

Analyzing the Applicability of a Combinatorial
Testing Tool in an Industrial Environment

Nelly Condori-Fernández

Tanja Vos

Peter M. Kruse

Etienne Brosse

Alessandra Bagnato

Technical Report UU-CS-2014-008

May 2014

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

1

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht

The Netherlands

Contextual

Conceptual

Logical

Physical

B
u

s
in

e
s
s

In
fo

rm
a

ti
o

n

A
p

p
lic

a
ti
o

n
s

T
e
c
h

n
o

lo
g

y
in

fr
a
s
tr

u
c
tu

re

2

Analyzing the Applicability of a Combinatorial Testing
Tool in an Industrial Environment

Nelly Condori-Fernández,
Tanja Vos

ProS Research Center,
Universitat Politècnica de València

Camino vera S/N, Valencia
 Spain

 {nelly, tvos}@pros.upv.es

Peter M. Kruse
Berner & Mattner Systemtechnik

GmbH
Gutenbergstr. 15
Berlin, Germany

peter.kruse@berner-
mattner.com

Etienne Brosse, Alessandra
Bagnato

SOFTEAM R&D Department
8 Parc Ariane Guyancourt, France

{alessandra.bagnato,
etienne.brosse}@softeam.fr

ABSTRACT

— Numerous combinatorial testing tools are available for

generating test cases. However, many of them are never used in

practice. One of the reasons is the lack of empirical studies that

involve human subjects applying testing techniques. This paper

aims to investigate the applicability of a combinatorial testing tool

in the company SOFTEAM. A case study is designed and

conducted within the development team responsible for a new

product. The participants consist of 3 practitioners from the

company. The applicability of the tool has been examined in

terms of efficiency, effectiveness and learning effort.

Categories and Subject Descriptors

D.2.5 [Testing and Debugging]: Testing tools. H.3.4 [Systems

and Software]: Performance evaluation (efficiency and

effectiveness)

General Terms

Measurement, Performance, Human Factors, Verification.

Keywords

combinatorial testing, classification tree method, industrial case

study, effectiveness, efficiency, learning effort.

1. INTRODUCTION
Although laboratory experiments have shown that Combinatorial

Testing (CT) can be a very efficient and effective strategy for

testing software systems [1], industrial take-up is still low [2]. To

improve this take-up, we need to execute more industrial case

studies that evaluate combinatorial techniques and tools within

real industrial environments, with real people and real systems

[3],[4]. We need them as a vehicle for technology transfer, as well

as to obtain general guidelines on the applicability of different

testing techniques in different settings, and understand the current

needs of industry to plan future research directions.

Many papers report on the experience of applying CT tools

to various types of applications [4]. However, although these

works concentrate on testing industrial systems (e.g. [5]),

researchers mostly carry out the studies and focus more on

effectiveness of combinatorial testing. The empirical research, we

present here, has been done with real subjects (testers) in a real

environment, where aspects like cost-effectiveness, capacity and

organizational culture are very important for assessing the

applicability of a CT tool in an industrial setting.

More specifically, we aim to analyze the combinatorial

testing tool CTE XL Professional [6] to assess its applicability to

a selected System under Test (SUT) and its contribution to current

practice within the French company SOFTEAM

(www.softeam.fr). We focus on measuring the efficiency,

effectiveness, and learning effort needed to use CTE XL

Professional.

The paper is structured as follows: Section II provides an

overview of the combinatorial testing tool used in this case study.

Section III describes planning and design of our case study

research method. Section IV discusses the results. Section V

summarizes the threats and limitations of our case study, and

Section VI presents conclusions and further work.

2. COMBINATORIAL TESTING WITH

THE CTE XL PROFESSIONAL

The Classification Tree Editor XL Professional (CTE)

implements the Classification Tree Method [7] by offering a

graphical editor [6] and different strategies for automated test case

generation.

 Applying the classification tree method involves two steps—

(1) designing the classification tree and (2) generating test cases.

(1) First, all aspects of interests and their disjoint values are

identified. Aspects of interests, also known as parameters, are

called classifications; their corresponding parameter values are

called classes. Any system under test can be described by a set of

classifications, holding input and output parameters. Each

classification can have any number of disjoint classes, describing

the occurrence of the parameter. All classifications together form

the classification tree. Besides the modeling of a classification

tree, the CTE allows the tester to define state diagrams where

classes are interpreted as states and the state diagram models the

possible transitions between them.

(2) Having composed the classification tree and possibly

state models, the CTE allows for two ways of generating test

cases.

3

The first way is based on combinatorial testing techniques:

test cases are defined by combining classes of different

classifications. For each classification, a significant representative

(class) is selected. The most common coverage criteria are 2-way

or 3-way testing that is fulfilled if all possible pairs/triplets of

values are covered by at least one test case in the result test set.

The second approach for automated test generation is based on

generating test sequences. This is possible if the combinatorial

tree is augmented with state diagrams defining the possible

transitions between the different states identified in the tree.

Coverage criteria that the tester can choose from for test case

generation are: State or Transition Coverage (in the resulting test

sequence, each state or Transition is used at least once), State or

Transition Pair Coverage (using each possible pair of states or

Transitions at least once).

3. CASE STUDY DESIGN

This case study has been designed according to [8] and [12].

3.1 Objective
 The main goal of this study is to analyze the CTE to assess

its applicability to a selected SUT and how it compares to current

practice within SOFTEAM. We aim to answer the following

general question:

RQ1. How much effort would be required to learn the CTE

for the current testing practitioners at SOFTEAM?

RQ2. How does the CTE contribute to the effectiveness of

testing using it in a real testing environment of SOFTEAM and

compared to the current testing practices used at SOFTEAM?

RQ3. How does the CTE contribute to the efficiency of

testing using it in a real testing environment of SOFTEAM and

compared to the current testing practices used at SOFTEAM?

3.2 Empirical context
Our research has been conducted as an industrial case study at

SOFTEAM, which was planned for a period of six months

(January 2013 to June 2013).

SOFTEAM is a private software vendor and engineering company

with about 700 employees located in Paris, France. This case

study has been executed within the development team responsible

for Modelio Saas, a rather new SOFTEAM product. The team is

composed of 1 project manager, 2 software developers and 3

software analysts.

The subjects with whom this study was conducted consisted of 3

members of this team. Subject S1, is an analyst with 5 years of

experience. Subject S2, is a software developer with 10 years of

experience. Subject S3 is the project manager with 8 years of

experience. Both S1 and S2 have less than one year of experience

in software testing. Both had previously modeled test cases using

the OMG UML Testing Profile (UTP).

The SUT selected by SOFTEAM to serve as a pilot project for

this study is the Modelio SaaS system, a prototype system

developed at SOFTEAM. Modelio SaaS is a web application

written in PHP that allows for the easy configuration of

distributed environments. It runs in virtualized environments on

different cloud platforms presenting a high number of

configurations and hence presents various challenges to testing

[9]. We focus on the Web administration console, which allows

administrators to manage projects created with the Modelio

modeling tool [10], and to specify allowed users for working on

projects. The source code is composed of 50 PHP files with a total

of 2141 lines of executable code.

The existing test suite that was used for comparison with current

practice (TSSOFT) is the current set of 47 manually designed

system tests cases currently used for testing new releases of the

Modelio SaaS system

3.3 Treatments
The combinatorial testing tool CTE [6] will be compared to

the current test design practices implanted at SOFTEAM.

Currently at SOFTEAM, Modelio SaaS test cases are

designed manually. The process is based on a series of specified

use-cases to support exploratory testing. As indicated before, the

objective of test design is to maximize use-case coverage. Each

test case describes a sequence of user interactions with the

graphical user interface. An example of a test case is in Figure 1.

Test cases are managed with TestLink and are grouped

according to the part of the system that they test. Their execution

is also done manually by a designated analyst or developer. Line

coverage of the executed test suites is measured by a SOFTEAM

script that uses Xdebug for gathering the coverage data.

If a failure occurs, the test engineer reports it in the Mantis bug

tracking system and assigns it to the developer in charge of the

part affected by the failure. Test engineer provides as much

information as possible for example relevant Apache or Axis log

files. Then, Mantis mails the developer in charge of

examining/fixing the reported failure.

Figure 1. An example test case for Modelio SaaS

3.4 Procedure

The case study was planned in two phases:

Training phase. A training program was designed in order to
develop an individual level of knowledge on combinatorial testing
and skills to use the combinatorial testing tool. In this training
program two staff members from SOFTEAM (subjects S1 and S2)
were involved. By answering some specific questions, their
competence level on testing was determined. This information

4

was helpful to structure an initial training that started with an
introductory course on combinatorial testing, which took 4 hours.

Then, the CTE tool was installed and set-up using manuals
and online assistance provided by the trainer from B&M. After
that, the trainees carried out hands-on learning sessions using CTE
including classification tree creation, automatic generation and
prioritization of abstract test cases. These hands-on learning
sessions took approximately 1 month (from 4 January to 6
February 2013). Working diaries were maintained by the two
practitioners and an exam was also conducted to evaluate the
competence level on combinatorial testing and CTE.

Testing phase. Next, as is shown in Figure 2, both

practitioners (subjects) started designing classification trees for

the Modelio SaaS case without any further support from the

trainer, and generating abstract test cases. Both consolidation of

classification trees and generation of abstract test cases, were

performed in ten iterations including manually inspection of

resulting test cases by the practitioners.

Once the resulting abstract test cases were finalized,

concretization of the test suite TSCTE, execution and evaluation

were carried out by only one of them (S2).

After the testing phase informal interviews were conducted with

all three subjects.

3.5 Data collected
The selected measures to answer our research questions are

described in this section.

Learning effort is measured by the time needed for achieving each

CTE learning objective. This total time is calculated by selecting

relevant learning activities, which are self-reported in working

diaries, and adding their respective times expressed in minutes.

The CTE learning objectives covered the following issues:

classification trees elements, test elements, abstract test

generation, and dependency rules. In order to evaluate the learned

competency of the SOFTEAM trainees, a final exam is also

formulated. The exam consisted of 29 questions organized in four

parts: classification trees, abstract test generation, dependency

rules, and test elements.

Effectiveness was measured in terms of fault detection capability

and coverage of the test suites compared (i.e. TSSOFT versus

TSCTE):

­ Number of failures observed

­ Number of faults found

­ Type and cause of found faults

­ Line coverage (using SOFTEAMs script and XDebug)

Efficiency is measured in time testers spend on different activities.

For TSCTE, we have measured the following (in hours per tester):

- Time to set up the testing infrastructure (install, configure,

develop test drivers, etc.).

­ Time to create the Classification Tree

­ Time to generate the abstract test suite

­ Time to concretize abstract test cases

Moreover, for TSSOFT as well as TSCTE we have measured:

­ Time to execute the test cases

­ Time to detect faults related to found failures

­ Time to identify the fault type and cause for each observed

failure (i.e. time to isolate).

4. RESULTS ANALYSIS
A total of 13 consolidated classification trees were constructed to

generate TSCTE: five modeled classifications of input parameters

and hence pairwise coverage was used as the criterion to generate

abstract test cases; the remaining eight trees modeled

classifications of user actions together with state models

COURSE

(1 DAY)

GENERATING

ABSTRACT

TEST CASES

CONCRETIZING

TEST CASES

TSCTE

HANDS ON

LEARNING

TRAINING (B&M) TEST-CASES GENERATION

CONSOLIDATING

CTE MODEL

TEST

SUCCESS?

NO

YES

INSTALLING AND

SETTING-UP

THE CTE TOOL

SUT description

SOFTEAM

Manual CTE

Satisfied?
ABSTRACT TEST

CASES INSPECTION

NO

YES
EXECUTING

TEST CASES

TEST EVALUATION

EVALUATING

TEST CASES

HUMAN

ORACLES

MANUAL

TEST
RESULTS
TSCTE

TEST EXECUTION

Figure 2. Activities conducted by SOFTEAM practitioners along the case study.

.

5

identifying the starting state and the possible transitions between

them, the state coverage criterion was used to generate test

sequences for them. The table below presents descriptive

measures specific for the classification trees used to generate

TSCTE.

Table 1. Descriptive measures of the classification trees

used to generate TSCTE

 Item Value

cl
as

if
ic

at
io

n
s

o
f

in
p
u

t
p

ar
am

en
te

rs
 Number of classifications 35

Number of classes 70

Number of test cases in TSCTE 17

2-way coverage 57%

3-way coverage 29%

cl
as

if
ic

at
io

n
s

o
f

st
at

es

Number of classifications 20

Number of classes 73

Number of test cases in TSCTE 8

Number of test steps in TSCTE 67

State coverage 100%

Next we discuss the results regarding our research questions.

4.1 RQ1: Effort required to learn the CTE

In order to answer our first question about the effort required to

learn a combinatorial testing technique supported by the CTE tool,

we first analyzed the working diaries maintained during the

hands-on learning activities. Through these working diaries, the

practitioners reported all activities carried out over that period

without a pre-established schedule. Most of the activities were

performed individually, but some of them were also performed in

pairs (e.g. consolidation of CTE models).

Table 2 shows the time needed for learning activities: the first

practitioner (S1) consumed more time than the second practitioner

(i.e. more time in Skype meetings with the trainer for solving

doubts). Both practitioners spend most time in studying and

analyzing the CTE-Material (e.g. CTE manual, course slides),

mainly due to the fact that they found CTE manuals very hard to

understand. For this reason, they complemented their CTE

learning with other activities like internal discussions (120

minutes) and several Skype sessions with the trainer. During this

learning process, they created several versions of Classification

Trees (4 versions made by S1 and 3 by S2).

Table 2. Self-reported activities during the hands-on learning

process

 Time reported in minutes

Activities S1 S2 In pairs

CTE-Material analysis 370 360

Creation CTE tree 180 160

CTE-models reproduction 55 35 120

Internal discussion meeting 120

Skype meeting with trainer 120 80 90

Total time 725 635 330

Asked about the three most difficult issues considered while

learning the CTE, both trainees agreed with “how to create a good

tree” as the most difficult. This, however, is not really related to

the CTE, but with the implemented modeling method [7]. Other

difficulties mentioned were related to defining rules for test case

generation. Besides having to choose between conventional

combinatorial or sequence-based test generations, there are also

several options to choose from for each one of them which were

not always clear.

Reviewing the exam results both trainees successfully

demonstrated to achieve the first two learning objective related to

the classification tree and test elements. However, they

demonstrated more difficulties for the other two objectives related

to dependency rules and abstract test generation. Figure 3 shows

the results obtained of this exam.

22 out of 29 questions were successfully answered for both

trainees. The questions QA1, Q4, Q6 of Part 1 (classification

trees), Q1, Q3, and Q4 of Part 3 (abstract test generation), and

Q10 of the part 4 (dependency rules) were unsuccessful. A last

feedback by the trainer for these questions was given.

4.2 RQ2: Contribution of the CTE to the

effectiveness of SOFTEAM testing practices

The size of the final test suites that were compared can be found

in Table 3. Although the number of test cases of TSCTE represents

almost half of the TSSOFT test cases, the number of HTTP requests

is about 20% higher for TSCTE than TSSOFT. This is due to the

structure of TSCTE test cases, which are composed of more steps

and more events.

Regarding the effectiveness measure in terms of fault detection,

the SOFTEAM tester observed 7 failures and found 3 faults using

TSCTE and nothing with TSSOFT, (evidently because the test suite

has already been used for regression testing purposes on the

considered version of Modelio SaaS).

80%

100%

62,5%

50%

0% 20% 40% 60% 80% 100%

Classification trees elements

Test elements

Abstract tests generation

Dependency rules

Success Unsuccess

Figure 3. Distribution of success percentage by

objective learning

.

6

Table 3. Effectiveness Measures of both test suites

Descriptive Metrics
Value

TSSOFT
Value TSCTE

Number of test cases 47 25 (17+8)

Number of HTTP requests 123 146

Effectiveness Metrics

Number of failures observed 0 7

Number of faults found 0 3

Line coverage 85,75% 86,64%

From these 3 identified faults (Table 4), one was rated to be of

high severity because it was related to the checking of the login

name that failed in two different occasions: (1) permitting the

creation of two different client accounts with the same login

name; (2) permitting entering a user account with an invalid login

name.

 Table 4. List of faults detected using TSCTE

ID Fault type
Fault

description

Failures
Severity

F1
Incorrect

data

Inputs of type

"Date" are not

well validated

4 Minor

F2
Incorrect

data

Inputs of type

"Email" are not

well validated

1 Minor

F3
Incorrect

data

The login name

is not checked

during an

account creation

2 Major

Even though TSCTE found faults that TSSOFT did not find, line

coverage for TSCTE was only slightly higher than TSSOFT. This

made it clear to the SOFTEAM testers that this basic coverage

measure did not give them a reliable estimate of the quality of

their testing activities and they should consider more sophisticated

coverage criteria.

Regarding the combinatorial coverage for TSCTE a percentage of

57% of 2-way (or pairwise) coverage was obtained. Considering

3-way (or three-wise), we still have 29%. This was considered

very motivating by the SOFTEAM testers in the sense that they

wanted to continue with the CTE approach to see if higher

combinatorial coverage could be obtained for possibly finding

more faults.

4.3 RQ3: Contribution of the CTE to the

efficiency of SOFTEAM testing practices

The time for the activities related to use the CTE can be found in

Figure 4.

Time needed for setting-up the testing tool included 10 minutes

(0,17 hour) for CTE installation, and 50 minutes (0,83 hour) to

upgrade the tool with a new license. Although the total time for

both activities was higher than expected, it was acceptable for

SOFTEAM since it only has to be done once.

The time reflected for creating classification trees (29,33 hours)

is the time accumulated for each activity carried out in 10

iterations. This iterative strategy, was supported by the inspection

of different versions of abstract test cases generated.

The time needed for generating the last abstract test suite with the

CTE was around only 1 minute of processor time and is done

automatically by the tool.

Fetching the 25 automatically generated test cases from the CTE,

understanding them and manually make them concrete was

around 16 hours which comes down to approximately half an hour

per test case. Subsequently, an additional 8 hours was spent to

input the test cases in TestLink.

Except for creating the CTE tree, all the activities and the time

needed for them were acceptable for SOFTEAM, since also it was

estimated that similar time was spend on making TSSOFT. Creating

the CTE tree, however, was considered rather high. Subject S3

(project manager) indicated that, although for the Modelio SaaS

project the CTE would be adopted, more case studies with the

same subjects (that are now familiar with the CTE and

Classification Trees technique) are needed to be able to conclude

more about the applicability for the whole company.

Figure 4. Time needed for setting up, designing and

generating a test suite with CTE

Executing the TSCTE, took only 10 minutes more than executing

TSSOFT. This was to be expected from the amount of HTTP

requests reported in Table 5.

Table 5. Efficiency Measures of both test suites

Descriptive Metrics
Value

TSSOFT
Value TSCTE

Time needed to execute the test

cases

60 min 70 min

Time needed to identify the fault

type and cause for each observed

failure.

 -- 15 min

7

5. THE THREATS VALIDITY
This section discusses some of these threats addressed in

[12].

Construct validity. With respect to the efficiency and

learning effort, we could not fully mitigate the threat caused by

self-reported working times (e.g. by means of working diaries).

Accuracy of these measures could have been affected by other

(e.g. social psychological) factors. However, using other

complementary measures for learning effort (i.e. test-exam and

post questionnaires) helps to triangulate the observations. In order

to reduce possible misinterpretations of formulated questions and

answers gathered, data analyzed and interpreted by the authors

was also validated by the respondents (SOFTEAM practitioners).

Moreover, an online post-questionnaire was designed to evaluate

the effectiveness of our training program, and the perceived

learnability of the CTE (more details in [11]).

Severity of the faults was determined based on its criticality

for the system. As criticality levels used in SOFTEAM include

some subjective values (i.e. minor and major), the construct

validity is affected.

Internal validity. The quality of the classification trees

could have been affected by the level of modelling experience .

Although a training program was duly implemented this threat

could be only reduced.

Existing documentation (e.g. requirements) was used without

any improvement by the practitioners for building classification

trees. This was because the company mainly was interested in

comparing the quality of test cases that were obtained from this

case study, with its own test cases obtained within its testing

process. The textual description of concrete test cases for both

suites could be understood differently, and it could have affected

in the faults detection; more even when each test suite was

generated by different testers.

External validity is concerned with to what extent it is possible

to generalize the findings, and to what extent the findings are of

interest to other people outside the investigated case.

Generalization is not possible from a single case study. The

obtained results about the applicability of CTE need to be

evaluated with more SUTs. However, these results could be

interesting for other companies like SOFTEAM, whose staff is

still very motivated to enhance its actual testing process.

Regarding the SUT, it was carefully selected by the testers with

the approbation of management staff of SOFTEAM, and the rest

of the research team. So, the selected SUT is not only relevant

from a technical, but also from an organizational perspective,

which facilitated to perform all case study activities.

6. CONCLUSIONS AND FUTURE WORK

6.1 Summary
The main outcomes of the presented study are: (1) with the test

suite designed with the CTE, the testers were able to find faults

that the traditional test suites did not find, one of them a severe

fault; (2) the company realized that the current coverage metrics

used for evaluating the quality of test suites needs to be changed

to a more sophisticated one; (3) SOFTEAM’s motivation to do

more case studies with the CTE is high, mainly to see if the

improved skills for modeling classification tree can make test case

generation more efficient for the whole company.

6.2 Lessons Learned
In general, we can say that SOFTEAM’s acceptance of the

CTE has improved thanks to the training activities conducted

during the case study, which hence served as a successful

technology transfer exercise. The hands-on learning activities

were carried out at SOFTEAM premises as a further positive

factor. The team at SOFTEAM felt comfortable using the tool

thanks to the approach followed.

For the SOFTEAM testers, the possibility of rapidly

generating abstract test cases automatically with the CTE was an

approach allowing them to inspect the effect of changes

immediately. The hands-on learning activity was perceived a good

learning method to reach “good enough” classification trees.

Consequently, this resulted in a fine-tuned final test suite.

We might consider more trainers’ feedback on modeled trees

or generated abstract test cases after the inspection phase

performed within the company to better highlight any other

potential errors. The case study protocol does not only need to be

updated continuously, it is also important to verify that changes

incorporated were appropriately understood by the involved

participants.

6.3 Future work

We plan to conduct more case studies that evaluate combinatorial

testing tools within real contexts. This will enable us to

understand the difficulties that industry has with taking up

combinatorial testing tools, the real needs from industry.

Moreover, when sufficient empirical evidence is available, the

results might be aggregated in order to build empirical knowledge

and obtain some applicability guidelines on when to use which

technique in what situation.

Finally, since learning is a fundamental part of this type of case

studies, we need to also work on a general platform or

infrastructure facilitating the monitoring of learning activities

carried out in real environments. These are currently missing.

7. ACKNOWLEDGMENTS
This work is partly supported by EU grant ICT-257574

(FITTEST).

8. REFERENCES
[1] Burr K., Young W.. Combinatorial test techniques: Table-

based automation, test generation and code coverage. Proc.

of the Intl. Conf. on Software Testing Analysis & Review.

Citeseer, 1998.

[2] Kuhn R., Kacker R., Lei Y., Hunter J.. Combinatorial

Software Testing, IEEE Computer, vol. 42, no. 8., pp 94-96.

August 2009

[3] Briand L., Labiche Y.. Empirical Studies of Software Testing

Techniques: Challenges, Practical Strategies, and Future

Research. In WERST Proceedings/ACM SIGSOFT. 2004,

Vol 29, No 5, pp 1-3.

[4] Nie C., Leung H.. 2011. A survey of combinatorial testing.

ACM Computing Surveys (CSUR), v.43 n.2, pages 1-29,

January 2011

8

[5] Shikh Gholamhossein L., Bourazjany M. N., Yu Lei, Kacker

R.N., Kuhn D.R.. Applying Combinatorial Testing to the

Siemens Suite. 2nd Intl Workshop on Combinatorial Testing,

Luxembourg, IEEE, March. 2013.

[6] Lehmann E., Wegener J. Test case design by means of the

CTE XL. Proceedings of the 8th European International

Conference on Software Testing, Analysis & Review

(EuroSTAR 2000), Kopenhagen, Denmark. Citeseer, 2000.

[7] Grochtmann M., Grimm K.. Classification trees for partition

testing. Softw. Test., Verif. Reliab., 3(2):63-82, 1993.

[8] Vos T., Marín B., Escalona M. J., Marchetto A.: A

Methodological Framework for Evaluating Software Testing

Techniques and Tools; 12th International Conference on

Quality Software, Shaanxi, China, August 27-29, 2012. pp

230-239

[9] Bagnato A., Sadovykh A., Brosse E., Vos T.; (2013). The

OMG UML Testing Profile in Use-An Industrial Case Study

for the Future Internet Testing, CSMR 2013 17th European

Conference on Software Maintenance and Reingineering,

March 5-8 2013. pp.457,460.

[10] Modelio.org. Available: http://www,modelio.org/.

[11] Kruse P., Condori-Fernandez N., Vos T., Bagnato A., Brosse

E. Combinatorial Testing Tool Learnability in an Industrial

Environment. 2013 ACM-IEEE International Symposium on

Empirical Software Engineering and Measurement, ESEM

'13. Baltimore, USA. October 10-11 2013.(Accepted for

publication).

[12] Runeson P., Höst M. Guidelines for conducting and reporting

case study research in software engineering. Empirical

Software Engineering Journal. April 2009, Volume 14, Issue

2, pp 131-164.

http://www,modelio.org/
http://link.springer.com/search?facet-author=%22Per+Runeson%22
http://link.springer.com/search?facet-author=%22Martin+H%C3%B6st%22

