Evaluating Rogue User Testing: an
Industrial Case Study at Softeam

Sebastian Bauersfeld
Nelly Condori-Fernandez

Tanja E. J. Vos

Etienne Brosse

Alessandra Bagnato

Technical Report UU-CS-2014-010
May 2014

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Evaluating Rogue User Testing:
an Industrial Case Study at Softeam

Sebastian Bauersfeld!, Nelly Condori-Fernandez!, Tanja E. J. Vos!, Etienne Brosse?, and
Alessandra Bagnato?

1 Universidad Politécnica de Valencia, Valencia, Spain
http://wuw.pros.upv.es/
2 SOFTEAM, Paris, France

Abstract. Testing applications with a graphical user interface (GUI) is an important,
though challenging and time consuming task. The state of the art in the industry are still
capture and replay tools, which may simplify the recording and execution of input sequences,
but do not support the tester in finding fault-sensitive test cases. While search-based test
case generation strategies, such as evolutionary testing are well researched for various areas
of testing, relatively little work has been done on applying these techniques to an entire GUI
of an application. In earlier works we presented the Rogue User Technique, which allows fully
automatic testing of complex GUI-based applications to find severe faults such as crashes or
non-responsiveness. In order to evaluate the utility and acceptance of the Rogue User in an
industrial context, we carried out a case study with Softeam, a Paris-based company that
participates in the FITTEST project. This document presents the results of this study.

1 Introduction

Software Testing is an important practice to assure the quality of and avoid critical errors in
software products. However, modern software is usually very complex and uses advanced Graphical
User Interfaces (GUIs) which can be very hard to test. The state of the art of testing such interfaces
are Capture and Replay tools which are not as automatic as often suggested by their vendors.

However, tests that aim at critical faults, such as crashes and excessive response times, are
completely automatable and can be very effective [4]. These robustness tests often apply random
algorithms to select the actions to be executed on the GUI. Since random algorithms might
not always exhibit satisfactory test performance, we presented a search-based approach to fully
automate robustness testing of complex GUI applications with the goal to enhance the fault finding
capabilities [4,5]. The approach is called Rogue User Testing and uses a well-known machine
learning algorithm called Q-Learning in order to combine the advantages of random and coverage-
based testing.

In order to evaluate the applicability and acceptance of this technique in an industrial con-
text, we conducted a case study with Softeam, a French software company participating in the
FEuropean FITTEST project. Softeam develops Modelio SaaS, a cloud-based system to manage
virtual machines that run their popular graphical UML editor Modelio. This system provides an
environment for users of this editor to collaboratively work on UML documents in the cloud.

Modelio SaasS is a PHP-based solution, which runs in the browser, is attached to a user database
and accesses the Amazon EC2 API to create virtual machine instances which run Modelio clients.
Softeam utilizes a hand-written test suite to ensure the quality of this system.

We wanted to find out how much acceptance the Rogue User Tool can gain in this environment
and among the testers and to what extend it can help to reduce the testing effort induced by the
manual test suite.

2 Context — Where has the case study been performed?

Softeam is a private software vendor and engineering company with about 700 employees located
in Paris, France.

2 Authors Suppressed Due to Excessive Length

One of Softeam’s priorities is to maximize user-interaction coverage of their test suites with
minimum costs. Specifically, those test suites created for the Modelio SaaS system. To achieve
this, Softeam is eager to investigate benefits and drawbacks of using the RU testing tool developed
within FITTEST.

This motivation is mainly due to the fact that the current testing process has several limitations
such as: i) Test case design and execution is and ii) resources for manual inspection of test cases
are limited.

Learning to use and integrate the Rogue User Tool into Softeam’s current testing processes,
could allow testers to reduce the time spent on manual testing and could even detect different
types of faults, since the tool can generate sequences that are too complex for humans to conceive.
The downside of this potential optimization is the extra effort and uncertainty that comes with
applying a new test approach. To decide if this extra effort is worth spending, a case study has
been planned and carried out. The results will support the decision making about whether to
adopt the Rogue User Technique at Softeam.

3 Design of the case study

3.1 Objective - What to achieve?

The goal of the case study is to measure the learnability, the effectiveness, efficiency, maintainability
and subjective satisfaction when using the Rogue User in the context of Modelio SaaS.

Analyze the RU tool
For the purpose of |Evaluation
With respect to Learnability, Satisfaction, Effectiveness, Efficiency and Maintenance

From the viewpoint|of the testing practitioner
In the context of [Softeam developing and testing for Modelio SaaS
departments

RQ1 Learnability How fast are the testing practitioners able to pick up the Rogue User tech-
nique?

RQ2 Satisfaction How satisfied are SOFTEAM testers during the installation, configuration
and application of the tool when applied in a real testing environment?

RQ3 Effectiveness and Efficiency How does the FITTEST Rogue User contribute to the effec-
tiveness and efficiency of testing when it is used in real industrial environments and compared
to the current testing practices at Softeam?

RQ4 Maintainability How much effort does it take to maintain the Rogue User Testing Infras-
tructure during the development of Modelio SaaS with potential changes to its user interface?
These changes can render previous test cases or test setups invalid which might require setup
adaptations. We want to find out how much manual labor is involved in this process.

3.2 Objects of the study: the SUT and the injected faults

The System Under Test (SUT) The SUT selected for this study is the Modelio SaaS system
(Figure 1), which is a prototype developed at Softeam. Modelio SaaS is a PHP web application,
that allows for easy and transparent configuration of distributed environments. It can run in virtual
environments on different cloud platforms, offers a large number of configuration options and hence
poses various challenges to testing [3]. In the case study we will focus on the web administration
console, which allows server administrators to manage projects created with the Modelio modeling
tool, and to specify user rights for working on these projects. The source code is composed of 50
PHP files with a total of 2141 lines of executable code.

Evaluating Rogue User Testing: an Industrial Case Study 3

(- 4 . 1 est-1 pute amazonaws.com kgroug t (<~ A
£ Most Visited Getting Started & me! Measuring free softwa... OMG
N oacge @~ Yahoo - | Search & % PDFCreator #v eBay @ Amazon Coupons® @ Radio {1 - [J M » Options

Reversy * hip/jec2-54-228-6-19¢" B Recherche * Francais — Anglais v |iu| | Traduction| |Dictionnaire| | Définition | |Conjugaison| | C | |

client : logout
Workgroup Projet Serveur Utilisateurs Roles Module Composants

Gestion des Serveurs

Lancer un nouveay Serveur

Serveurs publiques

iz s | o et | st | — 1 | S —"

ale Eucalyptus 1-10608b5a ec2-54-246-57-95.eu-west-1.compute.amazonaws.com View

ale ec2 EC2 i b @c2-46-137-17-208.eu-wast- 1.compute.amazonaws.com view

Fig. 1. Modelio SaaS — the SUT for this case study

T'Ssort — Softeam’s existing manual Test Suite The existing test suite is a set of 51 manually
crafted system test cases that Softeam uses to perform regression testing of new releases. Each
test case describes a sequence of user interactions with the graphical user interface as well as the
expected results. Figure 2 shows an example of such a test case.

Test Case SaaS-7: Create a customer account from the administrator account

Author: cba

Step actions: Expected Results:

1 Sign in as a server administrator
Go to "Compte clients" ->"Créer un] . N

2 compte client" The form to fill customer's details is displayed.
Fill:

1. the 'nom’ field with a name
2. the "date de soucription" field with
a date with format 'YYYY-MM-DD"
3. the "date de validité" field with a
3 date with format 'YYYY-MM-DD"
4. the 'login’ field with a login
5. the 'mot de passe' field with a

password
6. the 'e-mail' field with an email
address
. —~ . The 'Gestion des comptes clients" page must be displayed
4 Click on "Créer compte with a table containing the customer's details.
Execution type: Manual
Keywords: None

Fig. 2. Manual test case, used by Modelio SaaS testers for functional testing.

Injected Faults The faults to be injected have been selected after interviewing developers in-
volved into Modelio SaaS development. Five types of faults have been identified. All of these faults
occurred during the development of Modelio SaaS, which makes them realistic candidates for a test
with the Rogue User Tool. Table 1 shows the list of faults, their descriptions and their identifiers,

Authors Suppressed Due to Excessive Length

which we will use for reference throughout the document. Figure 3 and Figure 4 show screenshots
of two of the mentioned faults.

ID|Part of the FileLocation Description
Application
1 |Controller AccountController.php line 102 |When clicking on "no” for account deletion confirmation, the
system nevertheless deletes the account
2 |Controller LoginController.php line 8 |No login fields on login page
3 |Controller ProjectsController.php line 8 |Empty page when accessing the project creation page
4 |Controller RamController.php line 31 |Description is not added to the database when creating a com-
ponent
5 |Controller RolesController.php line 48 |Page not found error after editing a role
6 |Model DeploymentInstance.php line 10{” An error occurred” message when trying to view properties of
a project (see Figure 3)
7 [Model Module.php line 21 ” An error occurred” message when trying to add a module to a
project (see Figure 3)
8 |Model Module.php line 34 ” An error occurred” message when trying to upload a new mod-
ule (see Figure 3)
9 |Model Project.php line 36 ”An error occurred” message when trying to view managed
project (need to be a project manager) (see Figure 3)
10 |Model ProjectModule.php line 29 [? An error occurred” message when trying to view properties of
a project (see Figure 3)
11 |View ComponentSelection line 19 |Empty page when trying to add a component to a project
12 |View Modules.php line 18 Allow empty content for module
13 |View ModuleSelection.php line 30 |Empty page when trying to add a module to a project
14 |View RoleSelection.php lines 27 to 30|” An error occurred” when trying to edit the role of a user of a
project (see Figure 3)
15 |View Server.php line 42 The type of the server is missing
16 |View ServerSelection.php line 13 |Empty form (Figure 4) when trying to move a server
17 |View Users.php line 82 Editing is possible when accessing through view link and vice

versa

Table 1. Injected Faults

3.3 Cases or Treatments - What is studied?

The FITTEST way of doing Rogue User Testing Modern GUIs are large, complex and
difficult to access programmatically which poses great challenges for their testability. The Rogue
User is a technique that allows completely unattended testing of large and complex gui-based
SUTs. Its basic sequence generation algorithm comprises the following steps:

1.
)

Obtain the GUT’s state (i.e. the visible widgets and their properties like position, size, focus

Apply an oracle to check whether the state is valid. If it is invalid, stop sequence generation

and save the suspicious sequence to a dedicated directory, for later replay.

>

1.

Derive a set of sensible actions (clicks, text input, mouse gestures, ...).
Select and execute an action.
If the given amount of sequences has been generated, stop sequence generation, else go to step

In its default mode, the RU selects the actions to be executed at random. We believe that this
is a straightforward and effective technique of provoking crashes and reported on its success in [5].

| Mod

File Edit View History Bookmarks Tools Help

Evaluating Rogue User Testing: an Industrial Case Study 5

|| 2 Modelio Workgroup Server

[+]

Modelio Workgroup

softeam : logout
Workgroup | Comptes Clients | Serveur

An error occurred

Application error

Fig. 3. Easy to detect fault with obvious error message.

File Edit View History Bookmarks Tools Help

I E Modelic Workgroup Server

[+]

€ | @ localhost:10080/workgroup/public/account/deletaccount/id/4 77 v & ||B - Google P I A

€ | @ localhost:10080/workgroup/public/projectdata/movetoserver/id/10 wve | B - Google

Modelio Workgroup

etienne : logout
Workgroup Projet Serveur teurs Roles Module Composants

Séléction du Serveur

Fig. 4. Difficult to detect fault (specific control elements are missing)

6 Authors Suppressed Due to Excessive Length

We were able to find 14 crash sequences for Microsoft Word while running the Rogue User during
48 hours®.

In large SUTs with many — potentially deeply nested — dialogs and actions, it is unlikely that
a random algorithm will sufficiently exercise most parts of the GUI within a reasonable amount of
time. Certain actions are easier to access and will therefore be executed more often, while others
might not be executed at all.

Therefore, in [4] and [5] we presented an algorithm whose idea it is to slightly change the
probability distribution over the sequence space. This means that action selection will still be
random, but seldom executed actions will be selected with a higher likelihood, with the intend to
favor exploration of the GUI.

The strength of the approach is, that it works with large, native applications which it can drive
using complex actions. Moreover, the technique does not modify nor require the SUT’s source code,
which makes it applicable to a wide range of programs. With a proper setup and a powerful oracle,
the Rogue User can operate completely unattended, which saves human effort and consequently
testing costs.

The way (GUI) Testing is being done at Softeam Modelio SaaS’ testing and development
team consists of 1 product director, 2 developers and 3 research engineers who all participate in
the testing process. The testing practice at Softeam is to create test cases by relying on specified
use cases. Fach test case describes a sequence of the user interactions with the graphical user
interface as shown by Figure 2.

The test cases are managed with the TestLink* software and grouped as test suites according
to the part of the system that they enable to test. All them are executed manually by a test
engineer. If a failure occurs, the test engineer reports it to the Mantis® bug tracking system and
assigns it to the developer in charge of the part affected by the failure. He also provides the Apache
log file for the web Ul as well as the Axis log file for the web services. Then, Mantis mails the
developer in charge of examining/fixing the reported failure.

It took approximately 7 work days to design and build the test suite and together, the testers
need an hour to execute all of the 51 test cases if no errors occur.

Softeam’s testing process in projects other than Modelio SaaS is similar. A tester has access
to the project specifications (most of the time a textual description). From this specification, he
manually creates a first test suite under TestLink and then executes it. According to its results
he will modify the test suite, enter failure(s) into Mantis, discuss the issues with the development
team and re-execute the modified test cases, etc.

3.4 Subjects - Who applies the techniques?

We gave each of the testers a demographic questionnaire to fill out. The questions of and answers to
this questionnaire are listed in Table 2. The subjects are two computer scientists that are novice
testers from Softeam. Trainee one is a senior analyst (5 years), and trainee two is a software
developer with 10 years of experience. Both have less than one year of experience in software
testing: Both had previously modeled test cases using the OMG UML Testing Profile (UTP) [2]
and the Modelio implementation of the UML Testing Profile [1]. In addition, both testers also
claim to be proficient in Java, the language used to develop and extend the Rogue User Tool.

3.5 Variables - What is measured?
Independent variables:

— The Rogue User GUI Testing Tool (RU),

3 Videos of these crashes are available at https://staq.dsic.upv.es/sbauersfeld/index.html
 http://sourceforge.net/projects/testlink/
® http://www.mantisbt.org/

Evaluating Rogue User Testing: an Industrial Case Study

Subject

Question

Alessandra
Bagnato

Etienne
Brosse

How many years of programming experience do you have?

5

10

How long have you been working as a software tester?

1

1

In what types of testing activities did you engage? Briefly
describe the projects you were working on and what your
tasks have been.

7 Test Case
Modeling
with UTP”

”Test Case
Modeling

with UTP”

What programming languages have you used in the past
and which one are you most proficient in?

” Javaw

” Javaw

Table 2. Results of the Demographic Questionnaire

— Complexity of the SOFT case study system (Modelio SaaS),
— Level of experience of the SOFT testers who will perform the testing,

— The quality of the setup for the Rogue User as designed by the testers.

Dependent variables:

1. Measuring Learnability:

(a)

Perceived difficulties during the learning process

7

i. Learnability Interview with the Softeam testers. In this interview the testers will be
asked which aspects of the tool / technique are intuitive and which ones are harder to

understand.

ii. Learnability Interview with the trainer. The trainer will portray his view on the learn-

iii.

iv.

ing process of the testers. We will ask him about which parts of the technique the
testers struggled with the most.

Evolution of artifact quality as rated by the trainer. The trainer will assess the quality
of the different artifacts (oracle, action definition, stopping criteria) that the testers
will produce. The idea is that since the testers will produce different versions on their
way to the final setup, we will see how much they do improve during the course of the
study.

Exam about the Rogue User Technique: The testers will have to show whether they
understood the Rogue User Technique and know the necessary theory behind it.

(b) Time needed to set up the testing infrastructure for the Rogue User. This includes:

i. Oracle Design + Implementation

ii. Action Definition + Implementation (the RU’s behavior)
iii. Stopping Criteria (criteria which determine when a sufficient amount of testing has

been performed)

2. Measuring Satisfaction:

(a) Reactions through reaction word cards: After the case study, we will ask the testers to
describe their experiences with the tool by choosing words from a word list as used by
Benedek et al. [6]. They will only have a short period of time (5 minutes) to select the

(b)

words that they think fit best.

We will carry out a satisfaction interview in which we will ask the testers about their

opinion about the tool.

Face questionnaire to obtain information about satisfaction through facial expressions: We
will ask the testers whether they would recommend the tool to their peers or promote its use
to the management of their company. Meanwhile, we will observe their facial expression,
in order to draw conclusions about their opinion on the tool. The purpose of the face
questionnaire is to complement the satisfaction interview in order to determine whether

their gestures harmonize with their given answers.

8 Authors Suppressed Due to Excessive Length

3. Measuring Effectiveness. For TSg,s; and TSgy:

(a) Number of failures observed by both test suites. The failures relate to the ones in Table 1
that were injected into the current version of Modelio SaaS.

(b) Achieved code coverage (We measured the line coverage of the PHP code executed by both
test suites. We took this as an indicator of how “thorough” the SUT has been executed
during the testing process)

4. Measuring Efficiency (Time will be measured in minutes).

(a) Time needed to design and develop test suites TSg, s+ and TSgy. In the case of the Rogue
User we took the time that was necessary to develop the oracle, action definitions and
stopping criteria.

(b) Time needed to run TSgef: and TSgy.

(c) Reproducibility of the faults detected by TSsos: and TSgy. Sometimes a test suite trig-
gers a fault which is hard to reproduce through a subsequent run of the faulty sequence.
Sometimes the environment is not in the same state as it was during the time the fault
has been revealed, or the fault is inherently indeterministic. The timing of the tool used
for replay can also have a major impact. We will measure what percentage of failures has
been reproducible.

3.6 Protocol

TRAINING PHASE (UPV) TESTING PHASE MAINTENANCE PHASE

| Manual INSTALLING —|
ROGUE USER ROGUE USER ’ % Example SUTS ‘
— TOOL — T
—- i
SETTING-UP INTRODUCTORY SETTING-UP DEVELOPING
A WORKING TEST COURSE A WORKING TEST ROGUE USER anetionar—]
ENVIRONMENT (4 HOURS) ENVIRONMENT PROTOCOL { changes ‘

SOFTEAM

HANDS ON
LEARNING

EXAMS

UPDATING ROGUE
USER PROTOCOL

RUNNING THE
PROTOCOL

N

EVALUATING
RESULTS

Efficiency
Effectivity
Satisfaction
Learnability

YES

SUCCESS?

Fig. 5. Case Study Protocol

The case study has been divided into 3 phases:

1. Training Phase: A trainer will introduce the subjects to the Rogue User Testing Technique,
provide working examples, point out challenges and difficulties and eventually gather first
impressions of how well the subjects understood the concepts of the technique and whether
they are prepared to proceed to phase 2.

2. Testing Phase: The subjects will apply the learned knowledge to the System Under Test.
They will develop a test environment on their own. In case of problems they will consult the
documentation or (in very problematic cases) the trainer (through Skype or similar platforms).

3.

Evaluating Rogue User Testing: an Industrial Case Study 9

Maintenance Phase: The subjects will continue to use the developed test environment and
maintain it as the System Under Test changes. This phase is important to evaluate long-term
costs and potential problems with the Rogue User Technique and it will continue to run until
after the end of the FITTEST project.

Training Phase The subjects start to develop a working test environment for Softeam’s case
study system.

1.

The testers fill in a demographic questionnaire with information about their experience in the
industry and the tools, programming languages and testing techniques they are familiar with.

. Presentational learning through training in Rogue User testing: The trainer gives an intro-

ductory course to the Rogue User technique in which he presents working examples of Rogue
User Tests. He uses example SUTs which are unrelated to the later case study system so that
the subjects get an insight into:

— How to setup the Rogue User for a given SUT?

— How to tell the tool which actions to execute?

— How to program an effective test oracle for different types of faults?

— How to define and program stopping criteria?

. Autonomous hands-on learning (i.e. learning by doing) with online help from the Rogue User

course instructor through Skype. The subjects will apply the learned techniques on two exam-
ple SUTs (unrelated to the later subject SUT). Each tester documents the progress in working
diaries which contain information about:
(a) The activity that has been performed (for example: read the Rogue User manual, ask
questions to the trainer, make an example Rogue User, write an email to the trainer, etc.
(b) Minutes spent on each activity
(¢) The questions and doubts that the tester had at the time he was doing this activity (so
one can see if those were solved in later learning activities)
(d) Artifacts generated, including:
i. Versions and evolutions of Rogue User Protocols that are produced during these hands-
on learning activities
ii. Any other artifact that they think might be of interest.

. In order to find out whether the testers are ready to go over to phase 2

(a) The trainer evaluates the generated artifacts and the maturity of the questions he receives.

(b) The trainer evaluates their knowledge with an exam that covers the provided training
material.

(c) The trainer interviews the subjects.

(d) The trainer himself is interviewed to find out how he thinks about the progress of the
testers.

. The results are summarized to obtain values for variables 1.a).

Testing Phase The subjects start to develop a working test environment for Softeam’s case
study system.

1.

O Lo

Each tester develops a Rogue User Protocol (working diaries will be maintained) and measures
the variables 1.b).

Each tester runs his / her Rogue User protocol and evaluates the results.

We will carry out a reaction cards session as has been done in [6]

Satisfaction interviews (answer 2 questions while recording the face of the interviewee).

The trainer will evaluate the quality of the protocols and the results of the test runs (subjective
assessment as lecturer to evaluate how smart the protocols were made and how likely they are
to work in later tests)

10 Authors Suppressed Due to Excessive Length

Maintenance Phase

1. The subjects will continue to use the Rogue User Technique in particular for new versions
of the SUT. This will be a long-term phase in which the testers can experiment with the
technique and figure out potential problems.

2. They will continue to measure variables 2.x and 3.x for each new SUT version, i.e. they will
also measure the time that they need to adjust the current Rogue User protocol to the new
SUT version (e.g.: the protocol might not work correctly after the GUT of the SUT changed,
etc.).

4 Results and Discussion

To answer all posed research questions we followed the protocol described in Section 3.6. The
very first thing that the participating testers had to do was to fill out a demographic questionnaire
whose results are shown in Table 2. The table shows that both testers have sufficient programming
experience yet are beginners in the field of testing. They both are familiar with the Java language
which is used to extend the Rogue User and to write its oracle definition.

The case study took place during a period of 2 months. Table 3 lists the overall time of different
activities that the testers and the trainer carried out throughout the course of the study.

Time reported in minutes
Activities Variable| S1 |S2 In Pairs
Oracle design + implementation 1b) i {1200|30 30
Action definition + implementation| 1b)ii | 820 |30 20
Stopping Criteria 1b)iii | 30 |0 10
Evaluating run results / 240 |20 30
Skype meeting with trainer / 60 [10 15
Total time / 2350(90 105

Table 3. Self-reported activities during the hands-on learning process. The results correspond to the
variables 1b) i, ii and iii of Section 3.5.

4.1 RQ1: Learnability

To answer the question as to how learnable the tool is, and to get values for the variables 1a), we
relied on the following information and resources gathered during the training and testing phases
of the case study:

1. A learnability interview with both testers, where the testers describe positive and negative
aspects of the tool and list the problems they had during the training and testing phases.
Table 4 shows the results of this interview.

2. A learnability interview with the trainer. In this interview the trainer answered questions
about the impressions he obtained during the introductory course, the hands-on training and
the actual application of the tool in the testing phase. Table 5 shows the results of this
interview.

3. A histogram of the quality of the artifacts generated during training and testing phases. The
trainer had to assess the quality of oracles, action sets and stopping criteria on a scale between
0 and 5. During the course of the case study, the testers generated 4 increasingly powerful
versions of the Rogue User setup. Figure 6 shows how the trainer rated those versions.

4. The introductory course exam that the testers had to fill in after the Rogue User presentation
in Paris. Appendix .1 shows the test. The trainer used its results to rate learnability in Table
5.

In Tables 4 and 5 the interviewees had to answer the questions by indicating how much they
agree on a scale between 0 and 5, with 0 being total rejection and 5 full consent. The questions
in Table 4 have been taken from [7] where the authors are analyzing the learnability of CASE
tools. They have been divided into 7 categories to separate different aspects of the tool. Averaged
over all questions and both testers, the Rogue User tool scored 4.15 out of 5 possible points and
a median of 4 which proves the testers’ positive view on complexity and learnability of the tool.

Evaluating Rogue User Testing: an Industrial Case Study

Learnability Question Tester’s Answer
Categories Alessandra |Etienne
Bagnato |Brosse
l.a) It was easy for me to get started and to learn how to use 5 5
the tool.
Ease of - — -
. 1.b) T was able to use the tool right from the beginning, without 4 4
learning .
having to ask my tutors or peers for help.
1.c) The tool encouraged me to try out new system functions by 5 5
trial and error.
1.d) It was easy for me to remember commands from one session 4 5
to another.
1.e) The explanations provided during the introductory class, 4 5
the Skype conversations and the documentation helped me to
become more and more skilled at using the tool.
o 2.a) Was your prior knowledge of other computer-based systems 5 4
Familiarity useful in the learning of the RU tool?
2.b) Was your prior knowledge of other testing tools useful in 5 4
the learning of the RU tool?
. 3.a) The tool is consistently designed, thus making it easier for 5 5
Consistency
me to do my work.
3.b) I find that the same function keys are used throughout the 3 5
program for the same functions.
Predictability 4.2.1) The tool behaves similarly and predictably in similar situ- 3 4
ations.
4.b) When executing functions, I get results that are predictable. 3 5
Informative |5.a) Performing an operation leads to a predictable result. 5 5
Feedback
Error 6.a) If I make a mistake while performing a task, I can easily 3 5
Messages undo the last operation
& 6.b) Error messages clarify the problem. 3 3
6.c) I perceive the error messages as helpful 3 3
. 7.a) I found it easy to setup powerful oracles that detect errors 3 4
Specific .
. in the SUT.
Functions - - -
7.b) I found it easy to setup powerful action sets that drive the 3 5
SUT and allow to find problematic input sequences.
7.c) I found it easy to define when to stop tests / when the SUT 3 5

was sufficiently tested.

The results in Table 5 harmonize with this view. The trainer had a generally positive impression
of how well the testers performed during the case study and gave on average 3.71 out of 5 points.
However, he emphasizes that the testers had a few problems with the definition of the Rogue
User’s action set. This set defines the RU’s behavior and is crucial to its ability to explore the
SUT and trigger crashes. Action definitions comprise the description of trivial behavior such as

Table 4. Learnability Interview (Variable 1a) i)

clicks and text input, as well as more complicated drag and drop and mouse gestures.

12 Authors Suppressed Due to Excessive Length

Question Answer
Did you get the impression that the testers internalized the learned material quickly? 4
Would you say that the testers made significant progress throughout the training phase? 4
What aspect of the Rogue User Testing technique caused the most difficulties for the testers? |Action
Definition
How would you rate the quality of the resulting RU oracles as designed by the testers? 4

How would you rate the quality of the resulting RU action sets as designed by the testers?

How would you rate the quality of the resulting RU stopping criteria?

How well did the testers answer the questions asked in the written Rogue User Test?

| W W

Would you say that the testers only had few problems in setting up the Rogue User for tests?

Table 5. Learnability Interview — The trainer’s point of view (Variable 1a) ii).

Throughout the course of the case study, the testers developed 4 different versions of the Rogue
User’s setup, with increasing complexity. The first setup offered a rather trivial oracle, which
scraped the screen for critical strings such as "Error” and ”Exception”. The testers supplied these
strings in the form of regular expressions. Obvious faults such as number 6 (see Table 1 for the
list of injected faults), which is depicted in Figure 3, are detectable with this strategy. However,
this heavily relies on visible and previously known error messages. More subtle faults, such as
number 16, depicted in Figure 4, are not detectable this way. The second oracle version made
use of the web server’s logging file which allowed to detect additional types of faults (e.g. errors
caused by missing resource files, etc.). Versions 3 and 4 also incorporated a consistency check of
the database used by Modelio SaaS. This makes sense, since certain actions such as the creation of
new users, access the database and could potentially result in erroneous entries. Each new oracle
version was accompanied by a corresponding action set and test stopping criteria. For example:
The more powerful database oracle in version 3, requires appropriate actions, that heavily stress
the database. Thus, the Rogue Users should prefer to create / delete / update many records.
Finally, one needs to supply a reasonable test stop criterion, that defines when the SUT had been
thoroughly tested.

Figure 6 shows the quality of the different Rogue Users setups, as rated by the trainer. The
trainer rated each artifact of a version separately, i.e. oracle, action set and stopping criterion. The
perceived quality increases with each version and eventually reaches its maximum in the last one.
Although, as mentioned before, the trainer is not entirely satisfied with the quality of the testers’
action definitions, the graphic shows a clear increase in sophistication, indicating the ability of the
testers to learn how to operate the tool.

4.2 RQ2: Satisfaction

To obtain information on whether the testers were satisfied with the tool, we used the following
sources (Variables 2a), 2b) and 2¢)):

1. A product reaction cards interview (Figure 7, where we asked the testers to mark words that
they associate with the tool.

2. A satisfaction interview (Table 6), where we explicitly asked the testers what they think about
the tool and how happy they have been with it.

3. A face questionnaire (Table 7 and Figure 4.2), where we asked two direct questions and ob-
served the testers’ first facial reaction.

Table 6 shows the results of a direct satisfaction interview with the testers. Again, we used
questions from [7] and in addition asked the subjects to describe in their own words the most
positive and negative parts of the tool. The testers answered the questions about the tool predom-
inantly positive and used pleasant words to describe its characteristics. However, both testers also
agree on the necessity to improve the tool’s documentation.

Evaluating Rogue User Testing:

an Industrial Case Study 13

Quality

Version

Oracle mmmm
ActionSet mmmm
SC

Fig. 6. Evolution of artifact quality as rated by the trainer (Variables la) iii)

Question

Tester’s Answers

Alessandra Bagnato

Etienne Brosse

The use of the RU tool for this case 4 5
study was a good idea.

The tool made my work more inter- 4 5
esting.

The use of the RU tool enabled me 4 4

to complete my tasks more quickly.

Name the three most positive fea-
tures of the Rogue User

”Innovative, intuitive, time-saving”

”Highly extensible / configurable +
deals with boring tasks + easy to

use”

Name the three most negative fea-
tures of the Rogue User

”The user friendliness of the tool
could be improved adding notes
from the quick manual in there.
Might be nice to save configurations
of the rogue user for certain tools
and be able to load them again. Fil-
ters writing might be helped with
some notes on the syntax.”

”"Needs more integrated help +
Installation Issues (dll dependen-
cies) + Startup actions need to be
scripted”

Table 6. Satisfaction Interview (Variable 2b))

14 Authors Suppressed Due to Excessive Length

A second source that we used to gain insight into the testers’ mind were reaction cards as
defined in [6]. We gave the testers a list of words and asked them to mark the ones, that they
associate the most with the Rogue User tool. We then kept the intersecting set of words chosen by
both testers. Figure 7 shows the result where, again, we can see that the large majority of words
have a positive connotation, such as “Fun”, “Desirable”, “Time-Saving” and “Motivating”.

The complete set of 118 Product Reaction Cards

Accessible Creative Fast Meaningful Slow

Advanced Customizable Flexible Motivating Sophisticated
Annoying Cutting edge Fragile Not Secure Stable
Appealing Dated Fresh Not Valuable Sterile
Approachable Desirable Friendly Novel Stimulating
Attractive Difficult Frustrating Oold Straight Forward
Boring Disconnected Fun Optimistic Stressful
Business-like Disruptive Gets in the way Ordinary Time-consuming
Busy Distracting Hard to Use Organized Time-Saving
Calm Dull Helpful Overbearing Too Technical
Clean Easy to use High quality Overwhelming Trustworthy
Clear Effective Impersonal Patronizing Unapproachable
Collaborative Efficient Impressive Personal Unattractive
Comfortable Effortless Incomprehensible Poor quality Uncontrollable
Compatible Empowering Inconsistent Powerful Unconventional
Compelling Energetic Ineffective Predictable Understandable
Complex Engaging Innovative Professional Undesirable
Comprehensive Entertaining Inspiring Relevant Unpredictable
Confident Enthusiastic Integrated Reliable Unrefined
Confusing Essential Intimidating Responsive Usable
Connected Exceptional Intuitive Rigid Useful
Consistent Exciting Inviting Satisfying Valuable
Controllable Expected Irrelevant Secure

Convenient Familiar Low Maintenance Simplistic

Fig. 7. Product Reaction Cards (Variable 2a)) — Developed by and (© 2002 Microsoft Corporation. All
rights reserved. The marks show the intersecting set of words chosen by both testers.

Finally, to cross-validate the testers claims, we conducted a face questionnaire as described
in [6]. The idea is to elicit feedback about the product, particularly through emotions that arose
in the participants while talking about the product (e.g. frustration, happiness). We video taped
the testers while they responded to the questions in Table 7. We asked whether they 1) would
recommend the tool to other colleagues and 2) whether they think they could convince their
management to invest in it. Figure 4.2 shows their first facial expressions, right after the questions
had been asked. The left and right hand sides relate to questions 1 and 2, respectively. The authors
of [6] use a scale and a canonical facial expression to rate the expressions of the photographed
subjects. Table 7 shows this scale. The more the subjects’ faces resembled the given face, the less
motivated and satisfied we assumed they were. For question 1, we assigned 3 / 8 points to the first
tester, since he is smiling confidently and his face does not resemble the negative canonical face.
This corresponds with the answers he gave. He argued that the Rogue User tool is quite suitable
for many types of applications. He described it as time-saving, especially in the context of simple
and repetitive tests. This allows him to concentrate on the difficult tests which are very hard to
automate. His facial expression after question 2, is not so confident anymore. We assigned 7 / 8
points, since he does not look optimistic that he will be able to convince his management to invest

Evaluating Rogue User Testing: an Industrial Case Study

15

in the tool. He argues that this is difficult, since one would have to convince many people and

prepare a strong business case.

Question 1

Would you recommend this tool to other col-
leagues? If not why? If yes what arguments
would you use?

Question 2

Do you think you can persuade your manage-
ment to invest in a tool like this? If not why?
If yes what arguments would you use?

How much does the interviewee’s face
resemble the one depicted on the left?

1 Not at all

2 3 |4 |5 [6 |7 [8 Very much

Table 7. Facial Expressions Chart (Variable 2c))

Fig. 8. Face Questionnaire: Images on the left show reactions to question 1, on the right to question 2 of

Table 7.

Similar to tester 1, the face of tester 2 appears positive and affirming. Additionally, she argues
that the tool is very easy to use. We assigned 2 / 8 on the image scale, since her smile is more
intense than that of the first tester. Contrary to tester 1, however, she is also more confident to
be able to promote investment of the tool within the company. We assigned 3 / 8 points for the
second question. She argues that, although she would need strong arguments, it would be realistic
to convince the people in charge, due to the tool’s quality.

In summary, despite, small criticism regarding the documentation and installation process of
the tool, the testers’ reactions and statements encountered during the interviews and the face

16 Authors Suppressed Due to Excessive Length

questionnaire, indicate that they were satisfied with the testing experience. We came to a similar
conclusion regarding the tool’s learnability. Although, the trainer reported certain difficulties with
the action set definition, the constant progress and increase of artifact quality during the case
study, points to an ease of learnability.

4.3 RQ3: Effectiveness and Efficiency

To answer the third research question regarding the efficiency and effectiveness of the Rogue User,
we compared the existing manual test suite (T'Ssos:) with the test suite generated by the Rogue
User Tool (T'Sgy). To make a judgement on this matter we compared the variables 3.x and 4.x of
Section 3.5 of both test suites against each other. Table 8 shows the values of these variables. To
obtain data for T'Sry we used the last of the 4 versions of the setup for the Rogue User Tool created
by the testers during the case study. However, we also included the time necessary to develop the
earlier versions in the development time, since these intermediate steps were necessary to build
the final setup. To measure the variable values for T'Ss,f; we employed Softeam’s current manual
test suite for which the company has information about man hours dedicated to its development.

o . . Test Suite
Description Variable TSsor.] TSro
Faults discovered 3a) 144+1/10+1
Code coverage 3b) |86.63%| 70.02%
Time spent on development 4a) 40h 36h
Run time 4b) |3h 10m|77h 26m
Faults reproducible 4c) 100% | 91.76%
Number of test cases / 51 |dynamic
Number of executed sequences / 294 90

Table 8. Comparison between manual and Rogue User generated tests

The way both test suites were executed was as follows:

1. In the case of the manual test suite T'Sgoy:, a tester started manually carrying out the specified
test cases until an unexpected result, i.e. a fault was detected. In the case of the Rogue User
we started the tool and let it run until it triggered and detected a fault.

2. The responsible tester then analyzed the fault, tried to reproduce it by replaying the corre-
sponding sequence and eventually fixed the fault, before proceeding with the testing process.

3. This process has been repeated until none of the test cases triggered any (detectable) fault.

As we can see in the table, the manual test suite (T'Sgos¢) and the suite generated by the
Rogue User (I'Sgy) obtained in some cases substantially different results. T'Sgop: consists of
a fixed set of 51 hand-crafted test cases, whereas T'Sgpy does not comprise specific test cases,
but rather generates them as needed. Softeam states to have spent approximately 40 hours of
development time on crafting the manual test cases, which roughly equals the 36 hours that their
testers needed to setup the Rogue User for the final test (including earlier setup versions). The first
major difference is the number of actually generated sequences. Due to the many faults contained
in the tested SUT version, many test cases had to be repeated after fixing a fault, in order to make
sure that they then executed flawless. Despite this, the Rogue User tool generated considerably
less sequences and needed significantly more time to do so. This is due to the fact, that those
sequences are often very long (the testers set an action limit of 500 for the tests), whereas the
manual sequences only consist of a few actions necessary to carry out the specified test cases.

As mentioned before, the running times of the two suites largely differ. The testers took about
3 hours to execute all manual test cases and fix the faults, whereas the setup that they conceived

Evaluating Rogue User Testing: an Industrial Case Study 17

for the Rogue User, ran about 78 hours, before no faults were triggered anymore and the tool
stopped its execution. Of course they could have decided to perform a shorter run, but since the
tool works completely automatic and ran over night, it did not cause any manual labor. The only
thing that the testers had to do, was to, in the mornings, consult the logs for potential errors, fix
these and continue to run the tool. This is a very positive outcome compared to the manual test
suite, which caused more than 3 hours of human labour.

In terms of code coverage, the manual suite outperformed the automatically generated tests.
However, the difference of approximately 16% is modest. Manual testing allows the tester to explore
forms that might be locked by passwords or execute commands that require specific text input.
A way to enable the Rogue User to explore the GUI more thoroughly, would be to specify more
complex action sets. We consider this as a plausible cause, as the trainer pointed out, that he was
not entirely satisfied with the action definitions that the testers designed (see Figure 6).

Finally, considering the amount of seeded faults that have been detected by both suites, the
manual tests, unsurprisingly, outperformed those generated by the Rogue User tool. T'Ss,y; de-
tected 14 of the seeded faults and the testers even found a previously unknown error. All of the
erratic behaviors were reproducible without any problems. T'Sgry, on the other hand, detected
11 faults, including the previously unknown one. However, as expected, the tool had problems
detecting certain kinds of faults, since it can be hard to define a strong oracle for those. Examples
include errors similar to number 16 (Figure 4). Nevertheless, obvious faulty behavior, which often
occurs after introducing new features or even fixing previous bugs, can be detected fully automatic.
Given the low amount of manual labor involved in finding those, the Rogue User tool can be a
useful addition to a manual suite and could significantly reduce manual testing time. One definite
advantage, that the RU has over the manual suite is, that the setup can be replayed arbitrary
amount of times, at virtually no cost, e.g. over night, after each new release. The longer the tool
runs, the more likely it is to detect new errors. We think that the development of a powerful oracle
setup pays of in the long term, since it can be reused and replayed without demanding valuable
human time.

4.4 RQ4: Maintenance

To be able to answer the last research question about how much effort is necessary to maintain
a Rogue User Setup for consecutive versions of the SUT and how this effort compares to the one
necessary to maintain the current suite T7'Ss,y, we will continue to work with Softeam beyond
the time span of the FITTEST project. We are particularly interested in how stable Rogue User
setups are against changes in the SUT’s user interface and how automatic the approach really
is. Therefore, we will observe difficulties with both T'Sg,f; and T'Sgy during each new release of
Modelio SaaS. In particular, what problems are encountered, what is necessary to fix them, and
finally how much time is necessary to adjust the suite to the new conditions.

The results of this study will be delivered at a later stage as an addendum to this document.

5 Conclusions

In this document we presented the results of a case study that we carried out together with Softeam,
a software vendor located in Paris, France. We settled out to determine whether the automated
Rogue User tool will be accepted and appreciated by the testers in an industrial context. Therefore,
we trained two novice testers on how to use the tool and how to design an effective setup. We
then accompanied and assisted them in setting up a test environment for Softeam’s Modelio
SaaS solution, a web-based administration system to manage collaborative environments for the
popular Modelio client. We observed their progress and evaluated the artifacts they developed. The
satisfaction interviews that we conducted yielded predominantly positive feedback, both from the
testers, which claimed enjoying the work with the tool, as well as from the trainer, who observed a
constant learning progress. The constant improvement of the developed artifacts and the positive

18 Authors Suppressed Due to Excessive Length

results of a test with an erroneous version of Modelio SaaS, support the view that the Rogue User
is a practical and learnable technique, accepted by the testers.

We furthermore wanted to see how effective and efficient the solutions developed by the testers
were compared to Softeam’s current manual testing practice. Therefore, Softeam provided an
erroneous version of their SUT, with realistic faults observed during its development. We ran the
Rogue User Tool and the current manual test suite on this version and measured the time and
the amount of faults revealed by each technique. The results were surprisingly positive, as the
Rogue User managed to detect several severe faults while involving less manual labor than the
current approach. The different types of faults detected by both test suites lead us to conclude
that the Rogue User technique is a valuable supplement for a manual test suite, which can reduce
the manual testing burden and increase testing effectivity.

Acknowledgment

This work was financed by the FITTEST project, ICT-2009.1.2 no 257574.

.1 Introductory Course Test

ROGUE USER TESTING TEST

1. General

1. When applying the Rogue User technique, why is it important to always start the

SUT in a designated state and how can one achieve this?

2. Oracles
1. What kind of faults is the Rogue User suited for? Name three types of detectable
errors!

2. Name two examples of faults which would be difficult to detect with an

automated solution such as the Rogue User!

3. Safety

1. The Picture on Page 3 shows a screenshot of the Classification Tree Editor.
Imagine you had to set up an automated test for the CTE. Which actions would
you consider harmful to the machine that the test is running on? Mark at least two

and explain why!

2. What precautions could one take to make sure that the automated test does not
harm the test environment? Name two and discuss their advantages and

disadvantages.

4 default8.cte - CTE XL Professional

(L] ¢=h _

noname_1 noname_4

Shiow Subtree

22 Authors Suppressed Due to Excessive Length
References
1. Modelio implementation of the uml testing profile: http://www.modeliosoft.com/en/modelio-

store/modules/modeling-extensions/utp.html, October 2013.

Uml testing profile (utp) web site, online: http://utp.omg.org/, October 2013.

A. Bagnato, A. Sadovykh, E. Brosse, and T.E.J. Vos. The omg uml testing profile in use—an industrial
case study for the future internet testing. In Software Maintenance and Reengineering (CSMR), 2013
17th European Conference on, pages 457—460, 2013.

. Sebastian Bauersfeld and Tanja Vos. A reinforcement learning approach to automated gui robustness

testing. In In Fast Abstracts of the 4th Symposium on Search-Based Software Engineering (SSBSE
2012), pages 7-12. IEEE, 2012.

. Sebastian Bauersfeld and Tanja E. J. Vos. Guitest: a java library for fully automated gui robust-

ness testing. In Proceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2012, pages 330-333, New York, NY, USA, 2012. ACM.

J. Benedek and T. Miner. Measuring desirability: New methods for evaluating desirability in a usability
lab setting. Proceedings of Usability Professionals Association, Orlando, USA, 2002.

. Mali Senapathi. A framework for the evaluation of case tool learnability in educational environments.

Journal of Information Technology Education: Research, 4(1):61-84, January 2005.

