sometimes improving on or generalizing Gusfield’s re-
sults. For example, Porto and Barbosa have developed an efficient algorithm
that finds approximate palindromes in which also symbols may be inserted or
deleted [28], Kolpakov and Kucherov have developed several algorithms for de-
termining palindromes with gaps [25], and Hsu, Chen, and Chao find all approx-
imate gapped palindromes [21].

3 Conclusions

This short paper shows the history of describing and finding palindromes in
computer science by discussing the literature on this topic. I have not included
all literature about variants of the problem of finding palindromes: the number
of variants is substantial, and listing the literature about all variants is infeasible.
For example, I recently came across a paper that shows how to find approximate
palindromes in run-length encoded strings [5].

I expect we will see solutions to more variants of the palindrome problem
in the future. For example, the papers about parallel algorithms for finding



palindromes listed in this paper all describe algorithms for finding exact palin-
dromes. Parallel algorithms are particularly useful for huge input strings, such
as the human Y chromosome. The palindromes occurring in the Y chromosome
are gapped and approximate, so we need to develop variants of the parallel al-
gorithms for gapped approximate palindromes. Also from an algorithm-design
perspective I think there are still some open questions. The central concept in
the design of the efficient algorithm for finding palindromes is the palindromes
in palindromes property. This property says that if a large palindrome contains
a smaller palindrome that does not appear exactly in the middle, the large pa-
lindrome contains a second copy of the smaller palindrome at the other arm of
the large palindrome. I think this property should also play a central role in ef-
ficient algorithms for finding gapped and approximate palindromes. I have tried
for quite a while to design algorithms for these problems using the palindromes
in palindromes concept, but failed. I hope someone else will solve this problem.
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