
Evaluating the FITTEST Automated Testing Tools
in SOFTEAM: an Industrial Case Study

Etienne Brosse

Alessandra Bagnato

Tanja E. J. Vos

Nelly Condori-Fernandez

Technical Report UU-CS-2014-009
May 2014

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands
www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands

Evaluating the FITTEST Automated Testing Tools in
SOFTEAM: an Industrial Case Study

Etienne Brosse, Alessandra Bagnato
SOFTEAM

Paris, France
Email: {etienne.brosse, alessandra.bagnato}@softeam.fr

Tanja E. J. Vos, Nelly Condori
Universidad Politécnica de Valencia

Valencia, Spain
Email: {tvos, nelly}@pros.upv.es

Abstract—[Context] Many test automation tools are currently
available. However, most of them do not yet support automated
test case design and evaluation. [Method] The FITTEST EU
project has developed such automated tools. This paper aims
at their evaluation within an industrial case study. The case
study was conducted at SOFTEAM for testing Modelio SaaS,
a web administration console written in PHP, which allows an
administrator to connect to his account for managing modeling
projects created with SOFTEAMs Modelio UML Modeling tool.
[Objective] This case study has investigated whether current
SOFTEAM testing practices could be improved or complemented
by using some of the automated testing tools that were developed
within the FITTEST EU project. [Results] Although the existing
Test Suite from SOFTEAM (TSsoft) that was selected for com-
parison is substantially smaller than the Test Suite generated by
FITTEST (TSfittest), the effectiveness of TSfittest, measured by
the injected faults coverage is significantly higher (50% vs 70%).
With respect to efficiency, .. [Conclusions] Within SOFTEAM
and for the testing of the target product in SOFTEAMs testing
environment: the FITTEST tools can increase the effectiveness of
the current practice and the test cases automatically generated
by the FITTEST tools can help in more efficient identification of
the source of the identified faults. Moreover, the FITTEST tools
have shown the ability to automate testing within a real industry
case.

I. INTRODUCTION

Software testing is the process of executing a program or
system with the intent of finding defects [9]. It is currently the
most important and widely used quality assurance technique
applied in the industry. It may require over 50% of devel-
opment budget and time [1]. Many test automation tools are
currently available to aid test planning and control as well
as test case execution and monitoring [4]. However, most of
these tools, particularly those used in industrial practice, share
a similar passive philosophy towards test case design, selection
of concrete test data and test evaluation (i.e. oracles). They
leave these crucial, time-consuming and demanding activities
to the human testers. The lack of automation of these important
testing activities means that the industry spends much effort
and money on testing, nevertheless the quality of the resulting
tests is sometimes low since they fail to find important errors
in the system.

FITTEST, and EU funded research project, aims to over-
come, at least to some extent, this problem. The FITTEST
project involves a consortium of diverse competence, from
execution monitoring, model-based testing [3], combinatorial
testing [11], to search-based software engineering [6]. The

ultimate goal of the project is to develop an Integrated Testing
Environment (ITE for brevity) that consists of a suite of plug-
gable components that are being integrated for the FITTEST
automated and continuous testing approach and tool set[14].
Being continuous, this testing approach will be suitable for
testing fast evolving applications or those with dynamic and
adaptive behaviors. i.e. the types of systems are envisaged to
run on the Future Internet.

In this paper we present a case study for evaluating a subset
of the FITTEST components, specifically those components
that are responsible for Automated Test Case Design and Eval-
uation. The case study has been executed at the company is
called SOFTEAM , a private software vendor and engineering
company with about 700 employees located in Paris, France
and a partner of the FITTEST project. Experimental evaluation
of some of the techniques implemented in the FITTEST
techniques have already been conducted and presented in
earlier work [10]. Moreover a case study executed at IBM
Research has been published []. This study aims to obtain more
empirical evidence of the applicability of these techniques
within the context of an industry team testing an industrial
system. To this end we present a “which is better” type of
case study [8]. These case studies are powerful since, although
they cannot achieve the scientific rigor of formal experiments,
the results of a case study can provide useful insights to help
others judge whether the specific technology being evaluated
could benefit their own organization. In order to assess tools,
evaluative case study research must involve realistic systems
and realistic subjects, as explicitly done in this study.

The contribution of this paper is twofold. On the one hand,
it describes more promising results of the use of automated test
tool on an industrial case study. On the other hand, the study
in this paper can serve as an example that others can follow
when encountering the need to evaluate an automated testing
tool.

The remainder of the paper is organized as follows: Section
II describes the industrial context in which the study was
performed. Section III presents the case study design frame-
work, Finally, Section IV presents the results and Section V
concludes the paper.

II. CONTEXT- WHERE WAS THE CASE STUDY PERFORMED

This study has been executed at SOFTEAM. One of the
priorities of SOFTEAM is to maximize feature coverage of

their test suites with minimum costs. Specifically those test
suites created for the Modelio SaaS system.

Modelio SaaS is a web administration console written in
PHP, which allows an administrator to connect to his account
for managing modeling projects created with Modelio UML
Modeling tool [1]. Modelio SaaS, besides the customer users,
provides services to different roles of administrators: server
administrators, account managers and project managers.

III. DESIGN OF THE CASE STUDY

A. Objective - What to achieve?

As indicated before, SOFTEAM wanted to evaluate the
FITTEST automated testing tools to see if they are applicable
to a selected System Under Test and how they compare to
current practice. What makes a testing tool applicable in
industry? First of all, it should be effective in finding faults!
Second, this should be done efficiently, i.e. in a reasonable
amount time. Finally, although finding faults in a reasonable
amount of time is important, the amount of effort to set up
and use the testing tools in the testing processes currently
implanted should be important too. Hence, following [13], we
focus on:

RQ1 [Effectiveness and Efficiency] Compared to the
current test suite used for testing at SOFTEAM,
can the FITTEST technologies contribute to the
effectiveness and efficiency of testing when it is
used in the testing environments at SOFTEAM?

RQ2 [Effort] How much effort would be required
to deploy the FITTEST technologies within the
testing processes implanted at SOFTEAM?

RQ3 [Subjective Satisfaction] How satisfied are
SOFTEAM testing practitioners during the learn-
ing, installing, configuring and usage of the tech-
nique when it is used in their real testing environ-
ments?

B. Cases or Treatments - What are being studied?

1) Current test case design techniques used at SOFTEAM:
Modelio SaaS’ testing and development team consists of 1
product director, 2 developers and 3 research engineers who
all participate in the testing process. The testing practice at
Softeam is to create test cases by relying on specified use cases.
Each test case describes a sequence of the user interactions
with the graphical user interface as shown by Figure 2.

The test cases are managed with the TestLink1 software and
grouped as test suites according to the part of the system that
they enable to test. All them are executed manually by a test
engineer. If a failure occurs, the test engineer reports it to the
Mantis2 bug tracking system and assigns it to the developer in
charge of the part affected by the failure. He also provides the
Apache log file for the web UI as well as the Axis log file for
the web services. Then, Mantis mails the developer in charge
of examining/fixing the reported failure.

It took approximately 7 work days to design and build the
test suite and together, the testers need an hour to execute all
of the 51 test cases if no errors occur.

1http://sourceforge.net/projects/testlink/
2http://www.mantisbt.org/

Softeam’s testing process in projects other than Modelio
SaaS is similar. A tester has access to the project specifications
(most of the time a textual description). From this specification,
he manually creates a first test suite under TestLink and then
executes it. According to its results he will modify the test
suite, enter failure(s) into Mantis, discuss the issues with the
development team and re-execute the modified test cases, etc.

2) The FITTEST tools for automated test case design and
evaluation: The FITTEST testing approach is shown in Figure
1 and contains four phases:

1) Logging - Run the target application (SUT) and
collect the logs it generates. This can be either
real usage by end users of the application in the
production environment, or test case execution in the
test environment.

2) Test-ware generation - Analyse the logs to infer dif-
ferent testwares (i.e. FSM models, Oracles, Domain
Input Specifications (DIS) and Test Cases).

3) Test Execution - The test cases are executed by
running the SUT.

4) Test evaluation - The outcome of the running the test
cases is evaluated using the oracles that are available.

For this case study, we instantiated two key components
and their underpinning techniques of FITTEST. The two com-
ponents are those responsible for Automated Test Case Design
and Evaluation: Logs2FSM, FSM2CT and CT2Selenium,
that are done during the second phase (i.e. Test-ware genera-
tion):

• Logs2FSM, this component takes the logs generated
by running Modelio SaaS and infers FSM models
by applying the k-tail event-based model inference
approach [2]. The model-based oracles that also result
from this tool (see Figure 1) refer to the use of the
paths generated from the inferred FSM as oracles. If
these paths, when transformed to test cases, cannot
be fully executed, then the tester needs to inspect the
failing paths to see if that is due to some faults, or the
paths themselves are infeasible.

• FSM2CT, this component takes the output models of
Logs2FSM and a Domain Input Specification (DIS)
file created by a tester for Modelio SaaS to generate
concrete test cases. This component implements the
M*C technique that combines model-based testing
and combinatorial testing presented in [10]. This
basically consist in: (1) generating test paths from
the FSM (using algorithms that range from simple
graph visit algorithms, to advanced techniques based
on maximum diversity of the event frequencies, and
semantic interactions between successive events in the
sequence); (2) transform these paths into classification
trees using the Classification Tree Editor (CTE XL)3

[5] format, enriched with Domain Input Specifications
(DIS) such as data types and partitions; (3) generate
test combinations from those trees using t-way com-
binatorial criteria.

• CT2Selenium, this component take classification trees
and domain input specification file as input and gener-

3http://www.berner-mattner.com

Fig. 1. The control flow of the FITTEST Automated Test Case Design and Evaluation. It contains 4 phases: Logging, Test-ware generation, Test execution,
and Test evaluation.

ate executable test cases in the format of Selenium/JU-
nit.

C. Objects of the study: the SUT and the injected faults

1) The System Under Test (SUT): The SUT selected for
this study is the Modelio SaaS system4, which is a prototype
developed at Softeam. Modelio SaaS is a PHP web application,
that allows for easy and transparent configuration of distributed
environments. It can run in virtual environments on different
cloud platforms, offers a large number of configuration options
and hence poses various challenges to testing. The source code
is composed of 50 PHP files with a total of 2141 lines of
executable code.

In the case study we will focus on the web administra-
tion console, which allows administrators to manage various
aspects of projects created with the Modelio modeling tool. In
rpinciple there are 3 different roles:

A Server administrator: The main task of a server
administrator is to create Modelio Workgroup
Server and assign a Account Manager for each
of them.

B Account Manager: its main roles are to admin-
istrate Modelio Workgroup Server including the
creation Modelio Project Server. This kind of user
is able to assign Project Manager to given Modelio
Project Server and define the different artifact
(module and component) available on each of its
Modelio Workgroup Server.

C Project Manager: administrate Modelio Project
Server i.e. deploy (or not) artifact available on a
Modelio Workgroup Server to specific the projects
that he manage, assign role to people, etc.

4http://www.modelio.org/

2) TSSoft – Softeam’s existing manual Test Suite: The
existing test suite is a set of 51 manually crafted system
test cases that Softeam uses to perform regression testing of
new releases. Each test case describes a sequence of user
interactions with the graphical user interface as well as the
expected results. Figure 2 shows an example of such a test
case.

3) Injected Faults: For the sake of comparing fault finding
capability, the testers of Modelio SaaS, have identified and
selected 17 faults divided into 3 categories that resemble
realistic faults that could normally be encountered when testing
the system. These faults have been injeted into the system in
order to be able to detrmine the fault finding capability of the
existing test suite from SOFTEAM and the test suite generated
by FITTEST.

D. Subjects - Who apply the techniques?

There were 4 subjects involved in this study. (1) Dr Marcos
Almeida is a R&D engineer with 2 years of experience in
modelling. He is mainly involved in Model Driven Engi-
neering, Software and Business Processes Modelling. (2) Mr
Antonin Abherve is a senior research engineer with more than
8 years of experience in a large panel of modelling domain
e.g. Model Driven Engineering, Model Driven Architecture,
Software Modelling, Service Oriented Architecture, Enterprise
Architecture, Business Processes, etc. (3) Mr Etienne Brosse
is a senior research engineer with more than 7 years of
experience mainly in System Architecture Modelling (i.e.
SysML, MARTE modelling), Model Driven Engineering, and
Model Driven Architecture. (4) Dr Alessandra Bagnato is a re-
search scientist within the Softeam R&D Department. She has
been working as Project Manager related to software/service,
embedded system, security and testing modelling in several
European research project.

1 http://10.78.4.117/workgroup/public

The login page must be displayed.

2
Sign in as login:softeam

password:softeam

The workgroup tab must be selected and the corresponding

page must be displayed

Execution type: Manual

Keywords: None

Test Case SaaS-7: Create a customer account from the administrator account

Author: cba

#: Step actions: Expected Results:

1 Sign in as a server administrator

2
Go to "Compte clients" -> "Créer un

compte client"
The form to fill customer's details is displayed.

3

Fill:

1. the 'nom' field with a name

2. the "date de soucription" field with

a date with format 'YYYY-MM-DD"

3. the "date de validité" field with a

date with format 'YYYY-MM-DD"

4. the 'login' field with a login

5. the 'mot de passe' field with a

password

6. the 'e-mail' field with an email

address

4 Click on 'Créer compte'
The 'Gestion des comptes clients" page must be displayed

with a table containing the customer's details.

Execution type: Manual

Keywords: None

Test Case SaaS-10: Edit account details

Author: cba

Preconditions:

1. The tester is logged in as a server administrator

2. the 'Gestion des comptes client' page is displayed

3. at least one client exists

#: Step actions: Expected Results:

1
Click on the 'Edit link' of a

client's row.

The 'Compte Utilisateur' page must be displayed with the client details

in editable fields.

2
Change all the values in the

field

3 Click on 'Fermer'
The 'Gestion des comptes clients' page must be displayed with the new

values.

Execution type: Manual

Keywords: None

Test Case SaaS-11: View account details

Author: cba

Preconditions:

1. The tester is logged in as a server administrator

2. the 'Gestion des comptes client' page is displayed

3. at least one client exists

Fig. 2. Manual test case, used by Modelio SaaS testers for functional testing.

ID Part of the Appli-
cation

FileLocation Description Severity

1 Controller AccountController.php line 102 When clicking on ”no” for account deletion confirmation, the system nevertheless deletes
the account

Major

2 Controller LoginController.php line 8 No login fields on login page Block
3 Controller ProjectsController.php line 8 Empty page when accessing the project creation page Block
4 Controller RamController.php line 31 Description is not added to the database when creating a component Minor
5 Controller RolesController.php line 48 Page not found error after editing a role Major
6 Model DeploymentInstance.php line 10 An error occurred” message when trying to view properties of a project Block
7 Model Module.php line 21 ”An error occurred” message when trying to add a module to a project Block
8 Model Module.php line 34 ”An error occurred” message when trying to upload a new module Block
9 Model Project.php line 36 ”An error occurred” message when trying to view managed project Block

10 Model ProjectModule.php line 29 ”An error occurred” message when trying to view properties of a project Block
11 View ComponentSelection line 19 Empty page when trying to add a component to a project Block
12 View Modules.php line 18 Allow empty content for module Minor
13 View ModuleSelection.php line 30 Empty page when trying to add a module to a project Block
14 View RoleSelection.php lines 27 to 30 ”An error occurred” when trying to edit the role of a user of a project Block
15 View Server.php line 42 The type of the server is missing Major
16 View ServerSelection.php line 13 Empty form when trying to move a server Block
17 View Users.php line 82 Editing is possible when accessing through view link and vice versa Minor

TABLE I. INJECTED FAULTS

E. Protocol

We adopted the following steps in this case study. See
Figure 3. We disthinguished three different roles A (the server
administrator role), B (the acound administrator role) and C
(the project managers role). And four users: 1 user (role A +
B) and 3 users for role C.

1) Install and configure the ITE
2) Create the three sets of logs: LogsA, LogsB and

LogsC .
3) Select test suite TSsoft

4) Generate three Test Suites with the FITTEST tools
TSA

fittest, TSB
fittest and TSC

fittest

a) Generate the three FSMs with Logs2FSM
(FSMA, FSMB and FSMC).

b) Define three Domain Input Specification
(DISA, DISB , DISC)

c) Generate the concrete test data with
FSM2Tests and create the three test suites.

5) Select and inject the faults
6) Execute TSsoft and measure
7) Execute TSA

fittest, TSB
fittest and TSC

fittest and mea-

sure

F. Variables - What are being measured?

The independent variables of the study setting are: The
FITTEST testing techniques; the complexity of the indus-
trial system; TSsoft; the level of experience of testers of
SOFTEAM that will use the techniques; the injected faults.
The dependent variables are related those for measuring the
applicability of the FITTEST tools in terms of effectiveness,
efficiency, effort and subjective satisfaction. Next we present
their respective defined metrics:

1) Measuring effectiveness:
a) amount of injected faults detected by

both TSsoft and , TSA
fittest, TSB

fittest and
TSC

fittest.
b) type of faults detected by both TSsoft and

TSA
fittest, TSB

fittest and TSC
fittest.

c) code covered by both TSsoft and TSA
fittest,

TSB
fittest and TSC

fittest.
2) Measuring efficiency. For both TSsoft and TSA

fittest,
TSB

fittest and TSC
fittest:

Fig. 3. We disthinguished three different roles A, B and C.

a) size of the test suites: number of test cases
and number of events (or commands)

b) time needed to execute both the test suites
Moreover for TSA

fittest, TSB
fittest and TSC

fittest. we
will measure:

c) number of traces and acerage trace length in
LogsA, LogsB and LogsC that were used to
infer teh FSMs

d) metrics about the created FSMs (i.e. FSMA,
FSMB and FSMC): number of states, number
of different events, number of transitions

3) Measuring effort in time (hours) for each of the
subjects that was needed to create TSsoft and by both
TSsoft and TSA

fittest, TSB
fittest and TSC

fittest.
4) Measuring subjective satisfaction through interviews

and working diaries.

IV. RESULTS AND DISCUSSION

A. Results

This section summarizes and discusses the results and
outcomes of this case study. We have followed the protocol
presented in the previous section to measure the variables iden-
tified for the involved test suites: TSsoft, TSA

fittest, TSB
fittest

and TSC
fittest. Table II contains the measures specific for

the generated FSM models that were used to generate the
FITTEST test suites TSA

fittest, TSB
fittest and TSC

fittest. For
illustrative reasons, part of this FSM can be found in Figure 4
and an example of a generated test sequence and corresponding
test cases from the CTE XL5 can be found in Figure 5.
The figures give an idea how the models and test cases are
visualized. They are generated and used automatically without
human intervention. However, the tester can use graphical tools
like CTE XL to enhance the models and tests, e.g. to put
dependency on input data, if needed.

In Table V the descriptive measures for all test suites are
listed.

Figure IV contains the fault-finding capabilities of both
test suites and Table III the execution times. Since we only
have one value for each test suite, no analysis techniques
are available and the tables in this section just present the

5http://www.berner-mattner.com/en/berner-mattner-home/products/cte

measured data on which the answers to the research questions
from Section III-A are based.

TABLE II. DESCRIPTIVE MEASURES FOR THE FSMx THAT IS USED TO
GENERATE TSx

fittest

x Variable
A Number of traces used to infer FSM 1

Average trace length 13
Number of states in generated FSM 7
Number of different events, i.e. transition labels 6
Number of transitions in the FSM 6

B Number of traces used to infer FSM 1
Average trace length 23
Number of states in generated FSM 7
Number of different events, i.e. transition labels 8
Number of transitions in the FSM 8

C Number of traces used to infer FSM 3
Average trace length 263
Number of states in generated FSM 64
Number of different events, i.e. transition labels 31
Number of transitions in the FSM 126

RQ1: Compared to the current test suite used for testing at
SOFTEAM, can the FITTEST technologies contribute to the
effectiveness and efficiency of testing when it is used in the
testing environments at SOFTEAM?

Inspecting Table IV we can see that TSsoft finds only
3 more faults than TSfittest (2 with blocking severity and
1 with minor severity). On the other hand TSfittest finds
one blocking fault that TSsoft does not find. This is a rather
positive outcome for the FITTEST techniques, considering the
fact that the design of the FITTEST test suite was mostly
automated, only 1 hour for creating a DIS was needed (the
collecting of the logs would normally be done during normal
usage of the SUT and hence is not calculated within the testing
time). One hour of automated test set up compared to 56 hours
of manual test suite design is a huge difference in effort for
the small difference in faulti-finding effectivity. Moreover, the
evolvability of the logs implies that if these would evolve with
more system usage, more faults could be found. This should
be investigated over time.

RQ2: How much effort would be required to deploy the
FITTEST technologies within the testing processes implanted
at SOFTEAM?

SOFTEAM is positive about the effort to deploy the
ITE, and concerning model inference, test generation and test

START

S46

 POST_/workgroup/public/login/login_3

S40

 GET_/workgroup/public/projects_0

S29

 POST_/workgroup/public/projects/createproject_9

S17

 GET_/workgroup/public/modules_0

 POST_/workgroup/public/projects/createproject_9

S60

 GET_/workgroup/public/projects_0

S62

 GET_/workgroup/public/modules_0

S55

 GET_/workgroup/public/modules_0

S15

 GET_/workgroup/public/_0

 POST_/workgroup/public/login/login_3

 POST_/workgroup/public/projects/createproject_9

 GET_/workgroup/public/projects_0

 GET_/workgroup/public/modules_0

S11

 GET_/workgroup/public/projectdata/adduser/id/6_0

S38

 GET_/workgroup/public/ramc_0

 POST_/workgroup/public/projects/createproject_9

S45

 GET_/workgroup/public/projects_0

S1

 GET_/workgroup/public/modules_0

 GET_/workgroup/public/_0

S25

 GET_/workgroup/public/projectdata/addmodule/id/6_0

 POST_/workgroup/public/projects/createproject_9

 GET_/workgroup/public/modules_0 S41

 GET_/workgroup/public/projects_0

S14

 GET_/workgroup/public/ramc_0

 POST_/workgroup/public/projects/createproject_9

 GET_/workgroup/public/projects_0

 GET_/workgroup/public/modules_0

S24

 POST_/workgroup/public/modules/createmodules_3

 POST_/workgroup/public/projects/createproject_9

 GET_/workgroup/public/projects_0

 GET_/workgroup/public/modules_0

S33

 GET_/workgroup/public/projectdata/index/id/6_0

S32

 GET_/workgroup/public/projectdata/adduser/id/5_0

 POST_/workgroup/public/projects/createproject_9

 GET_/workgroup/public/projects_0

 GET_/workgroup/public/modules_0

 POST_/workgroup/public/modules/createmodules_3

 GET_/workgroup/public/_0

S63

 GET_/workgroup/public/modules/createmodules_0

S4

 GET_/workgroup/public/modules_0 S20

 POST_/workgroup/public/modules/createmodules_3

S10

 GET_/workgroup/public/ramc_0

S16

 GET_/workgroup/public/projectdata/index/id/6_0

S23

 GET_/workgroup/public/projectdata/addmodule/id/5_0

S2

 GET_/workgroup/public/modules_0

S53

 POST_/workgroup/public/projectdata/addmodule/id/6_3

 GET_/workgroup/public/projectdata/addmodule/id/6_0

S7

 GET_/workgroup/public/projectdata/addcomponent/id/6_0 S26

 GET_/workgroup/public/projectdata/index/id/6_0

S51

 GET_/workgroup/public/projectdata/index/id/6_0

 POST_/workgroup/public/projectdata/addmodule/id/6_3

S5

 POST_/workgroup/public/projectdata/addcomponent/id/6_3

 GET_/workgroup/public/projectdata/addcomponent/id/6_0

S56

 GET_/workgroup/public/projectdata/editproject/id/6_0

S3

 GET_/workgroup/public/projectdata/index/id/6_0

 POST_/workgroup/public/projectdata/addcomponent/id/6_3

S22

 POST_/workgroup/public/projectdata/editproject/id/6_9

S58

 GET_/workgroup/public/projects_0

 GET_/workgroup/public/projects/createproject_0

 GET_/workgroup/public/ramc_0

 POST_/workgroup/public/projects/createproject_9

 GET_/workgroup/public/projects_0

 GET_/workgroup/public/modules_0

 GET_/workgroup/public/ramc_0

 POST_/workgroup/public/projects/createproject_9

 GET_/workgroup/public/modules_0

 GET_/workgroup/public/projects_0

S19

 GET_/workgroup/public/ramc/createramc_0

S44

 GET_/workgroup/public/modules/createmodules_0

S47

 POST_/workgroup/public/ramc/createramc_4

S43

 GET_/workgroup/public/modules_0

S59

 GET_/workgroup/public/projects_0

S8

 GET_/workgroup/public/ramc/createramc_0

S36

 GET_/workgroup/public/ramcarchive/index/id/MARTELibrary_0

 POST_/workgroup/public/modules/createmodules_3

S42

 GET_/workgroup/public/ramc/createramc_0

S28

 GET_/workgroup/public/ramc_0

S27

 GET_/workgroup/public/ramc/createramc_0

 GET_/workgroup/public/ramc_0

S37

 POST_/workgroup/public/ramc/createramc_4

 GET_/workgroup/public/ramc/createramc_0

S12

 GET_/workgroup/public/projects_0

S18

 GET_/workgroup/public/projectdata/addcomponent/id/5_0

S39

 GET_/workgroup/public/projectdata/index/id/5_0

 GET_/workgroup/public/login_0

S50

 POST_/workgroup/public/projectdata/addmodule/id/5_3

 GET_/workgroup/public/projectdata/editproject/id/5_0

S52

 GET_/workgroup/public/projectdata/index/id/5_0

S6

 GET_/workgroup/public/modules_0

 POST_/workgroup/public/projects/createproject_9

 GET_/workgroup/public/projects_0

 GET_/workgroup/public/modules_0

 GET_/workgroup/public/modules/createmodules_0

 GET_/workgroup/public/projectdata/adduser/id/5_0

 GET_/workgroup/public/projectdata/addcomponent/id/5_0

S49

 GET_/workgroup/public/projectdata/index/id/4_0

S54

 GET_/workgroup/public/modules/createmodules_0

S48

 GET_/workgroup/public/modules_0

 POST_/workgroup/public/projects/createproject_9

 GET_/workgroup/public/projects_0

 GET_/workgroup/public/modules_0

 POST_/workgroup/public/modules/createmodules_3

S30

 GET_/workgroup/public/ramc_0

 GET_/workgroup/public/ramc/createramc_0

 GET_/workgroup/public/modules_0

S31

 POST_/workgroup/public/modules/createmodules_3

 POST_/workgroup/public/modules/createmodules_3

 GET_/workgroup/public/modules/createmodules_0

 GET_/workgroup/public/modules/createmodules_0 GET_/workgroup/public/modules_0

 POST_/workgroup/public/modules/createmodules_3

 GET_/workgroup/public/ramc_0

S61

 GET_/workgroup/public/modules/deletemodules/id/7_0

S21

 GET_/workgroup/public/modules/deletemodules/id/2_0

S34

 GET_/workgroup/public/modules_0

S13

 GET_/workgroup/public/modules_0

 POST_/workgroup/public/projects/createproject_9

 GET_/workgroup/public/projects_0

 GET_/workgroup/public/modules_0

 POST_/workgroup/public/modules/deletemodules/id/3_2

S57

 GET_/workgroup/public/login_0

S35

 POST_/workgroup/public/login/login_3

S9

 GET_/workgroup/public/ramc_0

 POST_/workgroup/public/ramc/createramc_4

 GET_/workgroup/public/modules_0

 POST_/workgroup/public/ramc/createramc_4

Fig. 4. A part of the model inferred for the case study. The model has 64 nodes and 126 transitions, inferred automatically. This figure illustrates how an
inferred model looks like. In fact, it is machine generated and there is no need for a tester to read the model.

TABLE III. DESCRIPTIVE MEASURES RELATED TO SIZE AND EXECUTION TIME FOR THE TEST SUITES INVOLVED

TSsoft TSA
fittest TSB

fittest TSC
fittest

number of abstract test cases NA 1 3 65
number of concrete test cases 51 6 18 101
number of commands (or events) 294 30 84 685
execution Time with fault injection 230 2 6 35
execution Time without fault injection 60 2 6 35
code covered 86,63% 12,46% 17,17% 34,84%

execution which will definitely be deployed on SOFTEAM
side they are confident that there is a real benefit to gain.
However, a problem is foreseen with the logging activities,

these should ideally take place at the client/user side but this
is not in the hand of SOFTEAM. The laternative is collecting
the logs at SOFTEAM as was done in this study.

Fig. 5. An example of a test sequence and the test cases generated for the sequence. Each test sequence is transformed to a classification tree with input
classifications. The combinations of input classes along the sequence are test cases that can be transformed to executable ones automatically.

TABLE IV. EFFECTIVENESS MEASURES FOR THE TEST SUITES WITH RESPECT TO THE INJECTED FAULTS. “0” MEANS THAT THE CORRESPONDING
FAULT WAS NOT DETECTED, WHILE “1” MEANS IT HAS BEEN DETECTED.

TS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Total
TSsoft 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 14
TSA

fittest 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
TSB

fittest 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 5
TSC

fittest 0 1 1 0 0 1 1 1 1 1 1 0 1 0 1 0 0 10

TSsoft TSA
fittest TSB

fittest TSC
fittest

generate the FSM NA automated automated automated
≤ 1sec of CPU ≤ 1sec of CPU ≤ 1sec of CPU

specify DIS NA 20 mins 30 mins 60 mins
concrete tests manual automated automated automated

56 hours ≤ 1sec of CPU ≤ 1sec of CPU ≤ 1sec of CPU

TABLE V. DESCRIPTIVE MEASURES RELATED TO TIME FOR CONSTRUCTION FOR THE FITTEST TEST SUITES

RQ3: How satisfied are SOFTEAM testing practitioners dur-
ing the learning, installing, configuring and usage of the
technique when it is used in their real testing environments?

SOFTEAM indicated to be reasonably satisfied with the
usage of the FITTEST technique in their real testing en-
vironments. However they indicated that this might be due
to the fact that the practitioners are well familiar with the
technologies behind Java/Eclipse so the new technology was
very well accepted from the beginning of its introduction.
From SOFTEAM point of view, the one thing that could be
improved in the FITTEST prototype in order to take into
real testing environment is the network configuration for the
logging facilities.

B. Threats to validity

Internal validity. It is of concern when causal relations
are examined. In our case study, an internal validity threat

is related to the logs generated and used for automatically
constructing the test models. Because of the quality of models
can be affected by the content of the input logs. We are aware
of this threat and have asked SOFTEAM for a diverse set
of logs. Another similar threat is that the quality of concrete
test cases can be affected by the completeness of the Domain
Input Specification (DIS) file because incomplete specification
will weaken the efficiency of the TSfittest. In fact, this threat
might affect the overall number of detected faults by TSfittest,
but if the specification can be improved, such number can be
greater. Therefore, the conclusion about the effectiveness of
the TSfittest remains unchanged. Regarding to the involved
subjects from SOFTEAM, although they had a high level of
expertise and experience working in the industry as testers,
they had no previous knowledge of the FITTEST tools. This
threat was reduced by means of a closer collaboration between
FBK and SOFTEAM, by complementing their competences in
order to avoid possible mistakes or misunderstandings.

External validity. It is concerned with to what extent it
is possible to generalize the findings, and to what extent the
findings are of interest to other people outside the investigated
case. Our results rely on one industrial case study using a
given set of artificial faults. Although running such studies is
expensive in terms of time consuming, we plan to replicate
it with in order to have a more generalizable conclusions.
However, as discussed earlier, the system under testing used is
a typical of a broad category of industrial systems with users
of the management system.

Construct validity. This aspect of validity reflect to what
extent the operational measures that are studied really represent
what the researcher have in mind and what is investigated
according to the research questions. This type of threat is
mainly related to the use of injected faults to measure the fault-
finding capability of our testing strategies. This is because the
types of faults seeded may not be enough representative of real
faults. In order to mitigate this threat, the SOFTEAM team
identified representative faults that were based on real faults,
identified in earlier time of the development. This identification
although was realized by a senior tester, the list was revised
by all SOFTEAM.

V. CONCLUSIONS

We have presented a “which is better” [8] case study for
evaluating FITTEST testing tools with a real user and real
tasks within a realistic industrial environment of SOFTEAM.
The design of the case study has been done according to the
methodological framework for defining case studies presented
in [12]. Although this small scale case study will never provide
general conclusions with statistical significance, the obtained
results can be generalized to other similar software in similar
testing environments of SOFTEAM [15], [7]. Moreover, the
study was very useful for technology transfer purposes: some
remarks during the study indicate that the FITTEST techniques
would not have been evaluated in so much depth if it would
not have been backed up by our case study design. Finally,
having only limited number of subjects available, this study
took several weeks to complete and hence we overcame the
problem of getting too much information too late.

The objective of this research was to examine the advance-
ments of the FITTEST tools and validate their potential to
improve current testing practices at SOFTEAM. The following
were the results of the case study:

• The FITTEST tools can increase the effectiveness of
the current practice.

• The efficiency of the FITTEST tools is found accept-
able by SOFTEAM.

• The test cases automatically generated by the
FITTEST tools support better the identification of the
source of the faults

• The effort for deploying the FITTEST within a real in-
dustry case has been found reasonable by SOFTEAM.

Moreover, from the FITTEST project’s point of view we
have the following results:

• The FITTEST tools have shown to be useful within
the context of a real industrial case.

• The FITTEST tools have the ability to automate the
testing process within a real industrial case.

ACKNOWLEDGMENT

This work was financed by the FITTEST project, ICT-
2009.1.2 no 257574. Also, we would like to thank the great
help we got from Alon Aradi for conducting the experiments.

REFERENCES

[1] B. Beizer. Software Testing Techniques. International Thomson
Computer Press, 1990.

[2] A. Biermann and J. Feldman. On the synthesis of finite-state machines
from samples of their behavior. IEEE Trans. on Computers, 21(6),
1972.

[3] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos.
A survey on model-based testing approaches: a systematic review.
In Proceedings of the 1st ACM international workshop on Empirical
assessment of software engineering languages and technologies: held
in conjunction with the 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE) 2007, WEASELTech ’07, pages
31–36, New York, NY, USA, 2007. ACM.

[4] D. Graham and M. Fewster. Experiences of Test Automation. Pearson,
2012.

[5] M. Grochtmann and J. Wegener. Test case design using classification
trees and the classification-tree editor cte. In Proceedings of the 8th
International Software Quality Week, San Francisco, USA, Mai 1995.

[6] M. Harman and B. F. Jones. Search-based software engineering.
Information and Software Technology, 43(14):833–839, 2001.

[7] W. Harrison. Editorial (N=1: an alternative for software engineering
research). Empirical Software Engineering, 2(1):7–10, 1997.

[8] B. Kitchenham, L. Pickard, and S. Pfleeger. Case studies for method
and tool evaluation. Software, IEEE, 12(4):52 –62, July 1995.

[9] G. J. Myers. The Art of Software Testing. John Wiley and Sons, 1979.
[10] C. D. Nguyen, A. Marchetto, and P. Tonella. Combining model-

based and combinatorial testing for effective test case generation. In
Proceedings of the 2012 International Symposium on Software Testing
and Analysis, pages 100–110. ACM, 2012.

[11] C. Nie and H. Leung. A survey of combinatorial testing. ACM Comput.
Surv., 43:11:1–11:29, February 2011.

[12] T. Vos, B. Marı́n, I. Panach, A. Baars, C. Ayala, and X. Franch.
Evaluating software testing techniques and tools. In Actas de XVI
JISBD, pages 531–536, 2011.

[13] T. E. J. Vos, B. Marı́n, M. J. Escalona, and A. Marchetto. A
methodological framework for evaluating software testing techniques
and tools. In 12th International Conference on Quality Software, Xi’an,
China, August 27-29, pages 230–239, 2012.

[14] T. E. J. Vos, P. Tonella, J. Wegener, M. Harman, W. Prasetya, and S. Ur.
Testing of future internet applications running in the cloud. In S. Tilley
and T. Parveen, editors, Software Testing in the Cloud: Perspectives on
an Emerging Discipline, pages 305–321. 2013.

[15] A. Zendler, E. Horn, H. SchwŁrtzel, and E. Pldereder. Demonstrating
the usage of single-case designs in experimental software engineering.
Information and Software Technology, 43(12):681 – 691, 2001.

