Turing Machines with One-sided
Advice and the Acceptance of the
co-RE Languages

Jan van Leeuwen

Juri Wiedermann

Technical Report UU-CS-2014-003
February 2014

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University

Princetonplein 5

3584 CC Utrecht
The Netherlands

Turing Machines with One-sided Advice and the
Acceptance of the co-RE Languages*

1 2

Jan van Leeuwen Jitf Wiedermann

! Department of Information and Computing Sciences, Utrecht University,
Princetonplein 5, 3584 CC Utrecht, the Netherlands
J.vanLeeuwenl@uu.nl
2 Institute of Computer Science, Academy of Sciences of the Czech Republic,
Pod Vodérenskou vézi 2, 182 07 Prague 8, Czech Republic

jiri.wiedermann@cs.cas.cz

Abstract. We resolve an old problem, namely to design a ‘natural’ ma-
chine model for accepting the complements of recursively enumerable
languages. The model we present is based on Turing machines with ‘one-
sided’ advice, which are Turing machines with advice with a restricted
scenario for the use of their advice during computations. We show that
Turing machines with one-sided advice accept precisely the co-RE lan-
guages, even though the advices can be arbitrary. We prove that Turing
machines with one-sided advice are not less powerful than their unre-
stricted version: for all languages L € co-RE, L is accepted by an ordi-
nary Turing machine with advice f if and only L is accepted by a Turing
machine with one-sided advice f. We show that co-RE filters into an in-
finite proper hierarchy, based on the complexity (‘length’) of the advice
f(n) a one-sided Turing machine needs for accepting a language. The
model and the results dualise to the ordinary RE-languages.

1 Introduction

The recursively enumerable languages (RE) are the widest class of languages
that can be accepted by classical Turing machines. A core result of computability
theory is that there exist RE-languages (namely all non-recursive ones) whose
complement cannot be accepted, and thus not effectively enumerated, by any
Turing machine. Is there a natural mechanism for accepting the complements of
the r.e. languages anyhow?

The class co-RE of complements of the RE-languages is fundamental in the
understanding of the non-computable domain. Co-RE is a so-called full abstract
family of languages (cf. [12]) and with the class RE, it is the pillar of the Arith-
metical Hierarchy at its first non-recursive level (cf. [8]). This implies e.g. that
co-RE is accepted by IT;-type Alternating Turing Machines (cf. [3,7]), although
these machines merely model that words in a co-RE language L should have no

* Version dated Febrvuary 10, 2014. This research was partially supported by RVO
67985807 and GA CR grant No. P202/10/1333.

2 Jan van Leeuwen and Jifi Wiedermann

accepting runs in a Turing machine for L by a search process. Other iterative
mechanisms for co-RE have been proposed in [4,9].

Clearly any machine model for co-RE will have to be non-effective from a
classical point of view. Nevertheless, ideally, a machine model for co-RE should
still be dual to a machine model for RE (as in the case of Alternating Turing
Machines), be sequential in some way and retain a certain closeness to common
machine concepts. We resolve this by injecting the necessary degree of non-
effective information in a classical Turing machine. The challenge will be to do
this in such a way that we stay within co-RE and, in the dual case, in RE.

Our starting point will be a regular non-deterministic Turing machine with
advice as introduced by Karp and Lipton [5,6]. A Turing machine with advice
(TM/A) operates exactly like an oracle Turing machine, except that now the
oracle is a function f that produces an advice string depending only on the
length of the input. (Hence, if the advice is called during a run of the machine,
the advice doesn’t have to be called again.) We will introduce the notion of one-
sided advice which is to be called only in runs that are potentially accepting,
but never in a run that is concretely rejecting. (Thinking of our goal to obtain a
machine for co-RE, it should indeed need no advice in runs that reject word w
from co-RE language L as we can rely on the Turing machine for L to witness
it by accepting runs.) No further special gadgetry will be used.

In Section 2 we define Turing machines with one-sided advice (TM/1A) in
more detail and show the duality of the model. In Section 3 we prove that
TM/1A’s precisely accept co-RE. similarly, dual TM/1A’s characterise RE. We
also prove some special properties that TM/1A’s must exhibit when they accept
languages in co-RE that are not recursive (REC). In Section 4 we analyse the
power of advice in TM/1A’s. We show that for all languages L € co-RE, if L can
be accepted by an ordinary Turing machine with advice function f, then L can
also be accepted by a TM /1A with advice function f. On the other hand, we show
that every L € co-RE can be accepted by a TM/1A with linearly bounded advice,
i.e. with an advice function f for which |f(n)| = O(n). We prove that there is an
infinite, proper hierarchy ‘below linear’ inside the class co-RE (or dually, RE),
based on the complexity (i.e. the size) of the advice of the accepting TM/1A.

We emphasise that TM/1A’s are not ordinary non-deterministic Turing ma-
chines even though they resemble them quite closely. Indeed, whether a Turing
machine with advice is a TM/1A is undecidable. This phenomenon is inherent
to co-RE, as it extends beyond the computable domain. It makes TM/1A’s to an
interesting class of machines at the interface. Note that in general, Turing ma-
chines with advice can accept all possible languages. The fact that one-sidedness
restricts their power to co-RE gives a new and rich perspective on the working
of advice.

2 Turing machines with One-sided Advice

We first define the basic model of Turing machines with advice (TM/A) and with
one-sided advice (TM/1A), respectively. We will show that TM/1A’s and their

TMs with One-sided Advice 3

duals satisfy the desired property of characterising co-RE and RE, respectively,
in Section 3.

2.1 Advice

The core mechanism we use is that of a non-deterministic Turing machine with
advice. TMs with advice were introduced by Karp and Lipton [5,6] in their
seminal study of non-uniform complexity theory. Without loss of generality we
will use the same alphabet X' for advices and inputs throughout.

Definition 1. An advice function is a function f: N — X*. An advice is called
g(n)-bounded for some function g : N — N if for all n, the length of f(n) is
bounded by g(n).

Technically, a TM M with advice operates on a given input w € X* in much
the same way as a standard non-deterministic Turing machine does. However,
in any of its runs M can also call its advice, by entering into a special query
state. After doing so the value of f(n), with n = |w|, will ‘magically’ appear on
a special read-only advice tape. We may assume w.l.o.g. that the advice value
is available from then on, for the remainder of the particular run.

Notation 1 For any advice function f : N — X* we denote its advice graph by
Ry ={<mn, f(n)>|neN}

Using advice, M can easily gain super-Turing computing power, because
there is no requirement that the advice must be ‘computable’. In fact, advice
is as powerful as the use of an arbitrary oracle, because one can combine all
oracle-values ever queried in computations on inputs of size n into one advice
f(n). This is why one normally imposes size-bounds on advice, to keep track of
the degree of non-computable information that is injected in computations.

The definition of acceptance easily carries over from classical nondetermin-
istic machines to Turing machines with advice. Thus, for TM/A’s, inputs w are
accepted if and only if some run leads the machine to halt in an accepting state
in finite time. Inputs w are rejected if they lead the machine to halt in a reject-
ing or undefined state or not to halt at all. (NB In TM/1A’s a much stronger
convention will be imposed in the latter case.)

Observation 1 For all languages L, L € RE if and only L is accepted by a
Turing machine with an advice function f with Ry € RE.

The observation follows by simply noting that Ry € RE implies that Ry € REC
and thus that f is recursive in this case.

Notation 2 For bounding functions g : N — N, we denote the class of languages
accepted by TM/A’s with g(n)-bounded advice by TM/A(g).

4 Jan van Leeuwen and Jifi Wiedermann

2.2 One-sided advice

We now describe the assumptions that make a Turing machine M to a machine
with one-sided advice step by step below. Each assumption will add yet another
potentially non-effective ingredient to the model.

First of all, we (only) consider non-deterministic Turing machines M which
have their states partitioned into three groups: accept states, reject states, and
undefined states. Either of the groups may be empty. If a run of M halts in an
accept (reject) state, then the run is called accepting (rejecting). Runs of M that
halt in an undefined state or that do not halt at all, are called infinite. (W.l.o.g.
we may assume that computations never halt in an undefined state, as we can
send the computation into an infinite loop if they do.)

It is perfectly fine for a non-deterministic machine to have both accepting
and rejecting runs on the same input. For an acceptor, only accepting runs count
and rejecting runs are just viewed equivalent to infinite ones. For TM/1A’s we
want the power of advice to give us more. We require that every computation is
potentially decisive, i.e.

(Rp): for every input w € X*, the machine has at least one run on w
that is either accepting or rejecting.

(Rq): for no input w € X*, the machine has both an accepting and a
rejecting run on w.

Infinite runs can (and in general will) still occur, but the constraints imply that
they can occur only in combination with either accepting or rejecting runs.

The final constraint captures the ‘one-sided’ use of advice. The constraint is
again to be seen as a purely mathematical requirement.

(Rg): for every input w € X*, the machine is only allowed to call its
advice during non-rejecting runs.

This constraint is equivalent to saying that a TM/1A is allowed to call its advice
only during accepting or infinite runs. Note that we do not restrict the advice
itself in any way. One may also formulate the following ‘dual’ version of (Rz).

(Ry): for every input w € X*, the machine is only allowed to call its
advice during non-accepting runs.

With the basic concepts in place, we can define (dual) Turing machines with
one-sided advice and the languages they accept or reject.

Definition 2. A TM/1A is a non-deterministic Turing machine with advice
that satisfies (Ro), (R1) and (R2). A dual TM/1A (or d-TM/1A) is a non-
deterministic Turing machine with advice that satisfies (Ro), (R1) and (Rz).

Let M be a (dual) TM/1A.

TMs with One-sided Advice 5

Definition 3. The language accepted by M is La(M) = {w € X* | M ad-
mits an accepting run on w}. The language rejected by M is Lr(M) = {w €
X* | M admits a rejecting run on w}.

By requirements (Rg) and (R;) for M it follows that inputs are either ac-
cepted (‘have an accepting run’) or rejected (‘have a rejecting run’), and thus
the following is evident:

Observation 2 For any (dual) TM/1A M, the languages La(M) and Lr(M)
are each other’s complement.

Note that TM/1A’s may, and in general will, have infinite runs with or with-
out advice as well. These runs hold no clue about acceptance or rejection of the
input but they are usually inevitable in the model. In fact, a simple observation
characterises the only case in which they are not needed.

Observation 3 For all language L, L € REC if and only L is accepted by a
TM/1A that has no infinite runs (thus only accepting and rejecting ones).

The proof is straightforward. It is crucial to note that if a TM/1A without infi-
nite runs calls its advice, then by definition the run must be accepting and the
concrete advice isn’t needed at all. By Observation 3, infinite runs are unavoid-
able in any TM/1A that accepts a non-recursive language.

By switching accept and reject states, a TM/1A M is turned into a dual
TM/1A M which is, unsurprisingly, called its dual (and vice versa).

Observation 4 For any language L, L is accepted (rejected) by a TM/1A M
if and only if L is rejected (accepted) by its dual d-TM/1A M.

By means of Observation 4, all results proved for TM/1A’s in the sequel
can be dualised to results for dual TM/1A and vice versa. We will occasionally
mention the dualisations explicitly and usually leave them to the reader to fill
in. We will use the following notation, very similar to Notation 2.

Notation 3 For bounding functions g, we denote the class of languages accepted
by TM/1A’s with g(n)-bounded advice by TM/1A(g).

3 Characterisations

Turing machines with advice cannot be used to characterise co-RE since these
machines are ‘too strong’ — they recognise more languages than we want. What
we need is a class of machines that are more powerful than Turing machines,
but less powerful than Turing machines with advice. In this Section we will show
that Turing machines with one-sided advice are a plausible solution.

6 Jan van Leeuwen and Jifi Wiedermann

3.1 Accepting co-RE (and RE)

We will show that TM/1A’s indeed accept precisely the languages in co-RE. For
the result we make no special assumptions on the ‘one-sided advice’ used in the
TM/1A’s.

Theorem 1. For all languages L, L € co-RE if and only if L is accepted by a
TM/1A.

Proof. (=) Let L € co-RE, thus L € RE. Let N be a (classical, deterministic)
Turing machine that accepts L. We may assume that N has accepting states, no
rejecting states, that an input w is accepted if N'’s run on w is accepting, and
that w is rejected if N’s run on w is infinite. We now design a TM/1A M that
accepts L.

Define the advice function f by f(n) = w,, where w,, is the word of length n
on which N makes the largest number of steps before accepting it, or a default
value when when N does not accept any words of length n. (The choice of w,
is similar to that in [2], Theorem 1.) Now define the operation of M as follows.
Note that M is inherently non-deterministic?:

input: w (say of length n);
choose (non-deterministically) between thread A and thread B:
A call advice: z := f(n);
interlace N’s computations on w and on z and look for the first
of the following possible events to happen:
e (Al) the computation on w halts first and in an accepting
state of N: then continue the computation in an infinite run;
e (A2) the computation on z halts first: then stop the compu-
tation in an accepting state.
B perform N’s run on w and look for the first of the following pos-
sible events to happen:
e (B1) the computation on w halts in an accepting state of N:
then stop the computation in a rejecting state;
e (B2) the computation on w does not halt: implicitly, continue
the computation in its infinite run.

~ We claim that machine M is a TM/1A that accepts precisely the words of
L and rejects those in L. To prove it, we consider how M operates on arbitrary
inputs w. We distinguish between two cases:

— Case I: w € L. Consider how M operates as a non-deterministic machine on
input w. If M follows thread A then it calls its advice but, by the choice
of the advice function, the interlacing of N’s computation on w and the
advice necessarily leads to event A2, which halts the computation in an
accepting state. If M would follow thread B, the advice is not called but the
computation will necessarily lead to event B2, leading the computation into
an infinite run.

3 We describe M’s operation in pseudo-code but all steps involved are easily realised
by a fixed finite number of Turing machine instructions, using those of V.

TMs with One-sided Advice 7

— Case II: w € L. Again consider how M operates. If M follows thread A
then it calls its advice but now, by the choice of the advice function, the
computation will necessarily lead to event Al, and it will continue in an
infinite run. If M would follow thread B, the advice is not called but the
computation will necessarily lead to event B1, leading the computation to
halt in a rejecting state.

One easily verifies that M satisfies the requirements (Ry), (R1), (R2) and that
L4(M) = L. This proves the claim.

(<) Now consider a TM/1A M, and let L = L4(M). Let M’s advice function
be f. (NB f can be any arbitrary function now, possibly very different from the
special function f used above.) Note that f can only be called during non-
rejecting (i.e. accepting or infinite) runs, if at all. Now consider the following,
classical but non-deterministic, Turing machine N that operates as follows:

input: w (say of length n);

perform a run of M on w and look for the first of the following possible events

to happen:
— (C1) the run leads to a call for advice: then do not call the advice and

continue the computation in an infinite run;

— (C2) the run stops in an accepting state of M: then continue the compu-
tation in an infinite run;

— (C3) the run stops in a rejecting state of M: then stop the computation
in an accepting state (of N);

— (C4) the run stops in an undefined state of M: then continue the compu-
tation in an infinite run.

— (C5) the run does not halt: implicitly, continue the computation in its
infinite run.

Note that machine N does not actually call the advice of M but only observes
the situation in which M would. We claim that machine N accepts precisely the
words of L. To prove it, we consider how N operates on arbitrary inputs w. We
distinguish between two cases:

— Case I: w € L. Consider how NN operates as a non-deterministic Turing
machine on input w. As w € L, M cannot have a rejecting run on w and
thus only events (C1), (C2), (C4) and (C5) can occur. It follows that all
possible runs of N will end up being infinite, in this case.

— Case II: w € L. Consider again how N operates. As w € L, no run of M
can lead to event (C2), but events (C1), (C4) and (C5) are all possible and
some run must exist that leads to event (C3). Hence the runs of N will all
end up being infinite or leading to an accepting state of IV, and the latter
will occur for at least one run.

One easily verifies that N is a (classical) non-deterministic Turing machine ac-
cepting precisely L which is thus RE. Consequently L = Lo(M) € co— RE. O

By Observation 4, we can immediately conclude the following result as well.

Corollary 1. For all languages L, L € RE if and only if L is accepted by a dual
TM/1A.

8 Jan van Leeuwen and Jifi Wiedermann

3.2 Some consequences

Theorem 1 is interesting in several ways, for example because the use of arbitrary
advice functions still keeps the power of TM/1A’s limited to co-RE. We give a
number of corollaries to further comprehend the effect of this.

First of all, Theorem 1 and Corollary 1 imply that Turing machines with one-
sided advice are indeed weaker than Turing machines with advice in general. This
is so because the latter can accept every possible language, if there is no further
constraint on the advice function.

Corollary 2. Turing machines with advice are more powerful than Turing ma-
chines with one-sided advice.

In Section 4 (Theorem 2) we will prove that Corollary 2 does not hold when we
restrict to the ‘home base’ of TM/1A’s, namely to the class co-RE.

Next, Theorem 1 leads to the following interesting conclusion about the be-
haviour of TM/1A’s, using Observation 3.

Corollary 3. For all languages L, if L € co-RE - REC then any TM/1A that
accepts L will have to make infinite runs.

We make a further observation on the crucial dependence on the correct
advice in the acceptance of a language, in general. Define a TM/1A M with
advice function f to be insensitive if, given an input w, M reaches the same
conclusion on w (accept or reject) regardless of the advice function actually
used. M is insensitive if and only if the following properties hold:

— if M has accepting runs, then every run that calls f is accepting or infinite
even if the advice is replaced by a different function,

— if M has rejecting runs, then every run that calls f is infinite even if the
advice is replaced by a different function.

For insensitive d-TM/1A’s the correspondingly dualised properties hold.

Proposition 1. For all languages L, if L € co-RE - REC then no TM/1A that
accepts L can be insensitive.

Proof. Let L € co-RE - REC. Suppose by way of contradiction that L could be
accepted by an insensitive TM/1A M. We show that L must be recursive. To
prove it, we design a (classical, deterministic) Turing machine N for recognizing
L as follows. Fix some standard enumeration of the (advice-) strings over X' and
of the pairs (4,j) € N x N.

Consider an arbitrary input w and let |w| = n. Now N operates as follows,
explained in ‘pseudo-code’. N enumerates the pairs (i,7) € N x N one after the
other, and for each pair (7, j) it (a) generates the dovetail (tree) of up to i steps
of all possible runs of M on w, using the j-th string of X* as advice if it is
needed, (b) halts in an accept or a reject state if the dovetail leads M to an
accept or a reject state respectively, and (¢) continues with the next pair if the
latter didn’t occur.

TMs with One-sided Advice 9

Clearly, if N halts, it halts with the correct decision on the acceptance of
w by the assumed insensitivity. To see that N always halts, note that certainly
a pair (4,7) will occur which has i large enough and j the rank number of
f(n) (whatever it is) in the enumeration of X* so the dovetail will reveal the
accepting or rejecting run of M (respectively). This gives an upperbound on the
actual occurrence of case (b) above. Thus N is always halting and L is recursive.
Contradiction. O

A final observation concerns the relationship between the complexity of the
accepted languages and the advice function of a TM/1A. We will study this
relationship in more detail in Section 4 and confine ourselves here to a first
glimpse of the subject. (The case for dual TM/1A’s is similar.)

By Observation 1 it is straightforward that for languages L with L € co-RE
but L ¢ RE, any TM/1A accepting L must use an advice f for which Ry ¢ RE.
A further observation can be made. Recall that a set is called immune if it is
infinite and has no infinite RE-subsets (cf. [8]). Immune sets are not in RE. If
L € co-RE and L is immune, then L is called a simple set.

Let L be a language, Ry C N x Y* an advice graph. Ry will be called L-
immune if for every infinite subset S = {< n1, f(n1) >,---} € Ry one has: if
S is recursively enumerable, then L N XY™ =) for infinitely many n; (i.e. n; as
occurring in the pairs of \5).

Proposition 2. Let L € co— RE. If L is immune, then any TM/1A accepting
L must use an advice function f for which Ry is L-immune.

Proof. Let L be as stated. Let M be a TM/1A accepting L and let f be the
advice function used by M. Clearly L is infinite (by definition).

Consider any infinite subset S = {< nq, f(n1) >, -} € Ry. Assume that
S is recursively enumerable. Suppose by way of contradiction that L N X" =
() for only finitely many n;. Define the language L’ accepted by a (classical,
deterministic) Turing machine N as follows. Machine N operates in the following
manner:

input: w;
perform the following:

— (D1): determine n = |w|;

— (D2): recursively enumerate S; if a tuple < i,u > is encountered with
i = n then stop the enumeration of S, set f(n) := uw and go to the next
step;

— (D3): dovetail the computations (i.e. all runs) of M using advice value
f(n) determined in the previous step, until an accepting or rejecting state
is reached in the dovetail; if a rejecting state is reached, continue the run
in an infinite loop, otherwise go to the next step;

— (D4): accept w and halt.

It is clear that N accepts only words from L and that by the assumption on
S, there are infinitely many words w € L for which control passes from (D2) to
(D3) during its computation, thus leading to acceptance of these words in (D4).
Hence L’ is an infinite and recursively enumerable subset on L, contradicting
the fact that L is immune. Thus Ry is L-immune. O

10 Jan van Leeuwen and Jifi Wiedermann

4 Complexity

In Theorem 1 we proved that the languages in co-RE are accepted by Turing
machines with one-sided advice. For machines with advice we know that, gener-
ally speaking, the machine becomes more powerful the longer (and thus richer)
the advice is (cf. Karp and Lipton [5, 6], Verbaan [14]). In this section we will
show that Turing machines with one-sided advice have a very similar property,
but in a more limited range.

We first observe that the advice function of a (dual) TM1/A can be exactly
the same as for a general TM/A, if the latter accepts the same language as the
former. We also show that the advice function of a TM/1A, although it can be
fully arbitrary in general as long as the machine is a valid TM/1A, can remain
surprisingly limited. On the other hand we show that below this upper limit,
there is an infinite hierarchy based on advice length like in the general case.
It follows that there is an infinite hierarchy inside co-RE based entirely on the
power of the advice used in a TM/1A. A dual result holds for RE.

4.1 Bounds

We first prove some elementary facts about the power of one-sided advice in
general. Let |X| = o.

We first prove that, if a co-RE language L can be accepted by a standard
Turing machine with advice f(n), then a TM/1A can accept L with advice f as
well, i.e. it doesn’t need a more complicated advice. The fact is a generalization
of the ‘only if’-part of Theorem 1, implementing the core idea of a TM/1A. For
completeness, we give the proof in full.

Theorem 2. For all languages L € co-RE, if L can be accepted by an ordinary
TM/A with advice f(n), then L can be accepted by a TM/1A with advice f(n)
as well.

Proof. Let L € co-RE, thus L € RE. Let N be a (classical, deterministic) Turing
machine that accepts L, as in the proof of Theorem 1. Let M’ be a TM/A with
advice f that accepts L. W.l.o.g. we may assume that machine M’ is a classical,
deterministic machine. We now design a TM/1A M with advice function f that
accepts L.

We define M by describing its action on an arbitrary input w. It will be clear
that M’s operations can be defined by a fixed finite Turing machine program.

input: w (say of length n);
choose (non-deterministically) between thread A and thread B:
A perform the run of M’ on w, calling the advice f(n) when needed,
and look for the first of the following possible events to happen:
e (Al) the computation on w halts in an accepting state of M:
then stop the computation, in an accepting state;
e (A2) the computation on w halts in a rejecting state of M:
then continue the computation in an infinite run;

TMs with One-sided Advice 11

e (A3) the computation on w halts in an undefined state of M:
then continue the computation in an infinite run;
(Implicitly, if none of these events occurs, the run continues as an
infinite run.)
B perform N’s run on w and look for the first of the following pos-
sible events to happen:
e (B1) the computation on w halts in an accepting state of N:
then stop the computation in a rejecting state;
e (B2) the computation on w does not halt: implicitly, continue
the computation in its infinite run.

We claim that M is a TM/1A that accepts precisely the words of L. To prove
it, we distinguish two cases for any possible input w:

— Case I: w € L. Consider how M operates on input w as a non-deterministic
machine. If M follows thread A then it performs a run of M’, possibly calling
advice. Because M’ accepts L, the run must necessarily lead to event (A1),
thus to acceptance of w. If M would follow thread B, the advice is not called
and the computation will lead to event (B2), i.e. continuing the computation
in its infinite run.

— Case II: w € L. Again consider how M operates on input w. If M follows
thread A then it may call its advice but now the computation will necessarily
lead to event (A2) or (A3) or to none of these events at all. In all cases this
leads the computation to continue in an infinite run. If M would follow
thread B, the advice is not called but the computation will necessarily lead
to event B1, leading the computation to halt in a rejecting state.

One easily verifies that M satisfies the requirements of a TM/1A and that
La(M)=L. O

Theorem 2 implies that TM/1A’s are as efficient with their advice as standard
Turing machines with advice in accepting co-RE languages. Stated differently, if
a co-RE language L can be accepted by a TM with g(n)-bounded advice, then
it can be accepted by a TM/1A with g(n)-bounded advice as well.

The next observation follows from the proof of Theorem 1 as well and shows
that for accepting co-RE languages, TM/1A’s can in fact do with a quite limited
type of advice.

Definition 4. For an arbitrary language L, we let ¢, : N — X* be the census
function defined by cr(n) = #{w € L | |lw| =n} (NB written in o-ary notation).

Theorem 3. L is accepted by a TM/1A if and only if L is accepted by a TM/1A
using log, cr(n)-bounded advice.

Proof. We only need to prove the ‘only if’ part. Thus, let L be accepted by
an arbitrary TM/1A M. By Theorem 1 we know that L € co-RE. Let N be
a (classical, deterministic) Turing machine that accepts L. If we now inspect
the first part of the proof of Theorem 1, we see that L can in fact be accepted

12 Jan van Leeuwen and Jifi Wiedermann

by a TM/1A M’ with an advice function f defined by f(n) = wy,, where w,
is the word of length n on which N makes the largest number of steps before
accepting it, or a default value when N does not accept any words of length n
(the ‘Barzdin advice’, cf. Theorem 1).

Now change the advice function M’ uses into cr(n) and insert a little sub-
routine whenever the ‘advice’ is called that actually computes w,, from cr(n),
as follows:

— (E1): if ez (n) = 0, then set wy, to its default value (as above);

— (E2): if ¢z (n) = m for some ‘number’ m, then start a dovetail of N’s runs
on all inputs of length n. Proceed until accepting runs have been found for
precisely m different inputs of length n. Then halt the dovetailing and set
wy, equal to the word which was last found to be accepted in the dovetail
(and which thus has the longest accepting run of N among the words of
length n).

Having constructed w,, from cr(n), the computation of M’ can proceed in the
old way. O

Observing that c¢r(n) < o™ for all L, Theorem 3 implies the following. The
corollary also follows from the use of the Barzdin’-advice w,, directly.

Corollary 4. Every language L € co-RE can be accepted by a TM/1A using
linearly bounded advice.

Corollary 4 dualises for RE as usual. Theorem 2 and Corollary 4 can be
combined into the following observation.

Corollary 5. TM/A(g)N co-RE = TM/1A(g) C TM/1A(n) = co-RE, where
g s any advice bounding function.

An even more special interpretation can be given to Theorem 3. For L C X*,
let U(L) C {1}* be the language of ‘unary equivalents’ of the words of L when
these are viewed as o-ary numbers. Clearly the mapping U : X* — {1}* and its

inverse are Turing-computable. Note also that U(L) = U(L).

Theorem 4. For all languages L, L € co-RE (RE) if and only if U(L) is ac-
cepted by a (dual) TM/1A with its characteristic function as advice.

Proof. (=) Let L € co-RE. It easily follows that U(L) € co-RE. By the argument
in the proof of Theorem 3, U(L) is accepted by a TM/1A M using cy(py(n) as
advice function. The latter is precisely the characteristic function of U(L) in
{1y,

(<) Conversely, let U(L) is accepted by a TM/1A with its characteristic
function as advice. It follows from Theorem 1 that U(L) € co-RE. From this it
easily follows that L € co-RE. a

(Note that the characteristic function of U (L) cannot just be read off for deciding
acceptances. In particular, the TM/1A is not allowed to read it off at all in reject
decisions.)

TMs with One-sided Advice 13

4.2 Hierarchy

We now show that inside co-RE (or RE, respectively) there is an infinite proper
hierarchy ‘below’ the linear advice bound, based on the length of the one-sided
advice the TM/1A’s need to accept the languages in co-RE: the bigger advice
‘below linear’ we consider, the more languages can be accepted.

We consider RE and co-RE languages over finite alphabet X = {0,1,---},
with |X| = o > 2. We prove the following key result.

Theorem 5. There are infinite sequences of functions {g;}i>1 with g1(n) <
ga(n) < ---(< n) such that for all © > 1, TM/1A’s with g;-bounded advice
are strictly more powerful, i.e. accept strictly more languages of co-RE, than

TM/1A’s with g;—1-bounded advice.

By this theorem, the sets of languages accepted by TM/1A’s with g;-bounded
one-sided advice for 7 > 1 give us an infinite hierarchy inside co-RE as claimed.
By duality, a similar result applies to RE.

Theorem 5 is a direct consequence of the following Lemma, to which we will
devote the remainder of this Section.

Lemma 1. Let g be any recursive function with g(n) < n for all n. Then there
is a co-RE language L that can be accepted by a TM/1A with min(ag(")+1,n)—
bounded advice but not by any TM/1A with g(n)-bounded advice.

For the proof of Lemma 1 we will use a diagonal argument, based on the
enumeration of a class of relevant acceptors. Notice that the class of TM/1A’s
itself is not effectively enumerable. Therefore, we will try to enumerate a superset
of it instead, namely the class of all non-deterministic Turing machines with g(n)-
bounded advice over alphabet X, as our TM/1A’s will certainly occur among
them. However, this cannot be done in this form, as the number of different
advice functions to enumerate for each machine would be uncountable. To get
around it, the concrete advice functions f of the machines will not be enumerated
explicitly.

Thus, we only enumerate all non-deterministic Turing machines with advice
in the right form, including the advice-calling instructions and a partition of the
states into accept states, reject states, and undefined states, but no concrete
advice function itself. By a slight abuse of terminology, we will refer to these
machines simply as TM/A’s below. We will use a separate mechanism to con-
sider all possible g(n)-bounded values of the advice per machine, for each n. Let
{M,}n>1 be an effective enumeration of all TM/A’s as above.

Proof of Lemma 1. Let g be any recursive function with g(n) < n for all n. We
define the language L C X* as the complement of the language L’ which is ac-
cepted by the following (classical, deterministic) Turing machine N. We describe
N through its action on inputs w € X*: it will be clear that the operations can
be realised by a finite Turing machine program for N. Letting |w| = n, N acts
as follows:

14 Jan van Leeuwen and Jifi Wiedermann

— (F1): if |w| < g(n), then N goes into an infinite loop (implying that it
‘rejects’ w).

— (F2): if |w| > g(n) but w is not of the form 0* 1« for |a| < |g(n)|, then N
goes into an infinite loop (implying that it ‘rejects’ w).

— (F3): if |w| > g(n) and w is of the form 0*la for some |a| < |g(n)l,

then N works through the machine-enumeration to retrieve M,, and starts
dovetailing the runs of M, on input w, using f(n) = « as advice when
advice is called.
Let N generate the computation tree of all possible runs level after level,
i.e. in breadth-first manner. We may assume w.l.o.g. that no run ends in
an ‘undefined’ state, otherwise just continue such a run in an infinite loop.
While generating the levels, N looks for the first of the following events
to occur and acts accordingly:

e (F3:1) there is a run of M, that halts in the generated level and the
leftmost such run halts in an accept state: then N halts and accepts w
by moving to an accept state (of N).

o (F3:2) there is a run of M, that halts in the generated level and the
leftmost such run halts in a reject state: then N sends itself into an
infinite loop (thus implicitly rejecting w).

Note that N keeps generating levels as long as none of the above events
occurs. If none occurs, N simply is in an infinite loop on w (and thus
rejecting it).

Because N is a straightforward (classical, deterministic) Turing machine, its
accepted language L’ is recursively enumerable. Hence L = L’ € co-RE. Conse-
quently, by Theorem 1 there is TM/1A accepting L.

Claim 1 L cannot be accepted by a TM/1A with g(n)-bounded advice.

Proof of claim. Suppose L is accepted by TM/1A with g(n)-bounded advice. Let
the TM/1A occur in the enumeration as machine M} and have advice function
f(n), with |f(n)] < g(n) for all n. Consider the action of M}, on input w =
0---0la of length k, with a = f(k). (We use 0---0 to denote any string of zero
or more 0’s.)

We now claim that a contradiction occurs. To prove it, we distinguish between
two cases.

— Case I: w € L, thus w ¢ L. Consider how N acts on input w. By design,
N proceeds in part (F3) of its program, using the correct advice value. As
w € L, M}, accepts w and thus by the working of a TM/1A, the dovetailing
of Mj’s runs must lead N to event (F3:1). Then N halts and accepts w, but
this contradicts that w & L'.

— Case II: w € L, thus w € L. As above, N proceeds in part (F3) of its
program and dovetails the runs of M} on w, using the correct advice value.
Asw € L, My rejects w and thus by the working of a TM /1A, the dovetailing
of Mj’s runs must lead N to event (F3:2). Then N sends itself in an infinite
loop on w, but this contradicts that w € L'.

Hence a contradiction arises in all possible cases. This proves the claim. ad

TMs with One-sided Advice 15

Claim 2 L can be accepted by a TM/1A with o9+ -bounded advice.

Proof of claim. Let h(n) =1+ 0 + --- + ¢9™ and fix some standard enumer-
ation of the h(n) strings of length at most g(n). Denote the i-th string in this
enumeration by Str,,(i). Note that h(n) < o9(+1, Define the advice function f
with f(n) = by -+ byp) € {0,1}" as follows:

b — 1if0---0law € L, with [0---0la| = n and Str, (i) = «
* | 0 otherwise

We now design a TM/1A M with advice function f(n) as follows. We describe
M by its action on an arbitrary input w € X*, where it will be clear that the
operations can all be defined by a finite Turing machine program ‘with advice’.
Letting |w| = n, M acts as follows:

— (G1):if |lw| < g(n) then M halts and accepts w in an accept state (without
any call for advice).
— (G2): if |w| > g(n) but w is not of the form 0-- - 0la for |a| < |g(n)|, then
M halts and accepts w in an accept state (without any call for advice).
— (G3): if lw| > g(n) and w is of the form 0---0la for some |a| < |g(n)l,
then M chooses (non-deterministically) between thread A and thread B:
A determine ¢ be such that oo = Stry(i);
call advice: f(n) = b1 ---bun);
if b; = 1 then M stops and accepts w by moving to an accept-
ing state;
if b; = 0 then M sends itself into an infinite loop.
B perform N’s run on w, necessarily at (F3) by the form of
w, and look for the first of the following possible events to
happen:
% (G3:B1) N runs into event (F3:1) and stops, accepting w:
then M stops and rejects w by moving to a rejecting state.
x (G3:B2) N runs into event (F3:2) and goes in an infinite
loop: then M goes into an infinite loop as well.
If N keeps running without reaching any of the previous
events, then M simply keeps running as well, making the run
to an infinite run.

We now verify that M is a (non-deterministic) TM/1A which precisely ac-
cepts L. We need to verify two things: that M satisfies the requirements of a
TM/1A, and that M computes the right acceptances. We can restrict ourselves
to considering inputs w of the form 0---0la for an |a| < |g(n)|, as M takes
the correct (accepting) decisions for all other inputs, even deterministically and
without any call on the advice.

For words w = 0---0la with |a| < |g(n)|, M necessarily works in part (G3)
of its program. We now distinguish two cases:

— Case I: w € L. If M follows thread A, it determines 4 such that oo = Str, (%)
and calls its advice. It follows from the advice that b; = 1 in this case and M
will accept w and move to an accept state. If M follows thread B, it starts

16 Jan van Leeuwen and Jifi Wiedermann

performing N’s run on w, i.e. the dovetailing of all possible runs of M, on w,
with advice a (not called but derived from w) and necessarily in part (F3)
of its program. Because w € L and thus w ¢ L', N cannot run into event
(F3:1). Thus, in thread B, M can only get into infinite run.

— Case II: w ¢ L. If M follows thread A, it determines i such that oo = Str,, (%)
and calls its advice. It follows from the advice that b; = 0 in this case and
M will send itself into an infinite loop. If M follows thread B, it starts
performing N’s run on w, i.e. the dovetailing of all possible runs of M, on
w, with advice « (again, not called but derived from w) and again in part
(F3) of its program. Because w ¢ L and thus w € L', N must run into event
(F3:1). Thus, in thread B, M will reach event (G3:B1), stop and reject w by
moving to a rejecting state (all this without calling its advice).

It follows that M indeed works as a correct TM/1A and that it accepts precisely
the language L. O

With the help of Corollary 4, this completes the proof of Lemma 1. O

Lemma 1 immediately implies the existence of an infinite hierarchy of sub-
classes within co-RE, based on the size of the advice in the relevant TM/1A’s.
The Lemma also leads to the following strengthening of Corollary 5.

Corollary 6. Let g be any recursive function with g(n) < n for all n. Then
TM/A(g)N co-RE =TM/1A(g) C TM/1A(n) = co-RE.

5 Conclusions

In this paper we considered the intriguing question of giving a simple model of
hypercomputation for co-RE, i.e. for the class II; of the Arithmetical hierarchy.
The model of ‘Turing machines with one-sided advice’ (TM/1A’s) that we pro-
posed satisfies all requirements one can reasonably impose on such a model. We
have shown that TM/1A’s precisely accept all co-RE languages and that there is
an infinite hierarchy inside co-RE based on the complexity (length) of the advice
used by the accepting TM/1A’s. The results dualise perfectly for RE.

Recursively enumerable languages and their complements are a classical topic
within computability theory. The co-RE languages per se have been more of a
theoretical than a practical interest, despite their relevant base-position in the
Arithmetical hierarchy. They typically arise in connection with undecidability
results or in recursion-theoretic studies only. Our results bring new insight into
the nature of co-RE languages and of non-RE languages in general.

As a model of hypercomputation, TM/1A’s are close enough to ordinary
Turing machines to expect that their operation could be studied from similar
perspectives. Whereas other models of computation in this domain tend to be
search-oriented or non-iterative, Turing machines with one-sided advice stay
very close to our intuition, computationally. This could open various interesting
lines of further study. Especially sub-recursive (e.g. time-bounded) variants of
TM/1A’s may be interesting to study further.

TMs with One-sided Advice 17

References

1.

2.

@

10.

11.

12.

13.

14.

J.L. Balcézar, J. Diaz, J. Gabarrd, Structural Complexity 1, Second Edition,
Springer, 1995.

Ja.M. Barzdin’, Complexity of programs to determine whether natural numbers
not greater than n belong to recursively enumerable set, Soviet Math. Dokl. 9:5
(1968) 1251-1254.

A. Chandra, D. Kozen, L. Stockmeyer, Alternation, JACM 28:1 (1981) 114133.
A. Ehrenfeucht, G. Rozenberg, K. Ruohonen, A morphic representation of com-
plements of recursively enumerable sets, JACM 28:4 (1981) 706-714.

R.M. Karp, R.J. Lipton, Some connections between non-uniform and uniform com-
plexity classes, Proc. Twelfth Ann. ACM Symp. on Theory of Computing, ACM
Press, 1980, pp. 302309.

R.M. Karp, R.J. Lipton, Turing machines that take advice, L’Enseignement
Mathématique I1° Série, Tome XXVIII (1982) 191209. (Extended version of [5].)
D. Leivant, Alternating Turing machines and the Analytical Hierarchy, in: A.
Voronkov (Ed.), Turing-100. The Alan Turing Centenary, EPiC Series vol 10,
Easychair, 2012, pp 204-213.

H. Rogers Jr, Theory of recursive functions and effective computability, McGraw-
Hill, New York, 1967.

. K. Ruohonen, On machine characterization of nonrecursive hierarchies, Ann. Univ.

Turkuensis, Ser. A 1186 (1984) 87-101.

A.M. Turing, On computable numbers, with an application to the Entschei-
dungsproblem, Proc. London Math. Soc. 42-2 (1936) 230-265; A correction, ibid.,
43-2 (1937) 544-546.

A .M. Turing, Systems of logic based on ordinals, Proc. London Math. Soc., Series
2, 45 (1939) pp. 161-228.

J.S. Ullian, Three theorems concerning principal AFL’s, Journal of Computer and
Systems Sciences 5 (1971) 304-314.

J. van Leeuwen, J. Wiedermann, The Turing machine paradigm in contemporary
computing, in: B. Engquist and W. Schmidt (Eds), Mathematics Unlimited - 2001
and Beyond, Springer-Verlag, 2001, pp. 1139-1155.

P.R.A. Verbaan, The Computational Complexity of Evolving Systems, Ph.D. The-
sis, Dept of Information and Computing Sciences, Faculty of Science, Utrecht Uni-
versity, 2006.

