Finding palindromes: variants and
algorithms

Johan Jeuring

Technical Report UU-CS-2013-016

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Finding palindromes: variants and algorithms

Johan Jeuring!2

! Department of Information and Computing Sciences, Universiteit Utrecht
2 School of Computer Science, Open Universiteit Nederland
P.O.Box 2960, 6401 DL Heerlen, The Netherlands
J.T.Jeuring@uu.nl

Abstract. The problem of finding palindromes in strings appears in
many variants: find exact palindromes, ignore punctuation in palindro-
mes, require space around palindromes, etc. This paper introduces se-
veral predicates that represent variants of the problem of finding pa-
lindromes in strings. It also introduces properties for palindrome pred-
icates, and shows which predicates satisfy which properties. The paper
connects the properties for palindrome predicates to two algorithms for
finding palindromes in strings, and shows how we can extend some of
the predicates to satisfy the properties that allow us to use an algorithm
for finding palindromes.

1 Introduction

Rinus Plasmeijer was born on 26-10-52, which makes him 60 on the date I start
writing this paper, an excellent occasion to celebrate a productive career in
functional programming!

If T turn Rinus’ date of birth around, I get 25-01-62, which is close to its
original, but not exactly equal. This birthdate is an example of an approrimate
palindrome, a sequence of symbols which is a palindrome if you are allowed a
minor number of edit operations on the reverse of the original.

Palindromes have long been considered interesting curiosities used in word-
plays. We now know that palindromes play an important role in DNA. If T
search for the keyword palindrome in the electronic publications available at
the library of Utrecht University, I get more than 500 hits. The first ten of
these hits are all about palindromes in DNA. My guess is that at least 90% of
these 500 publications are about palindromes in DNA. DNA stores information
in palindromes amongst others to repair genes. For example, the male DNA
contains huge approximate palindromes with gaps in the middle [5]. Some of
these palindromes are more than a million base-pairs long. Essential genes, such
as the genes for male testes, are encoded on these palindromes.

We need software to find palindromes in large pieces of text, or approximate
palindromes with gaps in DNA. Algorithms for determining whether or not a
string is a palindrome, and finding palindromes in strings have a long history in
computer science, longer than Rinus’ career. In an earlier paper [3] I describe
the history of finding palindromes. The current paper discusses some of the

variants of the problem of finding palindromes, describes their properties, and
gives two algorithms for finding palindromes. The main contributions of this
paper are the description of the variants of palindrome finding, their properties,
and the relation between these properties and algorithms for finding palindromes.
The algorithms themselves are not new. The corresponding software has been
implemented in Haskell, and can be found on hackageﬂ

2 What is a palindrome?

Palindromes. How can I determine whether or not a string (a list of characters)
is a palindrome? The simplest method is to reverse the string and to compare it
with itself. So the string xs is a palindrome (palindrome xs), if zs is equal to its
reverse: Is == reverse s, where s == ys is True only when the strings zs and ys
are exactly equal. In Haskell I write:

palindrome :: String — Bool
palindrome xs = xs == reverse s

where reverse is defined in the Prelude. Without the type declaration, this defini-
tion would also work on lists [a] instead of strings, provided we have an equality
operator on the type a.

The palindrome predicate satisfies several properties. First, the empty list is
a palindrome:

palindrome [] (EMPTY)

A singleton list is a palindrome, since under standard character equality, ¢ == ¢
for all characters c.

V c.palindrome [c] (SINGLE)

This property doesn’t hold for all kinds of palindromes, since in some cases the
comparison operator used is not a real equality, and is for example not reflexive.
A third property allows me to extend a palindrome at the front with a string
and at the back with the reverse of this string to obtain a palindrome. This
property is an equivalence: if I remove a string from the front of a palindrome,
and remove its reverse from the back, I also obtain a palindrome.

Y xs ys.palindrome ys < palindrome (xs H ys H reverse xs) (EXTEND)

A consequence of this property is that once a string is not a palindrome, I cannot
extend it on both the front and the back to become a palindrome. The final
property I introduce is the ‘palindromes in palindromes’ (PALINPAL) property.
This property says that if a large palindrome contains a smaller palindrome that
does not appear exactly in the middle, the large palindrome contains a second

! nttp://hackage.haskell.org/package/palindromes

http://hackage.haskell.org/package/palindromes

copy of the smaller palindrome at the other arm of the large palindrome. Figure[T]
gives an example: suppose I have a palindrome p (say ”abadaba”, with center
b), which contains a palindrome ¢ (say ”aba”, with center a). Then the string ¢’
I get by mirroring ¢ in p with respect to p’s center is a palindrome again (”aba”,
with center a’). This property is essentially a consequence of the symmetry of

a b a

] |]

| | |
- —

q q’

Fig. 1. The palindromes in palindromes property (PALINPAL)

equality: for all a, and b: a == b < b == a.

Text palindromes. The standard example ‘A man, a plan, a canal, Panama!’
is not a palindrome according to the palindrome definition. Reversing it gives
‘lamanaP ,lanac a ,nalp a ,nam A’, in which it is hard to recognize the original.
For this string to also pass the palindrome test, I slightly adapt the definition of
what is a palindrome. I call a string a text palindrome if it is equal to its reverse
after throwing away all punctuation symbols such as spaces, comma’s, periods,
etc, and after turning all characters into lower case characters.

textPalindrome :: String — Bool
textPalindrome = palindrome o lowerLetter

lowerLetter 2 String — String
lowerLetter = map toLower o filter isLetter

where isLetter and toLower are functions from the module Data.Char. The
predicate textPalindrome satisfies all palindromic properties.

Word palindromes. When looking for palindromes in a text, I often only want
palindromes that start and end in complete words. For example, the longest text
palindrome in the King James Bible is the string: "no man; even amon”, from
Isaiah 41:28. The complete verse reads

For I beheld, and there was no man; even among them,
and there was no counsellor, that, when I asked of them,
could answer a word.

Since Amon is also a biblical name, it is probably slightly confusing to list "no
man; even amon” as the longest palindrome in the Bible. If I only consider
palindromes that start and end in words, I get the string ”war draw” in Joel
3:9 as the longest palindrome. A word palindrome is a text palindrome that is
preceded and followed by non-letter symbols. To determine whether or not a
string is a word palindrome, I also need the context of the input string. The
type CString describes three tuples of strings, modelling a string (the second
component) with its context before (the first) and after (the third).

type CString = (String, String, String)
wordPalindrome :: CString — Bool
wordPalindrome input@(before, string, after) =
textPalindrome string
A surrounded ByPunctuation input

surrounded ByPunctuation (before, _, after) =
(null before vV — (isLetter (last before)))
A (null after v — (isLetter (head after)))

Since the predicate wordPalindrome fundamentally depends on its context, it
doesn’t satisfy the palindromic properties. Even the PALINPAL property is not
satisfied, since the punctuation around a word might differ for two occurrences
of a palindrome in a palindrome.

Palindromes in DNA. A sequence of DNA symbols ’A’, 'T’, 'C’ or 'G’ is a
palindrome if its reverse is the complement of the original, where T’ is the
complement of A’ and vice versa, and similarly for ’C’ and ’G’. It follows that
we cannot use the == operator anymore in the definition of what it means to be
a palindrome in DNA. We define the DNA symbol comparison function =:= by

(=) 2 Char — Char — Bool
YA’ ==°T° = True
’T? ==A° = True
’C? ==G’ = True
’G? ==°C’ = True
_ ==_ = False

This operator is symmetric but not reflexive. We use the new equality operator
in a definition of dnaPalindrome for sequences of DNA symbols. We pairwise
combine the elements of an input sequence zs and reverse xs with the equality
operator == using the PreludeList function zip With, and fold the list we obtain
to a single result using the PreludeList function and.

dnaPalindrome 2 String — Bool
dnaPalindrome = palindromeEq (=:)

type CharEq = Char — Char — Bool
palindromeFq :: CharEq — String — Bool

palindromeEq eq s = and (zip With eq zs (reverse xs))

Note that the predicate palindrome can be defined in terms of palindromeEq by
palindrome = palindromeFq (==). Since a DNA symbol is not its own complement
the SINGLE property does not hold, and all palindromes in DNA have even length.
dnaPalindrome satisfies the EMPTY, EXTEND, and PALINPAL properties.

Approximate palindromes. Sometimes I not only want to find perfect palindro-
mes, but also palindromes that contain a limited number of errors. A palindrome
with a limited number of errors is often called an approximate palindrome. For
example, in the book Judges in the King James Bible, verse 19:9 reads:

And when the man rose up to depart, he, and his
concubine, and his servant, his father in law, the
damsel’s father, said unto him, Behold, now the day
draweth toward evening, I pray you tarry all night:
behold, the day groweth to an end, lodge here, that
thine heart may be merry; and to morrow get you early
on your way, that thou mayest go home.

The substring ”draweth toward” is a text palindrome with one error: the ‘e’ and
the ‘o’ don’t match. This is an example of an error that is resolved by substituting
one symbol by another symbol. Other errors may be resolved by inserting or
deleting a symbol. The substitution, insertion, and deletion operations are the
operations used in calculating the Levenshtein distance between two strings.

A string s is an approximate palindrome with k errors, if at most & substi-
tution, deletion, or insertion operations are needed to convert the reverse of s
into s. Note that this number of operations will generally be twice the number
of operations necessary for turning a string into a palindrome. It follows that
”draweth toward” is an approximate palindrome with two errors, substituting
‘e’ for ‘0’ and ‘o’ for ‘e’. In the following definition we abstract from the equality
operator (==), because we also want to determine approximate palindromes in
DNA, for example.

approzimatePalindrome 2 Int — String — Bool
approzimatePalindrome k s = levenshteinDistance (==) s (reverse s) < k
levenshteinDistance :: CharEq — String — String — Int
levenshteinDistance eq (z : zs) (y : ys) =

((if z == y then 0 else 1) + levenshteinDistance eq xs ys
‘min‘ (1 + levenshteinDistance eq (x : xs) ys)
‘min‘ (1 + levenshteinDistance eq xs (y:ys))
levenshteinDistance eq s ys = maz (length xs) (length ys)

As a program, this predicate is terribly inefficient. The approximatePalindrome
predicate satisfies the EMPTY, SINGLE, and EXTEND properties. Since it takes an
integer argument, the PALINPAL property has to be slightly reformulated. Sup-
pose I have a palindrome p satisfying approximatePalindrome k, which contains
a palindrome ¢ satisfying approrimatePalindrome k’. Then the string ¢’ I get by
mirroring ¢ in p with respect to p’s center satisfies approrimatePalindrome k'.

Unfortunately, this property doesn’t hold for approximatePalindrome. The er-
rors in ¢ need not appear in ¢’, and vice versa, so I cannot make a statement
about whether or not ¢’ satisfies approzimatePalindrome k' given that ¢ satisfies
approzimatePalindrome k'.

Gapped palindromes. A palindrome with a gap is a palindrome in which a gap
of a particular size in the middle is ignored. An example of a palindrome with a
gap is found in Revelations, where verses 20:7-8 read:

And when the thousand years are expired, Satan shall
be loosed out of his prison, And shall go out to

deceive the nations which are in the four quarters of
the earth, Gog, and Magog, to gather them together to
battle: the number of whom is as the sand of the sea.

Here ”Gog, and Magog” is a text palindrome with a gap of length three in
the middle: the ‘n’ and the ‘M’ around the central ‘d’ don’t match. A gapped
palindrome is a special case of an approximate palindrome, where the errors
occur in the middle of the palindrome, but one that occurs so often in DNA that
it deserves a special category. Since the gap appears in the middle of the string,
the length of the gap is odd if the length of the palindrome is odd, and even if the
length of the palindrome is even. To be precise, a string s is a palindrome with a
gap of length ¢ in the middle, if it satisfies the predicate gappedPalindrome g s:

gappedPalindrome 2 Int — String — Bool
gappedPalindrome g s = palindrome (rmCenter g s)
rmCenter :: Int — String — String
rmCenter g s = let Is = length s
armLength =div (Is—yg) 2
(before, rest) = splitAt armLength s
(gap, after) = splitAt g rest

sameParity m n = even m == even n
in if g < Is A\ sameParity g Is

then before H after

else error "removeCenter"

This predicate specifies perfect palindromes with gaps. If I want to find other
kinds of palindromes with gaps, I have to replace palindrome with the required
predicate. Provided ¢ is at most the length of the input list, and the parity of
the input list is the same as the parity of g, gappedPalindrome g satisfies the
EMPTY, SINGLE, and EXTEND properties. Since gapped palindromes only have
a gap at their center, I need to adapt the formulation of the PALINPAL prop-
erty to apply it to gapped palindromes. Suppose I have a palindrome p satisfy-
ing gappedPalindrome g, which contains a palindrome ¢ satisfying palindrome.
Then the string ¢’ T get by mirroring ¢ in p with respect to p’s center satisfies
palindrome. This property holds for gapped palindromes.

The palindrome predicate. 1 have introduced six predicates for determining
whether or not a string is a palindrome: besides the basic palindrome predi-
cate, these are the predicates textPalindrome, wordPalindrome, dnaPalindrome,
approzimatePalindrome, and gappedPalindrome. It doesn’t stop here, of course.
The examples in this section show gapped text palindromes, and approximate
text palindromes. The example of palindromes in male DNA requires finding
gapped approximate DNA palindromes. Some DNA files use both capital and
underscore letters for DNA symbols, and it follows that I have to find gapped
approximate DNA text palindromes. The number of possible variants is substan-
tial.

I redefine the palindrome predicate to accommodate all of the palindromic
variants. The predicate now takes six arguments: two booleans denoting whether
or not I want to find text or word palindromes, two integers denoting the length
of the gap and the allowed number of errors, an equality operator, and a string
in context.

palindrome :: Bool — Bool — Int — Int — CharEq — CString — Bool
palindrome text word g k eq (before, s, after)

| teat = palindrome False False g k eq (before, lowerLetter s, after)
| word = surrounded ByPunctuation (before, s, after)

A palindrome False False g k eq (before, lowerLetter s, after)
|g>0 = palindrome False False 0 k eq (before, rmCenter g s, after)
| k>0 = levenshteinDistance eq s (reverse s) < k

| otherwise = palindromeEq eq s

Predicate palindrome combines the previous predicates in a single predicate, and
also deals with combinations of palindromic aspects. The properties satisfied by
palindrome are obtained by combining the properties for its components.

3 Finding palindromes

Both versions of the palindrome predicate defined in the previous section can
be used to determine whether or not a string is a palindrome. The first version
takes a number of steps linear in the length of the input string to do so. These
predicates can be used to verify that a given string is a palindrome, but they
are not very useful for finding the largest palindrome in the Bible, or for finding
the gapped approximate text palindromes in DNA. This section discusses first
which kind of palindromes we want to find, and then gives two algorithms for
finding such palindromes.

3.1 Finding which palindromes?

Software for finding palindromes is particularly useful for finding palindromes
in large documents. For example, I analysed the human Y chromosome, con-
sisting of almost 25 million DNA symbols, and chromosome 18, consisting of

almost 75 million symbols. The typical questions about palindromes asked by
geneticists are: ”what are the longest palindromes occurring in this string”, or
”how many palindromes of length in between m and n occur in this string?” The
question of where a particular palindromic string appears inside DNA is more a
pattern-matching problem than a palindrome finding problem. Almost all of the
palindrome-related questions can be answered relatively fast if I know the length
of the longest palindrome around each position of the input string. A string of
length n has 2n+ 1 positions (sometimes also called center position, or just cen-
ter): the position before the first character, the positions of the characters, the
positions in between two characters, and the position after the last character.
For example, the list of the longest palindromes around each position in the
string ”abb” is ["", "a","", "b", "bb", "b", ""]. The EXTEND property says that
if palindrome ¢ is the longest palindrome around its center in a string s, then
all strings obtained by removing equally many symbols from the front and the
back of ¢ are also palindromes, and none of its extensions is a palindrome. I call
the longest palindrome around center @ in the string s the maximal palindrome
around center a in s. The list of all maximal palindromes in a string is a concise
description of all palindromes that occur in the string. For a list consisting of n
copies of the same symbol, the total length of the list of maximal palindromes is
quadratic in n. An even more concise description of all palindromes that occur
in a string is obtained by returning the list of lengths of maximal palindromes
in a string. Given a center position and the length of the maximal palindrome
around it, I can easily reconstruct all palindromes around that center. The re-
sulting list of lengths of maximal palindromes has length 2n + 1 for an input list
of length n. In the following sections I will develop algorithms for finding the
lengths of all maximal palindromes in a string.

3.2 A naive algorithm for finding palindromes

In this subsection I will describe the obvious algorithm for finding the length of
all maximal palindromes in a string.

Given a string as input, I want to find the list of lengths of maximal palin-
dromes around all centers of the string. I use the function mazimalPalindromes
for this purpose.

mazimalPalindromes :: String — [Int]

I want to find the length of the maximal palindrome around each center in a
string. I will do this by trying to extend the trivial palindromes consisting of
either a single letter (for odd centers, starting counting centers with 0) or of
the empty string (for even centers) around each center. This only works for
palindrome predicates satisfying the EXTEND and SINGLE property. If the pre-
dicate doesn’t satisfy the SINGLE predicate, I only look at the even centers. To
extend a palindrome, I have to compare the characters before and after the cur-
rent palindrome. It would be helpful if I had random access into the string, so
that looking up the character at a particular position in a string can be done

in constant time. Since an array allows for constant time lookup, I change the
input type of mazimalPalindromes to an array.

maximal Palindromes :: Array Int Char — [Int)

If I change my input type from strings to arrays, I have to convert an input string
into an array, for which I use the function listArray from the module Data.Array.
Function mazimalPalindromes calculates the length of maximal palindromes by
first calculating all center positions of an input array, and then the length of the
maximal palindrome around each of these centers.

maximal Palindromes a = let (first, last) = bounds a
centers = 1[0..2x (last — first + 1)]
in map (lengthPalindromeAround a) centers

Function lengthPalindromeAround takes an array and a center position, and
calculates the length of the longest palindrome around that position.

lengthPalindromeAround :: Array Int Char — Int — Int
lengthPalindromeAround a center
| even center = lengthPalindrome (first + ¢ — 1) (first + ¢)
| odd center = lengthPalindrome (first + ¢ — 1) (first + ¢+ 1)
where ¢ = div center 2
(first, last) = bounds a
lengthPalindrome start end =
if start <0V end > last — first V a ! start £ a! end
then end — start — 1
else lengthPalindrome (start — 1) (end + 1)

For each position, this function may take an amount of steps linear in the length
of the array, so this is a worst-case quadratic-time algorithm. A more precise
analysis shows that this algorithm is linear in the sum of the lengths of the
palindromes found. The sum of the lengths of the palindromes in the King James
Bible is less than twice the length of the Bible, so for this example this function
behaves like a linear-time program. For determining palindromes in DNA, the
situation is similar. The Y chromosome contains huge palindromes, but they
hardly overlap. Chromosome 18 contains quite a few ” ATAT”-sequences, but
the longest of these has length 66, and almost all are much shorter.

3.3 Efficient algorithms for finding palindromes

Using the PALINPAL property, I now develop an algorithm for finding palindromes
that requires a number of steps approximately equal to the length of its input.
This linear-time algorithm can be used to find palindromes in documents of any
size, and any content, even in very long strings consisting of the same symbol.
Finding palindromes in a string of length 5,000, 000 using this algorithm requires
a number of seconds on a modern laptop. It is impossible to find palindromes

substantially faster, unless you have a machine with many cores, and use a
parallel algorithm.

The program for efficiently finding palindromes is only about 25 lines long.
Although the program is short, it is rather intricate. I guess that you need to
experiment a bit with to find out how and why it works.

The reason why the algorithm for finding palindromes from the previous sub-
section is naive is that lengthPalindromeAround calculates the maximal palin-
drome around a center independently of the palindromes calculated previously.
I now change this by calculating the maximal palindromes from left to right
around the centers of a string. In this calculation I either extend a palindrome
around a center, or I move the center around which I determine the maximal
palindrome rightwards because I have found a maximal palindrome around a
center. So I replace the definition of maximal Palindromes by

maximal Palindromes :: Array Int Char — [Int]
mazimal Palindromes a = let (first, last) = bounds a
in reverse (extendPalindrome a first 0 [])

Before I introduce and explain function extendPalindrome, I give an example of
how the algorithm works.

An example. 1 want to find the maximal palindromes in the string ”yabad-
abadoo”. The algorithm starts by finding the maximal palindrome around the
position in front of the string, which cannot be anything else than the empty
string. It moves the position around which to find the maximal palindrome one
step to point to the ‘y’. The maximal palindrome around this position is ”y”,
since there is no character in front of it. It again moves the position around
which to find palindromes one step to point to the position in between ‘y’ and
‘a’. Since ‘y’ and ‘a’ are different, the maximal palindrome around this position is
the empty string. Moving the center to ‘a’, it finds that ”a” is the maximal palin-
drome around this center, since ‘y’ and ‘b’ are different. The maximal palindrome
around the next center in between ‘a’ and ‘b’ is again the empty string. Moving
the center to ‘b’, it can extend the current longest palindrome ”b” around this
center, since both before and after ‘b’ it finds an ‘a’. It cannot further extend
the palindrome ”aba”, since ‘y’ and ‘d’ are different. To determine the maximal
palindrome around the center in between ‘b’ and ‘a’, the next center position,
it uses the fact that ”aba” is a palindrome, and that it already knows that the
maximal palindrome around the center in between ‘a’ and ‘b’ is the empty string.
Using the PALINPAL property, it finds that the maximal palindrome around the
position in between ‘b’ and ‘a’ is also the empty string, without having to look
at the ‘b’ and the ‘a’. To determine the maximal palindrome around the next
center position on the last ‘a’ of ”aba”, it has to determine if ‘d’ equals ‘b’,
which it doesn’t of course. Also here it uses the PALINPAL property. Since ”a”
is the maximal palindrome around the center of the first ‘a’ in ”aba”, and it
reaches until the start of the palindrome ”aba”, I have to determine if the pa-

M a”

lindrome ”a” around the second ‘a’ can be extended. I won’t describe all steps

10

extendPalindrome takes in detail, but only give one more detail I already de-
scribed above: the second occurrence of the palindrome ”aba” in ”yabadabadoo”
is not found by extending the palindrome around its center, but by using the
PALINPAL property to find "aba” a second time in ”abadaba”.

Function extendPalindrome. Function extendPalindrome takes four arguments.
The first argument is the array e in which we are determining maximal pa-
lindromes. The second argument is the position in the array directly after the
longest palindrome around the current center (the longest palindrome around
the center before the first symbol has length 0, so the position directly after the
empty palindrome around the first center is the first position in the array). I
will call this the current rightmost position. The third argument is the length
of the current longest palindrome around that center (starting with 0), and the
fourth and final argument is a list of lengths of longest palindromes around po-
sitions before the center of the current longest tail palindrome, in reverse order
(starting with the empty list []). It returns the list of lengths of maximal pa-
lindromes around the centers of the array, in reverse order. Applying function
reverse to the result gives the maximal palindromes in the right order. The func-
tion extendPalindrome maintains the invariant that the current palindrome is
the longest palindrome that reaches until the current rightmost position.

There are three cases to be considered in function extendPalindrome. If the
current position is after the end of the array, so rightmost is greater than last,
I cannot extend the current palindrome anymore, and it follows that it is max-
imal. It only remains to find the maximal palindromes around the centers be-
tween the current center and the end of the array, for which I use the function
finalPalindromes. If the current palindrome extends to the start of the array, or
it cannot be extended, it is also maximal, and I add it to the list of maximal
palindromes found. I then determine the maximal palindrome around the follow-
ing center by means of the function moveCenter. If the element at the current
rightmost position in the array equals the element before the current palindrome
I extend the current palindrome.

extendPalindrome a rightmost curPal curMaxPals
| rightmost > last =
-- reached the end of the array
finalPalindromes curPal curMaxzPals (curPal : curMazPals)
| rightmost — curPal == first V a ! rightmost Z a ! (rightmost — curPal — 1) =
-- the current palindrome extends to the start
-- of the array, or it cannot be extended
moveCenter a rightmost (curPal : curMaxPals) curMazPals curPal
| otherwise =
-- the current palindrome can be extended
extendPalindrome a (rightmost + 1) (curPal + 2) curMazPals
where (first, last) = bounds a

In two of the three cases, function extendPalindrome finds a maximal palindrome,
and goes on to the next center by means of function finalPalindromes or move-

11

Center. In the other case it extends the current palindrome, and moves the
rightmost position one further to the right.

Function moveCenter. Function moveCenter moves the center around which the
algorithm determines the maximal palindrome. In this function I make essential
use of the PALINPAL property. It takes the array as argument, the current right-
most position in the array, the list of maximal palindromes to be extended, the
list of palindromes around centers before the center of the current palindrome,
and the number of centers in between the center of the current palindrome and
the rightmost position. It uses the PALINPAL property to calculate the longest
palindrome around the center after the center of the current palindrome.

If the last center is on the last element, there is no center in between the right-
most position and the center of the current palindrome. I call extendPalindrome
with rightmost position one more than the previous position, and a current pa-
lindrome of length 1.

If the previous element in the list of maximal palindromes reaches exactly to
the left end of the current palindrome, I use the PALINPAL property of palindro-
mes to find the next current palindrome using extendPalindrome.

In the other case, I have found the longest palindrome around a center, add
that to the list of maximal palindromes, and proceed by moving the center one
position, and calling moveCenter again. I only know that the previous element
in the list of maximal palindromes does not reach exactly to the left end of the
current palindrome, so it might be either shorter or longer. If it is longer, I need
to cut off the new maximal palindrome found, so that it reaches exactly to the
current rightmost position.

moveCenter a rightmost curMazPals prevMazxPals nrOfCenters
| nrOfCenters == 0 =
-- the last center is on the last element:
-- try to extend the palindrome of length 1
extendPalindrome a (rightmost + 1) 1 curMazPals
| nrOfCenters — 1 == head prevMaxPals =
-- the previous maximal palindrome reaches
-- exactly to the end of the last current
-- palindrome. Use the palindromes in palindromes
-- property to extend the current palindrome
extendPalindrome a rightmost (head prevMazPals) curMazPals
| otherwise =
-- move the center one step. Add the length of
-- the longest palindrome to the maximal
-- palindromes
moveCenter a
rightmost
(min (head prevMaxzPals) (nrOfCenters — 1) : curMazPals)
(tail prevMaxPals)
(nrOfCenters — 1)

12

In the first case, function moveCenter moves the rightmost position one to the
right. Here we use the SINGLE property of palindrome. In the second case it calls
extendPalindrome to find the maximal palindrome around the next center, and in
the third case it adds a maximal palindrome to the list of maximal palindromes,
and moves the center of the current palindromes one position to the right.

Function finalPalindromes. Function finalPalindromes calculates the lengths of
the longest palindromes around the centers that come after the center of the cur-
rent palindrome of the array. These palindromes are again obtained by using the
palindromes in palindromes property. Function finalPalindromes is called when
we have reached the end of the array, so it is impossible to extend a palindrome.
We iterate over the list of maximal palindromes, and use the palindromes in
palindromes property to find the maximal palindrome at the final centers. As in
the function moveCenter, if the previous element in the list of maximal palin-
dromes reaches before the left end of the current palindrome, I need to cut off
the new maximal palindrome found, so that it reaches exactly to the end of the
array.

finalPalindromes nrOfCenters prevMaxPals curMazPals
| nrOfCenters == 0 = curMaxzPals
| otherwise =
finalPalindromes
(nrOfCenters — 1)
(tail prevMaxzPals)
(min (head prevMazPals) (nrOfCenters — 1) : curMazPals)

In each step, function finalPalindromes adds a maximal palindrome to the list
of maximal palindromes, and moves on to the next center.

I have discussed the number of steps this algorithm takes for each function.
At a global level, this algorithm either extends the current palindrome, and
moves the rightmost position in the array, or it extends the list of lengths of
maximal palindromes, and moves the center around which we determine the
maximal palindrome. If the length of the input array is n, the number of steps
the algorithm is n for the number of moves of the rightmost position, plus 2n+1
for the number of center positions. This is a linear-time algorithm.

3.4 Variants

The algorithm for finding palindromes given in the Section applies to pa-
lindrome predicates satisfying the EXTEND property, and the algorithm in the
Section [3.3] additionally requires the PALINPAL property. So the first algorithm
can be used to find approximate palindromes, and neither can be used to find
word palindromes.

Finding approximate palindromes. Approximate palindromes can be found using
the algorithm in Section [3.2] If I only allow substitutions as edit operation, this

13

algorithm is linear in the sum of the lengths of the palindromes found, which
might be quadratic in the length of the input string in the worst case, but is
linear in almost all real-world applications. This raises two questions:

— How can I also deal with insertions and deletions as edit operations?

— Can I somehow extend the approximatePalindrome predicate or the linear-
time algorithm for finding palindromes from Section to also find approx-
imate palindromes?

The first question is answered by applying standard dynamic programming tech-
niques, as also used to determine the edit-distance between two strings. As for
the second question: I have spent many hours on designing algorithms for find-
ing approximate palindromes using the palindromes in palindromes concept, but
failed. Anyone?

Finding word palindromes. Since the wordPalindromes predicate doesn’t satisfy
the various palindromic properties, none of the algorithms for finding palindro-
mes can be used to find word palindromes. It is relatively easy to change the
wordPalindrome property such that it satisfies an adapted EXTEND property.
Instead of three, I now split a list into five components and I add a boolean
word, ((before, (before’, s, after’), after), word), such that the string consisting of
before’ + s 4+ after’ is a text palindrome, and s is the longest word palindrome
with the same center contained in string if word holds. If word doesn’t hold,
then there is no word palindromic substring with the same center.

type CString’ = ((String, (String, String, String), String), Bool)

wordPalindrome’ :: CString’ — Bool
wordPalindrome’ ((before, (before’, s, after’), after), word) =
let string = before’ H s + after’
in textPalindrome string
A (= word
V wordPalindrome (before H before’, s, after’ H after)
A ((null before’ A null after”)
V (and
o map (— o surrounded ByPunctuation)
o sameCenterSubstrings
$ (before, init before’ H tail after’, after)

)
sameCenterSubstrings :: CString — [CString]
sameCenterSubstrings (before,[] , after) = [(before,[] , after)]
sameCenterSubstrings (before, [a], after) = [(before,[a], after)]
sameCenterSubstrings (before, xs , after) =
(before, xs, after)
: sameCenterSubstrings (before H [head xs], tail (init zs), last xs : after)

14

I adapt the EXTEND property by requiring the concatenation of the three strings
in the middle to be a text palindrome, and by calculating from the text palin-
drome the contained word palindrome, if such a word palindrome exists. Using
this property, I can now develop a quadratic-time algorithm for finding word
palindromes.

4 Conclusions

I have introduced several variants of the palindrome problem, the palindromic
properties satisfied by these variants, and two algorithms that can be used to find
palindromic substrings, depending on the properties satisfied by the particular
palindromic variant sought. The description of the variants and their properties is
new to my knowledge; the algorithms for finding palindromes have already been
described in the last century by Galil, Manacher, myself, and others [TJ4)2].

Acknowledgements. 1 discussed many aspects of finding palindromes in DNA
with Anjana Ramnath of the Indian Institute of Science on Bioinformatics and
Computational Biology. Jennifer Hughes of the Whitehead Institute of the MIT
Department of Biology helped me finding approximate palindromes with gaps in
the male DNA. Bastiaan Heeren commented on a previous version of this paper.

References

1. Zvi Galil and Joel Seiferas. A linear-time on-line recognition algorithm for “palstar”.
Journal of the ACM, 25:102-111, January 1978.

2. Johan Jeuring. The derivation of on-line algorithms, with an application to finding
palindromes. Algorithmica, 11:146-184, 1994.

3. Johan Jeuring. The history of finding palindromes. In Liber Amicorum Doaitse
Swierstra. Department of Information and Computing Sciences, Utrecht University,
2012.

4. Glenn Manacher. A new linear-time ‘on-line’ algorithm for finding the smallest
initial palindrome of a string. Journal of the ACM, 22:346-351, 1975.

5. Helen Skaletsky, Tomoko Kuroda-Kawaguchi, Patrick J. Minx, Holland S. Cordum,
LaDeana Hillier, Laura G. Brown, Sjoerd Repping, Tatyana Pyntikova, Johar Ali,
Tamberlyn Bieri, Asif Chinwalla, Andrew Delehaunty, Kim Delehaunty, Hui Du,
Ginger Fewell, Lucinda Fulton, Robert Fulton, Tina Graves, Shun-Fang Hou, Philip
Latrielle, Shawn Leonard, Elaine Mardis, Rachel Maupin, John McPherson, Tracie
Miner, William Nash, Christine Nguyen, Philip Ozersky, Kymberlie Pepin, Susan
Rock, Tracy Rohlfing, Kelsi Scott, Brian Schultz, Cindy Strong, Aye Tin-Wollam,
Shiaw-Pyng Yang, Robert H. Waterston, Richard K. Wilson, Steve Rozen, and
David C. Page. The male-specific region of the human y chromosome is a mosaic of
discrete sequence classes. Nature, 423(6942):825-837, 2003.

15

	Finding palindromes: variants and algorithms
	Johan Jeuring1,2

