
Feedback services for stepwise
exercises

Bastiaan Heeren

Johan Jeuring

Technical Report UU-CS-2014-005

February 2014

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl



ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands



Feedback services for stepwise exercises

Bastiaan Heerena,, Johan Jeuringa,b

aSchool of Computer Science, Open Universiteit Nederland
bDepartment of Information and Computing Sciences, Universiteit Utrecht

Abstract

Advanced learning environments such as intelligent tutoring systems for algebra,
logic, programming, physics, etc. let a student practice with stepwise exercises,
and support a student solving such exercises by providing feedback. These en-
vironments usually provide various types of feedback, for example about the
correctness of a step, common errors, hints about how to proceed, or complete
worked-out solutions. Calculating feedback is generally delegated to a dedi-
cated expert knowledge module, also known as a domain reasoner. Existing
architectural descriptions of learning environments do not precisely specify the
interaction between this module and the rest of the learning system. We propose
a design based on the stateless client-server architecture that clearly decouples
the expert knowledge module from the learning environment. We describe a
set of feedback services that support the inner (interactions within an exercise)
and outer (over a collection of exercises) loops of a learning system, and that
provide meta-information about a class of exercises, such as solving quadratic
equations, or performing Gaussian elimination. The feedback services do not
depend on a particular domain and are based on the various feedback types
described in the literature.

The paper analyzes which domain-specific knowledge about an exercise class
is needed for implementing the feedback services. Based on this analysis, we
developed a framework for implementing domain reasoners that offers generic
functionality such as rewriting, simplifying, and comparing terms. We have im-
plemented several domain reasoners in this framework, both for external learn-
ing environments and for simple prototypes. The proposed design is evaluated
with these implementations, and we reflect on our experience with developing
domain reasoners.

Keywords: intelligent tutoring systems, domain reasoners, feedback services

Email addresses: Bastiaan.Heeren@ou.nl (Bastiaan Heeren), J.T.Jeuring@uu.nl
(Johan Jeuring)

Preprint submitted to Elsevier February 25, 2014



1. Introduction

Innovative learning practices make use of technology to support learning by
doing, to simulate real-life situations where learners improve their technical and
problem-solving skills, to combine learning and assessment in new ways, to give
teachers feedback about progress of their students, and to analyze student learn-
ing so that students can steer their learning [16]. Examples of such technology
for learning are intelligent tutoring systems [17], adaptive hypermedia [9], seri-
ous games [53], etc. Such interactive tools let students practice, analyze student
interactions, give feedback on student actions, and help students make progress.

A task in a learning environment can take many different forms: it can
be a multiple-choice question, an essay question that is corrected off-line by a
teacher or automatically analyzed, a question that asks for an expression from a
particular domain (what is/are the solution(s) of 4(10−x2) = −2x(2x+ 10), or
give Newton’s second law of motion, which relates acceleration, mass, and force),
or a question that a student typically solves stepwise. For example, in a learning
environment for mathematics that supports solving an exercise stepwise, an
exercise about quadratic equations might be solved as in Figure 1. Stepwise
exercises are particularly popular in learning environments for mathematics,
such as MathDox [14, 15], the Digital Mathematical Environment (DME) of
the Freudenthal Institute [19], Math-Bridge [52] (based on ActiveMath [38]),
APlusIx [13], the Carnegie Learning Algebra tutor, etc. Environments such as
the DME and Math-Bridge offer thousands of stepwise exercises to a student.
But stepwise exercises are also used in logic [36], physics [55], programming [23],
and many more domains.

Usually, technology for learning distinguishes correct from incorrect answers
or interactions, and often such technology provides other kinds of feedback to
the learner too. The literature on feedback [41, 50] distinguishes several types of
feedback, such as knowledge about correct performance, about how to proceed,
about bugs or misconceptions, and approximately ten other types. A number
of these types need information about the knowledge and progress of a stu-
dent, which is usually captured in a student model [7]. A student model can
vary between recording which exercises a student has successfully completed to
maintaining an ontology and using student interactions as proof that a student
masters particular competencies modeled in the ontology.

The sequence of tasks offered by a learning environment is often called the
outer loop [54]. The outer loop selects a task for a user, probably based on
knowledge about the student in the student model. The inner loop presents
the selected task to a student, and lets the student work on the task. When
working on a task, a learning environment can offer various types of feedback to
a learner. It can report whether or not a student answer is correct, whether the
exercise is solved correctly, what next step a student can take, etc. There are
many possibilities here, and different learning environments have made different
choices. In this paper we discuss the design of a software architecture for offering
feedback to learners when solving a stepwise task in a learning environment.

2



Figure 1: A worked-out solution in Math-Bridge

Traditionally, the architecture of an intelligent tutoring system (ITS) is de-
scribed by means of four components [44], as depicted in Figure 2.

1. The expert knowledge module
2. The student model module
3. The tutoring module
4. The user interface module

This division into conceptual modules is still visible in recent research on in-
telligent tutoring systems [43]. From a software architectural viewpoint, the
meaning of the arrows in Figure 2 is not very precise. It is clear that the various
components need information from each other, but what kind of information,
and how this information is communicated, is left informal. This paper focuses
on providing expert knowledge whenever a learning environment wants to offer
feedback to a learner. We describe webservices for the expert knowledge module
that offer facilities for reasoning about the domain studied in the learning en-
vironment. The webservices are used by the other components of an intelligent
tutoring system to obtain domain knowledge. We view the other components
of an intelligent tutoring system as a single entity, which we will refer to as
the learning environment. We will precisely define what kind of information is
provided by the expert knowledge module, and how this information is commu-
nicated to a learning environment. Essentially, a learning environment queries

3



Expert knowledge
module

Student model
module

Tutoring
module

User interface
module

Student

ITS

Figure 2: Four component ITS architecture

the expert knowledge module by means of a request, providing the necessary
information for the expert knowledge module to calculate a response.

Our webservices offer the types of feedback listed in the feedback literature:
is a step submitted by a learner correct, is it an instance of a common mistake,
what is a good next step to take, what does a solution to this exercise look like,
etc. Our various services are closely linked to feedback types, and offer a more
fine-grained approach to providing expert knowledge than existing component-
based [47] or agent-based [48] approaches.

Besides the design of a software architecture for the expert knowledge module
of an intelligent tutoring system, this paper also discusses an implementation
of the architecture, and our experience with using the implementation to offer
feedback services to several learning environments. Although we will illustrate
our ideas by means of software for calculating feedback to be used in intelligent
tutoring systems, we claim that our webservices for feedback are also useful for
serious games and other learning environments. We will discuss design decisions
for developing components which offer functionality for analyzing and giving
feedback on student interactions. The design decisions are based on software
design principles and on our experience with developing and deploying such
components for a number of learning environments.

This paper has the following goals:

• We discuss the design of an intelligent tutoring system with a clearly
separated expert knowledge module that offers webservices for calculating
feedback. The design is based on the stateless client-server architecture.

• We relate the webservices to known feedback types, and categorize the
services into three groups: inner loop, outer loop, and meta-information.

• We analyze what domain-specific knowledge is needed for implementing
a tutor that offers stepwise problem solving support, and explain how a

4



generic framework can provide the webservices based on this knowledge.

• We report our experience with developing several domain reasoners and
interacting with other learning systems.

This paper is organized as follows. Section 2 introduces the concept of a
domain reasoner, a component that calculates feedback for a particular domain.
We will argue why it is important to calculate feedback using domain reason-
ers, and compare domain reasoners with approaches used by current learning
environments. Section 3 discusses what kind of feedback services for stepwise
exercises are required by learning environments. We will then review the feed-
back types that are found in literature (Section 4) and relate these types to the
feedback services. Section 5 presents rewriting strategies, the central concept
we use for calculating feedback, and the other components of an exercise class
that are used for implementing the feedback services. Section 6 evaluates the
proposed design and discusses the non-functional quality attributes that are rel-
evant for providing feedback services. Section 7 presents the lessons we learned
in using our feedback services in various learning environments. Section 8 dis-
cusses related work and Section 9 concludes.

2. Domain reasoners

An intelligent tutoring system consists of many components. The most im-
portant components are (1) an expert knowledge module, which includes a col-
lection of exercises, (2) a student model to track the progress of a student and
to adapt the system to the level of the student, (3) a tutoring component which
based on a student model, the learning goals of a student, and the expert knowl-
edge module, selects material for a student to study and practice, and (4) an
interface in which a student can study the material and work on the tasks [44].
Many tutoring systems also have a monitoring module for teachers, and an
authoring environment to author new content or exercises.

The intelligent tutoring literature usually distinguishes a separate compo-
nent for an expert system that can ‘reason about the problems’ [17], ‘an expert
knowledge module’ [44], or ‘a domain expert’ [51]. Following Goguadze [25],
we will use the term domain reasoner for this component. The development of
domain reasoners supporting stepwise solving of tasks is the focus of this paper.

A domain reasoner knows about the objects in a domain, how objects can be
manipulated, and how to guide the manipulation of objects to reach a particular
goal. For a stepwise exercise, a domain reasoner can construct a solution to a
task, a hint on how to proceed with a next step, or recognize that a student
has made a common error (applied a ‘buggy rule’). A domain reasoner only
returns domain knowledge, such as a worked-out solution, a hint, or a buggy
rule. It does not determine how this information is presented to a student. For
example, suppose a student has to solve the equation x2−4x+3 = 0 and asks for
a hint. The learning environment asks a domain reasoner for solving quadratic
equations to calculate a hint, given the starting expression x2−4x+3 = 0. The

5



domain reasoner returns the rewrite rule nice-factors, together with the pair
(−3,−1) and the result of applying the rule. The rule nice-factors is used to
factorize a quadratic expression, in this case into (x− 3)(x− 1). It is up to the
learning environment to present this information in a suitable manner to the
student. By returning domain knowledge instead of textual feedback messages,
a learning environment can also use the information returned by the domain
reasoner to update a student model, or to collect information to report to a
teacher.

2.1. Design considerations

When developing a domain reasoner component, we have to answer several
fundamental questions:

• Is the domain reasoner an external, separate component reusable by other
learning environments, or is it embedded in a learning environment?

• Is the domain reasoner developed with the goal of giving feedback in mind,
or is it a component with a more general purpose, such as a simulator, or
a computer algebra system?

• Is the feedback offered by the domain reasoner specified in an individual
exercise (‘in the following exercise, a common error is to . . .’) or is it
computed for a class of exercises such as the class of quadratic equations?

• Is the approach to calculating feedback tied to a particular domain, such
as calculating the partial derivative of a function, or is it generic, and used
for various kinds of stepwise exercises?

We briefly discuss each of the above questions.

External or embedded. Although the intelligent tutoring literature usually dis-
tinguishes a separate component for domain reasoning, quite a few intelligent
tutoring systems have an embedded domain reasoner. Such a system can fine-
tune a domain reasoner to its own purposes. Embedding a domain reasoner in
an intelligent tutoring system makes it hard for external environments to use
the embedded domain reasoner, let alone adapt it. In addition, this approach
has the risk that the domain reasoner is too specialized to the particular tutor-
ing system to reuse it in another intelligent tutoring system. Indeed, we have
only found a single tutoring system [27] of which the domain reasoning com-
ponent is reused by another tutoring system [25]. In contrast to most of the
other components of an intelligent tutor, such as the expert knowledge module,
the tutoring component, and the user interface, a domain reasoner for different
tutors provides similar, if not the same, functionality. How to solve a quadratic
equation, which rules may be applied, correctness of a step, etc., are all the
same in the various tutors for mathematics.

6



Feedback-oriented or general purpose. For some domains, domain reasoners are
readily available. For example, many learning environments for mathematics use
a computer algebra system (CAS) for the component that analyzes the actions
of a student and provides feedback to a student [25, 49]. A CAS often contains
a lot of domain-specific knowledge about evaluating mathematical expressions,
and can, for example, check that a step taken by a student does not change the
final solution of an exercise, and thus answer the question about whether or not
a step is correct, and whether or not an exercise is correctly solved. Even for
simple exercises, checking an answer for correctness with a CAS is much harder
than it looks due to subtle consequences of the built-in equality operator of the
CAS [6]. It is even harder, if not impossible, to use a CAS for determining a next
intermediate step, showing the steps by means of which a solution is calculated,
or signaling that a student has made a common error. A CAS has no knowledge
about how a student solves a problem, and often uses algorithms for solving
mathematical problems that are very different from the solving procedures a
student should use.

Individual exercise or exercise class. Sometimes it is cumbersome to use a do-
main reasoner to give feedback to students, or there is no domain reasoner
available. The DME [19], MathDox [14, 15], and Math-Bridge [52] offer the
possibility to hardcode custom feedback in an exercise. For a typical multi-step
exercise, this sometimes increases the size of the exercise measured in lines of
text by a large factor. For example, the specification of an exercise for adding
two fractions extended with feedback about correctness, application of a buggy
rule, and omitted simplification steps takes 106 lines in MathDox [18]. Hardcod-
ing feedback in an exercise in which a student practices applying the different
components of a standard procedure is infeasible, because the number of exer-
cises in such learning environments is huge, and because hardcoding feedback
in an exercise makes it very hard to consistently adapt feedback to a user, or
to change feedback. Math-Bridge contains over a thousand exercises in which
a student practices solving linear equations, quadratic equations, quadratic in-
equations, higher-order equations, etc., and solving these exercises follows a
standard procedure. Hardcoding feedback in each of these exercises is infeasible
and undesirable.

Particular domain or generic. Most domain reasoners have been developed for
a particular domain. For example, Zinn’s domain reasoner for symbolic differ-
entiation [56] has been developed specifically for the purpose of giving feedback
in stepwise exercises about symbolic differentiation. It is not easy to reuse
components of this domain reasoner to calculate feedback for, for example, ex-
ercises about multi-column subtraction [57]. ACT-R [2] is a theory with a set
of principles for developing cognitive tutors. The ACT-R theory is embodied in
a software environment developed on top of Common Lisp. The environment
provides some reusable components for specifying goals etc., but still requires
a substantial amount of programming for developing a domain reasoner. For
most domains, developing a domain reasoner is a challenging task and requires

7



learning environments
– DME [19] web-based learning environment by the Freudenthal

Institute for secondary math education
– Math-Bridge [52] e-learning platform for online bridging courses in

mathematics, the successor of ActiveMath [38]
– MathDox [14, 15] software tools for creating interactive mathematical

documents by Eindhoven University of Technology

prototypes
– Logic tool [36, 35] bringing propositions into disjunctive normal form,

and proving equivalences between logical formulae
– Ask-Elle [23] stepwise development of simple functional programs

Table 1: Tools with a connection to our domain reasoners

a serious investment. Already in 1995, Anderson et al. [2] noticed that the
technical accomplishment [in developing a domain reasoner] is ‘no mean feat’.

2.2. Proposed design

We propose to develop a domain reasoner for stepwise exercises as a separate
component, which can be called by learning environments, but need not be part
of such an environment. Thus different learning environments can share the
same domain reasoner, and not every learning environment developer needs
to develop a separate domain reasoner. We think a domain reasoner should
be developed on top of a generic framework for specifying rewrite steps and
strategies for solving exercises, so that many aspects related to domain reasoners
can be inherited from the generic framework and development costs can be
reduced. Domain reasoners reside on a server, and learning environments call
feedback services [22] delivered by the domain reasoners. This is a standard
stateless client-server architecture for delivering feedback services.

Our design clearly decouples the domain reasoner component from the rest of
the learning environment and enables a more precise description of the function-
ality of a domain reasoner. Decoupling the domain reasoner from the rest of the
system might raise questions about the interaction between the domain reasoner
and components such as the student model and the authoring environment. We
will address this issue in Section 7.1.

The design we propose is based on building domain reasoners for real tutoring
systems: see Table 1 for an overview. Several externally developed learning
systems now use our domain reasoners. Furthermore, a number of research
prototypes have been developed that have been used in classroom settings. The
implemented domain reasoners span a variety of different topics and emphasize
the genericity of our approach.

Figure 3 illustrates the proposed architecture for feedback services. The
learning environments using feedback services appear to the left of the dashed
line. The learning environments, the clients, call feedback services on the server

8



MathDox

DME

Math-Bridge

Logic tool

LinAlg

Math

Logic

XML over HTTP

JSON over HTTP

client server

feedback scriptlearning environment

domain reasoner

domain-specific
knowledge

generic
framework

Figure 3: Learning environments using feedback services provided by domain reasoners

via JSON or XML over HTTP. The feedback services are provided on the server
by domain reasoners, which appear to the right of the dashed line. A domain
reasoner uses domain-specific information, shown as a circle, such as rewriting
rules for logic, and a strategy that describes how to solve an exercise in which
a logic expression has to be rewritten to disjunctive normal form. Furthermore,
it uses a shared generic framework for techniques such as rewriting, simplifying,
comparing, searching, etc., which is shown as the grey area surrounding the
circles. Some domain reasoners offer configurable feedback scripts to translate
abstract domain knowledge to textual feedback messages, to support learning
environments that do not want to translate abstract domain knowledge to tex-
tual feedback messages themselves.

Note that multiple learning environments use the same domain reasoner,
and that a single learning environment can call multiple domain reasoners. A
learning environment can call services from other tools too, such as a CAS. For
example, Math-Bridge uses at least four different external tools for providing
feedback to students. To integrate the results from different external tools,
Goguadze has developed a query language for feedback services for interactive
exercises [24].

3. Feedback services for tutoring systems

What kind of services for stepwise exercises should a domain reasoner de-
liver? At the outer-loop level of a tutoring system, a domain reasoner can help

9



outer loop
– examples predefined example exercises of a certain difficulty
– generate makes a new exercise of a specified difficulty

inner loop
– allfirsts all possible next steps (based on the strategy)
– apply application of a rewrite rule to a selected term
– diagnose analyze a student step (details in Figure 4)
– finished checks whether response is accepted as an answer
– onefirst one possible next step (based on the strategy)
– solution worked-out solution for the current exercise
– stepsremaining number of remaining steps (based on the strategy)
– subtasks returns a list of subtasks of the current task

meta-information
– exerciselist all supported exercise classes
– rulelist all rules in an exercise class
– rulesinfo detailed information about rules in an exercise class
– strategyinfo information about the strategy of an exercise class

Table 2: Feedback services

in selecting or generating a task for a student. A domain reasoner is mainly
used to support the inner loop of a tutoring system, in which it either analyzes
the work of a student, or provides information about how to proceed, or what
a solution to a task looks like. In the latter case, a domain reasoner computes
a step for a task, or a solution for a task. Finally, a domain reasoner provides
meta-information about itself: what kind of exercises are supported, what kind
of steps can a student take, what kind of errors are recognized, etc. This section
introduces feedback services offered by domain reasoners to tutoring systems.
We introduce a number of basic services for the different components of a tu-
toring system, for the outer loop of the tutoring system, for the feedback and
feedforward functionality of the inner loop, and for providing meta-information
about a domain reasoner. Table 2 provides an overview of the feedback services
that are introduced.

3.1. Services for the outer loop

The outer loop of a tutoring system selects tasks for a student. It may use
information from the student model for this purpose, for example to select an
exercise of a particular difficulty, but it may also ask for a random exercise in
the domain. A domain reasoner may offer a generate service, which generates
an exercise of a certain difficulty for which the domain reasoner provides sup-
port. This may be the starting term of an exercise from a (usually small) set
of predefined examples in the domain reasoner, but it may also be a random
exercise of the correct form and of the desired difficulty generated by a random

10



generator. A domain reasoner may also offer an examples service for exporting
the set of predefined examples.

3.2. Services for the inner loop

For the inner loop, a domain reasoner either analyzes a step, a final answer,
or a worked-out solution for a task that was submitted by a student, or it
computes a next step, a solution, or a worked-out solution.

The central service for analyzing a step is the diagnose service. For example,
if a student rewrites the quadratic equation x2−4x+3 = 0 to (x−3)(x−1) = 0,
the diagnose service from the domain reasoner responds with the diagnosis ‘cor-
rect, but not finished’. It will also return nice-factors (-3,-1), an abstract
representation of the rewrite rule applied by the student. If the student submits
(x− 4)(x− 1) = 0, the domain reasoner responds with the diagnosis ‘incorrect’.
The diagnose service also recognizes and reports applications of buggy rules.
For example, if a student rewrites (x + 2)2 by x2 + 22, the diagnose service
returns the buggy rule diagnosis with the (buggy) rewrite rule distr-square.
The finished service checks whether or not the exercise is solved.

The principal service for computing a next step towards a solution is the
service allfirsts, which returns all possible next steps a student can take at the
current stage of the exercise. For example, some of the possible next steps when
solving the quadratic equation x2 − 4x + 3 = 0 are finding the factors with
rule nice-factors (-3,-1) and applying the quadratic formula with rule abc

(1,-4,3). Of course, a client learning environment interprets these rules, and
presents them in a friendly way to users. The first rule can for example be
presented as ‘determine the factors of the quadratic expression’, or, ‘rewrite the
current expression to (x− 3)(x− 1) = 0’, depending on how a tutoring system
wants to show the next step determined by a domain reasoner.

From the allfirsts service we obtain several derived services. The service
onefirst returns only one next step in an exercise by selecting one of the alter-
natives. The step is determined from the steps returned by allfirsts by imposing
an order on the steps. For example, the next step when solving the quadratic
equation x2−4x+3 = 0 returned by onefirst would be nice-factors (-3,-1)

because this rule is preferred over using the quadratic formula. The list of steps
of a worked-out solution is provided by a solution feedback service. For example,
a complete solution to the same exercise consists of a list of steps:

x2 − 4x+ 3 = 0
= {nice-factors (-3,-1)}

(x− 3)(x− 1) = 0
= {product-zero}

x = 3 ∨ x = 1

The solution service returns a stepwise solution for a particular exercise. If
a client learning environment wants to show one or more worked-out solutions,
it can use the examples service to obtain one or more exercises, and the solution
service to turn these into worked-out solutions. Based on the solution, we can

11



also calculate the number of remaining steps with the stepsremaining service,
for example to show a progress indicator.

Some learning environments, such as MathPert [3], let a student select a rule
to be applied to an expression, instead of rewriting an expression directly. To
support performing such an interaction, we use a service apply, which applies a
rewrite rule to a selected term.

When solving a quadratic equation such as 4 − 2x2 = 4x + 6, a student
first has to move all terms to the left, then divide by −2, factorize the resulting
expression, and solve the resulting linear equations. The subtasks service splits a
task into such subtasks, and a learning environment can use the subtasks service
to offer smaller tasks if a student cannot yet solve a complete task.

3.3. Meta-information about a domain reasoner

Domain reasoners have to publish meta-information about the type of exer-
cises they support, the strategy that is used for solving a task, and the rewrite
rules. Learning environments use this information to discover which functional-
ity is supported by the domain reasoner. For instance, they can check whether
all rewrite rules have a user-friendly translation that is presented to the students.

The exerciselist service returns all exercise classes that are supported by
the domain reasoner. An explanation of the strategy of a domain reasoner is
provided by the service strategyinfo. The service rulelist specifies which rules are
allowed to be used when solving an exercise in the domain, and which buggy
rules are recognized by the domain reasoner. The service rulesinfo provides
more information about these rules, such as a textual description of a rule, and
possibly a formal mathematical property (FMP, which is part of the OpenMath
standard [11]) that is derived from the rule.

3.4. Conclusion

The complete list of services that can be used by learning environments is
given in Table 2. Appendix A presents a full example of a sequence of inter-
actions between a learning environment and a domain reasoner. The set of
feedback services is not complete. Services such as supporting fill-in-the-blank
exercises or assessing stepwise solutions are easily built on top of the existing
services.

4. Feedback types in the literature

In this section we relate the services introduced in the previous section to the
various kinds of feedback types discussed in the literature. Narciss [41] gives an
overview of the literature on feedback types. We will have a look at the feedback
types related to solving tasks. On a global level, the literature distinguishes the
following feedback types.

• Knowledge of performance (KP) provides learners with summative feed-
back after they have responded to a set of tasks. This feedback contains
information on the achieved performance level for this set of tasks (e.g.,
the percentage of correctly solved tasks).

12



• Knowledge of result/response (KR) provides learners with information
about the correctness of their actual response (e.g., correct/incorrect).

• Knowledge of the correct response (KCR) provides the correct answer to
the given task.

• Answer-until-correct (AUC) feedback provides KR and offers the oppor-
tunity of further attempts with the same task until the task is answered
correctly.

• Multiple-try feedback (MTF) provides KR and offers the opportunity of a
limited number of further attempts with the same task.

• Elaborated feedback (EF) provides additional information besides KR or
KCR.

Some of these feedback types are related to the outer loop of a tutoring system
(KP, AUC, MTF), and some feedback types can be produced by a domain
reasoner (KR, KCR, some components of EF). Note that KP fundamentally
depends on KR.

Knowledge of response feedback checks whether or not a step of a student
is correct or incorrect, and whether or not an exercise is solved correctly. The
domain reasoner offers the diagnose service for checking correctness of a step,
and the finished service for determining whether or not an exercise is correctly
solved. Knowledge of the correct response involves giving the complete solution
to an exercise, offered by the solution service.

The answer until correct and multiple try feedback types are to a large
extent dealt with in the outer loop of a tutoring system. The only feedback
service required from the domain reasoner for these feedback types is the finished
service, which checks whether or not a response can be accepted as an answer.

4.1. Categories of elaborated feedback

Narciss distinguishes five categories of elaborated feedback: Knowledge about
task constraints (KTC), Knowledge about concepts (KC), Knowledge about mis-
takes (KM), Knowledge about how to proceed (KH), and Knowledge about meta-
cognition (KMC).

Knowledge about task constraints involves hints or explanations on the type
of task, on task-processing rules, on subtasks, and on task requirements. The
type of task is usually specified in the task description, and is used to decide
which domain reasoner to use for the task. For example, if the task is to solve
a quadratic equation, the tutoring system will call the domain reasoner for
quadratic equations to check correctness of a student step, show worked-out
solutions, etc. The task processing rules are the rules that can be used to
solve the task. This depends on the domain reasoner, and the feedback service
rulelist specifies which rules are allowed to be used when solving an exercise in
the domain. Since a subtask is by definition part of a complete task, a domain
reasoner knows which subtasks need to be performed to complete a task. For

13



example, the subtasks of solving a quadratic equation are: turn an equation
into the form ax2 + bx + c = 0, factorize the left-hand side of the equation, or
apply the quadratic formula, and solve the linear equations thus obtained. A
list of subtasks of a task is obtained via a service subtasks.

Knowledge about concepts involves hints or explanations of technical terms,
examples illustrating a concept, etc. These components are usually references
to material in the expert knowledge module.

Knowledge about mistakes involves reporting the number of mistakes, the
location of a mistake, hints or explanations of the type of errors and the sources
of errors. To provide this kind of information, the diagnose feedback service
should report more than just correct/incorrect, but also location information,
information about whether an error is a parsing error (x2−4x+ = 0), a ‘domain’
error, such as rewriting x2−4x+3 = 0 to (x−4)(x−1) = 0, or possibly another
kind of error. For example, a common kind of error when solving equations is
forgetting a solution.

Knowledge about how to proceed involves bug-related hints for error correc-
tion, hints or explanations of task-specific strategies, hints or explanations of
task-processing steps, guiding questions, or worked-out solutions. The diagnose
service also recognizes and reports applications of buggy rules. An explana-
tion of the strategy for solving a particular task is provided by the feedback
service strategyinfo. As described earlier, the feedback service rulelist speci-
fies all rules allowed to be used in a solution. The feedback services onefirst
and allfirsts return a hint about the next step in an exercise, and a hint about
all steps that are applicable according to the strategy at the current stage of
the exercise, respectively. A guiding question can be derived from the hint re-
turned by onefirst. For example, if onefirst returns nice-factors (-3,-1),
the guiding question translation might be ‘try to determine the factors of the
quadratic polynomial’, a textual description might be ‘use the factors −3 and
−1 to rewrite the expression’, and the bottom-out hint might be ‘rewrite the
expression to (x− 3)(x− 1) = 0’. So the rule returned by the domain reasoner
might be translated in various ways by the tutoring system to provide the kinds
of feedback in the KH category. Finally, worked-out solutions are obtained by
using the service examples to obtain example exercises, and solution to obtain
their worked-out solutions.

Knowledge about metacognition involves hints or explanations of metacog-
nitive strategies and metacognitive guiding questions. This kind of feedback is
not provided by domain reasoners.

5. Internal components of an exercise class

What is a mathematical exercise? What do we need to know about an
exercise to analyze student interactions, and to give feedback? How can we
provide the feedback services for a class of exercises?

The exercises we consider consist of an expression and a goal (e.g., factorize
x2 − 3x + 2). The expression that a student has to rewrite can be any kind of

14



component description

strategy rewrite strategy that specifies how to solve an exercise
rules possible rewrite steps (including buggy rules)
equivalence tests whether two terms are semantically equivalent
similarity tests whether two terms are (nearly) the same
suitable identifies which terms can be solved by the strategy
finished checks whether a term is in a solved form

exercise id identifier that uniquely determines the exercise class
status stability of the exercise class
parser parser for terms
pretty-printer pretty-printer for terms (inverse of parsing)
navigation supports traversals over terms
rule ordering tiebreaker when more than one rule can be used

examples list of examples, each with an assigned difficulty
random generator generates random terms of a certain difficulty
test generator generates random test cases (including corner cases)

Table 3: Exercise components providing domain-specific knowledge

expression, such as a polynomial, an equation or inequation (solve x2 + 2 = 3x,
with x = 1 or x = 2 as the solution), a system of linear equations, a matrix
(for performing Gaussian elimination), a logical proposition (rewrite ¬(p∧q)∨r
to disjunctive normal form), and many more. We abstract over the type of
the expressions that appear in an exercise. Besides the type of the expression,
more variation can be found between exercises. In this section we discuss how to
encapsulate this variation. The variation is captured by making the components
that together define an exercise class explicit. An exercise class contains all the
domain-specific information for one particular type of exercise.

The design of our domain reasoners providing feedback services is based
on two assumptions: all feedback is calculated automatically from a high-level
description of an exercise class, and this calculation is generic (domain indepen-
dent). With domain independence we mean that the design works for exercises
in mathematics, logic, linear algebra, etc. The high-level description specifies
how to solve a class of exercises, for example, the class of quadratic equations,
and not just one specific equation. Note that for most classes of exercises, there
are many possible solutions for one particular exercise, and each of these so-
lutions must be taken into account when calculating feedback. For instance,
consider the various ways in which the equation x2 + 4(x − 3) = 0 can be
solved. Even with extensive support for multiple solution paths for an exercise,
we cannot anticipate all (correct) student intermediate answers. It is therefore
important that feedback is still available after an unexpected step by a student.

In the remainder of this section we discuss the components that are needed
for an exercise class. Table 3 presents an overview of these components. We
start with explaining rewriting strategies, which is the central component of

15



an exercise class. We conclude the section by showing that the components
encapsulate the variation in exercise classes and that the feedback services can
be implemented with these components.

5.1. Rewrite strategies for exercises

A rewrite strategy specifies sequences of rewrite steps (rules) for solving a
class of exercises [32, 31], and models how a domain expert (such as a teacher)
would solve an exercise. Thus it is foremost the rewrite strategy that contains
the intelligence that is needed for solving exercises and for generating helpful
feedback. The sequences of a rewrite strategy can be expressed as the sentences
of a context-free grammar, in which the rewrite steps are used as the terminal
symbols of the grammar. Viewing a rewrite strategy as a context-free grammar
is useful because it allows us to take advantage of parsing techniques for the
calculation of feedback. For example, tracking intermediate steps made by a
student can now be formulated as a parsing problem.

We follow the combinator approach for specifying a rewrite strategy, which
means that simple strategies can be composed into larger strategies for more
complex exercises by using combinators. At the basic level, a rewrite strategy
consists of a single rewrite step. Combinators for composing strategies include
combinators for sequence (‘do this before that’), choice (‘either do this or that’),
biased choice (‘try to do this, or else do that’), repetition (‘repeat this’), etc. A
precise formalization of the strategy combinators, including the interleaving of
strategies, is presented by Heeren et al. [31, 30]. The strategy combinators have
been implemented as an embedded domain-specific language [33].

Inspired by the corresponding concepts from parser technology for context-
free grammars, the functions empty and firsts provide the central functionality
on rewrite strategies. The former tests whether or not the strategy is finished
(i.e., is the empty sentence accepted), the latter returns the set of rewrite steps
with which a sequence can start, together with the remainder of the strategy.
These functions on strategies directly correspond with the finished and allfirsts
feedback services that have been introduced in Section 3.

The compositional specification of strategies naturally supports the hier-
archical structure of tasks and sub-tasks that can be found in many exercise
domains. Labels can be attached to any sub-strategy (sub-task) for specializing
the feedback generated by that part of the strategy.

5.2. Exercise classes

An exercise class contains all the components that are needed for calculating
feedback. We will illustrate our design by presenting an exercise class for solving
quadratic equations such as x2− 4x+ 3 = 0. An exercise class has the following
components:

• A rewrite strategy that specifies how an exercise can be solved. Strategies
are constructed with the strategy combinators. The strategy for quadratic
equations contains a sub-strategy that searches for factors, and knows how
and when to apply the quadratic formula.

16



• Rules and common misconceptions described as buggy rules specify possi-
ble rewrite steps. Both types of rules, sound and buggy, can be applied to
a term, and are used for recognizing a step made by the student. The rule
set contains, by definition, all the rules that are used in the strategy. The
rule set can also have rules that do not appear in the strategy, for instance
because they are not supposed to be used. A buggy rule for polynomials is
the incorrect distribution of an exponent over addition, (x+y)2 6⇒ x2+y2.

• An equivalence relation for terms. With this relation we can test whether
or not two terms are semantically equivalent. For example, x2−4x+3 = 0,
(x − 3)(x − 1) = 0, and solution x = 3 or x = 1 are all equivalent.
Equivalence relations are reflexive, symmetric, and transitive.

• Predicates suitable and finished on terms. The predicate suitable identifies
which terms can be solved by the strategy of the exercise class. Suitable
terms can be used as exercises for students. For example, the exercise class
for solving quadratic equations can only handle equations of quadratic
polynomials, and does not accept polynomials of a higher degree. The
predicate finished, on the other hand, checks if a term is in a solved form
(accepted as a final solution). For quadratic equations we check that all
solutions have variable x on the left-hand side and a constant value on
the right-hand side. What is considered a solved form may vary across
exercise classes.

These components are the core of an exercise class: they have to be defined
for each exercise class. Each exercise class must satisfy two properties that test
the internal consistency of the components. Firstly, all non-buggy rules must
be sound with respect to the equivalence relation. In other words, the result
of applying a rule to a term should always be equivalent to the term itself.
Because the rewrite strategy is composed from rules and applies the rules in a
certain order, the strategy is also sound with respect to the equivalence relation.
Secondly, the rewrite strategy of an exercise class should solve the exercise for
all terms that satisfy the suitable predicate. In fact, the suitable and finished
predicates act as the pre- and post-condition for the strategy. The predicates
are a contract for the strategy [39], simplifying the correctness testing of an
exercise class.

Defining an equivalence relation may introduce a technical challenge for more
complex exercise classes, since equivalence of terms is undecidable for certain do-
mains. Examples of such domains are exercise classes that involve higher-degree
polynomials: in an exercise about computing derivatives, we may need equiva-
lence of polynomials. Other examples are exercises about rewriting context-free
grammars and equivalence in programming tutors. This problem can be circum-
vented in most cases: sometimes, the solution of an exercise is known a priori,
which makes it easier to test for equivalence, in other cases the student is not
expected (or allowed) to make rewrites that are not anticipated, resulting in a
more restricted interpretation of equivalence.

17



5.3. Granularity in exercises

In mathematics, there are many subtly different ways in which an expression
can be represented, e.g., x2 + 4x and 4x+ x2 are easily seen to be semantically
the same expression. Even though such expressions are not the same, from the
perspective of a student it is reasonable to expect that these expressions can
be interchanged. The domain of polynomials contains many such examples. In
most domain reasoners, the order of terms and the placing of parentheses in
a summation or multiplication is irrelevant (associativity and commutativity),
and idiosyncratic expressions such as x + (−5) are rewritten implicitly. These
variations should not have an effect on the reported feedback. Depending on
the level of the exercise and its intended audience, it might well be reasonable
to automatically perform simple calculations with constants, to simplify square
roots (e.g., replace

√
8 by 2

√
2), or to introduce exponents (x · x versus x2). In

a domain reasoner for adding fractions, however, it would be strange to perform
the addition automatically.

Which terms are considered the same, in the sense that they are interchange-
able, depends on the exercise class. We therefore introduce a second equivalence
relation as a component of an exercise class. Besides the equivalence relation for
semantic equivalence, we introduce the similarity relation for denoting syntac-
tic similarity of terms. By carefully considering which terms are similar to each
other and which are not, we are in fact selecting the granularity of the steps in
an exercise class.

The similar relation should interact with the other components of an exer-
cise class in a prescribed way: three more properties can be checked for each
instance of an exercise class. Firstly, the similarity relation is a subset of the
equivalence relation. In other words, terms that are similar must also be equiv-
alent. Secondly, the result of applying a rule to a term must not be similar to
the term itself. In this way, we can recognize the application of such a rule.
Violating this property means that the rule does not respect the granularity of
the exercise class. Thirdly, the predicates suitable and finished should give the
same result for similar terms.

5.4. More components of exercise classes

In this subsection we present the remaining components of an exercise class:
see Table 3 for an overview of all components. We need these components for
the communication between the domain reasoner and the tutoring system, and
for implementing the feedback services.

• Each exercise class has an identifier and a stability. A tutoring system uses
the identifier to select a certain exercise class in case a domain reasoner
supports more than a single exercise class.

• Terms can be serialized so that a domain reasoner can send terms to and
receive terms from a tutoring system. The tutoring system must under-
stand the format in which the terms are communicated since it typically
has to present the terms to the student (in a nice way), and because it

18



usually offers an editor for rewriting the term. Terms are serialized to
strings: each exercise class has a parser and a pretty-printer. To make in-
teroperating with a tutoring system as simple as possible, we also support
the OpenMath standard [12, 11] for representing mathematical objects in
XML.

• For stepwise solving an exercise, we often have to navigate through a
term and select a sub-term that is rewritten. Navigation requires knowl-
edge about the representation of a term. Because exercise classes abstract
over the representation of terms, this information has to be supplied as
a component of an exercise class. When we navigate over terms, we also
get position information for rewrite steps (‘which sub-term is changed?’),
and we can use traversal strategies, such as bottom-up and top-down, in
strategy specifications. Note that sub-terms can be of different types: for
example, the term x = 3 ∨ x = 1 contains a logical disjunction (. . . ∨ . . .),
two equations (x = 3 and x = 1), and four expressions (x, 3, x, and 1).
In a strongly-typed language for representing exercise classes, this implies
that we also get strategies and rules within an exercise class that operate
on terms of different types. We need some mechanism to lift strategies
and rules to other types.

• A rule ordering orders the rules of an exercise class. The ordering is used as
a tiebreaker when multiple next steps are computed by the allfirsts service,
but only one step is reported or used, for instance, for implementing the
onefirst feedback service. Worked-out solutions, generated by the solution
feedback service, only represent one possible solution path, and this path
is also selected by the rule ordering.

We consider generation of exercises, i.e., generating an initial term that a
student has to rewrite, not a primary task of a domain reasoner. Nevertheless,
it is valuable to be able to obtain exercises (initial terms) that belong to an
exercise class, for several reasons. We describe the components for producing
exercises and their motivation.

• Exercises are used as examples that demonstrate how the rewrite strategy
of an exercise class works. An exercise class has a fixed set of examples
that is used for generating documentation about the exercise class. These
documentation pages have proven to be an effective way for communicat-
ing rewriting strategies to domain experts such as teachers.

• Even though tutoring systems can use exercises from their own expert
knowledge module and submit these to a domain reasoner, many still use
the generate feedback service to request an exercise of a certain level. We
can specify a randomized exercise generator for an exercise class that is
used to implement the generate feedback service. If such a generator is
not present for an exercise class, then the feedback service returns one of
the examples instead.

19



equivalent? buggy rule?

similar?
expected by

strategy?
discover

rule?

Unknown mistake

Common mistake
with buggy rule

Small rewrite step,
not recognized

Rewrite step follows
expert strategy

Correct rewrite step,
but unknown

Correct step, but
detour from strategy

no no

no no no

yes

yesyes yes

yes

diagnose
feedback service

Figure 4: Structure of the diagnose feedback service

• We use a test generator for testing properties of exercise classes. When
testing an exercise class we also want to check corner cases, so the terms
generated for testing are not necessarily similar to the terms that are used
as student exercises. Properties are tested with examples and random
exercises if no test generator is defined for an exercise class.

Are there more components an exercise class should have? The components
described in this section are sufficient for the domain reasoners and feedback
services we have developed so far. In certain situations it is tempting to extend
the exercise classes with more information that is often specific for a particular
domain, risking a bloated interface for exercise classes. One such situation was
for the Ask-Elle programming tutor [23], where we needed to specify additional
properties for testing the correctness of a program. Such an extension is only
meaningful for programming tutors, hence we decided against extending the
interface. However, we do provide some backdoors in the actual implementation
to deal with such extensions. The presented interface for exercise classes is
coherent, it has non-trivial properties for testing consistency, and it is sufficient
for implementing the feedback services.

5.5. Implementing the feedback services

The feedback services of Section 3 can be implemented with the compo-
nents of an exercise class. The feedback services for computing a next step
are directly implemented by the empty and firsts functions that are defined on
rewrite strategies. Implementing the diagnose feedback service for analyzing a
student step is more involved because several components of an exercise class
are combined. The structure of the diagnose feedback service is presented in
Figure 4.

20



We first check whether or not the submitted student term is equivalent to
the term of the exercise. If not, the step made by the student is incorrect. The
buggy rules are used to search for a common mistake. When a buggy is found,
we can give a more detailed explanation why the step is incorrect. If the student
term is equivalent we then check for similarity. When the terms are similar, the
rewrite step is too small to be recognized. The student may have done some
simplifications or some simple calculations that are too detailed for the exercise
at hand. A learning environment can choose how to report this to the student. If
the terms are equivalent but not similar, we use the rewrite strategy to compare
the student step with the steps that are computed by strategy. If the term was
not expected by the strategy, then the student deviated from the solution paths
specified by the strategy. In this case, we can report that although the step is
correct, a different step was suggested by the domain reasoner. The feedback
message reported to the student for this diagnosis, however, should be phrased
with care because the student step could be a shortcut (compared to the rewrite
strategy) instead of a detour. For a correct step not expected by the strategy we
try to discover which rule was used. Depending on the kind of exercise, a correct
step with an unknown rule can be accepted or rejected: this can be decided by
the learning environment that uses the feedback services. In a domain reasoner
for practicing rewriting logical propositions, for example, it is reasonable that a
student may only use a limited set of rewrite rules.

The diagram in Figure 4 does not contain the finished predicate for checking
if the exercise is solved or not. All diagnoses for an equivalent step also contain
the finished information for the student term.

6. Evaluation

In the previous sections we have described the design of a framework for
developing domain reasoners that can be used by tutoring systems. So far,
we have focused on dealing with variation in tutoring, feedback services, and
exercise classes. The generic framework encourages the reuse of functionality
that is shared by the domain reasoners and it constrains the design of a domain
reasoner, making it easier to implement a reasoner for a new domain. In this
section we evaluate the proposed design. First, some measured response times
for feedback services are analyzed. Next, we discuss other non-functional quality
attributes.

6.1. Response times for feedback services

Calculating feedback and hints must not delay the student that is trying to
solve an exercise. The efficiency of the feedback services must therefore be within
reasonable bounds. In his book on usability engineering, Jakob Nielsen [42] re-
ports that 0.1 second is about the time limit for users to feel that the system
is reacting instantaneously. For the implemented domain reasoners we have
found that this limit imposes no constraints on the design. We have monitored

21



request number

quadratic equations 57,750
linear equations 35,422
higher-degree equations 19,217

exerciselist (meta-information) 2,441
other 8,204

total 123,034

Table 4: Number of requests by DME (grouped by exercise)

request number avg resp time (ms)
linear quadratic higher-degree

diagnose 84,645 20.2 31.1 48.9
onefirst 14,297 34.1 30.2 27.6
solution 8,017 22.0 30.6 56.1
allfirsts 3,077 19.2 17.1 22.8
rulelist 1,768 21.5 17.1 15.9
findbuggyrules 417 20.0 – –
rulesinfo 92 – 1291.6 –
examples 74 – 63.5 –
incorrect 2 – – –

total 112,389

Table 5: Response times of services for polynomial equations in DME

response times of the domain reasoners to requests from the learning environ-
ments, and found that the feedback services are efficient enough for their in-
tended use. The numbers support our own experience with the responsiveness
of the feedback offered in the various learning environments.

We will have a closer look at the response times for two specific cases: a
domain reasoner for polynomial equations used by the DME, and a domain
reasoner for reaching disjunctive normal form in our own logic tool.

Polynomial equations used by DME. All requests from the DME are stored in a
database. Most requests concern the three exercise classes for solving polynomial
equations. Table 4 presents the number of requests between April 2009 and
October 2013. It should be noted that these requests have been handled by
different versions (upgrades) of the software, and that the requests come from
students and teachers, but also from tool developers of DME.

Table 5 presents the average response times in milliseconds of the services
for DME requests about polynomial equations. Most requests use the diagnose
service, which is called at each step a user makes. Averages are only shown
for more than 50 requests per exercise class. Response times were measured on
the server-side, which means that the response times as perceived in DME were

22



request number avg resp time (ms)

diagnosetext 17,110 37.9
onefirsttext 8,287 37.9
generate 7,037 205.4
finished 1,718 28.4
solutiontext 1,081 73.1
solution 61 63.0

total 35,294

Table 6: Response times of services for the logic tool

higher. The domain reasoners offering the feedback services were running on a
virtual machine different from the server hosting DME: this setup is clearly not
optimal (but nevertheless appears to be sufficient for its purpose).

The table shows average response times that are all below 100 milliseconds,
except for the rulesinfo service. This service performs some additional compu-
tations to provide detailed meta-information about the rules. Meta-information
about the supported exercise classes (service exerciselist with 2441 requests)
takes 36.9ms on average. Observe that the services diagnose and solution take
longer for more complex domains: the rewrite strategy becomes more complex
for solving equations of a higher-degree, and more rewrite rules are involved (12
rules and 16 buggy rules for linear equations versus 32 rules and 31 buggy rules
for higher-degree equations).

Appendix B presents additional information about the response times re-
ported in Figure 5, including the distribution of the response times. A closer
inspection of the response times for the diagnose service reveals that 1480 re-
quests (1.75%) take longer than 100ms, and 76 requests (0.09%) take longer
than 500ms. These delays are not caused by the calculation needed for dealing
with the requests, but are most likely a result of the network connection.

Disjunctive normal form in the logic tool. Table 6 shows the response times for
requests from our own logic tool. These services use a feedback script for report-
ing textual feedback (see Figure 3). The logic tool uses the generate service for
generating random exercises for some level (easy, medium, or difficult). After
generating a randomized proposition, the number of steps needed for solving is
calculated using the rewrite strategy. If this number is not appropriate for the
level, another proposition is tried. This approach explains the response time for
the generate service that might be higher than expected.

Monitoring response times is a good guideline for the feasibility of new feed-
back services, as well as outlining the limitations of existing services. For exam-
ple, we could add a search depth to the diagnose feedback service for classifying
more intermediate answers by searching for combinations of rules. In practice,
however, the search space quickly becomes too large to explore efficiently. This
search is part of the plan recognition problem, which is known to be computa-
tionally very difficult [2].

23



6.2. Non-functional quality attributes

We now discuss other non-functional quality attributes of the design for
providing feedback services: scalability, deployability, testability, traceability,
and interoperability.

Scalability and deployability. Domain reasoners must be scalable and be able
to handle many users simultaneously. Just the DME, one of the clients of our
domain reasoners, has over 10,000 yearly users. Designs based on the state-
less client-server style are known to scale well [21]. Another advantage of the
client-server style is that learning environments can use local copies of the do-
main reasoners to remove the dependency on externally hosted services. DME
and Math-Bridge successfully deployed our services on servers in the USA and
Germany, respectively.

Since we are hosting the domain reasoners on a server, it is easy to deploy a
new version of a domain reasoner beside the older version. This is useful when
a domain reasoner is under development and a strategy has to be refined to
incorporate suggestions by domain experts.

Testability. Writing high-quality software without defects is an important re-
quirement in many situations. In educational software, where users are supposed
to learn from using the software, it is especially important that the reported
feedback is correct and helpful. There are many different approaches to de-
velop software with high internal quality. We discuss the contributions of the
framework to the internal quality of the domain reasoners.

To start with, the most error-prone parts of a domain reasoner are handled
by the framework and are thus reused for all domain reasoners, such as the im-
plementation of the feedback services and the low-level request-reply messages,
in different formats, that are exchanged between the client and the server. The
central component of an exercise class is the rewrite strategy, from which feed-
back is calculated automatically. The semantics of the strategy language has
been formalized [31] and this formalization helps to get the calculations based
on a strategy correct. In Section 5 we have formulated a number of proper-
ties for exercise classes. These properties help to test the consistency of the
implemented components for an exercise class.

Traceability. Every request-reply pair that is processed by our domain reason-
ers is stored in a database. With this data we can analyze student behavior,
for instance to determine what kind of feedback is reported, how effective the
feedback is, or to search for common mistakes and to formulate buggy rules
for these mistakes. For example, Lodder et al. [37] have reported on using the
information in request-reply pairs for improving the logic tool. In our own tu-
tors, we include an optional student-id in the request-reply pairs so that we
can later single out sessions of individual students. The stored data is used for
analyzing the frequency and volume of requests (from a specific client, or the
overall volume), and for monitoring the response times of the feedback services.
A stateless client-server style makes it easy to store all interactions for further
analysis.

24



Interoperability. The feedback services are light-weight and easy to use. Re-
quests and replies are based on popular standards, including OpenMath for
representing mathematical objects. This makes it relatively easy for learning
environments to start using our feedback services, and indeed, several external
learning environments now have a connection with our domain reasoners.

7. Lessons learned

We have been working on developing domain reasoners for more than six
years1. The domain reasoners and the design of the feedback services have
evolved from a research prototype into the current state, in which the domain
reasoners provide feedback to several learning environments for a variety of
courses. In this section we document the lessons learned. We reflect on some of
our design decisions, describe limitations, and explore alternatives.

7.1. Shared knowledge

Ideally, the learning environment (client) and domain reasoner (server) are
loosely coupled and hide most of their details for the other. Learning envi-
ronments should be largely unaffected by changes in the domain reasoner. In
practice, however, both systems must share a considerable amount of knowledge
about the details of feedback services, exercise classes, rewrite rules, etc. For
example, the abstract representations of the rewrite rules are introduced by the
domain reasoner and must be known by the learning environment for reporting
feedback to students. Modifying the set of rewrite rules in a domain reasoner
thus affects the quality of feedback in a learning environment. For domain rea-
soners that are actively used by (multiple) learning environments, backward
compatibility of the provided feedback services and exercise classes becomes an
important consideration.

A simple solution to improve the stability of feedback services and exercise
classes is to allow different versions of a domain reasoner to be deployed for
different learning environments. This provides more control when upgrading
certain parts of a domain reasoner for one environment while leaving the domain
reasoner untouched for another environment (e.g., because it is used in the
class room). Alternatively, we can construct dedicated wrappers that translate
requests using an outdated knowledge representation into the latest knowledge
representation, and similarly for the responses. One lesson learned is that the
feedback services should be designed with forward and backward compatibility
in mind where possible.

Shared knowledge between learning environments and domain reasoners can-
not be avoided for tasks that are, figuratively speaking, at the boundary of the
learning environment and the domain reasoner component, or for tasks that can
be done at either side. The exact formulation of textual feedback messages for

1See http://ideas.cs.uu.nl/www/ for an overview of our work on domain reasoners, and
http://hackage.haskell.org/package/ideas for the software package.

25



a certain diagnosis, for example, can be done by the learning environment or
by the domain reasoner. Assigning the responsibility for feedback texts to the
learning environment has the advantage that feedback messages can be better
tailored for their intended use in tutoring. Some learning environments have
extended their authoring environment to edit the feedback messages connected
to rewrite rules. The authoring environment of the DME also lets teachers cus-
tomize how much feedback is available for a particular exercise (see Chapter 5
in [5]). A disadvantage is that detailed information about the rewrite rules and
strategies is required. It must be clear which rules and sub-strategies are used
in an exercise class, which is exactly why we have defined feedback services that
provide meta-information about an exercise class. The feedback scripts, shown
in Figure 3, are an alternative solution with server-side feedback texts.

Some advanced learning environments maintain a student model to track
the progress of a student and to adapt the system to the level of the student. A
domain reasoner computes detailed information about correct and incorrect ap-
plications of rewrite rules and sub-tasks, and this information is highly relevant
for updating the student model. Updating the student model with information
from the domain reasoner requires a shared understanding of the exercise do-
main. Information in the student model could be used for exercise generation
or selection. If this task is performed by the domain reasoner, then it must have
access to the student model.

For all our exercise classes, rewrite strategies, and rules we automatically
generate extensive documentation to make it easier for developers of learning
environments and content authors to see which concepts are available. For
mathematical domain reasoners we started using a standard taxonomy [45] to
classify the exercise classes, rewrite strategies, and rules. Math-Bridge has used
this taxonomy to extend the exercises offered by our domain reasoners with
meta-information used by Math-Bridge’s student model.

7.2. REST architectural style

The Representational State Transfer (REST) architectural style, first de-
scribed by Fielding and Taylor [21], introduces a set of principles that guide
the design of web services, or, in our case, the feedback services provided by
domain reasoners. The REST architectural style is based on a stateless client-
server architecture, in which client and server communicate by sending request
and response messages. The key concept of REST is a resource, which can be
any kind of potentially useful information. The resources that can be identified
in our domain reasoners are the parts that model domain-specific knowledge,
including exercise classes, rewrite strategies, and rewrite rules. We briefly dis-
cuss how the REST principles can be used to further improve the design of the
feedback services.

A key principle of the REST style is to assign identifiers to resources that
are relevant. The default way for accessing a resource is by way of Uniform
Resource Identifiers (URI). In the current design this principle is followed only
to a certain extent, and URIs are not used to their full potential. At the moment,

26



clients are exposed to the underlying technology for handling requests, namely
CGI binaries.

Another principle is that resources can have multiple representations, in-
cluding representations that are targeted at humans (e.g., HTML) instead of
being easy to process by a machine. This principle could potentially unify the
feedback services and the documentation that is generated for the resources.
A final REST principle suggests to link resources together so that it becomes
easier to explore the available resources, and to use hypermedia as the engine
of application state [20]. Addressing the REST principles in the design of our
domain reasoners is future work.

7.3. Configuration and adaptability

A final consideration in the design of domain reasoners is how easy it is to
adapt or configure a domain reasoner. From discussions with teacher, developers
of learning environments, and students we have concluded that a ‘one size fits
all’ approach does not work well for domain reasoners. These groups of users
have different requirements about customizing exercises. A teacher, for instance,
may want to influence which rewrite rules may be used (and which not), which
approach should be taken for solving an exercise, how fractions are presented
(e.g., 2 1

3 versus 7
3 ), what the granularity of an exercise is, and which terms are

in a solved form (e.g., is the improper fraction 7
3 accepted as a solution or not).

Hence, it should be possible to adapt domain reasoners to specific needs [29]
without changing the software.

Mathematical learning environments usually offer topics incrementally, build-
ing upon prior knowledge. Following Beeson’s principles [4] of cognitive fidelity
(the software solves the problem as a student does) and glassbox computation
(you can see how the software solves the problem), domain reasoners should be
organized with the same incremental and layered organization. We are follow-
ing such an organization for the concepts that model knowledge, such as rewrite
strategies and rules. It should be possible to inspect the internal structure of
these concepts, and their relation to other concepts.

At the moment, our domain reasoners have limited mechanisms for con-
figuration and adaptation. For example, we have proposed a simple XML lan-
guage for configuring rewrite strategies [20]. Nevertheless, it requires specialized
knowledge to define a domain reasoner, or to modify an existing one. By nature,
strategies are often complex artifacts.

8. Related work

Since developing a learning environment such as an intelligent tutoring sys-
tem is a major undertaking, developing a software architecture for such a sys-
tem is important. Nwana [44] gives a nice overview of the work in the 1980s
on developing an architecture for intelligent tutoring systems. The resulting
architecture, which divides an intelligent tutoring systems into four conceptual
components, is still used today, see for example the recent Advances on Intel-
ligent Tutoring Systems [43]. The architecture is agnostic of the approach an

27



intelligent tutoring system takes to representing expert knowledge: both model-
tracing tutors [2] and constraint-based tutors [40] are described using the same
architecture. The architecture has been used to develop stand-alone intelligent
tutoring systems as well as web-based solutions [1]. This paper deals with an ar-
chitecture for one of the components of intelligent tutoring systems, namely the
expert knowledge module. Our current implementation of this architecture uses
a model-tracing approach to calculate feedback, but using a constraint-based ap-
proach to calculate feedback is also possible. We expect that observations from
previous comparisons [34], such as that it is often easier to develop constraint-
based tutors, and that model-tracing makes it easier to guide a student towards
a goal, apply to the development of feedback webservices too.

Brusilovsky [8] and Ritter, Koedinger, and colleagues [48, 47] introduce
an integration-oriented or component-based architecture for intelligent tutor-
ing systems. The main goal of these architectures is to use tutoring components
in other software, or to compose intelligent tutoring systems out of components.
The tutor agent described by Ritter and Koedinger performs the services our
webservices offer. Our approach can be viewed as offering the various actions
a tutor agent performs as webservices. For the same reason why it is useful to
introduce a component-based architecture for an intelligent tutoring system, it
is useful to describe the various actions of a tutor agent as separate webservices.

Several authors have discussed the advantages of using web-based systems
for intelligent tutoring [10, 46]. Patvarczki et al. [46] discuss the performance
of web-based intelligent tutoring systems, in particular the time it takes to
create a page for a student. Our work provides performance information about
components of these pages.

Goguadze designs a query language and a set of domain reasoning queries
to be used for diagnosing interactions of students working on interactive exer-
cises in a learning environment [26, 25, 24]. The queries are easily translated
in our webservices, and our webservices can be viewed as a webservice based
implementation of the query language.

Zinn [56, 57] also develops domain reasoners. He doesn’t discuss the ar-
chitecture of domain reasoners, or separate the various kinds of feedback into
separate services.

9. Conclusions

We have shown how domain reasoners can be developed that offer feedback
services for stepwise exercise. By using these services, learning environments can
better support students solving stepwise exercises. We have related the feedback
services to the types of feedback discussed in the literature. A domain reasoner
offers functionality to obtain feedback about a particular class of exercises. For
developing a domain reasoner, we introduced the concept of an exercise class,
which is a record with several components that are necessary for calculating
feedback, such as equivalence of two terms, and suitability of an exercise. The
most important among these components is a rewrite strategy that describes
how an exercise in the class of exercises is solved. The strategy is used to

28



diagnose a student step, and to calculate a next step or a complete solution for
an exercise. We have discussed the non-functional quality attributes of domain
reasoners, and shown how they are implemented such that they are efficient,
scalable, testable, etc.

In the future we want to experiment with domain reasoners for other do-
mains. We are working on a domain reasoner for imperative programming, simi-
lar to our domain reasoner for functional programming. An interesting problem
in programming tutors is ‘blaming’: which part of the program is responsible for
an error. We want to use property checking and contract checking to improve
the feedback in programming tutors. We are also developing a domain reasoner
for a serious game for practicing communication skills for pharmacists, doctors,
veterinarians, and psychologists. Furthermore, we are investigating the use of
domain reasoners for implementing the AI for real-time video games [28]. On a
more conceptual level, we are looking at how we can offer a highly expressive
language for formulating rewrite strategies, yet keep efficient execution of our
services.

Acknowledgements. Alex Gerdes has helped in developing the services and soft-
ware discussed in this paper. Many students contributed to parts of our domain
reasoners. The developers of the learning environments that use our feedback
services have provided valuable feedback about the form and content of our ser-
vices. The anonymous reviewers helped improving the content and presentation
of the paper.

References

[1] Sherman R. Alpert, Mark K. Singley, and Peter G. Fairweather. Deploying
intelligent tutors on the web: An architecture and an example. Interna-
tional Journal of Artificial Intelligence in Education, 10:183–197, 1999.

[2] John R. Anderson, Albert T. Corbett, Kenneth R. Koedinger, and Ray
Pelletier. Cognitive tutors: lessons learned. The Journal of the Learning
Sciences, 4(2):167–207, 1995.

[3] Michael J. Beeson. A computerized environment for learning algebra,
trigonometry, and calculus. International Journal of Artificial Intelligence
in Education, 1:65–76, 1990.

[4] Michael J. Beeson. Design principles of MathPert: Software to support
education in algebra and calculus. In N. Kajler, editor, Computer-Human
Interaction in Symbolic Computation, pages 89–115. Springer-Verlag, 1998.

[5] Christian Bokhove. Use of ICT for acquiring, practicing and assessing
algebraic expertise. PhD thesis, Utrecht University, 2011.

[6] Russell Bradford, James H. Davenport, and Christopher J. Sangwin. A
comparison of equality in computer algebra and correctness in mathemat-
ical pedagogy. In Jacques Carette, Lucas Dixon, Claudio Sacerdoti Coen,

29



and Stephen M. Watt, editors, Intelligent Computer Mathematics, volume
5625 of Lecture Notes in Computer Science, pages 75–89. Springer-Verlag,
2009.

[7] Peter Brusilovsky. The construction and application of student models in
intelligent tutoring systems. Journal of Computer and Systems Sciences
International, 32(1), 1994.

[8] Peter Brusilovsky. Intelligent learning environments for programming: The
case for integration and adaption. In J. Greer, editor, Proceedings of AI-ED
’95: the World Conference on Artificial Intelligence in Education, pages 1–
7, 1995.

[9] Peter Brusilovsky. Adaptive hypermedia: From intelligent tutoring systems
to web-based education. In Proceedings of ITS ’00: the 5th International
Conference on Intelligent Tutoring Systems, pages 1–7. Springer-Verlag,
2000.

[10] Peter Brusilovsky and Christoph Peylo. Adaptive and intelligent web-based
educational systems. International Journal of Artificial Intelligence in Ed-
ucation, 13(2-4):159–172, 2003.

[11] Olga Caprotti, D. P. Carlisle, and Arjeh Cohen (Eds). The OpenMath
Standard. OpenMath Consortium, August 1999.

[12] Olga Caprotti, Arjeh Cohen, Hans Cuypers, and Hans Sterk. OpenMath
technology for interactive mathematical documents. In Jonathan Bor-
wein, Maria H. Morales, Konrad Polthier, and José F. Rodrigues, editors,
Multimedia Tools for Communicating Mathematics, pages 51–66. Springer-
Verlag, 2002.

[13] Hamid Chaachoua, Jean-François Nicaud, Alain Bronner, and De-
nis Bouhineau. APLUSIX, a learning environment for algebra,
actual use and benefits. In Mogens Niss, editor, ICME 10:
10th International Congress on Mathematical Education, 2004. Re-
trieved from http://hal.archives-ouvertes.fr/docs/00/19/03/93/

PDF/Chaachoua-h-2004.pdf, April 2013.

[14] Arjeh Cohen, Hans Cuypers, Dorina Jibetean, and Mark Spanbroek. In-
teractive learning and mathematical calculus. In Michael Kohlhase, edi-
tor, Mathematical Knowledge Management, 4th International Conference,
MKM 2005, Bremen, Germany, July 15-17, 2005, Revised Selected Pa-
pers, volume 3863 of Lecture Notes in Computer Science, pages 330–345.
Springer-Verlag, 2005.

[15] Arjeh Cohen, Hans Cuypers, Ernesto Reinaldo Barreiro, and Hans Sterk.
Interactive mathematical documents on the web. In Michael Joswig and
Nobuki Takayama, editors, Algebra, Geometry and Software Systems, pages
289–306. Springer-Verlag, 2003.

30



[16] European Commission. Opening up education: Innovative teaching and
learning for all through new technologies and open educational resources.
Communication from the commission to the European parliament, the
council, the European economic and social committee and the committee
of the regions, September 2013.

[17] Albert T. Corbett, Kenneth R. Koedinger, and John R. Anderson. Intel-
ligent tutoring systems. In M. Helander, T. K. Landauer, and P. Prahu,
editors, Handbook of Human-Computer Interaction, Second Edition, pages
849–874. Elsevier Science, 1997.

[18] Hans Cuypers, Jan-Willem Knopper, and Hans J.M. Sterk. MESS: the
MathDox Exercise System. In e-Proceedings of the 6th JEM Workshop,
pages 1–12, 2009.

[19] Michel Doorman, Paul Drijvers, Peter Boon, Sjef van Gisbergen, and Koeno
Gravemeijer. Design and implementation of a computer supported learning
environment for mathematics. In Earli 2009 SIG20 invited Symposium
Issues in designing and implementing computer supported inquiry learning
environments, 2009.

[20] Roy T. Fielding. Architectural styles and the design of network-based soft-
ware architectures. PhD thesis, University of California, Irvine, 2000.

[21] Roy T. Fielding and Richard N. Taylor. Principled design of the modern
web architecture. ACM Trans. Internet Technol., 2(2):115–150, 2002.

[22] Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and Sylvia Stuurman. Feed-
back services for exercise assistants. In D. Remenyi, editor, ECEL, pages
402–410. Acad. Publ. Ltd., 2008.

[23] Alex Gerdes, Johan Jeuring, and Bastiaan Heeren. An interactive func-
tional programming tutor. In T. Lapidot, J. Gal-Ezer, M.E. Caspersen,
and O. Hazzan, editors, Proceedings of ITICSE 2012: the 17th Annual
Conference on Innovation and Technology in Computer Science Education,
pages 250–255. ACM Press, 2012.

[24] George Goguadze. Representation for interactive exercises. In Jacques
Carette, Lucas Dixon, Claudio Sacerdoti Coen, and Stephen M. Watt,
editors, Intelligent Computer Mathematics, 16th Symposium, Calculemus
2009, 8th International Conference, MKM 2009, Held as Part of CICM
2009, Grand Bend, Canada, July 6-12, 2009. Proceedings, volume 5625 of
Lecture Notes in Computer Science, pages 294–309. Springer-Verlag, 2009.

[25] George Goguadze. ActiveMath - Generation and Reuse of Interactive Ex-
ercises using Domain Reasoners and Automated Tutorial Strategies. PhD
thesis, Universität des Saarlandes, Germany, May 2011.

31



[26] George Goguadze and Erica Melis. Combining evaluative and generative
diagnosis in ActiveMath. In Proceedings of the 2009 conference on Ar-
tificial Intelligence in Education: Building Learning Systems that Care:
From Knowledge Representation to Affective Modelling, pages 668–670. IOS
Press, 2009.

[27] Barbara Grabowski, Susanne Gäng, Jörg” Herter, , and Thomas Köppen.
Mathcoach and Laplacescript: Advanced exercise programming for mathe-
matics with dynamic help generation. In Proceedings of the ICL2005 Work-
shop, at International Conference on Interactive Computer Aided Learning
ICL, Villach, Austria, 2005.

[28] Tom Hastjarjanto, Johan Jeuring, and Sean Leather. A DSL for describing
the artificial intelligence in real-time video games. In Proceedings GAS
2013: the 3rd International Workshop on Games and Software Engineering,
pages 8–14. IEEE, 2013.

[29] Bastiaan Heeren and Johan Jeuring. Adapting mathematical domain rea-
soners. In Proceedings of MKM 2010: the 9th International Conference on
Mathematical Knowledge Management, volume 6167 of LNAI, pages 315–
330. Springer-Verlag, 2010.

[30] Bastiaan Heeren and Johan Jeuring. Interleaving strategies. In Proceedings
of MKM 2011: the 10th International Conference on Mathematical Knowl-
edge Management, volume 6824 of LNAI, pages 196–211. Springer-Verlag,
2011.

[31] Bastiaan Heeren, Johan Jeuring, and Alex Gerdes. Specifying rewrite
strategies for interactive exercises. Mathematics in Computer Science,
3(3):349–370, 2010.

[32] Bastiaan Heeren, Johan Jeuring, Arthur van Leeuwen, and Alex Gerdes.
Specifying strategies for exercises. In Proceedings of MKM 2008: the 7th In-
ternational Conference on Mathematical Knowledge Management, volume
5144 of LNAI, pages 430–445. Springer-Verlag, 2008.

[33] Paul Hudak. Building domain-specific embedded languages. ACM Comput.
Surv., 28(4es), 1996.

[34] Viswanathan Kodaganallur, Rob R. Weitz, and David Rosenthal. A
comparison of model-tracing and constraint-based intelligent tutoring
paradigms. International Journal of Artificial Intelligence in Education,
15(2):117–144, 2005.

[35] Josje Lodder and Bastiaan Heeren. A teaching tool for proving equiva-
lences between logical formulae. In Patrick Blackburn, Hans Ditmarsch,
Mara Manzano, and Fernando Soler-Toscano, editors, Tools for Teaching
Logic, volume 6680 of Lecture Notes in Computer Science, pages 154–161.
Springer-Verlag, 2011.

32



[36] Josje Lodder, Johan Jeuring, and Harrie Passier. An interactive tool for
manipulating logical formulae. In M. Manzano, B. Pérez Lancho, and
A. Gil, editors, Proceedings of the Second International Congress on Tools
for Teaching Logic, 2006.

[37] Josje Lodder, Harrie Passier, and Sylvia Stuurman. Using IDEAS in teach-
ing logic, lessons learned. In International Conference on Computer Science
and Software Engineering, volume 5, pages 553–556, 2008.

[38] Erica Melis and Jörg Siekmann. ActiveMath: An intelligent tutoring sys-
tem for mathematics. In ICAISC, volume 3070 of Lecture Notes in Com-
puter Science, pages 91–101. Springer-Verlag, 2004.

[39] Bertrand Meyer. Design by contract. In D. Mandrioli and B. Meyer, editors,
Advances in Object-Oriented Software Engineering, pages 1–50. Prentice
Hall, Englewood Cliffs, N.J., 1991.

[40] Antonija Mitrovic, Brent Martin, and Pramuditha Suraweera. Intelligent
tutors for all: The constraint-based approach. IEEE Intelligent Systems,
22(4):38–45, 2007.

[41] Susanne Narciss. Feedback strategies for interactive learning tasks. In J.M.
Spector, M.D. Merrill, J.J.G. van Merriënboer, and M.P. Driscoll, editors,
Handbook of Research on Educational Communications and Technology.
Mahaw, NJ: Lawrence Erlbaum Associates, 2008.

[42] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc.,
1993.

[43] Roger Nkambou, Jacqueline Bourdeau, and Riichiro Mizoguchi, editors.
Advances in Intelligent Tutoring Systems, volume 308 of Studies in Com-
putational Intelligence. Springer-Verlag, 2010.

[44] Hyacinth S. Nwana. Intelligent tutoring systems: an overview. Artificial
Intelligence Review, 4(4):251–277, 1990.

[45] Mathematical Sciences Conference Group on Digital Educational Re-
sources. Core subject taxonomy for mathematical sciences education, april
29, 2005. Retrieved from http://people.uncw.edu/hermanr/MathTax/.

[46] Jozsef Patvarczki, Shane F. Almeida, Joseph E. Beck, and Neil T. Hef-
fernan. Lessons learned from scaling up a web-based intelligent tutoring
system. In Proceedings of ITS ’08: the 9th international conference on
Intelligent Tutoring Systems, pages 766–770. Springer-Verlag, 2008.

[47] Steven Ritter, Peter Brusilovsky, and Olga Medvedeva. Creating more
versatile intelligent learning environments with a component-based archi-
tecture. In Proceedings of ITS ’98: the 4th International Conference on
Intelligent Tutoring Systems, pages 554–563. Springer-Verlag, 1998.

33



[48] Steven Ritter and Kennth R. Koedinger. An architecture for plug-in tutor
agents. International Journal of Artificial Intelligence in Education, 7(3-
4):315–347, 1996.

[49] Chris Sangwin. Computer Aided Assessment of Mathematics. Oxford Uni-
versity Press, 2013.

[50] Valerie J. Shute. Focus on formative feedback. Review of Educational
Research, 78(1):153–189, 2008.

[51] Valerie J. Shute and Joseph Psotka. Intelligent tutoring systems: Past,
present and future. In D. Jonassen, editor, Handbook of Research on Edu-
cational Communications and Technology. Scholastic Publications, 1996.

[52] Sergey A. Sosnovsky, Michael Dietrich, Eric Andrès, George Goguadze,
and Stefan Winterstein. Math-Bridge: Adaptive platform for multilin-
gual mathematics courses. In Andrew Ravenscroft, Stefanie N. Lindstaedt,
Carlos Delgado Kloos, and Davinia Hernández Leo, editors, 21st Century
Learning for 21st Century Skills, volume 7563 of Lecture Notes in Computer
Science, pages 495–500. Springer-Verlag, 2012.

[53] Tarja Susi, Mikael Johannesson, and Per Backlund. Serious games – an
overview. Technical Report HS-IKI-TR-07-001, University of Skövde, 2007.

[54] Kurt VanLehn. The behavior of tutoring systems. International Journal
of Artificial Intelligence in Education, 16(3):227–265, 2006.

[55] Kurt VanLehn, Collin Lynch, Kay Schulze, Joel A. Shapiro, Robert Shelby,
Linwood Taylor, Don Treacy, Anders Weinstein, and Mary Wintersgill. The
Andes physics tutoring system: Lessons learned. International Journal on
Artificial Intelligence in Education, 15:147–204, 2005.

[56] Claus Zinn. Supporting tutorial feedback to student help requests and
errors in symbolic differentiation. In M. Ikeda, K. Ashley, and T.-W. Chan,
editors, ITS 2006, volume 4053 of Lecture Notes in Computer Science,
pages 349–359. Springer-Verlag, 2006.

[57] Claus Zinn. Algorithmic debugging to support cognitive diagnosis in tu-
toring systems. In Proceedings of the 34th Annual German conference on
Advances in artificial intelligence, KI’11, pages 357–368. Springer-Verlag,
2011.

Appendix A. Interactions with a domain reasoner

We illustrate how a learning environment and a domain reasoner interact by
showing a typical sequence of request-reply pairs that are represented in XML.
Suppose we want to practice solving a quadratic equation of medium difficulty
in some learning environment. We start by requesting a new exercise by using
the generate feedback service. In this example, terms will be encoded as strings.

34



<request service="generate" exerciseid="math.quadreq"

difficulty="medium" encoding="string"/>

From the domain reasoner, we get back the equation 2(x2 − 3) = 12.

<reply result="ok" version="1.1 (5900)">

<state>

<prefix>[]</prefix>

<expr>2*(x^2-3) == 12</expr>

</state>

</reply>

The prefix that is part of the state corresponds to the position in the rewrite
strategy. The state will be used in the next request to the domain reasoner.
Suppose that we want to rewrite the equation into x2 − 3 = 6 (dividing both
sides by 2). To check this step, both the old state and the new equation are
submitted to the diagnose service.

<request service="diagnose" exerciseid="math.quadreq" encoding="string">

<state>

<prefix>[]</prefix>

<expr>2*(x^2-3) == 12</expr>

</state>

<expr>x^2-3 == 6</expr>

</request>

<reply result="ok" version="1.1 (5900)">

<expected ready="false" ruleid="algebra.equations.coverup.times">

<state>

<prefix>[13,0,1,1,0,0,1,1,1,0]</prefix>

<expr>x^2-3 == 6</expr>

</state>

</expected>

</reply>

The reply message indicates that the step is correct, and that the step was
expected by the rewrite strategy. The reply gives us an abstract representation
of the rule that was used (the identifier coverup.times) and returns a new
state, which is not yet finished (the ready attribute). The state is used for the
next request, where we rewrite the equation into x2 = 3 and diagnose this step.

<request service="diagnose" exerciseid="math.quadreq" encoding="string">

<state>

<prefix>[13,0,1,1,0,0,1,1,1,0]</prefix>

<expr>x^2-3 == 6</expr>

</state>

<expr>x^2 == 3</expr>

</request>

<reply result="ok" version="1.1 (5900)">

<buggy ruleid="algebra.equations.buggy.plus"/>

</reply>

35



This step is not correct, as witnessed by the buggy-tag in the reply.2 The
buggy rule algebra.equations.buggy.plus corresponds to the common error
of adding a term to one side of an equation, but subtracting the term on the
other side. Based on this identifier, the learning environment can present a
detailed description of the mistake to the learner. If this description is not
sufficient for the learner to repair the mistake, all possible next steps can be
requested with the allfirsts service.

<request service="allfirsts" exerciseid="math.quadreq" encoding="string">

<state>

<prefix>[13,0,1,1,0,0,1,1,1,0]</prefix>

<expr>x^2-3 == 6</expr>

</state>

</request>

<reply result="ok" version="1.1 (5900)">

<list>

<elem ruleid="algebra.equations.coverup.onevar.minus-left" location="[]">

<state>

<prefix>[25,0,1,1,0,0,1,1,1,0,0,1,1,0,0,1,0]</prefix>

<expr>x^2 == 9</expr>

</state>

</elem>

</list>

</reply>

The service returns one possible way to continue, namely by rewriting the equa-
tion into x2 = 9 with a so-called minus-left cover-up rule. Instead of requesting
a step, we could also ask for a worked-out solution. We use the service solution,
which is called derivation in the current implementation.

<request service="derivation" exerciseid="math.quadreq" encoding="string">

<state>

<prefix>[13,0,1,1,0,0,1,1,1,0]</prefix>

<expr>x^2-3 == 6</expr>

</state>

</request>

<reply result="ok" version="1.1 (5900)">

<list>

<elem ruleid="algebra.equations.coverup.onevar.minus-left">

<expr>x^2 == 9</expr>

</elem>

<elem ruleid="algebra.equations.coverup.power">

<expr>x == 3 or x == -3</expr>

</elem>

</list>

</reply>

The worked-out solution in the reply shows the two steps that are needed to
complete the exercise.

2The result="ok" attribute only means that the request was handled correctly.

36



request number avg σ Q1 Q2 Q3

linear equations
– diagnose 27,005 20.2 159.5 11.4 13.6 16.7
– solution 3,504 22.0 47.0 9.1 12.2 15.4
– onefirst 2,617 34.1 200.2 9.9 12.0 15.5
– allfirsts 1,332 19.2 68.1 8.9 10.9 12.9
– rulelist 574 21.5 59.1 6.0 7.2 8.1
– findbuggyrules 382 20.0 33.4 10.5 14.5 21.5

quadratic equations
– diagnose 44,432 31.1 210.9 14.8 18.4 26.6
– onefirst 7,028 30.2 50.4 12.4 16.3 39.6
– solution 3,705 30.6 47.9 12.0 15.5 21.9
– allfirsts 1,590 17.1 28.3 10.3 12.6 15.6
– rulelist 801 17.1 64.7 6.7 9.0 9.9
– rulesinfo 92 1,291.6 915.9 228.2 1,662.0 1,879.2
– examples 66 63.5 43.1 41.3 47.0 59.0

higher-degree equations
– diagnose 13,208 48.9 37.9 32.4 41.2 52.7
– onefirst 4,652 27.6 85.1 16.4 22.7 26.5
– solution 808 56.1 56.6 20.6 40.4 78.0
– rulelist 393 15.9 50.3 8.6 9.2 10.0
– allfirsts 155 22.8 41.2 11.2 13.7 17.4

Table B.7: Response times of services for polynomial equations in DME (grouped by exer-
cise). Average (avg), standard deviation (σ), and quartiles (Q1, Q2, and Q3) are given in
milliseconds.

Appendix B. Response times of services

Table B.7 presents information about the distribution of the response times
of services for requests from the DME. The data is grouped by exercise class,
and was collected between April 2009 and October 2013. The numbers show
that there is a considerable amount of variation in the measured response times:
in many cases the average response time is greater than the third quartile, which
indicates that there are a number of outliers in the data set. A more controlled
experiment over a shorter period with a selected group of students is needed for
measuring precise response times. Nevertheless, we feel that the data included
in this paper provides an impression of the performance characteristics of our
services. The anonymized data sets of response times for requests from the
DME and the logic tool are available and can be downloaded from the authors’
homepages.

37


