Type-Changing Program Transformations
with Pattern Matching

Joeri van Eekelen
Sean Leather

Johan Jeuring

Technical Report UU-CS-2013-011
July 2013

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands
www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Type-Changing Program Transformations with
Pattern Matching

Joeri van Eekelen, Sean Leather and Johan Jeuring
Utrecht University, j.v.eekelen@gmail.com, leather@cs.uu.nl, johanj@cs.uu.nl

Abstract

We present a system for program transformation based on the type system of let-
polymorphic lambda calculus with fix and case. Transformations are expressed as infer-
ence rules and are the input to the transformation system. Transformations are allowed to
change the types of terms while the type and transform system ensures type-correctness of
the target term. We define both a general transformation system for expressions and pat-
terns that is based on the underlying type system, and give examples of user-defined trans-
formations. Finally, we deal with transforming code to code that uses abstract datatypes,
on which we can not pattern match.

1 Introduction

When writing code, occasionally the need comes up to change the data representation or
underlying data structures. For example because a different structure is more efficient,
or because another library is better maintained. Manually replacing instances of the old
datatype to the new datatype is tedious and error-prone, so this is a good candidate for
automation.

In this paper, we will look at transforming standard Haskell lists to the Seq o type as
found in Data.Sequence. Seq a is an abstract datatype implemented using finger trees [2]
with a more efficient implementation for several operations.

In Section [2| we will describe the object language used in this paper. Section [3| de-
scribes the transformation system for expression transformations. Section [the one for
patterns. Section [§] discusses a way to deal with abstract datatypes, for which there are
no constructors to pattern match on. Section |§| concludes this paper, and mentions some
current related research.

2 Object Language

The language we are concerned with transforming is let-polymorphic lambda calculus,
extended with fix, and case-expressions.
The term language of expressions and patterns is as follows:

e = z|lerex| Az —el|fixel|letz=e¢ in e |case e of {p—e;}
pu=1uz|CT

An expression is either a variable, a function application, a lambda abstraction, a fixed
point, a let-expression, or a case-expression. A case expression consists of a scrutinee e
and clauses p— e. Each clause has a pattern p and a body e corresponding to that pattern.
A pattern is either a pattern variable, or a datatype constructor saturated with pattern
variables. Note that this means that patterns cannot be nested, unlike in programming
languages such as Haskell. The reason for this will be discussed in Section For readability
of examples, we will borrow some of Haskell’s syntax, like infix operators or list notation.
However, these examples can be translated to the language defined above.

Type-Changing Program Transformations with Pattern Matching Van Eekelen, Leather, Jeuring

[K=y =1)

z:Va:rTtel KkF7:x
T=[n/a]T I'Khoyz~ao:7={z:7} (pvan)
{KF ik} INKkewe:T—or1
5 (var) - (Fix) LKEC:m—...=o1—T
LLKFz~z:7 I'KFfixe~ fixe :7 (Pcox)
, , I'N'Kk.Cxz...zp~
I'KEe ~ e 11 =1 I'KEe~ ey Cay.ooapir={m:im}

(APP)

IVKFepey~efehim
KFrm:x
Fu{z:n},Kkewe:n
I'KFM —e~Xz—e:m =7

TKUa@REFe ~e:m
Fu{z:Varrmn}, Kk e ~ e :m
ag Fv (D)
INKFletz=¢ in e ~ let z = ¢ in e} : 7y

IKFe~c¢e:n
{0 Kb pi ~pim =Ty
FUTy,Kke ~el:m} (
T,K+F case e of {p; =~ e;5}~
case ¢’ of {p/ = el;}:m

Figure 2: Pattern transformation.

(LAM)

(Lm)

CASL‘)

Figure 1: Expression transformation.

The syntax of types and kinds is as follows:

K o= % | K1 — Ka
T =t o1 | T T
t =T |a

The type system is the standard Hindley-Milner[4] type system for non-polymorphic let-
polymorphic lambda calculus. The judgement I', K - e:7 means that, in type environment
I" and kind environment K, expression e has type 7.

3 Expression Transformations

The type of transformations we are most interested in are those that change expressions of
one type to expressions of another type. For example, code that uses the standard Haskell
[a] datatype to code that makes use of the Seq o datatype of the Data.Sequence module.
Or there is some code using Maybe o that you want to add error messages to, and thus
rewrite it to use Either String o.

Expression transformations are specified by inference rules similar to the typing rules.
The expression transformation judgement I', K - e ~» ¢’ : 7 states that in type environment
I' and kind environment K, there is a valid transformation from e to e’, where ¢’ has type
T.

A transformation system can be split up into a propagation part and a transformation
part. The transformation part consists of rules that actually change the source term. The
propagation part recursively applies the transformations to subterms, and thus propagates
the transformation part. Transformation propagation is described in Figure[l] and can be
derived from the typing rules.

The transformation part consists of user-specified rules. Typical rules are rewriting a
library function that works for one type to a similar function that works for another type,

Type-Changing Program Transformations with Pattern Matching Van Eekelen, Leather, Jeuring

or conversions between two similar types. A transformation I', K - e ~ ¢’: 7 is valid when
I'K F €' : 7. That is, the specified type of the target term must match the type assigned
to it by typechecking it. This ensures that transformed programs are always type-correct.

For example, we want to rewrite the following code that uses lists to code using se-
quences from Data.Sequence:

main = Az — [1,2,3] H z

The Seq a equivalent of (4) is (), so we would like all applications of () to be
rewritten to (). This is expressed by rule (Ls-are). To convert [1,2,3] to a sequence, we
can use the fromList function. Rule (Ls-rrom) is used to apply fromList to any expression
which has a list type after rewriting.

IVKF (<) : Seq 7 — Seq 7 — Seq 7
Kb (+) ~ (<) :Seq 7 — Seq 7 — Seq 7
INKFe~ e :[7] 'Kt fromList: [T] — Seq T
I K& e~ fromList ' : Seq T

(LS—APP)

(LS-FROM)

We see that both rules are valid, as I', K F (1) : Seq 7 — Seq 7 — Seq 7 is a premise
of (Ls-are), and T, K & fromList €’ : Seq 7 follows from T',K - ¢’ : [7] and T, K fromList :
[T] = Seq 7. With these two rules, the above code can be rewritten to:

main = Az — fromList [1,2,3] > 2

Note that the variable x does not necessarily need fromList applied to it. Rule (var) of
the propagation part allows variables to change types, as long as the result is type-correct.

Since these inference rules are rather verbose, we will use a shorthand notation for these
transformations. The first is simply abbreviated as () ~ (). The second is written as
M ~~ fromList M. M is a variable that matches any expression, which will be recursively
transformed.

We have formalized this syntax in an upcoming thesis, but the intuition is that the
left-hand side of the rewrite arrow ~- is a pattern, possibly including variables, that match
expressions. When the pattern matches, the variables are bound, and the entire expression
is replaced by the right-hand side, where the metavariables get replaced by the recursively
transformed subexpressions.

The used example brings the worker/wrapper transformation by Andy Gill and Graham
Hutton[I] to mind. Their Hughes’ list and Factorial examples would be a perfect fit for
a type and transform system. Instead of relying on implementation knowledge of abs,
rep, and (4) to rewrite (#) to (o), and (4) to (4+4) and perform inlining, we require
this information to be made explicit in the form of transformation rules () ~» (o) and
(4+) ~ (44). Contrast the correspondence between [c] and Seg «, where the rewrite rule
(#) ~ () is complicated to automatically derive.

4 Pattern Transformations

With expression transformations, we can rewrite a lot of list functions to the corresponding
function in the Data.Sequence module. Together with two conversion transformations
M ~~ fromList M and M ~» toList M. However, pattern matching can force the use
of lists. The following code can only be made to work with sequences by rewriting the
scrutinee x to toList x such that its type matches the type of the patterns.

LtoList is part of the Foldable typeclass. Since we do not have typeclasses, we use the type-restricted
toList : Seq a — [«] instead.

Type-Changing Program Transformations with Pattern Matching Van Eekelen, Leather, Jeuring

main = Az — case z of
(y:ys)—y
[] —1

This section will deal with pattern transformations which will allow us to rewrite pat-
terns to patterns of a different type. However, since Seq « is an abstract type, we do not
have the constructors available. We will first establish pattern transformations with an
example to transform Maybe « to Either String a.

Using the shorthand, we use the expression transformations Just ~ Right and Nothing ~
Left "Nothing" to transform Maybe a expressions to Fither String « espressions. The
string "Nothing" is arbitrary, and will have to be replaced on a case-by-case basis. These
two transformations will allow functions that report errors to be succesfully transformed.
However, when using pattern matching to handle the error, we are forced to convert back
to Maybe . This is where pattern transformations come in.

Pattern transformations judgements look like I', K k5ot p ~ p’ : 7 = I, which states
that in type and kind environments I" and K, pattern p can be rewritten to p’ with type
7, binding variables with types in I'. Figure [2| has the propagation rules for pattern
transformations. Note that since patterns are not nested, the propagation part only exists
to make sure that there is at least one valid transformation, otherwise the (case) rule would
fail.

Like expression transformations, pattern transformations must also agree with the type
system. A pattern transformation I', Kia, p ~ p":7 = I is valid when I', Kl p’: 7 = T,

There needs to be a pattern transformation for each constructor of Maybe « in order
to fully transform every pattern match. The transformations (Me-Normve) and (ME-Just) can
be used to transform

main = Az — case z of
Justy —y
Nothing — 1

into

main = Az — case z of
Right y — y
Left z —1

The pattern transformations can be written using a similar shorthand as the expression
transformations. (ME-Normnc) is then written as Nothing ~~ Left M, and (ME-jusr) can be
written as Just M ~-» Right M. Metavariables in pattern transformations can also only
appear on the right-hand side, which means a fresh pattern variable must be generated.

I, K+ Left : String — FEither String T z fresh
I',K ke Nothing ~ Left x : Either String 7 = {z : String }
I', K + Right : 7 — Either String T
I, K ko Just © ~~ Right © : Either String 7 = {z: 7}

(I\IE—NOTHING)

(l\r[E—.JUST)

We check that transformations are valid. I', Kk, Left x: Either String 7 = {xz:String }
follows from I', K & Left : String — Either String 7, as I'' K by 2 : 7 = {2 : 7} is an axiom
for every type 7. Similarly, I', K .. Right x : Fither String 7 = {z : 7} follows from its
premise.

Type-Changing Program Transformations with Pattern Matching Van Eekelen, Leather, Jeuring

5 Transforming to Abstract Types

The above pattern transformations work well when the target type, such as Either String «,
has its constructors exposed. However, many useful datatypes such as Map k «, Seq a,
and Text are abstract. This means we cannot pattern match on them. In order to still
be able to perform meaningful transformations we instead transform to a datatype that
lies between the concrete type in the source term and the abstract type which we want
to transform to. The Data.Sequence module provides the Viewl datatype, which has a
structure similar to lists, but contains a Seq « in its recursive position, instead of a [«].
Together with a view function viewl :: Seq « — ViewL «, they make up a view.[6]

data ViewL o = EmptyL | a :< Seq a

Instead of writing pattern transformations for Seq o, which we cannot do, we transform
list patterns to pattens for ViewL «. The pattern transformations [] ~» EmptyL and
(M : mn) ~ (M :< mn) together with expression transformation M ~- viewl M enable us
to transform the code at the end of Section M to:

main = Az — case viewl z of

(y:<ys) =y
Emptyl — 1

The downside is that this approach does not compose well. If we would allow nested
patterns, we would have no way to transform the pattern (z : y: ys). We feel that GHC’s
ViewPatterns extension, which more closely resembles Wadler’s views, can elegantly solve
this by moving the view function into the pattern language, allowing patterns that look
like viewl — (z :< (viewl — (y :< ys))).

The view approach extends to other datatypes. For a regular[5] concrete type C and
abstract type A, the view type AQC can be mechanically derived. It has a constructor
for every constructor of C, with fields of type A at the recursive positions, instead of C. A
view function of type A — AQC can also be derived if conversion functions from : C — A
and to: A — C are given.

6 Conclusions and Future Work

We have described a type and transform system that allows us to define program-wide type-
changing transformations. The transformation system consists of a propagation part that
is based on the underlying type system of the object language used, and a part consisting
of user-defined transformation rules. We specifically focus on transformations from one
datatype to another, such as list-based code to code using sequences from Data.Sequence.
Special care must be taken when transforming to an abstract datatype, as pattern-matching
on them is impossible.

Current research is going into adding support for datatype definitions and other ob-
ject language features, and extending the type and transform system such that it pro-
vides not only type-correctness guarantees, but also static guarantees about preservation
of semantics[3]. The ultimate goal is to have a semantics-preserving type and transform
system for all of Haskell, but this is still a long way off.

References

[1] Andy Gill and Graham Hutton. The worker/wrapper transformation. JFP, 19(2):227—
251, 2009.

Type-Changing Program Transformations with Pattern Matching Van Eekelen, Leather, Jeuring

[2] Ralf Hinze and Ross Paterson. Finger trees: a simple general-purpose data structure.
J. Funct. Program., 16(2):197-217, March 2006.

[3] Sean Leather, Johan Jeuring, Andres Loh, and Bram Schuur. Type-and-transform sys-
tems. Technical Report UU-CS-2012-004, Department of Information and Computing
Sciences, Utrecht University, 2012.

[4] Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17:348-375, 1978.

[6] Thomas van Noort, Alexey Rodriguez, Stefan Holdermans, Johan Jeuring, and Basti-
aan Heeren. A lightweight approach to datatype-generic rewriting. In Proceedings of
the ACM SIGPLAN workshop on Generic programming, WGP ’08, pages 13—24, New
York, NY, USA, 2008. ACM.

[6] P. Wadler. Views: a way for pattern matching to cohabit with data abstraction. In
Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages, POPL ’87, pages 307-313, New York, NY, USA, 1987. ACM.

	Introduction
	Object Language
	Expression Transformations
	Pattern Transformations
	Transforming to Abstract Types
	Conclusions and Future Work

