Evaluating Rogue User Testing: Action Research
with a Company

Sebastian Bauersfeld

Tanja E. J. Vos

Antonio de Rojas

Technical Report UU-CS-2014-011
May 2014

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands
WWW.cS.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Evaluating Rogue User Testing:
Action Research with a Company

Sebastian Bauersfeld
Centro del PROS
Universitat Politécnica de Valéncia
Valencia, Spain
Email: sbauersfeld @pros.upv.es

Abstract—Testing applications with a graphical user interface
(GUI) is an important, though challenging and time consuming
task. The state of the art in the industry are still capture and
replay tools, which may simplify the recording and execution
of input sequences, but do not support the tester in finding
fault-sensitive test cases. While search-based test case generation
strategies, such as evolutionary testing are well researched for
various areas of testing, relatively little work has been done on
applying these techniques to an entire GUI of an application.
In earlier works we presented the Rogue User Technique, which
allows fully automatic testing of complex GUI-based applications
to find severe faults such as crashes or non-responsiveness. In
a subsequent case study with a french company, we settled
out to test the user-acceptance and effectivity of the tool in an
industrial context. However, at that time we used fault-injection
and compared our tool to a manual test suite. In a real-world
scenario one does not know what types of errors can occur, which
makes the implementation of an oracle much more challenging.
In this paper we will present our experience with the Spanish
software vendor Clavei which decided to apply the tool to stress
test a component of one of their ERP applications. Our main goal
was to identify potential problems that arise during the setup of
the Rogue User. The idea is, that the findings of this so-called
action research, will later guide a more detailed investigation.
While carrying out our tests, we discovered critical and previously
unknown faults in the application under test. This document
presents the results of this study in detail.

I. INTRODUCTION

Software Testing is an important practice to assure the
quality of and avoid critical errors in software products.
However, modern software is usually very complex and uses
advanced Graphical User Interfaces (GUIs) which can be very
hard to test. The state of the art of testing such interfaces are
Capture and Replay tools which are often not as automatic as
suggested by their vendors.

However, tests that aim at critical faults, such as crashes
and excessive response times, are completely automatable and
can be very effective [1]. These robustness tests often apply
random algorithms to select the actions to be executed on
the GUI. Since random algorithms might not always exhibit
satisfactory test performance, we presented a search-based
approach to fully automate robustness testing of complex
GUI applications with the goal to enhance the fault finding
capabilities [1], [2]. The approach is called Rogue User Testing
and uses a well-known machine learning algorithm called
Q-Learning in order to combine the advantages of random

Tanja E.J. Vos
Centro del PROS
Universitat Politecnica de Valéncia
Valencia, Spain
Email: tvos@pros.upv.es

Antonio de Rojas
Clave Informatica S.L.
Alicante, Spain
Email: aderojas@clavei.es

and coverage-based testing. We developed a practical tool,
called the Rogue User [3], which implements the Rogue
User Technique and makes it applicable to a wide range of
applications.

In an earlier case study [3] we collaborated with a French
company called Softeam in order to find out about the accep-
tance that the Rogue User Tool can gain in a real industrial
context. In addition, we compared the tool against the com-
pany’s manual test suite and ran it against a faulty version
of one of their products, Modelio SaaS. As we reported, the
tool performed surprisingly well and the outcomes indicated
potential areas that the Rogue User Tool could be applied in,
in order to improve test efficiency. However, the SUT of this
case study had previously known injected faults. Although
these faults were realistic — given that they occurred during
the development — the mere fact that the testers were aware of
potential fault patterns, might have simplified the development
of a powerful oracle. In a realistic testing scenario, however,
one will not know what potential faults will look like and how
they can be detected. This could have significant ramifications
for the development of a suitable oracle and its effectiveness. In
order to gain insight into such situations, we collaborated with
the Spanish software vendor Clavei which expressed strong
interest in the Rogue User Tool. Clavei develops the accounting
software ClaveiCon which is part of their Enterprise Resource
Planning (ERP) system (see Figure 2) and which they sell to
companies within Spain. The product is in a mature state and
has been thoroughly tested and applied for many years.

In order to do both, solve Clavei’s testing problems as
well as obtain more information about the applicability of
the Rogue User Tool in an industrial context, we carried
out action research [4], applying the strategy outlined in [5].
Figure 1 shows our general approach. The ultimate goal is to
work together with Clavei to implement a testing solution for
ClaveiCon. Before we can do that, we need to investigate the
problem, consider a solution (the Rogue User) and validate this
solution. Therefore, we will implement a prototype test setup
for the Rogue User, which we will develop in an iterative
fashion (right-hand side of the graphic). This will help Clavei
understand the suitability of the tool, and give us feedback
about the challenges associated with its application in a real-
world context, which will be valuable input for subsequent
research. The two greyed-out steps in the figure, Solution
Implementation and Implementation Evaluation, are future
work, where we plan to make the Rogue User technique an

| Problem Investigation

\ I ’ Tool Setup Planning

: Tool Setup
Implementation

* Iteration

| Solution Design |

Y

| Solution Validation

- |
v

.. Tool Setup Evaluation

Tool Setup Testing |

Fig. 1: The Action Research Strategy carried out during our
tests. We performed the first 3 steps on the left-hand side. Steps
4 and 5 will follow in later research. The right-hand side shows
our iterative strategy for implementing the prototype setup of
the Rogue User Tool.

integral part of the company’s testing process.

Thus, together with the Clavei developers, we settled out
to determine how many unknown faults we would be able
to detect within ClaveiCon, how many of those would be
reproducible and how much effort would be necessary to do
so. This document will report about the outcomes of this
undertaking.

II. PROBLEM INVESTIGATION
A. The Company

Clavei is a private software vendor from Alicante, which
specializes in Enterprise Resource Planning (ERP) systems.
One of their main products is called ClaveiCon and is used in
small and medium-sized companies within Spain.

Due to their many clients, it is of fundamental importance
to Clavei to thoroughly test their application before releasing
a new version. Currently, this is done manually. Due to the
complexity and size of the application this is a time-consuming
and daunting task. Therefore, Clavei is eager to investigate
alternative, more automated approaches to reduce the testing
burden for their employees.

After having attended a presentation, the company ex-
pressed explicit interest in the Rogue User Tool and requested
to carry out a trial period to investigate the applicability of
the tool for testing their ERP products. The findings of this
experiment will be presented in the following sections of this
document.

B. The way (GUI) Testing is being done at Clavei

Clavei’s testing and development team creates test cases
by relying on specified use cases. Each test case describes a
sequence of the user interactions with the graphical interface

and all of them are executed manually by the test engineers. If
a failure occurs, the engineer reports it to a bug tracking system
and assigns it to the developer in charge of the part affected
by the failure. If necessary, this developer then discusses the
issues with his team, fixes the fault and re-executes the test
cases to ensure that the application now performs as expected.

C. The SUT

The SUT in our investigation is ClaveiCon (Figure 2), an
accounting software that belongs to a classic database-backed
Enterprise Resource Planning system developed at Clavei.

The application is used to store data about product plan-
ning, cost, development and manufacturing. It provides a real-
time view on a company’s processes and enables controlling
inventory management, shipping and payment as well as
marketing and sales.

ClaveiCon is written in Visual Basic, makes use of the
Microsoft SQL Server 2008 database and targets the Windows
operating systems. The application can be considered to be in
a mature state, as it has been applied in companies all over
Spain during more than a decade.

The fact that Clavei tests their application manually before
each release, entails considerable human effort and conse-
quently high costs, which makes it desirable to investigate
automated alternatives.

III. SOLUTION DESIGN
A. The FITTEST Rogue User

Modern GUIs are large, complex and difficult to access
programmatically which poses great challenges for their testa-
bility. The Rogue User is a technique that allows completely
unattended testing of large and complex gui-based SUTs. Its
basic sequence generation algorithm comprises the following
steps:

1) Obtain the GUI’s state (i.e. the visible widgets and
their properties like position, size, focus ...).

2) Apply an oracle to check whether the state is valid.
If it is invalid, stop sequence generation and save the
suspicious sequence to a dedicated directory, for later
replay.

3) Derive a set of sensible actions (clicks, text input,
mouse gestures, ...).

4) Select and execute an action.

5) If the given amount of actions and sequences has been
generated, stop sequence generation, else go to step
1.

In its default mode, the RU selects the actions to be
executed at random. We believe that this is a straightforward
and effective technique of provoking crashes and reported on
its success in [2]. We were able to find 14 crash sequences
for Mlicrosoft Word while running the Rogue User during 48
hours".

In large SUTs with many — potentially deeply nested —
dialogs and actions, it is unlikely that a random algorithm will

1Videos of these crashes are available at https:/staq.dsic.upv.es/sbauersfeld/
index.html

(-] ClaveCon 4.2.10 2 (abaars-dsic\sqlexpress) =81 x|
Archivo Edidon Consultas Informes IVA isi Analitica PagosNomina Mod. Oficiales Utlidades Ventana Ayuda
D/ X&G#|H> | n|]
Guaibacion Asicnios 2]
|_|Grabacion Asientos =101x|
AL =
‘ 2 | =
Extracto | VA Rep|| VA Sop | P.G.C. Obs Docs. Filtro Previ. | Asto.Ref
Asiento | Apte | Fecha | CA | Ampliacion | Documento | Cuenta [Debe | Haber
11 15/05/2013 99915/05/2013 939 43000001 1.210,00
2 15/05/2013 939CLIENTE1 939 47700000 210,00
3 15/05/2013 993 CLIENTE1 999 70000000 1.000,00
2 1 15/05/2013 88315/05/2013 888 40000000 2.420,00
2 1 988 PROVEEDORI 883 47200000 420,00
/ | [883PROVEEDORI|888 [60000000 | o000]

Cuenta [COMPRAS DE MERCADERIAS]

Debe Haber Saldo
Cuenta 200000 0,00 200000
Asto. | 2420000 242000]| 0.00]

Reg.IVA] usuario [SUPER_| Fecha [T5/05/2013 16.45
=] @) sjercicio[2013 7] &

Diario |Diario General

[Super Usuario / 2 [2m3

sl 2 @ € LB

baars-dsic\sqlexpres [MATOS [NS NUM 0:37

»
J Desktop. J EN \

A . 037
G R oywoo1s =

Fig. 2: The SUT: ClaveiCon

sufficiently exercise most parts of the GUI within a reasonable
amount of time. Certain actions are easier to access and will
therefore be executed more often, while others might not be
executed at all.

Therefore, in [1] and [2] we presented an algorithm whose
idea it is to slightly change the probability distribution over
the sequence space. This means that action selection will still
be random, but seldom executed actions will be selected with
a higher likelihood, with the intend to favor exploration of the
GUL

The strength of the approach is, that it works with large,
native applications which it can drive using complex actions.
Moreover, the technique does not modify nor require the SUT’s
source code, which makes it applicable to a wide range of
programs. With a proper setup and a powerful oracle, the
Rogue User can operate completely unattended, which saves
human effort and consequently testing costs.

B. Objective - What to achieve?

The goal of our investigation is to find out how many
previously unknown faults and problems the Rogue User Tool
can reveal in a mature, thoroughly tested system. Contrary
to the case study that we carried out with Softeam [3], we
will not use an SUT with known or injected faults, but the
current version of ClaveiCon, as it is shipped to clients of
Clavei. This is a more realistic setting, since in production
errors are unknown and there is usually no clear definition
of what precisely is an error. Therefore, in this document we
will perform what is commonly known as action research [4],
i.e. a hands-on practice- oriented approach. We will install

The RU tool

Action-Research

Effectiveness and Efficiency

Of the Testing Practitioner

The Development of the ClaveiCon accounting system

Analyze

For the purpose of
With respect to
From the viewpoint
In the context of

the Rogue User in the context of the ClaveiCon runtime
environment, design an oracle, configure the action set, run
the tool and report about the problems encountered and lessons
learned.

The investigation has been carried out in a fashion similar
to the one applied in Iterative Software Development [6]. Since
the goal is to develop a working setup for the Rogue User,
we think it is necessary to start with a simple base setup
and perform a stepwise refinement of each implementation
aspect. Thus we will iteratively perform the phases of planning,
implementation, testing and evaluation of the setup. In this
iterative process we will

e Experiment with different setups for the Rogue User
Tool. The goal is to find a setup which allows as much
automation as possible while detecting commonly
encountered problems and enabling notification and
reproduction thereof. In order to strike the balance
between a powerful oracle and a truly automatic ap-
proach, one has to find a trade-off between an accurate
oracle with good fault-detecting capabilities and one
which generates few false positives.

e Apply the developed setup and determine its efficiency
and effectiveness. We will record the difficulties that
arise during application and find out how much man-
ual labor is actually still necessary during the test.

After having developed the setup and applied the tool to
the SUT, we will have gained valuable insight into specific
challenges and problems encountered during a real-world test.
This insight will be the basis for future research.

C. Subjects - Who applies the techniques?

Since our investigation involves the application of action
research, the researchers of the Polytechnic University of
Valencia as well as Clavei’s developers will collaborate in
a joint effort to setup the Rogue User Tool and to test
Clavei’s accounting system. The subjects are a researcher with
practical testing experience and two Clavei test practitioners
who worked in the industry for many years.

All three testers will work both, on-site at Clavei as
well as communicate over Skype to collaborate and exchange
information. The researcher has extensive domain-knowledge
about the Rogue User Tool and will thus lead the development
of the setup. The two industrial Clavei testers, on the other
hand, are familiar with the internals of ClaveiCon, so that all
three will complement each other.

D. What will be measured?

During the investigation we will measure certain aspects
of the prototype setup development in order to evaluate the
Rogue User Solution. The following aspects were measured
in order to obtain indicator values:

1) Effectiveness. For TS %

a) Number of failures observed after executing
the Rogue User Test on ClaveiCon.

b) Percentage of reproducible failures.

¢) Number of false positives.

2) Efficiency:

a) Time needed to set-up the test environment
and get everything running

b) Lines Of Code (LOC) needed for defining er-
ror definition, oracle design, action definition
and design of stopping criteria.

c¢) Time needed to design and develop TSgy.
We will measure the time needed for the
different types of activities, e.g.: test environ-
ment, error definition, oracle design, action
definition and design of stopping criteria.

d) Time needed to run TSy .

e) Time needed for manual labor after the
Rogue User Test has been started. Here we
want to find out how much manual work
is actually necessary during a full test. This
includes adjustments that needed to be made,
the evaluation of run results and reproduction
of potential faults as well as other manual
activities.

E. Protocol for the Setup Development

As previously shown in Figure 1, our investigation has
been carried out in a fashion that allowed us to perform
iterative development of the Rogue User Setup. This means

2Test Setup of the Rogue User

that we performed a set of ordered steps in a loop. We think
that the natural way of setting up our tool involves a mode
of operation similar to the one applied in Iterative Software
Development [6], which usually repeats the phases of planning,
implementation, testing and evaluation in order to achieve
increasingly better results. The process included the following
steps which were repeated several times to yield the final
Rogue User Setup:

1) Planning Phase:

a) Implementation of Test Environment: Plan
and implement the technical details of the test
environment for the Rogue User.

b) Error Definition: Anticipate and identify po-
tential fault patterns.

2) Implementation Phase:

a) Oracle Implementation: Implement the detec-
tion of the errors defined in the previous step.

b) Action Definition Implementation: Imple-
ment the action set, which defines the be-
havior of the Rogue User.

c¢) Implementation of stopping criteria: These
criteria determine when sufficient testing has
been done by the Rogue User.

3) Testing Phase:
a) Run the test.
4) Evaluation Phase:

a) Identify the most severe problems encoun-
tered during the run and reproduce poten-
tially erroneous sequences. The collected in-
formation will be used for the refinement of
the setup during the next iteration.

IV. SOLUTION VALIDATION

The development took place over a period of 2 weeks
in which the participants performed the activities outlined
in Section III-E. As mentioned earlier, our strategy was to
carry out an iterative process, in which we repeated the
phases planning, implementation, testing and evaluation until
we obtained a viable Rogue User setup. Generally, the first
step in setting up a RU Test is to enable the RU to start and
stop the SUT. In the case of ClaveiCon this simply amounts
to specifying the executable. The tool can then execute the
program before generating a sequence and kill its process after
sequence generation has finished. Here it is important to make
sure that the SUT always starts in the same initial state, in order
to enable seamless replay of recorded sequences. Therefore,
it is necessary to delete potential configuration files which
have been generated during previous runs and could potentially
restore previous state.

Our next step was to anticipate and define certain error
patterns that could occur during the test. For our initial setup
we only considered crashes and non-responsiveness, but during
later iterations we wrote more fine-grained error definitions
which exploited information obtained during previous runs.
After we defined our faults, we settled out to implement the
Rogue User’s oracle. The complexity of the implementation
depended on the type of the errors to be detected and increased
over time.

Before we were able to run our RU setup, we had to
define the actions that the RU would execute. The action
definitions determine what controls the RU clicks on, where
it types text in and where it performs more complex input,
such as drag and drop operations. Those definitions, along
with the previously mentioned oracle, can be encoded in the
tool’s customizable protocol and visualized during runtime for
debugging purposes. Figure 3 shows the actions detected by the
Rogue User, based on the initial version of action definitions.

This initial version implemented only clicks on most ele-
ments. In later versions we included text input and drag and
drop operations.

The final ingredient for a finished setup is the stopping
criterion which determines when the Rogue User will cease to
generate sequences and will finish the test. Our initial setup
used a time-based approach which stopped the test after a
particular amount of minutes had passed by. Later on we used
a combination of several criteria, such as time and amount of
generated sequences.

After our first run we already detected a severe fault, in
which the SUT refused to respond to any user input. Figure 4
shows this first error, which was the first of two of this kind.

Whenever the Rogue User detected such a fault it logged
the information, saved the corresponding sequence and contin-
ued with the generation of the next sequence. After the test had
been finished, the tester read the logs where she was presented
the final results. In case of an error the RU yielded an output
such as the one in Figure 5 which corresponds with the error
mentioned above. The log told the tester which actions had
been executed, where the fault occurred and what the cause
was (in this case an unresponsive system).

During a few runs we encountered difficulties with our
current setup, such as non-reproducible sequences, unexpected
foreground processes or “stalemate” situations in which the RU
did not have sufficiently detailed action definitions to proceed
the sequence generation. These problematic situations usually
manifested themselves within the log files (too few actions,
actions sometimes failed since the SUT was blocked by an-
other process, etc.). After each test execution we inspected the
logs, the encountered errors and the problems if some occurred.
We then continued with the next iteration of development, in
order to adjust and improve our test environment, the error
definitions, the oracle, the action definitions and the stopping
criteria. In the following paragraphs we will describe these
steps in more detail.

1) Test Environment: The test environment is the skeleton
of the Rogue User and guarantees a seamless execution of
the generated input sequences without interruption by other
sources (e.g. the SUT is always the foreground process, it
can be started automatically, it can be stopped reliably in
case of a severe error, recorded sequences can be reproduced
reliably, ...). The main challenges that we encountered during
the development of the test environment were the following:

e Restoring a dedicated start state: This is important in
order to make sure that previously recorded sequences
can be replayed reliably. If the SUT performs book-
keeping on things like window positions or saves and
restores settings of previous runs, then the starting

states of the system will vary significantly, rendering
sequence replication difficult or impossible. In the
case of ClaveiCon we discovered several configuration
files for various settings. However, it can be non-
trivial to find all these files and it took 3 iterations
to identify most of them. Moreover, ClaveiCon uses
a database to store customer data. This database
changed during sequence generation (tables or rows
got added, modified or deleted) and it was necessary
to restore its original state everytime a new sequence
got generated. We implemented our test environment
such that the database would be repopulated according
to a particular schema. However, this incurred a delay
of more than 10 seconds before each sequence, which
increased the testing time.

Other factors were related to the system’s clock time,
the processor load, memory consumption and thread
scheduling, which varied for each sequence and which
could not be controlled. In one case we were not
able to reliably replay an erroneous crash sequence.
Sometimes the sequence failed, and at other times it
went through without problems. This “indeterminism”
sometimes impeded the testing process.

e Unexpected third-party processes. ClaveiCon is a stan-
dalone application and usually includes everything that
is needed to work with it. However, it has functionality
that invokes external applications, such as word pro-
cessors to view exported files or a help system. Since
these are not part of the process under test, the Rogue
User will ignore them. Unfortunately, these processes
can occur in the foreground and thus block access to
the SUT, preventing the RU from properly generating
sequences. During the development we encountered
several such situations and implemented functionality
to terminate the applications when encountered.

In summary, the development of a stable test environment is
not complicated but requires a certain amount of trial-and-error
and some knowledge about the SUT. A proper replay of each
recorded sequence cannot be guaranteed, but the more robust
the environment is, the better the likelihood of a replay. Later
in the text we will see that almost all erroneous sequences, but
one, were reproducible.

2) Error Definition: Before we started to implement the
actual oracle, we brainstormed on potential errors that could
occur within the SUT. The following list describes the ones
that we came up with during the development:

1) Crashes: If the process associated with the SUT
suddenly stopped, we considered it to be a crash. A
problem that can occur with this definition is, that
certain actions that the Rogue User executes will
inevitably shut down the SUT, e.g. the “Exit” menu
item. Obviously, those are no crashes. Our approach
was to consider these cases in the action definition of
the Rogue User. We simply disallowed actions that
would terminate the SUT.

2) Freeze (unresponsiveness): If the SUT did not re-
spond for a specific amount of time, we considered
it to be dead-locked.

3) Exception: ClaveiCon was programmed in such a
way that, whenever an exception is thrown that

(@) ClaveCon 4.2.10 2 (abaars-dsic\sqglexpress)

Arciivo Edion Coniiltas Infcines IVA

Mod. Cicales Utiic.des Verisna Ayida

D/ X&G@|Ho |1 «»m]
i
@ @ % @ @ % @ o4, 0,2, 10,0]
- P B
Extracto || IVARep | IVASop| PG.C. Obs Docs. Filtro. Previ. | AstoRef Role UTAEdit !I
Asiento Ampliacion
1 2 939 3 00
2 15/05/2013 999CLIENTE1 993 47700000 210,00
3 15/05/2013 999 CLIENTE1 993 70000000 1.000,00
2 1 15/05/2013 88815/05/2013 888 40000000 2.420,00
2 15/05/2013 888 PROVEEDORI 888 47200000 420,00
3 15/05/2013 888 PROVEEDORI 888 60000000 2.000,00
Cuenta |CLIENTE 1]
Debe Haber Saldo -, S
o 121000 000 121000 Reg. IVA 1| Usuario [SUPER | Fecha |15/05/2013 16:43
Asto. [121000 T2iom]| o] Diario [Diaiio Gener® 2] ©) gercicio [201% o] &)

| Super Usuario / 2

el © @ €

Archivo Edicion Consultas Informes IVA

ClaveCou 4.2.10 2 (abiars-dsic\ sylexpress)

baars-dsichsalexpres [MATIS [NS [NOM 133

Fig. 3: Action definitions.

Analltica

Pagos Nomina Mod. Oficlales Utlidades Ventana Ayuda

Joestion ™ [B[2 @ 5 B gyt

D X&Ga| Ho | «»r v |§

Windows Task Manager

File Options View Help
" Applcations Processes | services | Performance | Networking | Users |
[P [UserName [PU]_ Memory (Private Working Sef) |
900 Tanja Vos 00 3.232K
1564 TamaVos 30 16.808K
3088 TamaVos 00 840K
59 TamaVos 00 828K
. 412 00 2.152K
dihost.exe =32 292 TamaVes 02 1.568K
i | At ave =2 084 TamaVos 00 1.196K
Sl Windows Task Manager x| 243 TamjaVos 00 1.292K
15/05/2013 1296 TanjaVos 00 346.768K
15/05/2013 Do you want to end ‘ClaveCon.exe *32'? 2088 TanjaVos 02 57.136K
5 1008 TamaVos 02 211.712K
15/05/2013 P Il 1 proce=s: 1wl oo 1668 TamjaVos 00 38.100K
= = result in an unstable system. Are you sure you want to continue? 2712 TanjaVos 00 3.520K
2800 TamjaVos 00 948K
1604 TamjaVos 00 7.448K
v ﬂl 1744 TamaVos 00 1.668K
SR 1000 TamjaVos 13 2832k
TSVNCache.exe 2476 TamaVos 00 4.532K
VBoxTray.exe 2704 TamaVos 00 1.892K
winlogon.exe 448 00 2.512K
Cuenta (COMPRAS DE MERCADERIAS
Debe Haber Sa
Cuenta [200080)[OMO"
Asto. 2.420,00] 2.420,00
- — i 4 »
I & ' -
[Super Usuaio 72 [2073 %) Show processes from all users W—M‘
~ 2 @ € Lloa~ -
& J K = [Processes: 48 [cPu Usage: 48% |Physical Memory: 52% [7

Fig. 4: Easy to detect fault. The SUT froze and did not respond to user input.

25.mayo.2013 08:04:27
Hello, I'm the Rogue User!

25.mayo.2013 08:04:28 Starting system...
Starting sequence 0
'Generate' mode active.

Executed (@): Left Click at 'Utilidades'...
Executed (1): Left Click at 'Previsiones'...
Executed (2): Left Click at 'P.G.C.'"...
Executed (3): Type 'Test ...' into '

Left Click at '"'...
Left Click at '"'...
Left Click at "'
Left Click at
Executed (8): Left Click at "'...

Executed (9): Left Click at "'...

Executed (10): Left Click at 'Minimize’...

Executed (4):
Executed (5):
Executed (6):
Executed (7):

'Periodo Desde'...

Detected fault: severity: 0.8 info: System is unresponsive! I assume something is wrong!

Sequence @ finished.
Sequence contained problems!

Copying generated sequence ("./output\sequence@") to output directory...

Shutting down system. ..

Fig. 5: The Rogue User’s log file for the error in Figure 4.

“bubbles up” to the system’s main function, it will
generate an error dialog with the error string, an error
number and the name of the function that caused the
exception. Figure 6 shows such a dialog. As described
in [1] and [2] the Rogue User creates a so-called
widget tree for each state that the SUT is in. This tree
contains information about the SUT’s current screen
layout, the coordinates of each control element and
its properties, such as its name or text content. This
makes it possible to detect when a dialog such as in
Figure 6 appears and to report an erroneous sequence.
We simply applied regular expressions that searched
for particular error strings within the widget tree.
However, we encountered several situations where
this triggered a false positive, since other control
elements had names that corresponded with the error
strings, e.g. a button called “Report Error”. Therefore,
we had to implement certain rules and first analyze
the type of control element that included the error
string.

4) Layout Error: Another error type which we detected
during later iterations were layout errors. Figure 9
shows a clipping error within ClaveiCon where two
dialogs fight over the drawing order and leave an
abnormal representation on the screen. These types
of errors can be detected by checking the value for
the z-orders of the dialog elements. If two dialogs
exhibited the same z-order value, this often resulted
in this visible defect.

It is generally difficult to anticipate and properly define
many errors since one does not know what to look for. Crashes
and freezes are easy to detect, but the exception and layout
errors we noticed during test runs and later implemented
their detection. A thorough knowledge of the SUT can help
and so the fact that two of the testers were also developers

Fi lario 7 Libreria|clnicio | Funcién ICreoErrbresa |
Descripeidn Nimero
Type mismatch ;I
SaL B
w2
O
Q |
(] DLL Error |0 Origen [glnicio
—
-
S I @
— &
O Rei Omitir Imprimi Enviar Salir

Fig. 6: Dialog triggered by an exception with easy to detect
error message.

of ClaveiCon certainly helped. However, due to the oracle
problem [7] it is hard to define many error patterns thoroughly
and ahead of time.

3) Oracle Implementation: In order to implement the error
detection as defined in the last paragraph, the Rogue User Tool
provides a customizable protocol with hooks for specific tasks,
such as error detection. The implementation has been done in
the Java Programming language. Our oracle operated solely
on the widget tree for each state, which was already provided
by the RU Tool. The tree provides information about the SUT
(such as whether it is running, etc.) and its current screen state
(position and properties of all visible control elements). This
allowed a straightforward implementation of the previously
stated detection rules. When the oracle reported an error, it
attached an error message and a priority value (see Figure
5). The error message then appeared in the error log and

|Grabacion Asientos =10] x|
@ . | % / ’;7 @ % @ /4 Empresa
& | &P < 7| S L |
Extracto | 474 H ASopl PGC E Docs. Filt Previ, to.Re
-
— Edicion
4 hsientos | B reche veor NN =
[Documento[, . , . | —— - =]
- T o cmpresy
dE:AR:4 G S |
_E acto ARep| WASop| P.G.C. Ibs Docs. Filtro Previ. | AstoFe
Ei' pn
N' piento Ij FechaAstom ﬁ Fecha Valor :ﬁ 0 ‘1’ E] (3 @
D |mento| l I _]L] Divisa IEuro L] Nuevo| Salir Obs | Ctpda| Prewvi g
(2 b | ca Descripcion Ampliacion Documento | Cuenta Debe Haber
Cuenta |
Debe Haber Saldo -
- 000 0700 500 Reg. IVA Usuario | SUPER |Fech¢|15/05/201316:45—|
o 0.00 0,00 0,00 Diario @) cjercicio[-5 -] &

Fig. 7: Clipping error. Detectable through inconsistencies within the widget tree.

the priority value was used to order the detected erroneous
sequences, so that we were able to inspect the most promising
ones first. This turned out to be useful, since we encountered
a few false positives during our tests, such as errors triggered
by too general regular expressions for error strings. We gave
crashes and freezes higher priority so that they were reported
first.

After the error definition step, the implementation of the
oracle was usually straightforward and free of any complica-
tions.

4) Implementation of Action Definitions: As with the ora-
cle, the Rogue User Tool provides a hook for action definitions.
The tool comes with a variety of predefined actions and allows
to combine those to form more complex ones such as mouse
gestures. The position and control type information within the
widget tree allowed us to tailor action definitions to specific
types of controls. During the first iteration we started off with
clicks on enabled button and menu item controls. The tool
provides a mode in which we were able to debug our defini-
tions, by visualizing them. Figure 3 shows the definitions for
our initial setup. In addition, the tool provides a so-called “spy
mode” (see Figure 8) which allows to inspect the properties of
specific control elements. This information has been valuable
when we tried to exclude actions to specific elements such
as clicks to the “Exit” menu item, which terminates the SUT

prematurely.

The following is a list of challenges that we encountered
when implementing the action definitions for the Rogue User:

1) Undetected control elements: Certain special or cus-
tom controls were not detected by the Rogue User.
Consequently, these controls did not appear in the
widget tree, which made it harder to write action
definitions for them, due to e.g. unavailable positional
information. This amounted to only a few control
elements, such as the items in the tool bar below the
main menu in Figure 3. However, we were able to
write code that estimated the position of these items
and thus able to generate actions for them.
Exclusion of unwanted actions: Certain actions
caused potentially hazardous effects to the host com-
puter. ClaveiCon has menu items that create files
to export data, or open file dialogs in which one
can move or delete files and directories. We first
had to prohibit certain actions manually in order to
guarantee the integrity of the hard disk. In later iter-
ations we opted for another option: We ran our tests
on a different system user account with restrictive
directory rights. This reduced the complexity of our
action definitions while guaranteeing the integrity of

2)

(-] ClaveCon 4.2.10 2 (abaars-dsic\sglexpress) 2.4, 10] -8 x|
Archivo Edicon Consultas Informes IVA Previsiones Presupuestos Analitica Inmovilizado PagosNomina Role:[gIAMenuItem
O XS | EH=| 104 » wk
‘@lave@on [Ancestors: -=UTAMenuBar::UIAWindow::Process)
itTester: UIAHitTester
nabled: true
AWindowVisualState: 0
AHelpText:

itle:

AName: Mod. Oficiales
AWindowInteractionState: 0
[AFrameworkId:
A Automationld:
locked: false
AClassName:
ool TipText:
UIAMenultem
/AOrientation: 0
/AHasKeyboardFocus: false
AlsKeyboardFocusable: true
esc: Mod. Oficiales
AControlType: 50011
Shape: Rect [x:581.0 y:19.0 w:79.0 h:18.0]
AProviderDescription: [pid:2676 hwnd:0x0 Annotation:Microsoft: Annotatio_.
Mod. Oficiales

| Super Usuario / 2 [2013

ol 2 @ € L 08 W[/|

baars-dsichsqlexpres | M2

YOS | INS NUM 1:37

1:37

A @ i @ ”’ﬁ 01/10/2013 =

»
Desktop J EN ‘

Fig. 8: Spy mode.

the machine.

3) Insufficient action choices: We observed sequences
in which the Rogue User navigated into dialogs and
was unable to leave those, due to a lack of available
actions. We countered this by allowing the tool to
perform certain actions such as hitting the escape key
after specific time intervals.

5) Stopping Criteria: The stopping criterion determines
when a test will finish, i.e. when the Rogue User will cease
to generate new sequences. For our initial setup we applied
a time-based approach with a maximum test time of 12
hours. For the final setup we used a combination of time and
number of generated sequences. The reason for this is that
certain sequences take longer to execute, so that the amount
of generated sequences can vary largely. Since the tool uses a
search-based algorithm which tries to explore the GUI of the
SUT as thorough as possible, this can affect the test quality.
Thus, we made sure that the Rogue User would generate a
minimum of 200 sequences (with 200 actions each) per run,
a setup which we successfully applied during earlier case
studies.

6) Test Execution: During each iteration, after adapting the
Rogue User setup, we conducted an overnight test run. Most
of the time this happened completely unattended. However,
during the first 2 iterations we observed the test for a while
in order to spot potential problems. During later runs we only
inspected the tool’s log file which records each executed action
and other information, along with potential problems.

We also watched the sequence generation for a small

amount of time in order to spot errors not detected by the
current oracle or to get new ideas. This is how we found
definitions for the encountered layout errors.

7) Evaluation: During the mornings we read the log files
and inspected potentially erroneous sequences. Most of the
time we spent reproducing those. If this was not possible,
then the tool still provided the option to view an ordered set
of screenshots of the sequence’s actions, which enabled us to
understand what happened.

During the first few iterations we encountered problems
with unexpected foreground processes or non-reproducible se-
quences due to the fact that our test environment did not delete
hidden configuration files. We learned from each iteration and
improved the test environment as well as the other parts of
the RU’s setup. We recorded the time we spent doing manual
work during and after each test. The last row of Table II shows
this relatively low value.

A. Final Results

Table I lists the values for the effectivity indicators, i.e.
the amounts of errors of different type that we encountered
during all of our test runs. According to the Clavei developers,
all of these were triggered by different code segments within
ClaveiCon’s source code. With one exception we were able to
reproduce each of the failures. The one problematic sequence
can be replayed, but the fault will not be triggered. We
currently do not know the reason for this, but we suspect it
to be related to the thread-scheduling of the system and an
erroneous piece of multi-threaded code. In summary, the RU

Formulario / Libreria [c340.cls Funcién [CalculaiBD |

Descripcion Niamero (3021

Either BOF or EOF is True, or the current record has been deleted. Requested operation _AJ
requires a current record.

v

saL

|-
o=
J F
O | DLL Evior P] Origen [fDODBField |
-
g Q| ®| Q& 2l
ON .. Qmitir Imprimir | Enviar Salir

F lario / Libreria |frmModelos Funcién |F01m_Unload |

Descripcion Nimero

Obiject variable or ith block variable not set ;I
=

SQL

limModelos\Form_Unload |
|

DLL Error [0 Origen |ClaveCon

Q| Q| & 2
&
Reil Omitir Imprimi Enviar Salir

Fig. 10: Error dialog triggered by an internal exception.

Tool was able to detect 10 previously unknown faults, which
is an encouraging result. The high number of false positives
can be explained due to problems with the initial oracle in the
first two development iterations, where 7 of the false positives
where triggered due to a too general regular expression for the
exception dialogs.

Table II shows the results for the efficiency indicators.
Accumulated over all 5 iterations it took approximately 26.2
hours of development time to yield the final setup for the
Rogue User. The majority of the time was spent on the oracle
and action definition implementation. However, the final setup
could be replayed over longer periods of time and could
thus reveal more faults with only minimally more human

Error Type Amount | Reproducible?
freeze 2 1/1
crash 1 1/1
exception 6 5/6
layout 2 3/3
false positives 8

TABLE I: Indicator values for effectivity (list of encountered
errors).

Activities Indicator | Value
LOC for the RU Setup 2a) 1002
Implementation of test environment 2b) 340
Error Definition 2b) 140
Oracle Implementation 2b) 490
Action Definition Implementation 2b) 560
Implementation of Stopping Criteria 2b) 40
Total Development Time 2b) 1570
Test Duration 2¢) 5490
Manual intervention during and after Test Runs 2d) 100

TABLE II: Indicator values for efficiency (over all iterations)

intervention. In a possible scenario one would run the setup
during weekday nights and check the RU Tools’ log file
during the following mornings. The low value of indicator 2d)
indicates that the tool needs only very little human attention
which in our case amounted to looking for potential problems
in the log file and reproducing the faulty sequences. The tool
cannot detect every error type (at least not with reasonable
development effort), but it can detect certain critical errors
with very low effort. The initial effort in developing the test
setup pays off as testing time increases, as it can be applied
arbitrary amounts of time.

V. CONCLUSIONS AND LESSONS LEARNED

In this document we presented the results of an investiga-
tion that we carried out together with Clavei, a software vendor
located in Alicante, Spain. We settled out to perform a real-
world test with a previously unknown SUT. Our goal was to
obtain knowledge about the challenges encountered in setting
up such a test and to gather fundamental information for more
detailed future research.

We performed the development of the setup in an iterative
fashion, since we think this is the traditional way to gain
feedback about its quality during each iteration and enables
the testers to continuously improve the test environment,
incorporate new ideas and fix previous problems.

One of the challenges that we encountered was the problem
of reproducing (erroneous) sequences. It requires a thorough
test environment with ideally identical conditions during a
sequence’s recording and replay time. Unfortunately, most
complex SUTs are stateful and save this state within databases,
configuration files or environment variables, which complicates
the development of a test environment that guarantees traceable
and deterministic sequence generation and replay. An interest-
ing starting point would be to execute the SUT in a virtual
machine environment, which would allow to restore most of
the environmental conditions. One would have to deal with
larger memory requirements and a time-overhead for loading
the VM snapshots, but today’s large and fast hard disks might
make this problem tractable. However, for more distributed
SUTs whose components live on multiple machines, this might
not be a viable option and would call for additional solutions.

Another challenge was the development of a sufficiently
powerful oracle. We started off completely blind without
any ideas for potential errors. Our ideas developed during
later iterations and with greater knowledge about ClaveiCon.
However, we think that the types of errors we found and the
error definitions we used, might be applicable to other SUTs as

well. An idea could be a collection of “canned” error patterns
that a tester who uses the Rogue User could start off with and
refine.

To sum up, the development of an effective and efficient
setup for the Rogue User takes some initial effort (in our
case approximately 26 man hours) but will pay off the more
often the test is run. The manual labor associated with a test
breaks down to the inspection of log files, reproduction and
comprehension of errors and makes only a tiny fraction of the
overall testing time (we spent around 100 minutes of manual
intervention during and after tests, compared to over 91 hours
of actual unattended testing). This, combined with the fact
that the Rogue User detected 10 previously unknown critical
faults, makes for a surprisingly positive result and leads us to
conclude that the technique is a valuable and resource-efficient
supplement for a manual test suite.

ACKNOWLEDGMENT

This work was financed by the FITTEST project, ICT-
2009.1.2 no 257574.

REFERENCES

[1] S. Bauersfeld and T. Vos, “A reinforcement learning approach to auto-
mated gui robustness testing,” in In Fast Abstracts of the 4th Symposium
on Search-Based Software Engineering (SSBSE 2012). 1EEE, 2012, pp.
7-12.

[2] S. Bauersfeld and T. E. J. Vos, “Guitest: a java library for fully
automated gui robustness testing,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2012. New York, NY, USA: ACM, 2012, pp. 330-333. [Online].
Available: http://doi.acm.org/10.1145/2351676.2351739

[3] “Evaluating rogue user testing: An industrial case study at softeam,”
2013.

[4] C. Argyris, On Organizational Learning. Wiley-Blackwell; 2nd edition,
1999.

[5] R. J. Wieringa, “Designing technical action research and generalizing
from real-world cases,” in Proceedings of the 24th International Con-
ference on Advanced Information Systems Engineering (CAISE 2012),
Gdansk, Poland, ser. Lecture notes in computer science, vol. 7328.
London: Springer Verlag, June 2012, pp. 697-698.

[6] C.Larman and V. Basili, “Iterative and incremental developments. a brief
history,” Computer, vol. 36, no. 6, pp. 47-56, 2003.

[71 P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2008.

