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Roel Bertens!

Abstract

When a seismologist analyses a new seismogram it is of-
ten useful to have access to a set of similar seismograms.
For example if she tries to determine the event, if any,
that caused the particular readings on her seismogram.
So, the question is: when are two seismograms similar?

To define such a notion of similarity, we first pre-
process the seismogram by a wavelet decomposition,
followed by a discretisation of the wavelet coefficients.
Next we introduce a new type of patterns on the result-
ing set of aligned symbolic time series. These patterns,
called block patterns, satisfy an Apriori property and
can thus be found with a levelwise search. Next we use
MDL to define when a set of such patterns is charac-
teristic for the data. We introduce the MULT1-KRrRIMP
algorithm to find such code sets.

In experiments we show that these code sets are both
good at distinguishing between dissimilar seismograms
and good at recognising similar seismograms. More-
over, we show how such a code set can be used to gen-
erate a synthetic seismogram that shows what all seis-
mograms in a cluster have in common.

Keywords: Frequent Patterns, MDL, Seismogram

1 Introduction

One of the goals of seismology is to detect and under-
stand the sources and the causes — e.g., earthquakes,
volcano eruptions or (man made) explosions — of seismic
waves that travel through the earth. One of the main
tools for this is the seismometer which produces record-
ings of earth motion at its location, as a function of time
in a so-called seismogram. The type and the location of
a (seismic) event is determined by analysing and com-
bining seismograms from multiple seismometers. To a
large extend, this identification is still manual labour
by a seismologist.

There are large collections of explicitly and/or implic-
itly labelled seismograms, produced by seismometers all
over the globe, of previous events that have been identi-
fied. So, it is natural to wonder whether or not the task
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of the seismologist can be simplified by giving her ac-
cess to similar, identified, seismograms. That is, given
a new, unidentified, seismogram, return a set of similar,
identified, seismograms, that help identifying the new
seismogram.

To explain what we mean by this we have to make
precise what we mean by both “similar seismograms”
and by “help identifying”. Similar seismograms does
not mean that their graphs should be (almost) identi-
cal. Firstly, because for our purposes seismograms are
inherently noisy. That is, the graph is the weighted sum
of all events that make the earth move at the location of
the seismometer, from the intended event — such as an
earthquake — to passing trucks and nearby road-works.

Secondly, even if we would have a clean signal, many
of its characteristics depend on much more than just
the event. For example, the amplitude measured de-
pends not only on the size of the event, but also on the
distance between the event and the location of the seis-
mometer. In fact, many aspects of the graph depend,
among others, on the composition of the earth’s crust
between the event and the seismometer.

The “noise” problem means that we have to some-
how clean the seismogram, i.e, we have to filter the
intended signal from the noisy graph. Fortunately, it is
well known in seismology that the signal in the range
from roughly 4 Hz to 1/4 Hz has a fairly good signal to
noise ratio [1, 6]. That is, signals in that range are pre-
dominately of seismic origin. To decompose a seismo-
gram, we use the discrete Haar wavelet and discard all
components outside the 4 Hz to 1/2 range. Note that we
use a wavelet decomposition rather than a Fourier de-
composition because seismic events are limited in time.

This decomposition gives us a time series of multi-
level detail coefficients. Since these coefficients still rep-
resent characteristics such as the amplitude of the orig-
inal signal, we next discretise the wavelet coefficients.
That is, we retain that the signal goes up or down, but
we do not retain exactly by how much. Since the range
of the wavelet coefficients will in general differ for the
different frequency levels, we discretise each level sepa-
rately. The discretisation is based on MDL histogram
density estimation [5]; a method which finds the MDL-
optimal bin count and cut point locations and is known
to have good characteristics.

Preprocessing the data, the details of which are given
in Section 2, transforms the original seismogram in a set
of aligned categorical time series. Hence the question



of when two seismograms are similar is transformed in
the question when two such sets are similar. Our an-
swer is simple: when they exhibit similar patterns. The
question is then, of course, which patterns?

To answer this question recall that our goal is that
the retrieved identified seismograms should help in iden-
tifying the new seismogram. When can seismogram x
help in identifying seismogram y? Clearly, if knowing
seismogram x helps in predicting what will happen next
in seismogram y. The more accurate x helps us in pre-
dicting what happens next in y, the more similar and
useful it is.

Hence, the patterns we are interested in should be
such predictive patterns. For example, assume that we
have a symbol a on level [ at time ¢t. To predict a,
Physics tells us [6] we can use a “block” of symbols on
all levels at all time points prior to ¢ provided this block
contains no holes and it is adjacent to a. Clearly these
patterns satisfy an Apriori property and thus can be
found with a standard levelwise algorithm.

As for (almost) any kind of pattern, the number of
these patterns will quickly explode and most patterns
will not be very descriptive of the (transformed) seismo-
gram. To select a small set of descriptive patterns, we
use the Minimum Description Length principle (MDL)
[3]. That is, similar to the KRIMP algorithm [7], we
encode the (transformed) seismogram with a set of pat-
terns. The better a set of patterns compresses the data,
the better they (collectively) describe the data. Find-
ing an optimal set of patterns is again intractable and,
hence, a heuristic algorithm called MULTI-KRIMP is
used. Note that since the behaviour of the seismo-
gram on different frequency levels can be different, code
sets are computed for each level separately. The details
of both the patterns, their discovery and the MULTI-
KRIMP algorithm are given in Section 3.

Our claim is now that similar seismograms are seis-
mograms that yield similar code sets. That is, if  and
y are similar seismograms, then compressing « with the
code set computed from y should be almost as good as
compressing it with its own code set and vice versa, of
course. Moreover, we claim that if the seismograms are
similar —i.e., they compress each other well — their iden-
tification is similar — i.e., they indicate similar seismic
events.

Since the classification of a seismic event by a seismo-
gram isn’t a mathematically defined property — in which
case devising algorithms for the task would have been
easy — we can not verify our claims formally. Hence, we
use experiments to substantiate our claims. But before
we describe these experiments, related work is first dis-
cussed in Section 4. Most notably shapelets [11] are dis-
cussed there. Not only because they are a well-known
technique in time series analysis, but also because they
are suitable for part of what we aim to achieve.

To substantiate our claims, we use data from different

seismic events and seismometers at different locations.
We show that our technique clusters the events cor-
rectly regardless of the location (and size) of the event
and the location of the seismometers. Moreover, we il-
lustrate visually that our technique captures the shape
of a seismogram. For, given a code set, we can generate
artificial seismograms. By plotting both the real seis-
mogram and a generated one, one can see that they are
similar. The details are given in Section 5. The discus-
sion of these results is given in Section 6. Finally, the
conclusions are formulated in Section 7.

2 Preprocessing the Data

Seismograms can be seen as functions from time to the
real numbers, or more formally, S : R>o — R. In real-
ity, of course, the signal at a location is only sampled
at some frequency rather than measured continuously.
We come back to this point later.

In the Introduction we already explained why we can-
not use S directly, it is noisy and characteristics such as
the amplitude should be removed. Hence, S is first de-
composed using a wavelet transform and subsequently
the coefficients are further discretised. Both steps are
discussed in detail in this Section.

2.1 Wavelet Decomposition

There are a number of techniques to decompose a func-
tion in frequency components, such as the Fourier de-
composition and wavelet decompositions [2]. The ad-
vantage of a wavelet decomposition over the Fourier
decomposition is that wavelets are localised and, thus,
better at describing local behaviour in the signal. Since
seismic events are by nature local events in the time
series, we use a wavelet transform rather than Fourier
analysis.

Formally, a wavelet transformation is the convolu-
tion, i.e., an inner product, of the function f with
a scaled (parameter s) and translated (parameter b)

wavelet ¢:
s (557) o

A wavelet decomposition is computed by a set of
wavelet transforms. Since we have sampled data, we
use a discrete wavelet transform and in that case the
decomposition is computed as follows. We assume that
we have (a window of) data with 2V data samples
f(t1),... f(tan) of f, (with time normalised such that
[t1,ton] = [0,1]). The discrete wavelet decomposition
is now given by:
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where f° is the coarsest approximation of the time se-
ries.

This decomposition allows us to built a ladder of ap-
proximations to f given by:

27
Pi=r+ Z(ﬁ D) Pjk-

k=0

This ladder gives us two sets of coefficients, the approx-
imation coefficients (the f7) and the detail coefficients
(f7=1 — f7). The detail coefficients encode the local be-
haviour of the time series at level j. Hence, these are
the coefficients we will be using.

Each wavelet family has different properties, bringing
out different aspects of the time series. Since we are
interested in the shape of the graph, we use the Discrete
Haar wavelet:

1 for0<z<0.5
-1 for0.5<z<1
0 otherwise

¢(x) =

Using the Haar wavelet the approximation coefficients
are averages on progressively smaller subsets of (a win-
dow of) the time series, while the detail coefficients are
the local deviations from those averages.

To be more concrete, consider the following toy ex-
ample of a time series and its coefficients:

‘ detail coef. ‘ approx. coef. H original signal
1st level: 1-1-11 84
2nd level: ‘ 2-2 ‘ 6 H 9735

The average of 9 and 7 is 8, and the deviation of 9 from
this average is 9 — 8 = 1. Similarly, the average of 3
and 5 is 4 and the deviation of 3 from this average is
3 - 4 = -1. Finally, the average of 8 and 4 is 6 and
the deviation of 4 from this average is 4 - 6 = -2. Note
that each original data point can be reconstructed using
the coarsest approximation, the overall average, 6 and
a sequence of detail coefficients, e.g., for the rightmost
point we add the rightmost coefficients: 6 —2 4+ 1 = 5.

Further note that for technical reasons the actual co-
efficients at each level should be multiplied by v/2, but
that doesn’t concern us here.

Given a seismogram S which may have any length, we
compute the wavelet coefficients using a sliding window
w, which has some dyadic (power of 2) length. Note
that this implies that we do not compute coefficients
for the first |w| — 1 data points.

Assume that w starts at position 1 in S and ends at
|w|. We then compute the detail coefficients from the
Haar decomposition of Si,..., S, as indicated above.
We also noted above that it is the right most set of
detail coefficients that tell something about the local
behaviour of S at S),|. Hence we start our aligned
(transformed) time series with these rightmost detail
coefficients. Next we shift the window by a step (for

us, always a step of size 1) and repeat the procedure to
compute the next set of coefficients for S, 41.
As an example, consider the following time series:

1 1 4 4 4 8 1 4 7 7 9

If we use a window size of 8 and a step size of 1, we have
four windows on this signal. For real seismic data, we
are only interested in the detail coefficients that repre-
sent the frequencies in or close to the interval 4 Hz to
1/4 Hz, as discussed in the Introduction. Here, however,
we simply retain all detail coefficients. Hence, our time
series — which allows for four windows — is transformed
to the following set of aligned time series.

window 1 ‘ window 2 ‘ window 8 ‘ window 4

-2.12 -2.12 0 -1.41
3.5 -1 -4.5 -2.5
-2.47 -2.47 0.35 -3.54

Computing all coefficients for all windows is wasteful,
however optimising this is not the focus of this paper.

2.2 Discretisation

Together with the coarsest approximation coefficient
the detail coefficients are sufficient to reconstruct the
original time series. As already stated, we will not
use all detail coefficients and neither will we use the
coarsest approximation coefficient, but this observation
means that the detail coefficients are too detailed for
our purposes. We are interested in the general shape
of the graph, not in its exact values. That is, we are
interested in whether it is ascending or descending at
various frequency levels. We may even be interested in
whether it is ascending steeply or barely on a given fre-
quency level, but we are not interested in how steeply
it is rising exactly.

Hence, we discretise the detail coefficients we just
computed as the next preprocessing step. Since the
spread of the coefficients may very well be different for
each of the levels, we discretise the levels separately.
But, of course, we use the same discretisation for all
seismograms.

There are many techniques to discretise data, each
with its own strong and weak points. For this paper,
we use one based on the Minimum Description Length
(MDL) principle; we will briefly discuss MDL in the
next section. More in particular, we use MDL his-
togram density estimation [5]. This method finds the
MDL-optimal number of bins and cut point locations
automatically.

For each level [ we have a set of symbols — alphabet —
Aj, which has one symbol for each bin the discretisation
produces for [. Each value on level [ of the aligned
time series, produced by the wavelet transformation, is
replaced by its corresponding element from A;. In the
end our original time series S is thus transformed in a
set of aligned symbolic time series.



3 Patterns and Code Sets

Given the preprocessed data — the set of aligned sym-
bolic time series — we now have to discover a small set of
characteristic patterns for each level of the preprocessed
data. The definition and discovery of the patterns is a
standard pattern mining problem. For the second step,
the discovery of a small set of characteristic patterns,
we use MDL.

3.1 Patterns

As noted in the introduction, our predictive pattern oc-
currences should have no holes across either the time or
the level axes. For our patterns that means the follow-
ing.

A set of sequences P = {py,...,pm} is a block pattern

over the level alphabets Ay, ..., A, iff
e For each j € {I,...,m}, p; is made from symbols
in Aj.
e {l,...,m} is a consecutive subset of {1,...,n}.

The second requirement goes a long way to ensure that
we get no holes in occurrences, but we need one more
requirements to ensure it properly. This is a require-
ment on what constitutes an occurrence of P.

Let S be a set of aligned time series over the level al-
phabets Ay,..., A, and P = {p;,...,pm} a block pat-
tern over those same alphabets. P occurs in S at time
t iff for every pi € P there is a consecutive subsequence
of S at level k, [Sk[t — |pkl],-- -, Sk[t]] such that:

Vie {1, ... pkl} : prli]l = Sklt — |px| + J]

That is the pattern sequences should, of course, match
their respective elements in S exactly and all the pat-
tern sequences occurrences should end at the same time
t.

To give an example, assume that in our example
transformed time series from Section 2.1, the number
—2.1 is replaced by the abstract symbol —2.1 and so on
(in other words, assume for a moment that the numbers
are labels). Then the patterns 1 and 2 below occur and
the patterns 3 and 4 do not; their only potential occur-
rences exhibit holes.

pattern 1 pattern 2 ‘ pattern 3 ‘ pattern 4
-2.12 0 -1 -4.5 | -1 -25 -1.41
-4.5 | 247 0.35 -3.54

With these definitions, the support of P in S is de-
fined in the usual way, viz., its number of occurrences.
Moreover it is clear that block patterns satisfy an Apri-
ori principle: if P; is a sub-pattern of P,, the support
of P, will be at least as big as that of P,. Hence, all
frequent block patterns in S can be discovered with lev-
elwise search [4].

3.2 Code Sets

As usual in pattern mining, if we set our threshold low,
there are enormous numbers of frequent block patterns.
How do we choose which ones are characteristic for a
(preprocessed) seismogram? The first clue is that, as
noted in the Introduction, our patterns should be pre-
dictive. That is, if a pattern occurs at time ¢ in! S it
should help us in predicting what happens at time ¢+ 1
in S.

Next observe that this gives us a way to encode S.
Let P be some one level pattern, i.e., P = {p;}. Fur-
thermore, assume that we observe that if P occurs in §
at a time ¢, S;[t+1] is either the symbol a or the symbol
b with probability p, and p; respectively. To encode, or
compress, S we could now replace a’s and b’s that occur
right after P in S with a codeword of length —log(p,)
and — log(py) respectively, [3].

Clearly, it is slightly more complicated as there will
be many patterns that are followed by an a and patterns
will span multiple levels. But, the main idea that we
can use patterns to encode the data is obviously valid.
And that gives our second clue to how to choose: we can
use the Minimum Description Length principle (MDL)
[3].

MDL is a method for inductive inference that aims to
find the best model to describe your data. It is based on
the insight that any regularity in the data can be used
to compress the data and the more we can compress,
the more regularity we have found.

More formally, given a set of models M, the best
model M € M is the one that minimises

L(M) + L(D | M),

in which L(M) is the length in bits of the description
of M, and L(D | M) is the length of the description of
the data when encoded with model M.

Given that each level S; of S has its own alphabet
A;, we encode each level separately. The simplest way
to encode S is by disregarding all patterns and sim-
ply use a (prefix) code that reflects how often each
a € A; occurs in S;. That is, we give it a code of
length —logp(a | S;). This is what we call the stan-
dard encoding ST of S; and by doing this on all levels
we have the standard encoding ST of S.

Let P° be the set of all frequent block patterns on
S. A P € P? is said to be a level [ pattern if one of the
sequences in P is built from A;. The set of all frequent
level [ patterns in S is denoted by P;>. We will simply
write P and P; if S is clear from the context.

To simplify the remainder of this section, and indeed
the rest of this paper, we augment each P; with the
special pattern ), which matches every element of S;
and even no element at all.

IWe will use S both to denote the original and the prepro-
cessed time series.



A covering set C; for S; is an ordered subset of P;
which contains () as its last element. The cover of S by
C} is again a time series, denoted by C;(S;), in which

C1(S))[t] is the first element of C; that occurs
at time t — 1 if ¢ > 1, otherwise C;(S5;)[t] = 0.

To turn a cover of S; into an encoding of Sj, we aug-
ment each element of a covering set C; with a code table
[7]. This code table consists of two columns. The first
contains the elements of A; in some order. The second
contains a code word from some prefix code C¢,. Since
we want to compress S;, C¢, has to be optimal for this
compression. This is determined as follows.
For a € A; and P € (), define:

usage(a | P) = [{t | Si[t] = a ACi(S)[t] = P} +1

which gives us:

usage(a | P)
P P) =
r(a]P) ZbeAL usage(b | P)

And thus, the code C¢, should assign to a in the code
table of P € C) has length —log(Pr(a | P)).

A level code set C'S; is a covering set C; for S; in which
each pattern in C; is augmented with a code table for
A; with the optimal codes as constructed above. A code
set CS for S is simply a set of level code sets, one for
each level S; in S.

Coding S; with C'S) is simple. First compute C;(S;),
and then replace S;[t] by its code as given in C'S; in the
code table of C;(S;)[t]. Note that the standard encod-
ing ST; of S; that we introduced above is simply the
encoding induced by the covering set C; = {0} plus a
Laplace correction. From now on, we use this Laplace
corrected version as the standard encoding.

The encoded size of the data given C'S;, denoted by
L(S; | CS;) is now simply the sum of the code lengths
of the codes in the encoded string.

To find the optimal encoding for S; according to the
MDL principle, we also have to determine the size of
CS;. This is determined as follows:

e For each of the codes in the code tables we have a
length

e For each of the elements of 4; in those code tables
we use the standard encoding ST;

e Each of the patterns P is also encoded with the
standard encoding. FEach sequence in P is, of
course, encoded by the standard encoding at the
appropriate level.

By summing all these encoded lengths, we get the total
encoded size of the model, denoted by L(CS; | S).

MDL now tells us that we need to find the code set
C'S) such that

1(CS;,S;)=L(CS, | S)+ L(S | CS;)

is minimised. Unfortunately, as in [7], this is an in-
tractable problem. Firstly because of the order used in
covering, every permutation will lead to another com-
pressed size. Secondly because adding a pattern to the
level code set may both increase and decrease the com-
pressed size. In other words, there is no structure in
the search space that allows us to prune large parts of
it. Hence we need to resort to heuristics.

3.3 MulLTi-Krimp

We adapt the heuristics used in [7], if only because
they proved to work well. The first heuristic is that
we define the order of the patterns in a level code
set. These patterns are assumed to be ordered by the
Standard Cover Order. Which is descending on car-
dinality first, descending on support second, ascending
on height third, descending on top-level-length fourth,
and last lexicographically ascending to make it a total
order.

Secondly, we use a simple greedy algorithm to find
good level code sets, called MULT1-KRIMP, the pseudo-
code is given in Algorithm 1. As input it takes the
(preprocessed) time series S, a level | and the frequent
block patterns P;.

We start with the level code set containing only the
empty set (1). We loop through all frequent patterns
in Standard Candidate Order (like the Standard
Cover Order, only sorted on support before cardinality)
(2); we then add each pattern to our code set (3) and
test if this new code set compresses our data better
than before (4). If it does compress better, we keep
the pattern and consider if other patterns in our code
set can be pruned (5). After we have considered all
patterns, we return the final level code set (8).

Algorithm 1 The MULTI-KRrRIMP Algorithm

Input: A preprocessed seismogram S, a level [, and a
set of frequent patterns for level [, P;.
Output: A level CS

1. CS; + {@}

2: for P € P; in Standard Candidate Order do
3:  CSf + (CS, @ P) in Standard Cover Order
4 if L(CSIC,SI) < L(CS;, S;) then

5: CS; < post-prune(CSY)

6 end if

7: end for

8 return CS

4 Related Work

Our use of wavelets to decompose a time series is, of
course, far from unique. In fact, we have used the dis-
crete Haar wavelet ourselves before in [8]. An overview



of all possible ways to decompose time series data is far
beyond the scope of this paper. For more on wavelets,
we refer to [2]. Also for the discretisation of real valued
data there are far too many techniques to even attempt
an overview here. We chose MDL histogram density
estimation [5] because it finds both the number of bins
and the bins themselves automatically in a well founded
manner. Moreover, it is known to work well in practice.

Frequent pattern mining in time series data is useful
for tasks such as clustering, classification, prediction,
and many more. All these fields have attracted much
research from the data mining community. Our block
patterns are somewhat unusual in that they span mul-
tiple frequency scales of a decomposed and discretised
time series, but mining them is completely standard.
For a brief overview of frequent pattern mining we refer
to [4].

Techniques for clustering time series data fall mainly
in three groups: those that work directly with the raw
data, those that work with features extracted from the
raw data, and those that work with models build from
the data; an overview of time series clustering can be
found in [9]. Our work fits in the intersection of the sec-
ond and third category, because we cluster data sam-
ples based on their size when compressed with a range
of code sets computed on discretised wavelet coefficients
of the original data.

A good example of a time series clustering approach
that works directly on the raw data is [11]. It uses
shapelets, which are time series snippets characteristic
for a certain cluster of data. Time series chunks are
clustered using the distance to a shapelet, rather than
the distance to the nearest neighbour chunk. This tech-
nique has proven to work very well in many different
domains. Unfortunately, for our data — which can be
very noisy and repetitive — it didn’t always do very well;
for more details see the experiments and the discussion
thereof.

The way we use MDL to identify characteristic pat-
terns is, of course, reminiscent of our earlier work on
KRIMP in [7] and many follow-up papers. While the
high-level approach here is similar to that, many aspects
are very different. Probably the biggest difference is
that the current encoding is completely different. Here
we compress for predictive capabilities rather than for
descriptive ones. This means firstly, that the patterns
we use to cover a value Sj[t] do not contain Si[t] it-
self. Rather a pattern describes the behaviour of S just
before S[t]. Secondly, it means that the code lengths
are determined by conditional probabilities rather than
by simple relative occurrence frequencies. Third and fi-
nally, it means that patterns cover exactly a single value
Si[t] and never a larger subset of a preprocessed time
series.

Application-wise, the Dynamic Bayesian Network
(DBN) approach to seismic data classification in [6] is

closely related to our research. They also decompose
the signal using wavelets — albeit a different one: the
Morlet wavelet — and then use a DBN to classify the
incoming data as either “Earthquake” or “Noise”. The
most important difference is that we do not need pre-
defined classes. Using MULTI-KRIMP we can both de-
termine which clusters there are in the data and classify
new data as belonging to any of these clusters or being
something not seen before.

5 Experiments

To evaluate the code sets produced by MULT1-KRIMP
experimentally, we perform three (sets of ) experiments.
Firstly to show their ability to distinguish between dif-
ferent types of seismograms. secondly to show that they
can be used to identify similar seismograms. Finally we
show that code sets can be used to generate synthetic
seismograms and that these generated seismograms are
visually similar to the seismogram the code set was com-
puted from.

For reproducibility and to stimulate future research,
both the code and the datasets are available through
the first author.

5.1 Setup

For the wavelet transformation we use a step size of 1
and a window of 256 data points. Since all the seismo-
grams used are sampled at 40 Hz, we use the levels 4
(corresponding to 2.5 Hz) to 8 (corresponding to 0.16
Hz). As noted before, the discretisation requires no pa-
rameters.

Since experiments show that larger patterns are
hardly, if ever, used, we limit the patterns we mine to
those that span across at most three frequency levels
and two time points.

5.2 Datasets

In cooperation with a domain expert, we manually
gathered seismograms from the publicly available OR-
FEUS POND data repository [10].

For the first experiments we collected seismograms
of 2000 data points with varying frequencies and am-
plitudes. Tt serves to show the ability our method has
to distinguish between only slightly different seismo-
grams. It consists of seismograms at various moments
and at different locations. We manually distinguished
six different clusters, all containing four very similar
seismograms, see Figure 1.

For the second experiment we gathered seismograms
from two different events both measured at the same 12
stations. The first was a quake in the sea of Okhotsk of
magnitude 6.4, the second was a quake in Pakistan of
magnitude 7.7. We split each of these seismograms into
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Figure 1: Six clusters, all containing four seismograms.
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Figure 2: Seismograms from the Brant station for both events.

2000 data points before the quake and 2000 beginning
at the start of the quake. That is, for each event we
have two clusters of seismograms, Cluster 1: no event,
Cluster 2: quake.

Data from both events are plotted for one station in
Figure 2. Due to space limitations, the data from all
other stations can be found in Appendix A. The seismo-
grams from the event at Okhotsk in cluster 1 are num-
bered 1-12 (Figure A9) and those in cluster 2 are num-
bered 13-24 (Figure A10). For the event in Pakistan the
seismograms 25-36 are in cluster 1 (Figure A11) and 37-
48 in cluster 2 (Figure A12). In Figure 3 the locations
of the two events and of all stations involved are given.

5.3 The Power to Distinguish

Using MULT1-KRIMP we build a code set for each of
the seismograms from the first dataset. Then each seis-
mogram was encoded with the code set of every other
seismogram. This gave a table in which a row indicates
a seismogram and a column a code set of one of the
seismograms. In this table, each cell contained the size
of the corresponding seismogram compressed with the
corresponding code set. This table was used to hier-
archically cluster the seismograms using single linkage
and the Spearman metric. The resulting dendrogram is
shown in Figure 4. The numbers on the x-axis represent
seismograms, where every four subsequent numbers (1-
4, 5-8, 9-12, 13-16, 17-20, 21-24) represent seismograms
that we manually identified to be very similar, see also

* aigle, balst, berni, bnalp, bourr, brant

Figure 3: The location of the events and the stations.

Figure 1. Note that all seismograms are clustered as we
would expect, the distance between seismograms which
are alike is relatively small compared to the distance
to other seismograms. Clustering the seismograms us-
ing shapelets and k-means clustering gave rather less
convincing results.

To further substantiate our claim, we also did a leave-
one out validation. That is for each time series, we clus-
tered the remaining 23 clusters manually, computed a
code set for each of the clusters and determined the
“right cluster” for the left out time series by choosing
the cluster whose code set compressed it most. Each of
the seismograms was assigned to its own cluster. This
confirms our claim that code sets are good in distin-
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Figure 4: A dendrogram clearly representing the six
clusters.
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Figure 5: A dendrogram for all seismograms from two
clusters of two events.

guishing between different seismograms.

5.4 Identifying Similar Seismograms

With the second dataset — the seismograms related to
the two quakes — we first redid the first experiment.
That is we again build a table of the respective com-
pressed sizes and performed a clustering based on that
table, see Figure 5. All seismograms from cluster 1 are
easily distinguished from cluster 2. However, there are
four mistakes; the seismograms 2, 4, 26 and 28 from
cluster 1 are clustered with the data from cluster 2.
This can be explained by the fact that these seismo-
grams show a sizeable amount of movement, as can
be seen in (Figures A9 and All). Experiments using
shapelets gave comparable results.

Next we assigned all seismograms manually to three
clusters, no event, quake in the sea of Okhotsk and
quake in Pakistan respectively. Then we performed
again a leave one out validation. This gave near per-
fect results. Only one non-event, seismogram 26 (which
shows significant movement) was assigned to the event
in Okhotsk. Moreover, two seismograms from the event
at Okhotsk are clustered with the event in Pakistan, to
which they apparently are more similar. Note that from
the point of view of identification only the mistake with
seismogram 26 is a real mistake.
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Figure 6: Visualisation of the code set for a seismogram.

5.5 Generating Seismograms

Given that the patterns in a code set predict what is
going to happen next, we can use a code set CS to
generate a seismogram. Recall that () matches anything
— including nothing — so, for ¢ = 1 we choose random
symbols drawn with probabilities according to its (i.e.,
0) code table on each level. For each mext step, on
each level, we use its level code set to determine which
pattern matches the preceding time series and draw a
new symbol according to the code table of that pattern.

This gives a series of aligned symbolic time series.
Next we translate each symbol into a number by re-
placing it with the middle-value of its associated bin.
Finally, we sum the values at all levels at the same time
point and smooth this single level signal by combining
each five consecutive values as compensation for using
only the middle-value of each discretisation bin. This
gives us a synthetic time series, say 7.

Now C'S'is, of course, computed from a seismogram,
say S. If C'S is characteristic of S, T should resemble
S. Well, it should resemble S, when all the details of
the frequency levels not in {4,5,6,7,8} are filtered out
of S.

To test this we did this experiment for a few of the
seismograms. One of these tests is pictured in Figure 6.
The top plot is the original seismogram. The second
one is the signal as present on the frequency levels 4
to 8, i.e., 2.5 Hz to 0.16 Hz. The next two plots are
generated using the procedure above.

6 Discussion

The whole procedure of wavelet decomposition, dis-
cretisation, and building a code set using MULTI-
KRIMP serves one purpose: to characterise a seismo-
gram. The experiments substantiate that this is indeed
the case.

The experiments on the first dataset show that our
code sets perform well in distinguishing between visu-



ally different seismograms. In fact, as noted in the pre-
vious section, they perform better than the state of the
art method [11] based on shapelets.

The experiments on the second set of data show that
the code sets perform also well in clustering similar
events together, while simultaneously distinguishing be-
tween different events. In this case it performed on par
with the shapelet based method from [11]. An impor-
tant aspect of this experiment is that it shows that, at
least in this case, the characterisation is independent
of, the event size, the location of the event, and of the
location of the seismometers. This is important since
as we already discussed in the Introduction many of
the characteristics of a seismic signal are dependent on
these three aspects.

Hence, code sets are both good in the recognition
of similar seismograms and in the distinction between
similar seismograms. In other words, code sets are char-
acteristic for seismograms.

This is further corroborated by our third experiment.
Here we see that the artificial seismograms one can gen-
erate from a code set visually resemble the seismograms
from which the code set itself was computed. This is
important to show to the seismologist what exactly are
the characteristics of a given cluster of seismograms.
Clearly, one can always present the seismologist with
a center of a cluster. The strong point of a generated
seismogram is, however, that it shows what all the seis-
mograms have in common. That is something that is
hard to infer from a representative seismogram.

7 Conclusion

The goal of this paper is to find a method to characterise
seismograms, such that the identification of an event in
a new seismogram (is it an earthquake, a passing truck,
or something else) can be facilitated by finding similar
seismograms that have already been identified.

To achieve this goal, we devised a method that first
preprocesses a seismogram using a wavelet decomposi-
tion and discretisation and then uses a new algorithm
called MULTI1-KRIMP, to discover a code set that con-
tains characteristic patterns for that seismogram.

The experiments show that these resulting code sets
are indeed characteristic of a seismogram. They are
good in both the recognition of similar seismograms and
in the distinction between similar seismograms. More-
over, they can be used to generate a synthetic seismo-
gram that shows what all seismograms in a cluster have
in common.

The final conclusion is two seismograms S and Sy are
similar if we have for their MULTI-KRIMP’s code sets
CSl and CSQ that CSl (Sl) ~ CSQ(Sl) and CSl(Sg> ~
CS55(53).
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Appendix A Seismograms
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Figure A7: Seismograms from the event at Okhotsk.
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Figure A8: Seismograms from the event at Pakistan.
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Figure A9: Seismograms from the event at Okhotsk from cluster 1. Numbered 1-12 from left to right and top to
bottom respectively.
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Figure A10: Seismograms from the event at Okhotsk from cluster 2. Numbered 13-24 from left to right and top
to bottom respectively.
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Figure A1l: Seismograms from the event at Pakistan from cluster 1. Numbered 25-36 from left to right and top
to bottom respectively.
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Figure A12: Seismograms from the event at Pakistan from cluster 2. Numbered 37-48 from left to right and top
to bottom respectively.
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