
An Efficient Proximity Probing Algorithm
for Metrology

F. Panahi

A. Adler

F. van der Stappen

K. Goldberg

Technical Report UU-CS-2013-010

July 2013

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl



ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands



An Efficient Proximity Probing Algorithm for Metrology

Fatemeh Panahi∗ Aviv Adler† A. Frank van der Stappen‡

Ken Goldberg§

Abstract

Metrology, the theoretical and practical study of measurement, has applications in auto-
mated manufacturing, inspection, robotics, surveying, and healthcare. An important problem
within metrology is how to interactively use a measuring device, or probe, to determine some
geometric property of an unknown object; this problem is known as geometric probing. In
this paper, we study a type of proximity probe which, given a point, returns the distance to
the boundary of the object in question. We consider the case where the object is a convex
polygon P in the plane, and the goal of the algorithm is to minimize the upper bound on the
number of measurements necessary to exactly determine P . We show an algorithm which has
an upper bound of 3.5n + k + 2 measurements necessary, where n is the number of vertices
and k ≤ 3 is the number of acute angles of P . Furthermore, we show that our algorithm
requires O(1) computations per probe, and hence O(n) time to determine P .

1 Introduction

Metrology, the study of measurement, has applications in manufacturing, inspection, robotics,
surveying, and healthcare ([3, 4]). An important aspect of metrology is the problem of how to
most efficiently use a given measurement device, or probe, to obtain a specific piece of complex
information. When the measurement device and object of interest are geometric, the problem of
obtaining information about the object through repeated use of the device is known as geometric
probing. A common version of this problem is to deduce the shape of an unknown object using as
few probes as possible.

Efficient algorithms for probing convex polytopes have been the subject of several papers,
starting with Cole and Yap [7], who studied the complexity (in terms of number of probes required)
of Determining the Shape of an Unknown Convex Polygon by using probes which travel along a
straight line chosen by the algorithm and stop when they collide with the polygon (later referred to
as finger probes [1, 8, 9]). A number of probe types and algorithms were presented by Dobkin et al.
[9]. These include the finger probes previously studied by Cole and Yap; hyperplane probes, which
consist of a hyperplane (whose angle is chosen by the algorithm) which sweeps over the whole
space and stops when it collides with the polygon; and silhouette probes (also called projection
probes [13]), which provide the projection of the polygon onto a chosen subspace. Other probes
which have been studied for convex polygons include x-ray probes ([1, 8, 12]), which measure the
length of intersection between a chosen line and the unknown polygon, and half-plane probes [14],
which measure the area of intersection between a chosen half-plane and the unknown polygon.

In this paper, we consider proximity probes which, given a point, return the distance to the
boundary of the object in question. We consider the case where our object of interest is a convex
polygon and our goal is to determine P exactly with the fewest probes possible. Fig. 1 illustrates

∗Department of Information and Computing Sciences, Utrecht University, Utrecht, Netherlands. F. Panahi is
supported by the Netherlands Organization for Scientific Research (NWO).
†Department of Mathematics, Princeton University, Princeton NJ, USA
‡Department of Information and Computing Sciences, Utrecht University, Utrecht, Netherlands
§Departments of IEOR and EECS, UC Berkeley, Berkeley CA, USA



Figure 1: An unknown polygon P with proximity probes at x0, x1, x2

an instance of our problem, with three proximity probes at x0, x1, x2 respectively measuring an
unknown convex polygon P .

This type of problem is relevant for situations where a relatively simple sensor must be used
intelligently to efficiently extract a piece of complex information. For example, one application
of our instance might be robotic exploration with non-directional sonar where echo time is pro-
portional to distance. There are also possible relevancies to semiconductor manufacturing, where
it can be valuable to inspect the precise shape of an etched silicon structure ([2, 15]). Notable
techniques in current use include scanning probe microscopy (SPM) ([2]), which performs a contin-
uous scan over the material with a physical probe, and virtual metrology (VM) ([5, 6]), which uses
measurements of tool parameters during the production of wafers to statistically predict the final
properties of the silicon. Our work suggests a possible approach of interactively using a simple
proximity probe a finite number of times to inspect these structures.

The remainder of the paper is organized as follows. In Section 2, we introduce the problem and
the definitions necessary for the algorithm. In Section 3, we present our algorithm and analyze its
complexity per probe; we also present a complete example of our algorithm for a simple polygon
P . In Section 4 we show an upper bound on the number of probes needed by our algorithm.
Finally, in Section 5, we summarize our results and discuss future work.

2 Problem Formulation and Preliminaries

We assume that all points and objects lie in the plane and that all positioning and measurements
are exact.

For any two points or closed sets of points a, b, dist(a, b) denotes the Euclidean distance between
a and b; for a lclosed subset S of the plane, ∂(S) denotes its boundary, Int(S) denotes its interior,
S̄ denotes the closure of its complement (so both S and S̄ contain ∂(S)), and Conv(S) denotes its
convex hull. We also define zero-disk to mean a disk containing only its center.

In addition, for any disk of positive radius C and point z on its boundary, we define L(C, z)
to be the line tangent to C at z. We also define H(C, z) to be the half-plane bordered by L(C, z)
which contains C, and H̄(C, z) to be the half-plane bordered by L(C, z) which does not contain
C.

2.1 Problem Formulation

Let P be an unknown convex polygon with n vertices and edges contained in a known disk D,
and let the probing function fP be defined over the the plane as

fP (x) =

{
dist(x, P ) : x 6∈ Int(P )
−1 : x ∈ Int(P )



The probing algorithm is not explicitly given this function, but is allowed to call it as many times
as necessary to find P exactly; the goal of this paper is to find an algorithm which minimizes the
upper bound of probes necessary (and allows the next probe to be efficiently computed at each
step). The points x for which it calls the function fP are the probes, and the disks of radius fP (x)
centered at these points are the probe disks, abbreviated as p-disks (by convention, if fP (x) = −1
then no disk is produced). Every p-disk is by definition incident to P at exactly one point.

2.2 Condensed Probe Disks

Suppose we have two (distinct) p-disks Ca, Cb such that Ca ⊂ Cb. Since they both must be
incident to P at exactly one point, they must be incident to P at the same point (otherwise
it is impossible for one to contain the other); this point will by definition be the only point in
∂(Ca) ∩ ∂(Cb), which we call pa,b. Furthermore, P must be interior disjoint with the half-plane
H(Cb, pa,b) since P is convex, pa,b ∈ Cb, P , and Cb is not a zero-disk (because ∅ 6= Ca ⊂ Cb).
We thus define the condense operation on Ca, Cb which outputs pa,b as a zero-disk and associates
with it the half-plane H(Cb, pa,b); the products of this operation are called condensed probe disks
(abbreviated as cp-disks). Furthermore, any p-disks which neither contain nor are contained by
other p-disks (and so cannot be used by the condense operation) are also considered to be cp-disks.
Note that cp-disks, like p-disks, must have exactly one intersection point with P (since cp-disks
are either p-disks or zero-disks produced by the condense operation). If C∗ is a cp-disk produced
by the condense operation (and hence C∗ is a point), we let H(C∗) be its associated half-plane
and L(C∗) be the line bordering H(C∗).

A small note: it is possible for a p-disk Ca to be contained in several other p-disks, none of
which are contained in each other; however, this can only happen when Ca is a zero-disk and also
at a vertex of P . In these cases, Ca will be condensed with every disk containing it to produce
multiple condensed cp-disks.

2.3 Clockwise Ordering of cp-Disks

For any cp-disk C∗, let p(C∗) be its intersection point with P . We note that by imposing a
clockwise direction on the boundary of P , we can impose a clockwise order on the set of p(C∗)
for all cp-disks C∗ (it is possible for two cp-disks to have the same contact point on P ; but this
can only happen on vertices of P ). This then imposes a clockwise (cyclic) ordering on the set of
cp-disks, where if multiple cp-disks happen to have the same contact point with P , they can be
ordered by the lines tangent to them at the common contact point (a zero-disk C∗zero produced
by the condense operation is considered to have the line L(C∗zero) as its tangent; a zero-radius
cp-disk not produced by the condense operation cannot share a contact point with another p-disk
or cp-disk since it would be contained by the other disk and hence not be a cp-disk by definition).

From now on we will attach indices to the cp-disks indicating their order. Specificially, we will
let X be the ordered set of cp-disks, and implicitly label the disks in X as C∗1 , C

∗
2 , ..., C

∗
α. Since the

ordering of cp-disks is cyclic, we assume that additions and subtractions on indices are performed
modulo the number of disks.

Remark: It should be noted that in general, given an arbitrarily probed set of cp-disks, prior
knowledge of P is necessary to deduce their exact ordering by the above criteria, and thus the
ordering cannot be used by the algorithm. However, we will show that our algorithm chooses
probes in such a way that this labeling can always be determined exactly without any prior
knowledge of P .

2.4 Shadow Sets

Suppose we have two cp-disks C∗i , C
∗
j ; for both we define a counterclockwise direction on their

boundary. We define the lines Li,j and L′i,j to be the lines tangent to both C∗i and C∗j such that

• for both lines, C∗i and C∗j lie on the same side



Figure 2: An example of neighbor-shadow set

• Li,j is given a direction coinciding with the counterclockwise direction imposed on the two
cp-disks, while L′i,j is given a direction opposing the counterclockwise direction

• Both lines, in their given directions, intersect C∗i before C∗j .

Note that Li,j is the same line as L′j,i but with the opposite direction imposed on it.
We now define the rays li,j , l

′
i,j to be the rays respectively lying on Li,j , L

′
i,j with their sources

at the respective points of tangency with C∗j . For a ray l, we define Hright(l) to be the quarter
plane lying directly to the right of the ray, and Hleft(l) is analogously defined.

We then define the shadow set cast by C∗j with respect to C∗i as

Si(j) = C∗j ∪ (Hleft(li,j) ∩Hright(l
′
i,j))

This set cannot contain any point of Int(P ), since P cannot have any point in Int(C∗j ), must be
incident to C∗i , and is convex; similarly, P cannot contain any point of Int(Si(j)). Fig. 2 illustrates
example of shadow sets for three circles.

Notice that the boundary of C∗j is partly on the boundary of Si(j) and partly in its interior;
since P cannot contain any point of Int(Si(j)), its point of intersection with C∗j must be on the
part of ∂(C∗j ) which is also on ∂(Si(j)). We call this the feasible arc C∗i imposes on C∗j and denote
it ζi(j).

2.5 The Neighbor-Infeasible Region

We first define the set Si−1(i) ∪ Si+1(i) to be the neighbor-shadow set of C∗i (abbreviated as ns-
set), denoted as S(i) for convenience. See Fig. 2. Similarly, we define the set ζi−1(i) ∩ ζi+1(i) to
be the neighbor-feasible arc of C∗i , abbreviated as nf-arc; we denote it as ζ(i) for convenience.

For cp-disks produced by the condense operation, we instead use S(i) to refer to the half-
plane H(C∗i ). Note that since no cp-disk can be contained in Int(H(C∗i )), H(C∗i ) is a superset of
Si−1(i) ∪ Si+1(i) for these cp-disks.

The neighbor-infeasible region R can now be defined as

R =

m⋃
i=1

S(i) ∪ D̄

Intuitively, for each C∗i , we simply take the ns-set of C∗i , the half-planes associated with all
cp-disks generated by the condense function, and the complement of D (the disk which we were



initially given as containing P ). Since R is composed of these pieces, P must be entirely contained
in (the closure of) the complement of R.

We will show later that our algorithm behaves in such a way that the complement of R (the
neighbor-feasible region) is a single connected piece; we therefore will assume it to be the case
now. The boundary of R will then be naturally split into the following two basic types of pieces,
which we call sections:

1. arcs of the boundary of D

2. connected subsets of the boundaries of the sets S(i); we denote ∂(S(i)) ∩ ∂(R) as ∂R(S(i))

Note that the second type of section has two possibilities:
a) if C∗i was not produced through the condense operation, ∂R(S(i)) is naturally split into at

most three pieces, namely

• the nf-arc ζ(i)

• a segment of the ray li−1(i) (which we will denote l(i) for convenience)

• a segment of the ray l′i+1(i) (which we will denote l′(i) for convenience)

The other two pieces of the boundary of S(i), namely l′i−1(i) and li+1(i) cannot lie on ∂(R) =
∂(R̄) because P in that case would impose the wrong ordering of the cp-disks.

b) if C∗i was produced through the condense operation, ∂R(S(i)) is just L(C∗i )
Remark: Although the neighbor-infeasible set R is interior disjoint with P by definition, it is

not necessarily the case that it is the full set of all infeasible points, i.e. the points which, given
the p-disks, can’t be contained in P .

2.6 Confirmation of Vertices and Edges, and the Query Set

We say a point v is confirmed if by considering X it can be shown that v is a vertex of P , and we
say a line L is confirmed if by considering X it can be shown that l contains an edge of P ; an edge
e of P is also referred to as confirmed if the line extending it is confirmed. Any vertices or edges
of P which are not confirmed are called unconfirmed. The list of confirmed vertices is denoted Vc
and the list of confirmed edges is denoted Ec.

Now we consider ∂(R), as described above as a collection of pieces of the boundaries of the S(i)
and D. Since ∂(R) is continuous, there will be points which lie on more than one of the specified
sections. Some of these points will lie on confirmed vertices or edges of P . The ones which do not
will be called the query set Q, from which we will always probe (except for the very first probe).
Furthermore, we define the preferred query set Q∗ to be the subset of Q which does not contain
any intersection points between two p-disks.

To confirm a vertex or line, we need to count how many p-disks are incident to it; an easy
way to compute this from the set of cp-disks is to count the number of cp-disks tangent to L,
double-counting those produced by the condense operation (since they correspond to two p-disks).
Note that this means the number of cp-disks involved is at most the number of p-disks involved.

Furthermore, note that the set of all cp-disks passing through a point or tangent to a line must
be consecutive.

We can confirm a point v as a vertex of P in these cases:

• if 3 p-disks pass through v

• if v is probed and fP (v) = 0 (this implies that v ∈ ∂(P ); the fact that v was in Q, which is
a necessary condition for being probed by the algorithm, means that v sits in a corner of R
and thus cannot be in the middle of an edge of P , meaning it must be a vertex of P )

• if a segment of (confirmed or unconfirmed) line L on ∂(R) and two p-disks touch v

• if segments of (confirmed or unconfirmed) lines L,L′ on ∂(R) and one p-disk touch v



If we confirm a vertex on a previously unconfirmed line, we can automatically confirm the line
as well.

Additionally, we can confirm a line L as containing an edge of P if L is tangent to three p-disks.
The cp-disks representing these three p-disks will necessarily be consecutive in X because they all
have contact points with P on the same edge (and no other cp-disks will have contact points in
the interior of this edge, since in that case L would have been confirmed earlier), and so given a
cp-disk C∗i we just need to check the three consecutive triples containing it.

In addition, if line L is tangent to two p-disks and passes through the intersection point v of
the boundaries of two other p-disks, then both L and v can be confirmed. Also, if L is tangent
to a p-disk and goes through the intersections of the boundaries of two different pairs of p-disks
(call these points v1, v2), we can confirm v1, v2 and L.

Whenever a vertex v is confirmed, it automatically implies that probing v would return fP (v) =
0; this means we can place a p-disk there without explicitly probing it, and perform the condense
operation with any existing p-disks which happen to contain v. Since they all have the same
contact point v with P , they will be consecutive in X, and later on we will show that there cannot
be more than 3 such disks for any v, so this process takes constant time.

Similarly, whenever a line L is confirmed, we always have at least one, and often more than
one, cp-disks tangent to L; at each tangent point x we know that fP (x) = 0 so we may place a
p-disk there without actually executing the probe function, and perform the condense operation
with the original tangent p-disk to create a new cp-disk. Since an edge is always confirmed if it
is incident to 3 cp-disks, the number of condense operations we need to perform is at most 3 for
each confirmed line; thus this process takes constant time.

Remark: Thanks to the fact that we use the condense operation when we confirm vertices
and edges (without requiring new probes), the lines corresponding to these condense operations
are automatically incorporated into ∂(R).

3 The Algorithm

We now present an efficient algorithm for solving the probing problem described in Section 2.
The algorithm maintains the circular ordered list X of cp-disks, sorted in clockwise order of their
intersection point with P around ∂(P ), an algebraic representation of the neighbor-infeasible region
R, lists of the confirmed vertices (Vc) and edges (Ec) of P , and representations of the query set
Q and preferred query set Q∗. We present it in two parts: the first dealing with how to generate
the next probe given X, R, Vc, Ec, Q, and Q∗, and the second dealing with how to update these
objects given a new probe result. The algorithm terminates once (a) at least one vertex and edge
have been confirmed and (b) every confirmed vertex is on two confirmed lines and every confirmed
line contains two confirmed vertices.

In addition, a some extra information and pointers will be stored in these lists in order to
allow the algorithm to execute all the steps in constant time, most notably pointers in Q for each
element which point to its neighbors (in both X and Q); however, we omit the exact details.

3.1 Algorithm for Generating New Probes

The algorithm for generating new probes is divided into two distinct phases (preceded by a one-
probe initialization): in Phase 1, we probe arbitrarily from the preferred query set Q∗ when
possible; when it is not, we choose instead from Q (both Q∗ and Q are by definition a subset of
the boundary of R) until some edge is confirmed; in Phase 2 (once an edge is confirmed), we probe
points designed to confirm the vertices and edges of P in (roughly) clockwise order.

We also add the following definitions for reference in the algorithm:

• the first edge of P to be confirmed is denoted e1 (i.e. the edge contained by the first line
confirmed)

• the edges and vertices of P in clockwise order are e1, v1, e2, v2, ..., en, vn



• for any edge ei, we let L∗i be the line containing ei; note that it is the lines, not the edges
themselves, which are directly confirmed by the algorithm

• at any given step of the algorithm, we let t be the largest index such that e1, v1, e2, v2, ..., et−1
are all confirmed (we can determine t from Ec and Vc without any extra direct knowledge
of P )

• l is a ray originating on some point on et−1 which we know is in P (for all t > 2, we use
vt−2; otherwise we use the contact point of some p-disk with the confirmed line containing
et−1) and extending et−1 in the direction coinciding with the clockwise direction around
the boundary of P (this direction is also determinable from Ec and X without any extra
knowledge of P )

• for any set S and ray γ, let ρ(γ, S) be the furthest point along γ which is also in S

At the start, X,Vc, Ec, Q,Q
∗ are empty and R = D̄, so we simply probe from an arbitrary

point on the boundary of D. Because P ⊂ Int(D), this disk will have positive radius; because it
is the first p-disk, it cannot be condensed and is thus also a cp-disk. In addition, it will not have
any neighbors in X since it is the only disk in X, so its shadow set is by convention defined to be
itself. Thus, R is simply the union of this disk and the complement of D, and the boundary of
R will consist of an arc of this disk plus an arc of D. Hence, by definition, Q consists of the two
points of intersection between the boundaries of D and the first cp-disk.

Algorithm Steps:

1. While no line has been confirmed, at each step we check if Q∗ has at least one element. If it
does, we choose an arbitrary point x ∈ Q∗ and probe it; if not, we choose an arbitrary point
x ∈ Q and probe it.

2. Once a line has been confirmed, we let the edges and vertices of P , the index t, and the ray
l be defined as above. We repeat the following step until both et and vt−1 are confirmed (at
which point, by definition, the index t increases, and we start Phase 2 again; we terminate
once vt is confirmed on e1).

Let x = ρ(l, R̄); an intuitive idea of x is that it is the furthest clockwise point on the
confirmed line containing et−1 which is not in the neighbor-infeasible region R. We note
then that since x is the furthest point on l ⊂ L∗t−1, it must also be on some other object on
the boundary of R; hence, either x ∈ Vc (if x happens to be vt−1 and is already confirmed)
or x ∈ Q.

If x ∈ Q then it must be both on L∗t−1 and some other piece of the boundary of R. In
particular, it can be on the following

• an nf-arc ζ(i) of some

• another confirmed line

• an unconfirmed line, either corresponding to the output of a condense function or
incident to two (consecutive) cp-disks

• the boundary of D

We then do the following:

(a) if x ∈ Vc, call Next Edge

(b) if x ∈ Q and x 6∈ ζ(i) for all i, probe x

(c) if x ∈ Q and x ∈ ζ(i) for some i, then it is one endpoint of the arc ζ(i) ∩ ∂(R); let x′

be the other endpoint. This point by definition will either be x’s neighbor in Q or will
be an endpoint of ζ(i), and hence is retrievable in constant time



Remark: Although in Phase 1 we are allowed to probe any x ∈ Q∗ (or, if Q∗ is empty, any
z ∈ Q) at each step, if we wish to minimize the time complexity of choosing the next probe at each
step, we need a retrieval method which produces a member of Q∗ or Q in constant time; having
either a stack or a queue as an additional data structure for Q∗ and Q are the most natural ways
of achieving this.

The Next Edge Procedure
This procedure is called when et−1 and vt−1 are both confirmed but et is not confirmed. Let

us consider the set of cp-disks incident to vt−1; they will be consecutive in X, and will have been
produced by the condense function (at the moment that vt−1 was confirmed). Let C∗i be the last
cp-disk among them; let NQ(C∗i ) be C∗i ’s next neighbor (in the clockwise direction) in Q. We
then probe NQ(C∗i ) (updating the maintained information as we go so i and NQ(C∗i ) can change
after each probe) until the next edge is confirmed, at which point t can be updated and we return
to the main loop of Phase 2. We note that NQ(C∗i ) is actually the point on L(C∗i ) furthest from
vt−1.

The Pseudocode
For the pseudocode, we introduce some extra notation and functions (and show, where neces-

sary, that these functions can be computed efficiently). We define the sets E∗c , V
∗
c to be respectively

the subset of Ec consisting of those lines which do not contain two points from Vc, and the subset
of Vc consisting of those points which are not contained by two lines from Ec. Intuitively, E∗c and
V ∗c consist of the confirmed lines and vertices whose adjacent vertices and lines, respectively, have
not been confirmed yet. These sets are easy to maintain with flags attached to both Ec and Vc.

For the case (c) of Phase 2, if x ∈ ζ(i), then we denote the other endpoint of the arc ζ(i)∩∂(R)
as q(x).

For any x ∈ Q, we note that since we can retrieve its neighbors in X in constant time, we
can determine whether it is on some nf-arc in constant time; we will treat this as a binary valued
funtion nf(x) which is true when x is on some nf-arc, and false otherwise.

The RandomElement function refers to random or arbitrary choice of some element from a set;
the Probe function refers to the full update algorithm (described in Section 3.2), which uses and
modifies all the objects in the program. Most object updates occur within the Probe function.

Note that by the time Phase 2 starts, by definition, we will have at least one member of Ec;
note also that maintaining Q∗ is only necessary for Phase 1.

3.2 Algorithm for Handling a New Probe

The algorithm for updating the maintained information (X, R, Ec, Vc, Q, Q∗) is relatively simple
since we usually probe from the set Q (since Q∗ ⊂ Q). To update X in this case, we merely note
that each point x ∈ Q is specifically linked to two consecutive ‘neighbors’ in X.

If the new p-disk contains or is contained by one or both of the ’neighbor’ cp-disks of its center,
we perform the condense operation; this check trivially takes constant time since it has only two
neighbors. It cannot contain or be contained by any non-neighboring cp-disks, and therefore
checking whether the condense operation has to be used has constant time complexity per step.

The only case where we do not probe from Q is in Phase 2, when line L∗t−1 containing edge
et−1 is meets ζ(i) (by definition at an endpoint of ζ(i)∩∂(R)) and, in addition, the other endpoint
of ζ(i)∩∂(R) is not in Q. Even if we cannot determine it from our observations alone, our original
definition of the ordering (depending on P ) is still valid; because the new disk has its center on the
neighbor-feasible arc of C∗i , it must be a neighbor of C∗i . Furthermore, since it is the other (further
clockwise around the boundary of R̄) endpoint of ζ(i)∩∂(R), the remaining set of points at which
C∗i can be incident to P , which is a subset of ζ(i) ∩ ∂(R), is counterclockwise from all points of
the new disk (around the boundary of R̄). Hence, the new disk cannot be between C∗i−1, C

∗
i and

can be inserted between C∗i , C
∗
i+1.

The remainder of the updates involve updating Vc and Ec, and in turn updating Q to not
include confirmed vertices or edges; as any vertex or line is automatically confirmed when three



Algorithm 1 Identifying P using proximity probes

1: procedure DetermineP(D)
2: Vc, Ec ← null . Initialization
3: ∂(R)← ∂(D)
4: x← RandomElement(∂(D))
5: run Probe(x)
6: while Ec = null do . Phase 1
7: if Q∗ 6= null then
8: x← RandomElement(Q∗)
9: else

10: x← RandomElement(Q)
11: run Probe(x)
12: while E∗c 6= null and V ∗c 6= null . Phase 2
13: x← ρ(L,R)
14: if x ∈ Vc then . Case a:
15: run NextEdge(x) . x = vt−1
16: else if nf(x) = false then . Case b:
17: run Probe(x) . x is not on an nf-arc
18: else . Case c:
19: x′ ← q(x) . x is on an nf-arc
20: run Probe(x′)
21: return Vc . Return P as a set of vertices
22: end procedure

23: procedure NextEdge(x)
24: while ¬∃e ∈ (Ec\et−1)|x ∈ e
25: x′ ← NQ(C∗i )
26: run Probe(x′)
27: end procedure



p-disks are tangent to it, and thus these checks remain in constant time. Updating the relevant
stored information is constant for each element of R,Q,Q∗, Vc, Ec and X we update, and for each
set only a bounded number of elements (the neighbors of the probed point) are updated, so the
total updating time has complexity O(1) per probe.

3.3 Example

Here we present a simple example (Fig. 3) of our algorithm determining a polygon P with four
vertices, one of which is acute (so n = 4, k = 1). Probes are represented by filled dots and
labeled in order (starting from x0); cp-disks are shown by black circles (with cp-disks which were
condensed shown by dashed white lines). In Phase 1 of the algorithm Q∗ is denoted by empty
dots; in Phase 2, the next probe is denoted by an empty dot.

4 Bounding the Required Number of Probes

We first establish the following notation. Let v be a vertex of P ; we then write ∠P (v) to refer to
the angle of P at v. If v is confirmed, we note that this means the algorithm would have condensed
the disks incident to v, so that R̄ would have an angle at v; we write ∠R(v) to refer to this angle.

Note that ∠P (v) is always contained in ∠R(v) and that ∠R(v) never increases as the algorithm
goes on.

4.1 Preliminary Lemmas

Lemma 4.1 Assume that v is the intersection point on ∂(R) of the boundaries of two p-disks Ci
and Cj, neither of which contains the other. If we probe from x ∈ R̄ such that x 6= v, the resulting
p-disk C cannot pass through v unless ∠P (v) is acute. If ∠P (v) is acute and C passes through v,
then ∠R(v) becomes acute.

Proof We first note that if either Ci or Cj is a zero-disk, the other would contain it and hence
we would have executed the condense operation.

Assume that the new p-disk C resulting from probing x ∈ R̄ (x 6= v) passes through v; since
Ci, Cj , C all pass through v ∈ ∂(R), it must be a vertex of P . Let l be the ray with source at v,
tangent to Ci and pointing into Cj ; let l′ similarly be the ray with source at v tangent to Ci and
pointing into Cj . The convex hull of these two rays is then a cone, and is entirely contained within
the interior of the infeasible region R (with the exception of v itself). Since x ∈ (̄R), x 6∈ Int(R),
and x 6= v, we know that x is not in this cone.

We note that since the cone can be seen as the intersection of two half-planes (whose boundaries
are the line extensions of the two rays), its complement can be seen as the union of the two
complements of these half-planes (which are themselves half-planes). Therefore, since x is in the
complement, it must be in at least one of the half-planes; suppose without loss of generality it is in
the half-plane whose border is the extension (denoted L) of l. However, let us now consider the line
L(C, v); this line will form an acute angle with L, and will be the line bounding the condensation
of C with the zero-disk we place at v when it is confirmed. Thus, P must be between L and
L(C, v), which means that since the angle (which will be the new ∠R(v)) of these two lines at v is
acute, ∠P (v) must be acute as well.

Lemma 4.2 Let v be a confirmed vertex of P , and let x ∈ R̄ be the next probed point which
produces a disk C. See Fig. 4. Note that v is already confirmed, so x 6= v since we don’t probe
confirmed vertices. Then C can be incident to v only if ∠P (v) is acute, ∠R(v) is not acute;
furthermore, afterwards, ∠R(v) will be acute (so no new p-disk can be incident to v).

Proof Suppose C is incident to v. The proof that ∠P (v) is essentially the same as the proof for
4.1; therefore what we need to show is that this can only happen when ∠R(v) is not acute.



Figure 3: (a) An example of a quadrilateral with one acute-angle vertex which is contained in a
known disk. Let the acute angle be denoted by v1, and the other vertices are labeled in clockwise
order, as per the notation used in the algorithm; (b) x0 is an arbitrary point on the boundary of R
and x1 is one of the intersection points of the disk resulting from x0 and ∂(R); (c) Illustration of
all probes but one of Phase 1 of the algorithm; (d) After seven probes the first edge is confirmed,
and the disks incident to that edge are then condensed; (e) In Phase 2 of the algorithm, case (c)
of the algorithm occurs, resulting in a probe at x7. This confirms v1, and therefore we apply the
condense operation to the cp-disks centered at x2 and x7. It can be observed that two p-disks
are incident to v1 (which is the acute angle) i.e. ω(v1) = 2; (f) After 14 probes, P has been
determined



Figure 4: Illustration of Lemma 4.2

Suppose then, to the contrary, that ∠R(v) is acute. Then x ∈ R̄, which is contained within
∠R(v), C is centered within the cone corresponding to ∠R(v), which is acute. But that means
that the complement of H(C, v), which must contain P , has v as its only intersection with the
cone corresponding to ∠R(v). Thus, P ⊂ R̄ ∩ H̄(C, v) = v, which is obviously a contradiction.

Corollary 4.3 Let v be a vertex of P such that when v is confirmed, it is not by being probed
directly. Then, when the algorithm finishes,

• if ∠P (v) is not acute, the number of p-disks incident to it is at most 2

• if ∠P (v) is acute, the number of p-disks incident to it as at most 3

Proof If ∠P (v) is not acute, then by Lemma 4.1, when v is confirmed there can be at most two
p-disks incident to it; by Lemma 4.2, no further p-disks can be incident to it afterwards.

If ∠P (v) is acute, then when v is confirmed, there are two possibilities. If it is confirmed while
adjacent to three p-disks, then ∠R(v) is acute at that point and no further p-disks can be incident
to v; otherwise, if it is confirmed while adjacent to only two p-disks, then by Lemma 4.2 only one
more p-disk can be incident to it afterwards. In either case, no more than three p-disks will be
incident to it.

Lemma 4.4 Let e be a confirmed edge and v be one of its endpoints. Let x ∈ R̄ such that x
doesn’t lie on the line extending e. If we probe from x, the resulting disk cannot be incident to v
unless v is an acute angle vertex of P .

Proof Since e is a confirmed edge, one of the half-planes bordered by the line extending e must
contain R; therefore, since x ∈ R̄, x cannot lie in the other half-plane bordered by e. Assume the
p-disk created by probing x, denoted by C, is incident to v. The new feasible region created by v
is a region lies the angle between e and L(C, v), which is an acute angle.

We note that as long as we only probe from points in ∂(R) which are not confirmed vertices
or in the interior of any line segment on ∂(R) contained by a confirmed line, we will never create
a p-disk which will be incident to the interior of any previously confirmed edge.

4.2 Undesirable Confirmations

The bounds derived in the previous section are only violated (by 1) if v is confirmed while incident
to three p-disks, one of which is the zero-disk centered at v itself (this applies regardless of whether
∠P (v) is acute). However, we note that if one of the two non-zero p-disks is also tangent to one
of the edges of P adjacent to v, we may associate it with that edge instead (so that the bound
is not considered violated), and hence need only worry about the possibility that neither of the
non-zero p-disks are tangent to an adjacent edge. We call such cases undesirable confirmations.



Figure 5: Illustration of Lemma 4.5

Lemma 4.5 Let C be a disk centered at x and v be a point. Let lx be the ray with source at v
and passing through x. Let y be the first intersection point of lx and ∂(C). In addition, let l be
the ray with source at v and tangent to C lying to the left of lx, and let z be the point where l is
tangent to C. Finally, let x′ be any point on the arc of ∂(C) lies between y and z, and C ′ be a
disk centered at x′. Then the ray l′ with source at v and tangent to C ′ (such that C ′ is to the right
of l′, as in Fig. 5) is tangent to C ′ outside C.

Proof Let ux and u′ be the intersection points of L(C, x′) with lx and l′, respectively. If we
consider the triangle with vertices at v, ux, u

′, it is clear that the inner angle of ∠ux is obtuse, and
hence the inner angle of ∠u′ is acute. Therefore, the perpendicular line from x′ to l′ intersects l′

outside of C, i.e. the tangent point of l′ to C ′ lies outside of C.

Lemma 4.6 In Phase 2, if at any step our probe was from case (b) (where the ray l intersects
some other straight-line piece L of the boundary of R) of the algorithm, where the angle between
L and l is is not acute, and the probe does not confirm a vertex, our next probe will also be of case
(b), and also with a non-acute angle.

Proof Case (b) of Phase 2 of the algorithm concerns the case where the ray l on the current
‘last’ edge et intersects some (confirmed or unconfirmed) line L on the boundary of R. We let
C∗i be the first cp-disks, in the clockwise order, on L; then C∗i has L on the boundary of its
neighbor-shadow set. We then note that C∗i−1 is a condensed disks which is by definition the last
point, in the clockwise order, which we know exists on the edge et. Let x be, as in the algorithm,
the intersection point of L and l which we are probing, and let C be the disk which is produced
from probing x.

We now consider the line Li−1,i; suppose that C is not interior-disjoint with Li−1,i. In that
case, we have a contradiction as no convex P can be incident to C∗i−1 and C∗i without passing
through the interior of C. Therefore, C must be interior-disjoint with Li−1,i and can be inserted
into the ordered list X between C∗i−1 and C∗i ; but then this means that the ns-set of C has a ray
of its boundary which intersects l before C does (since the angle between l and L is not acute,
the ray on the boundary of the ns-set intersects l rather than simply lying entirely on one side of
l). Thus, unless our algorithm passes to case (a) or updates t (which both require confirming a
new vertex), the next probe will be of case (b) (and also with a non-acute angle, since the angle
in this case is strictly increasing).

We note that an easy corollary of this lemma is that if case (b) occurs at a non-acute angle,
by induction it will continue until a new vertex is confirmed; since undesirable confirmations
by definition cannot happen in case (b), the next confirmed vertex cannot be an undesirable
confirmation.



Figure 6: Illustration of Lemma 4.8

Lemma 4.7 At most one undesirable confirmation occurs during Phase 1.

Proof First, since we only probe from Q during Phase 1, any probe which returns a zero-disk
must confirm a vertex, as no point in Q can correspond to the interior of an edge of P . In this case,
by definition, an undesirable confirmation occurs if and only if we probe from a point x which is
in the intersection of two p-disks and receive fP (x) = 0; therefore, by definition, if we probe from
Q∗ we will not get an undesirable confirmation.

Suppose that we have gotten one undesirable confirmation, for vertex v of P , and suppose
we are still in Phase 1; therefore, Ec is empty. In particular, this means that segments of the
lines produced by the condense operation on disks incident to v are on the boundary of R. Given
one of these segments, we see that one endpoint will be v and the other endpoint cannot be a
confirmed vertex (since otherwise we could confirm the line in question and move to Phase 2);
furthermore, the other endpoint cannot be incident to two p-disks either since we would still be
able to confirm the line in question. Therefore, the other endpoint will be in Q∗, so Q∗ will not be
empty. Therefore, once one undesirable confirmation occurs in Phase 1, there cannot be another
until Phase 2 begins.

Lemma 4.8 Let m be the number of undesirable confirmations which occur over the course of the
algorithm. Then m ≤ n/2 + 1.

Proof We already know that in Phase 1, at most one undesirable confirmation can occur; therefore
we consider only Phase 2. We show that in Phase 2, only every other confirmed vertex can be an
undesirable case. More specifically, we assume v is confirmed by an undesirable confirmation, and
show that the next vertex to be confirmed cannot be an undesirable confirmation. We let l and
et be defined as in the algorithm. We also assume to the contrary that the next vertex confirmed
after v is an undesirable confirmation.

Since v is an undesirable confirmation, it must have been confirmed in case (c) and v falls on
the intersection of the boundaries of two cp-disks. When v is confirmed, these two cp-disks are
condensed, and the next probe must be of case (b), at the intersection between l and one of the
lines L produced through v by the condense operation. We let this intersection be xi and the
resulting cp-disk be C∗i .

If any probe afterwards (before the confirmation of the next vertex, which we have assumed
to be undesirable) falls on l, it cannot be of case (c) and cannot be the assumed undesirable next
confirmation; therefore, it was generated by case (b), as the intersection of l and a line on ∂(R)
tangent to C∗i . However, since the center of C∗i is on l, the angle at this intersection cannot be



acute, and therefore by Lemma 4.6, the next confirmed vertex cannot be an undesirable case, thus
producing a contradiction. See Fig. 6 (a).

Therefore, we may assume that xi is the last probe to fall on l before the next vertex is con-
firmed; thus, every probe between xi and the next confirmation is of case (c) (since an occurrence
of case (a) would require the next confirmation to happen first, and case (b) by definition always
falls on l). It is clear by a simple inductive argument that every probe between xi and the new
undesirably-confirmed vertex falls on the boundary of C∗i : in case (c), the next probed point will
be on the other endpoint of the nf-arc ζ(i). If the resulting p-disk intersects l outside of C∗i , then
we have a contradiction as C∗i can immediately be shown to be disjoint with P , which by definition
is not possible, so C∗i must remain the cp-disk l intersects; but then, since we have assumed that
every probe until the next vertex confirmation is of case (c), it must remain on the boundary of
C∗i until the next vertex is confirmed.

We now note that each new probe which does not confirm a new vertex decreases ζ(i). We note
as well that because xi is located where one of the lines associated with v (when it is confirmed)
intersects l, ζ(i) by definition is initially the arc between l and the line joining v and xi (see Fig. 6
(b)); we let this arc of C∗i be called ζ∗.

We now consider the probe immediately preceding the probe which results in the undesirable
confirmation. By the above, this must occur on ζ∗; but then by Lemma 4.5, after this probe neither
of ζ(i)’s endpoints are intersections of the boundaries of two cp-disks. But this immediately implies
that the next probe, which is at an endpoint of ζ(i), cannot be an undesirable confirmation. Hence,
since none of these probes can be an undesirable confirmation, the next confirmed vertex will not
be an undesirable confirmation, which contradicts our assumption that it is.

Thus, we have proved that in Phase 2, whenever an undesirable confirmation occurs, the next
vertex to be confirmed cannot be an undesirable confirmation. Since we have already proved that
in Phase 1 there can be at most one undesirable confirmation, there are in total at most n/2 + 1
undesirable confirmations.

4.3 Analysis of the Algorithm

We now wish to find an upper bound for the number of probes used by our algorithm; this is
achieved by analyzing the number of p-disks that can be incident to any edge or vertex of P when
it is confirmed. We now assume that no undesirable confirmation occurs; later, we will note that
by Lemma 4.8, each undesirable confirmation adds at most one probe to the upper bound, and
that the number m of undesirable confirmations is bounded above by n/2 + 1, and add this to the
bound we derived.

At any given step in the algorithm, let φ(e) and φ(v) denote the number of p-disks incident
to unconfirmed edge e and unconfirmed vertex v respectively; and let ω(e) and ω(v) denote the
number of p-disks which are incident to confirmed edge e and confirmed vertex v, respectively.

We first consider the number of p-disks any object can have adjacent to it at the moment it
is first confirmed; by convention, if a p-disk is incident to both some confirmed vertex and some
confirmed line(s) (if it is a zero-disk, it can be incident to a vertex and two lines), we associate it
with the vertex only. We perform this analysis on the two basic phases of the algorithm.

For Phase 1 (i.e. confirming the first edge), there are two possible cases for the number of
probes which will suffice to confirm the first edge e1 with clockwise endpoint v1:

• If φ(v1) ≤ 1 three disks are sufficient to confirm e1.

• If v1 is confirmed or φ(v1) = 2, then two disks are sufficient to confirm e1.

We will conduct the same analysis for Phase 2 by computing the possible values of ω(vi−1) and
ω(ei) when they are first confirmed (which depends on whether vi−1 is acute or not) for 1 < i ≤ n.
We note that no vertex can be confirmed on ∂(D) because P ∈ Int(D).
Case 1: vi−1 is not confirmed and φ(vi) ≤ 1. Since vi−1 is not confirmed but ei−1 is confirmed,
φ(vi−1) ≤ 1. We consider the two possible sub-cases: either vi−1 is not an acute angle vertex of
P , or it is.



• Suppose vi−1 is not an acute angle vertex. It could either have been confirmed by case (b)
or case (c) from Phase 2 of the algorithm.

– Suppose it was confirmed by case (b); let x be the point probed. For case (b) of the
algorithm to confirm a vertex, the result of the probe must be 0 (i.e. fP (x) = 0), and this
new zero-disk is the only disk incident to vi−1; thus ω(vi−1) = 1. In this case, x (which
is actually vi−1) cannot lie on the boundary of D (as in this case x ∈ P ⊂ Int(D)), so
x is on a segment of an (confirmed or unconfirmed) line L on ∂(R); this line will then
be confirmed as ei with ω(ei) = 2.

– Suppose it was confirmed by case (c). By Lemma 4.4, the new p-disk cannot pass
through vi−1, so ω(vi−1) = 1. We observe that to confirm vi−1, the new p-disk must
reduce the feasible arc of the previous p-disk containing vi−1 to a single point; to do
this, it must confirm ei. Hence, since ω(vi−1) = 1 and φ(vi) ≤ 1, we get ω(ei) = 2.

Therefore, in all cases, ω(vi−1) = 1 and ω(ei) = 2.

• If vi−1 is an acute angle vertex. This is similar to the above case, except that as Lemma 4.4
doesn’t hold for acute angles, we include the possibility that in case (c) the resulting p-disk
will pass through vi−1. If so, vi−1 is confirmed, and the next iteration of the algorithm will
be case (a). As φ(vi) ≤ 1, ω(ei) = 2, and when vi−1 is confirmed in the next iteration
ω(vi−1) ≤ 2.

Case 2: vi−1 is not confirmed and either φ(vi) = 2 or vi is confirmed. This case is similar to
case 1, except that because φ(vi) = 2 (or vi is confirmed), ei is incident to at most one disk, and
vi−1 will be confirmed immediately after ei is confirmed. So, ω(ei) = 1 and ω(vi−1) ≤ 2, if vi−1 is
acute and ω(vi−1) = 1 if it is not.
Case 3: vi−1 is confirmed and 0 ≤ φ(vi) ≤ 1. We consider the two possible sub-cases: either vi−1
is not an acute angle vertex of P , or it is.

• vi−1 is not an acute angle vertex. Since vi−1 is confirmed before ei and vi−1 is not an acute
angle, by Lemma 4.4, ω(vi−1) = 2, and case (a) will immediately follow in the algorithm.
The next edge ei will be confirmed by two incident disks since φ(vi) ≤ 1, so ω(ei) = 2.

• vi−1 is an acute angle vertex. According to Lemma 4.4, it is possible that vi−1 has been
confirmed with three disks as vi−1 is an acute angle. Therefore, ω(vi−1) ≤ 3. As in the
previous case, ω(ei) = 2.

Case 4: vi−1 is confirmed and either φ(vi) = 2 or vi is confirmed. We again consider the same
two possible sub-cases as in the above cases.

• vi−1 is not an acute angle vertex. As in case 3, ω(vi−1) = 2, but the next edge will be
confirmed with one incident disks since vi is incident to more than one disk (or already
confirmed), so ω(ei) = 1

• vi−1 is an acute angle vertex. As in case 3, ω(vi−1) ≤ 3, and ω(ei) = 1 since vi is incident
to multiple disks (or already confirmed).

Finally, it is clear that vn will be confirmed with one disk. Table 1 summarizes the result for
the above four cases.

Theorem 4.9 Our algorithm uses at most 3n+m+ k+ 1 ≤ 3.5n+ k+ 2 probes to find P , where
k ≤ 3 is the number of acute angles of P ; each probe is computed in O(1) time, thus leading to an
overall time complexity of O(n).



Table 1: ω(vi−1), ω(ei) for 1 < i ≤ n

vi−1: Not acute vi−1: acute

Case vi−1 vi ω(vi−1), ω(ei) ω(vi−1), ω(ei)

1 NC NC, φ(vi) ≤ 1 1, 2 ≤ 2, 2

2 NC C or φ(vi) = 2 1, 1 ≤ 2, 1

3 C NC, φ(vi) ≤ 1 2, 2 ≤ 3, 2

4 C C or φ(vi) = 2 2, 1 ≤ 3, 1

Proof We note that no p-disk generated at any point by the algorithm can be incident to a
previously-confirmed edge or to a previously-confirmed non-acute angle vertex once both edges
adjacent to it have been confirmed. Note also that since the algorithm never probes from the
interior of R̄, the algorithm never uses a probe which returns −1. Therefore, the number of probes
needed is equal to the sum of the number of p-disks incident to each edge and vertex of P when
they are confirmed, with the possible additional k for the acute angles already taken care of by
assuming the worst case at time of confirmation. Let nj be the number of times case j occurs,

and kj be the number of times case j occurs with an acute vertex; then
∑4
j=1 nj = n − 1 and∑4

j=1 kj ≤ k since the cases begin once e1 is confirmed.
We now consider the number of p-disks incident to each edge and vertex of P when they are

confirmed, assuming no undesirable confirmations:

• e1 is incident to at most 3 p-disks when it is confirmed

• For j = 1, 4, by Table 1 we note that ω(vi−1)+ω(ei) ≤ 4 if vi−1 is acute, and ω(vi−1)+ω(ei) =
3; hence at most 3nj + kj probes were used.

• For j = 2, by Table 1 we note that ω(vi−1)+ω(ei) ≤ 3 if vi−1 is acute, and ω(vi−1)+ω(ei) = 2;
hence at most 2n2 + k2 probes were used

• For j = 3, by Table 1 we note that ω(vi−1)+ω(ei) ≤ 5 if vi−1 is acute, and ω(vi−1)+ω(ei) = 4;
hence at most 4n3 + k3 probes were used

Consider what happens in case 3 (with vertex vi−1 and edge ei); it occurs when vi−1 is incident
to two disks (or is confirmed) before ei is confirmed. If i = 2, then e1 must have been adjacent to
2 p-disks. If i > 2, then case 3 was preceded by either case 2 or case 4; if it was case 4, then since
vi−1 was already confirmed, ei−1 must have been confirmed with one fewer p-disk than our above
bounds.

Thus, every instance of case 3 (which requires one more probe per vertex-edge pair than cases
1 or 4), there is a corresponding instance either of case 2 (which requires one fewer probe per
vertex-edge pair than cases 1 or 4) or of case 4 (or the base case) in which at least one fewer
probe was used than the bound above. So, since case 3 is the only case in which more probes are
required than cases 1 and 4, and since we showed that every instance of case 3 is ‘offset’, we can
bound the total number of probes needed by the number needed if only cases 1 and 4 occurred.

Thus, the pairs (v1, e2), ..., (vn−1, en) plus e1 require at most 3n + k probes to confirm; the
final vertex vn requires one more, giving an upper bound of 3n+k+1 probes with the assumption
that no undesirable confirmations occurred. Each undesirable case increases the upper bound by
at most 1, and the number of such cases (by Lemma 4.8) is m ≤ n/2 + 1. Hence, we compute our
true upper bound as 3n + m + k + 1 ≤ 3.5n + k + 2 probes. Finally, we note that in Section 3.2
we showed that each probe requires O(1) time computation, and therefore the total computation
time required by the algorithm is O(n).



5 Conclusion and Future Work

In this paper, we defined a type of proximity probe and showed an algorithim which finds the
shape an unknown convex polygon P (with n vertices, k ≤ 3 of which are acute angle vertices)
requiring at most 3.5n+ k + 2 probes, with each probe requiring O(1) time to compute.

In future work we will explore extending these results to 3 and higher dimensions, and to the
case where measurements are not precise and lie within some bounds of the true value, which may
permit bounding the shape of an unknown object. We will also look at the alternative problem,
introduced by Goldberg and Rao [11], of identifying the object P from a finite set of possible
objects by probing. Finally, we will consider non-convex objects inspired by the approach that
Boissonnat and Yvinec [10] developed to extend finger probes to non-convex polyhedra, and study
the problem of using these proximity probes from inside the polygon.

References

[1] Skiena, S. S., Problems in geometric probing. Algorithmica, 4(4):599-605,1989.

[2] Sergei V. K.; Alexei, G, Scanning Probe Microscopy of Functional Materials, 2011.

[3] Dotson, Connie L., Fundamentals of Dimensional Metrology, 2006.

[4] Czichos, H., Saito, T., and Smith, L. E., Springer Handbook of Metrology and Testing, 2011.

[5] Susto, Gian A., et al., An Information-Theory and Virtual Metrology-based approach to Run-
to-Run Semiconductor Manufacturing Control. Proceedings of the 8th IEEE International
Conference on Automation Science and Engineering, 358-363, August 2012

[6] Pampuri, Simone, et al., Multistep Virtual Metrology Approaches for Semiconductor Man-
ufacturing Processes. Proceedings of the 8th IEEE International Conference on Automation
Science and Engineering, 91-96, August 2012

[7] Cole, R. and Yap, C. K.. Shape from probing. Journal of Algorithms, 8(1):19-38, 1987.

[8] Skiena S. S., Interactive Reconstruction via Geometric Probing, Proceedings of the IEEE 80,
1364-1383, 1992.

[9] Dobkin, D., Edelsbrunner, H., and Yap, C. K., Probing convex polytopes. In Proceedings
of the Eighteenth Annual ACM Symposium on Theory of Computing, 424-432, Berkeley,
California, 1986.

[10] Boissonnat, J. D. and Yvinec, M., Probing a scene of nonconvex polyhedra. Algorithmica,
8:321-342, 1992.

[11] Rao, A. S. and Goldberg, K. Y., Shape from diameter: Recognizing polygonal parts with a
parallel-jaw gripper. Intl. J. of Robotics Research, 13(1):16-37, 1994.

[12] Meijer, Henk and Skiena, Steven S., Reconstructing Polygons from X-Rays, Geometriae Ded-
icata, 61(2), pp 191-20, 1996.

[13] Li, S.-Y. R., Reconstruction of polygons from projections. Information Processing Letters,
28:235-240, 1988.

[14] Skiena S. S., Probing Convex Polygons with Half-Planes, Journal of Algorithms 12, 359-374,
1991.

[15] Niemann, James, Electrical Measurements on Nanoscale Materials. Keithley Instruments tu-
torial paper, 2004.


