A Quantitative Comparison of Semantic Web Page
Segmentation Approaches

Robert Kreuzer

Jurriaan Hage

Ad Feelders

Technical Report UU-CS-2014-018
June 2014

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands
www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089

3508 TB Utrecht
The Netherlands

DRAFT—Do not distribute

A Quantitative Comparison of Semantic
Web Page Segmentation Approaches

Robert Kreuzer

Jurriaan Hage

Ad Feelders

Department of Computing and Information Sciences
Utrecht University

robert@site2mobile.com,J.Hage@uu.nl, A.Feelders@uu.nl

Abstract

This paper explores the effectiveness of different semantic web
page segmentation algorithms on modern websites. We compare
three known algorithms each serving as an example of a partic-
ular approach to the problem, and one self-developed algorithm,
WebTerrain, that combines two of the approaches. With our testing
framework we have compared the performance of four algorithms
for a large benchmark we have constructed. We have examined
each algorithm for a total of eight different configurations (vary-
ing datasets, evaluation metric and the type of the input HTML
documents). We found that all algorithms performed better on ran-
dom pages on average than on popular pages, and results are bet-
ter when running the algorithms on the HTML obtained from the
DOM rather than on the plain HTML. Overall there is much room
for improvement as we find the best average F-score to be 0.49,
indicating that for modern websites currently available algorithms
are not yet of practical use.

Categories and Subject Descriptors H.3.3 [Information Sys-
tems]: Information Search and Retrieval, D.2.2 [Software Engi-
neering]: Computer-aided software engineering (CASE)

General Terms Experimentation, Algorithms, Measurement

Keywords web page segmentation, algorithm, benchmark con-
struction, empirical comparison, repeated study

1. Introduction

Web page segmentation is the process of taking a web page, and
partitioning it into so-called semantic blocks (or segments), that we
define as

A contiguous HTML fragment which renders as a graphi-
cally consistent block and whose content belongs together
semantically.

Note that semantic blocks in principle can be hierarchically nested,
although in practice people rarely consider nesting more than two
or three levels. In this paper we do not consider the process of
labeling, which takes a partitioning of a webpage into semantic
blocks, and then assign labels to them taken from some ontology.

[Copyright notice will appear here once ’preprint’ option is removed.]

Submitted to ESEM ’14

Human beings are very good at partitioning: even if a website
is in a language we are not familiar with, it is clear to us what
is an advertisement, what is a menu, and so on. Web page seg-
mentation algorithms, for one reason or another, seek to automate
this process: among the applications for automated segmentation
we find mobile web, voice web, web page phishing detection, du-
plicate deletion, information retrieval, image retrieval, information
extraction, user interest detection, visual quality evaluation, web
page clustering, caching, archiving, semantic annotation and web
accessibility (Yesilada/2011). Our own motivation for looking at
these algorithms is to employ them in a start-up company for en-
gineering mobile applications from existing browser applications.
An important step in transforming the latter to the former is the
process of web page segmentation that currently needs to be per-
formed manually, either by the owners of the website, or by people
that work at the start-up.

In this paper we perform an empirical study of the usefulness
of three web page segmentation approaches: the DOM-based ap-
proach, the visual approach and the text-based approach. We also
consider whether combining two of these approaches gives supe-
rior results. We compare the approaches by taking a representative
algorithm for each, and evaluate their effectiveness in web page
segmentation by comparing their outputs to a manually constructed
ground truth. This should answer our first research question, which
reads

RQ1: How well do different web page segmentation approaches
perform on a large collection of modern websites? In particular,
can we observe that the algorithms indeed fare worse on modern
websites?

An additional, related research question we considered is the
following:

RQ2: Can the results be improved by combining two of these
approaches?

As we shall see in this paper, the answer to both these questions
is affirmative. And although the algorithm that combines the two
approaches often outperforms the other algorithms, its effective-
ness is still much below what we would like to see. A conclusion of
this paper is then also that new, better algorithms should be sought
to more effectively perform web page segmentation.

We have constructed two datasets: one with a number of popular
websites, that we expected to be complex and therefore the hard
to deal with, and a second set with randomly selected websites
to avoid having our results biased too much towards complicated
websites. Our dataset are open for anyone to use (Kreuzer et al.
2013). We have already been contacted by researchers to ask for
our datasets, showing that there is indeed a demand for such a
benchmark. Another motivation for doing this study is that authors
of web page segmentation algorithms each have their own dataset,
and their own measuring methodology, which makes it impossible

2014/6/16

to compare existing algorithms based on what they report in their
papers.

The paper is structured as follows: in Section 2] we discuss the
various approaches to web page segmentation, and our choice of al-
gorithms for the comparison. We had to construct our own dataset
of marked up web sites, and we discuss the process of doing so in
Section [3] It also includes a description of the tools we employed
both in constructing the datasets, and the testing framework we de-
veloped to execute the actual comparison. In Section d] we provide
the outcomes of our comparison. As we reflect upon our study in
Section 5] we discuss our general observations, but also highlight
possible threats to validity. Section [6] discusses related work, and
Section[Zlconcludes.

2. Approaches and algorithms

There are many algorithms for web page segmentation, and we
cannot hope to consider them all. Instead, we opted to see which of
the approaches to web page segmentation works well on modern
websites. For each approach we chose a representative algorithm
(typically the one that is generally most cited or compared against),
obtained an implementation from others, or, in the absence of
such an implementation, implemented the algorithm ourselves. The
three approaches we consider are the DOM-based approach, the
visual approach and the text-based approach.

2.1 The DOM-based approach (PageSegmenter)

In a DOM-based approach one simply looks at the DOM, the tree
built by parsing the HTML, for cues on how to segment a page.
(This tree does not include the properties added by external CSS
files; these will only be present in the render tree.) The idea is
that the HTML structure should reflect the semantics of the page.
The quality of these approaches thus depends on how strongly
this is the case. To do the segmentation they rely on detecting
recurring patterns, such as lists and tables, and on heuristics, like
headline tags working as separators, and links being part of the
surrounding text. The approach is easy to implement and efficient
to run, since one only needs to parse the HTML and not render
the page. Complications are that there are many different ways to
build a HTML document structure for the same content, styling
and layout information is disregarded by design, and will not work
immediately in the presence of Javascript (unless you serialize the
DOM first).

The PageSegmenter algorithm is an example of a DOM-based
segmentation algorithm (Vadrevu et al.[2005). The main idea is that
the root-to-leaf paths of leaf nodes can be analyzed for similarities
to find nodes which likely belong to the same semantic block.
An example of such a path is /html/body/p/ul/li. Now, if
multiple adjacent siblings have the same such path it is a pretty safe
assumption that they also semantically belong together, as they are
structurally part of the same list.

The authors formalized this notion of similarity of paths of leaf
nodes as the path entropy: the path entropy Hp(N) of anode N in
the DOM tree is defined as

k
Hp(N) ==Y p(i)logp(i)

=1

where p(7) is the probability of path P; appearing under the node
N and k is the number of root-to-leaf paths under V.

Thus one needs to first build a dictionary D which maps all
root-to-leaf paths in the tree to their probability of occurrence. For
a given node N the path entropy Hp (V) can then be computed by
first getting all of the root-to-leaf paths below that node, looking up
their probabilities in D and plugging that into H p. In pseudo code
the algorithm can be formulated as follows:

Submitted to ESEM ’14

for Each Subset S of Nodes[] do
H(S) := Average Path Entropy of all nodes in S
if H(S) <= MedianEntropy then
Output all the leaf nodes under S as
a new segment PS
else
PageSegmenter (Children (S))

Unfortunately, we found the algorithm to be unclear in two
points. Point one is the formulation “for each subset .S of Nodes[]”,
which is problematic in two ways: For one, if literally each subset is
meant, then the algorithm becomes non-deterministic as the order
in a set is not defined. Second, it makes little sense to consider
each subset, as that also includes non-contiguous sets of nodes,
and these cannot be segments. The second point is related, as it
also pertains to the question of which subsets are meant. It is the
recursion into the children of S which is unclear, since literally
taking all of the children of the different nodes in S and then
running the PageSegmenter on that set could lead to the detection
of blocks, consisting of non-contiguous nodes (when their parents
are different for example).

We therefore took the freedom to interpret the algorithm as we
think the authors probably meant it, but could not confirm this with
them. Essentially, instead of each subset we consider only ranges
of contiguous nodes, and we exclude the full range of children
and the empty range from consideration. We start with the largest
ranges since we want to find the main blocks first and then later
recurse into them to find the sub-blocks. If a block is found (i.e.
when the average entropy of the nodes in a range is smaller or
equal to the median entropy), it is added to the result list and we
recursively invoke the algorithm on the siblings that precede it, and
on the siblings that follow it, in order to make sure that we find all
contiguous blocks of nodes. Implementation is straightforward, but
a few things must be kept in mind: the tree should have explicit
text nodes (which are then the leaves in the tree), because the
assumption is that all content lies at the leaves. In their paper the
authors mention that they exclude text nodes from the tree where
the text contains modal verbs (such as could, should, would...)
in order to decrease noise. Our implementation does not do so,
because this would make the algorithm language-specific, which
is something we want to avoid.

2.2 The visual approach (VIPS)

Visual approaches most resemble how a human segments a page,
i.e. they operate on the rendered page itself as seen in a browser.
They thus have the most information available, but are also com-
putationally the most expensive because pages must be rendered.
They often divide the page into separators, such as lines, white-
space and images, and content and build a content-structure out of
this information. They can take visual features such as background
color, styling, layout, font size and type and location on the page
into account. To render the page we need access to a browser en-
gine, which complicates the implementation of an algorithm. And
clearly it requires external resources such as CSS files and images
in order to work correctly.

For this approach we elected VIPS (Vision-based Page Seg-
mentation) algorithm (Cai et al.|2003a), which appears to be the
most popular web page segmentation algorithm. As indicated by
the name this algorithm is based on the rendered representation
of a page. It analyzes the DOM after all the styling information
from CSS rules have been applied and after Javascript files were
executed (and potentially modified the tree). It is tightly integrated
with a browser rendering engine since it needs to query for informa-
tion such as the dimensions on screen of a given element. One thus
has to decide on a fixed viewport size in advance on which the page
should be rendered. Concretely, the algorithm builds a vision-based

2014/6/16

content structure, independent of the underlying HTML document,
deciding during a top-down traversal whether something represents
a visual block, or whether it should be subdivided further by using
a number of heuristics, such as “if a sub-tree contains separators
like the <hr> tag, subdivide”. We used an existing implementation
from Tomas Popela (Popela|2012); the original implementation is
not available anymore.

2.3 The text based approach (BlockFusion)

The text-based approach differs from the other two in that it does
not take the tree structure of the HTML into account at all. Algo-
rithms only look at the (textual) content and analyze certain textual
features like e.g. the text-density or the link-density of parts of a
page. These techniques are grounded in results from quantitative
linguistics which indicate that, statistically, text blocks with simi-
lar features are likely to belong together and can thus be merged
in a single block. The optimal similarity threshold depends on the
wanted granularity and needs to be determined experimentally. The
algorithms tend to be fast and easy to implement since they work
independently from the DOM, but like the DOM-based approach
will not work with JavaScript (unless you serialize the DOM first),
do not not take structural and visual clues into account, and the
extraction of sub-blocks requires local changes to the text-density
threshold (since we can’t employ document structure).

The representative chosen for the text-based approach is the
BlockFusion algorithm (Kohlschiitter and Nejdl||2008). The algo-
rithm is grounded in the observation, coming from the field of quan-
titative linguistics, that the so-called roken density can be a valuable
heuristic to segment text documents. The token density of a text can
simply be calculated by taking the number of words in the text and
dividing it by the number of lines, where a line is capped to 80 char-
acters. A HTML document is then first preprocessed into a list of
atomic text blocks, by splitting on so-called separating gaps, which
are HTML tags other than the <a> tag. For each atomic block the
token density can then be computed. A merge strategy is then em-
ployed to merge blocks into progressively larger ones, if the differ-
ence between token densities of two adjacent blocks is below a cer-
tain threshold value. This is done repeatedly until no more blocks
can be merged. Due to this design the algorithm does not support
multiple levels of blocks by default, but by an extension in which
we locally introduce a second smaller threshold value, and then call
the BlockFusion algorithm on each (already merged) block, we can
achieve a two-level hierarchy.

While there is no reference implementation of the BlockFusion
algorithm as it is given in (Kohlschiitter and Nejdl|2008)), there is a
related open source library from the same author, called boilerpipe,
which is described in (Kohlschiitter et al.|2010). We implemented
the BlockFusion algorithm (specifically the BF-plain variant as
described in (Kohlschiitter et al.|2010)) on top of this library, since
this allowed us to stay as close to the original implementation
as possible because we could reuse many functions needed for
the algorithm. For example the function that generates the atomic
text blocks, which are later merged, is taken unmodified from the
boilerpipe library as well as the block merging function and the
function to calculate the text density of a block. We used a text
density threshold value of 9,4, = 0.38, which the authors found
to be the optimal value in their experimental evaluation.

2.4 A combined approach (WebTerrain)

The WebTerrain algorithm was developed as our own contribution
to the segmentation problem. The main idea was to see if we
can combine the different approaches from the other algorithms
in order to improve upon the end result. The algorithm is based
on a novel heuristic which inspired the name of the algorithm:
Firefox has a little known feature which allows the user to see

Submitted to ESEM ’14

a 3D-rendered version of any website (choose Inspect Element
after a right-click on any given page, and then click on the cube
icon). The result looks similar to a geographic terrain map. This
feature works by assigning an additional depth-value to each visible
element on top of the common width- and height-values, which
are already used in the normal 2D-representation of the page. The
depth-value is simply the tree-level of the element. Experiments
with this feature revealed that the elevation profile corresponds
pretty well to what we would consider the semantic blocks of
a web page. The heuristic that this observation leads to has the
interesting property that it combines a plain structural approach
with a rendering-based approach into one, since it not only takes
the DOM tree into account but also the visibility and dimensions
of each element. It is not possible to tell by simply looking at the
original HTML document how it will ultimately be rendered. One
does not know how much space each child of an element will take
up on the screen, or if it will be visible at all. For this, one needs
to actually render the page (although it does not need to be painted
to the screen, of course) using a layout engine like e.g. the WebKit,
which we employed (pyt[2013)).

Further details about the various algorithms, implementations,
complications, and how we extracted the necessary information
from the outputs of the implementations are omitted for reasons
of space, but can be found in (Kreuzer|2013)).

3. The datasets

Since web page segmentation is a fairly well-studied problem,
many authors have done an empirical evaluation of their algo-
rithms. The datasets and methods used for this evaluation vary
widely. There appears to be no standard dataset for this problem, in-
stead everyone seems to create their own dataset by first randomly
sampling web pages (sometimes taken from a directory site such
as http://dmoz.org) and then manually marking up the semantic
blocks and often also labeling the blocks according to a predefined
ontology. To further illustrate this, we consider how the three cho-
sen known algorithms were validated by the authors that proposed
them.

For the VIPS algorithm the authors did not first create a dataset
with a ground truth. Instead they ran VIPS on their sample pages
and then manually graded whether the segmentation of that page
was “perfect”, “satisfactory” or “failed”. This approach is prob-
lematic on two levels: First, there is the obvious conflict of interest,
since the authors themselves are grading the results of their own
algorithm. Second, whether a segmentation is “perfect” or “satis-
factory” is rather subjective and can thus not be repeated by others.

For the BlockFusion algorithm the authors did not use precision
and recall, but instead they used two cluster correlation metrics,
namely Adjusted Rand Index and Normalized Mutual Information
to quantify the accuracy of the segmentation. They did first create
a ground truth manually, but it is unclear whether this was done by
the authors themselves or by volunteers.

For the PageSegmenter algorithm the authors do use precision,
recall and F-Score in their evaluation. But differently from us they
did not do this for all blocks in general on a page, but they divided
the blocks into three classes first (which they call Concept, At-
tribute and Value) and applied the metrics to each of these classes.
This again prevents a direct comparison as this division into three
classes is specific to their algorithm and not applicable to other seg-
mentation algorithms.

Before building our own dataset we investigated the datasets
used by other authors to find out how they chose their sample
pages, sample sizes and whether they downloaded only the HTML
documents themselves, or the referenced external resources as well.
Furthermore we wanted to see whether any of these datasets would
be suitable for our study as well.

2014/6/16

http://dmoz.org

We found five datasets; they are shown in Table [I} The man-
ually labeled ones vary in size from 105 to 515, with the excep-
tion of the TAP knowledge base (Guha and McCool|2003) at a
size of 9,068 which was a semantically labeled database that was
used as a test-bed for the Semantic Web but is unfortunately not
available anymore. The Web pages are sampled completely at
random in (Chakrabarti et al.|2008), in (Kohlschiitter and Nejdl
2008)) they are taken from the Webspam UK-2007 dataset(Crawled
by the Laboratory of Web Algorithmics, University of Milan,
http://law.dsi.unimi.it/) comprising over 100 million pages, which
is focused on labeling hosts into spam/nonspam, in (Kovacevic
et al.||2002) they first downloaded 16,000 random pages from the
directory site www.dmoz.org and randomly chose the sample pages
from there. In (Vadrevu et al.|2005) they make a distinction be-
tween template-driven and non-template-driven Web pages (i.e.
pages generated by a web page authoring system and hand-coded
ones) which is not made by the others.

The block assignment was sometimes done by the authors and
sometimes by volunteers, the latter being preferable to avoid bias.
It is not always mentioned what granularity of blocks was used
(i.e. whether only top-level blocks were marked up or sub-blocks
as well), but no one specifically mentioned marking up sub-blocks
which leads us to the assumption that no sub-blocks were high-
lighted. Since none of these datasets are available online or from
the authors directly we were unable to confirm this though.

One other notable observation is that all datasets seem to consist
only of HTML documents without any of the external resources
referenced from the pages. While this is certainly partly due to
the datasets being already up to 11 years old, when web pages on
average were still a lot less complex than they are now, this is not
realistic anymore for websites that are currently on-line. We discuss
why later on in this section.

We were ultimately unsuccessful in finding a suitable dataset:
either the authors of the papers never replied to our inquiries, and
in the one case that we did find the dataset it was not suitable
for our purposes since it was focused on news websites, and only
included the original HTML sources and no external resources.
The latter is a problem in our case, because all algorithms that
depend on a rendered representation of the page will deliver very
different results for a page with all external resources and one
without (we want to lay out this point in a bit more detail, since it is
relevant for building a suitable dataset.) In conclusion, we decided
to construct our own benchmark set, which we have made publicly
available (Kreuzer et al.[2013).

3.1 External resources in web pages

Web pages are not only made up of HTML documents but they
can reference a number of external resources that the browser will
download in order to render the page properly. The most common
ones are images, videos, CSS files (which describe how a page
should be styled) and Javascript files (often adding interactivity and
animations to a page) but there are also lesser known ones like font
files, JSON or XML files (providing raw data), favicons, and vector
graphic files.

A browser will first download the HTML document itself, parse
it into the DOM tree (i.e. an object representation of the document)
and then find all the referenced resources and download those as
well. If there are one or more external style sheets they will be
parsed as well, and the style rules will be applied to the DOM.
Finally if there were Javascript files found they will be interpreted
by the Javascript engine built into the browser and they may apply
arbitrary transformations to the DOM. Finally a render tree can be
built from the DOM which is then painted on the screen.

So it is clear that if you only download the HTML document
itself then its rendered representation will be vastly different from

Submitted to ESEM ’14

the page including all resources. For this reason we decided to
build a dataset consisting of HTML documents together with all
their external resources (and all links rewritten accordingly so that
they point to the right files). Javascript poses a real challenge for
any kind of Web page analysis. Since a Javascript program can
modify the DOM arbitrarily and furthermore load in more data or
other Javascript programs from external sources it is possible that
the original HTML document and the rendered page have virtually
nothing in common.

In effect, if we want be able to validate algorithms that employ
the visual approach, we must include in our dataset all the external
resources that a given web page needs to be visualized. To retrieve,
for a given web page, all such external resources is not a trivial ex-
ercise. For example, CSS files have the ability to refer to other CSS
files, and these may again refer to ever more such files. Javascript
is really hard to deal with since it is a Turing complete language
(unlike HTML and CSS). In practice we solve the problem by sim-
ply running the Javascript programs, but whether we have in fact
retrieved all resources that we shall ever need is in fact undecidable
in general. The best practical solution we could find is the wget
utility, using finely tuned parametersﬂ It handles all of the difficul-
ties mentioned above except references from within Javascript pro-
grams, and it also rewrites the links so that they all point to the right
locations. We found that the downloaded pages rendered identical
or nearly identical to the online version in most cases. The pages
that used Javascript references to an extent that they could not be
properly rendered offline were excluded from the dataset (18 out
of 100 for the random dataset and 30 out of 100 for the popular
dataset).

Having retrieved the web pages and the associated resources,
they had to be marked up so that we would have a ground truth to
compare the algorithms against. We implemented a small program,
called Builder, in Javascript that, given the url of the web page,
allows one of our volunteers to easily mark up the web page and
store the results. It is run by clicking a bookmarklet which will
load and run the Javascript program from our server. It then works
by highlighting the DOM node the user is hovering over with the
mouse, allowing her to select that block and showing her a menu
where she can choose what type of block it is. The possible choices
to classity a block were:

High-level-blocks Header, Footer, Content, Sidebar

Sub-level-blocks Logo, Menu, Title, Link-list, Table, Comments,
Ad, Image, Video, Article, Searchbar

This block ontology was chosen with the goal of being comprehen-
sive and it was divided into High-level blocks and Sub-level blocks
(or level 1 and level 2 blocks) since Web pages can be segmented
on different levels of granularity. E.g. a content-block can have a ti-
tle, an image and an article as sub-blocks. While in principle there
is no upper limit to how many levels of granularity you can have on
a page, we found two levels to be sufficient in the majority of cases
and have thus restricted ourselves to that.

For robustness we implemented the following solution to mark-
ing up the web pages in which the client (for marking up the web
pages) and the server (serving the local version of the web pages)
reside on the same machine: we first make the full page avail-
able offline using wget, then open that page in a browser, load the
Builder, and add all the blocks and finally serialize the changed
DOM to disk again. If one subsequently wants to get out all the
blocks of a page one can do so using a simple Xpath quer

! The magic incantation is: wget -U user_agent -E -H -k -K -p -x -P
folder_name -e robots=off the_url

2 Xpath query to get all blocks: *//*[@data-block]’

2014/6/16

http://www.dmoz.org

[Paper Sample taken from [Size Granularity | HTML only? Type Created by Available
[~ (Vadrevu et al. TAP knowledge base(Guhal | 9, 068 ? yes template-driven external no
2005) and McCool|2003)
CS department websites 240 ? yes non-template-driven | 8 volunteers no
(Kovacevic et al.[2002) Random sites from dmoz.org 515 1 yes all the authors no
| (Kohlschiitter and Nejdll | Webspam UK- 111 1 yes all external no
2008) 2007(Crawled by the’
Laboratory of Web Algorith-
mics, University of Milan,
http://law.ds1.unimi.it/)
(Chakrabarti et al[2008) | Random web pages 105 ? yes all the authors no

Table 1. Datasets used in the literature

We built two different datasets, one containing only popular
pages and one containing randomly selected pages. This was done
to see if the algorithms performed differently on random and on
popular pages on average. For the popular dataset we took the top
10 pages from the 10 top-level categories from the directory site
http://dir.yahoo.com/. The chosen categories were Arts &
Humanities, Business & Economy, Computer & Internet, Enter-
tainment, Government, Health, News & Media, Science and So-
cial Science. We believe this gives us a representative sample of
popular websites, although not of websites in general. We manu-
ally checked all websites whether they still rendered properly after
having been downloaded and removed the ones that were broken,
which left us with a total of seventy popular pages in the dataset.

For the random websites we made use of the web service from
http://www.whatsmyip.org/random-website-machine/| to
generate a hundred links, which we then downloaded. The service
boasts over four million pages in its database and the only filtering
done is for adult content, which makes it sufficiently representative
for the Internet as a whole. After removing pages that did not render
properly offline we ended up with a random dataset consisting of
82 pages.

The marking up of the semantic blocks on these pages was
done by three volunteers. They were instructed to first mark up all
the level-1 blocks they could find and subsequently all the level-2
blocks within each level-1 block, according to the generic ontology
we gave earlier in this section.

When establishing the ground truth with the help of outsiders,
we must in some way be reasonably sure that this “truth” is ob-
jective enough. In other words, can we expect the intuitive under-
standing of what is a semantic block among our test persons to
be aligned, and, moreover, in line with what the average person
surfing the Web would say? The study of (Vadrevu et al.|2005)
indicates that this is indeed the case. They report an overlap of
87.5% between eight test subjects who they asked to mark up the
same web pages. Although the sample is small, it corresponds to
our own anecdotal experience in this study. However, we did find
that we had to be specific about the level of granularity (e.g. “the
most high-level (i.e. biggest) blocks and their most high-level sub-
blocks”), since there can be many levels.

3.2 The testing framework

To ease our comparison, we implemented a tool that executes the
evaluation of a given algorithm for a given dataset, and returns to
us the statistics. One design goal was that the framework should be
generic enough to deal with the various algorithms, and not assume
that these would all be implemented in the same language, or follow
a particular API. All algorithms are given as input the HTML of the
page including any resources the page might need to be rendered.
The outcome of each algorithm is a marked up HTML page, that
can then be compared against the ground truth for the page.

Submitted to ESEM ’14

The testing framework uses a pipeline as its main design pattern.
As inputs it takes the algorithm and the dataset specified by the user
and it generates a statistical evaluation of the performance of the
algorithm on that dataset as output.

The pipeline has four distinct components which have clearly
defined interfaces. The first of these is the DatasetGenerator which
is simply a function that knows how to retrieve the original HTML
documents and the HTML documents with the manually high-
lighted blocks (the ground truth). In our dataset this information
is e.g. provided by a mapping.txt file which simply provides a url :
filepath mapping.

The original HTML document is then fed to the Algorithm-
Driver, which is a small function unique to each algorithm, that
knows how to apply the specified algorithm to the given document.
This function needs to be specific to each algorithm since algo-
rithms can be implemented as libraries, executables or even Web
services. The driver interfaces with the algorithm by some means
like e.g. a sub-process or an HTTP request, and returns the ex-
tracted blocks.

Since there is no unified format for semantic blocks and differ-
ent algorithms return different formats it is necessary to normalize
the data representation of the blocks. The BlockMapper component
takes care of this. It takes the raw blocks, which can, for example,
be only the textual content that has been extracted, or fragments
of the HTML, and maps them back onto the original HTML doc-
ument to produce our standard format. For this standard we de-
cided to use the original HTML where the semantic blocks have
been marked up with the two additional attributes data-block and
data-block-type. These attributes are either added to already ex-
isting elements in the document or if multiple elements need to be
grouped together we wrap them in an additional div element and
add the attributes there. Attributes with a “data-" prefix have the
advantage of being valid HTML 5 and were added as a means to
attach private data to elements, which does not affect the layout or
presentation. Furthermore, storing the algorithm results as HTML
has the advantage that you can still render the page and see the
highlighted blocks (with an appropriate CSS rule added) and they
are also easy to query via Xpath or CSS selectors. Each individual
algorithm has its own implementation of BlockMapper, because the
formats of the returned semantic blocks differ widely.

Finally there is the Evaluator component that takes the normal-
ized Block HTML and the HTML ground truth as inputs and does
the statistical evaluation of the algorithm results. It calculates preci-
sion, recall and F-score, and returns the number of blocks retrieved
by an algorithm, the number of correctly found blocks (the hits)
and the total number of relevant blocks on a page. The results for
each page are written to a CSV file so that they can be analyzed and
visualized with common spreadsheet software.

The equality of blocks is tested with two different metrics: an
exact match metric and a fuzzy match metric. For both metrics the

2014/6/16

http://dir.yahoo.com/
http://www.whatsmyip.org/random-website-machine/

blocks are first serialized to text-only (i.e. all tags are ignored) and
white-space and newline characters are removed to reduce noise.
The exact match metric then does a string equality check to find
matching blocks (the intersection of the set of found blocks and the
ground truth is taken), the fuzzy match metric considers strings that
differ at most 20 percent as equal.

Most of our framework is implemented in Python. A good rea-
son for doing so is the availability of a Python library (pyt|2013)
providing complete DOM bindings, thus making Python a full peer
of Javascript, which was a necessary requirement for implement-
ing segmentation algorithms that need to query the DOM. Also
there are robust libraries for parsing (often invalid) HTML doc-
uments and querying them via Xpath. Furthermore Python pro-
grams, which are (typically) interpreted, can easily be modified and
extended, making Python a good choice for prototyping and prob-
lem exploration.

4. Results

In this section we present the results of our evaluation of the four
different segmentation algorithms. We tested all algorithms in a
number of different configurations using the testing framework
presented in Section@ First, we tested them on the two different
datasets which we created for this purpose: the randomly selected
dataset and the popular dataset. The first one consists of 82 random
pages and the second one of 70 popular pages, all marked up by our
assessors. We chose these two types of datasets to test whether the
algorithms perform differently on random and on popular pages on
average.

As a second variable we ran the algorithms on both the original
HTML, i.e. the HTML document downloaded from the source URL
via a single GET request, and the DOM HTML, i.e. the HTML
document obtained by waiting for all external resources to load
and then serializing the DOM. As there appears to be a trend to
build pages dynamically on the client-side using Javascript, we
were interested to see whether our results would reflect this. It is
also of note that our tool to mark up blocks manually was browser-
based and thus operated on the DOM, making the DOM HTML the
true basis of our ground truth. We believe this is a more sensible
basis than the original HTML, since it is what the user ultimately
sees when viewing a page, and it also is what the creator of the page
intended as the final result.

Finally we used two metrics to compare the generated results
to the ground truth, the exact match metric and the fuzzy match
metric. Both of them compare the string contents of the blocks to
each other. Each block is serialized to only text with all HTML tags
removed and white-space and newlines removed as well. For the
exact match metric it then simply checks for string equality. This
is of course a very strong criterion, as a minimally different string
would be counted as false, while for most applications it would
likely be perfectly sufficient. For this reason we also do a fuzzy
string comparison to check for a similarity ratio of better than 0.8
between strings.

So all together there are four testing variables: algorithms,
datasets, HTML-type and metrics. This yielded 32 test runs in
total, the results of which are presented in the 8 tables below (each
algorithm is in each table to facilitate direct comparisons). For each
algorithm we show the average Precision, Recall and F-Score val-
ues. Precision is a measure of quality that is defined as the number
of relevant results out of all retrieved results. Recall is a measure
of quantity that is defined as the number of retrieved results out
of all relevant results. The F-Score is a combination of the two,
defined as F = 2 x £ Additionally we also show the average
number of retrieved blocks, valid hits (i.e. the number of relevant
results returned by the algorithm) and the total number of relevant
results (determined by the ground truth). The latter is interesting as

Submitted to ESEM ’14

it shows the difference in the average number of retrieved blocks
and it also shows differences between the two datasets.

Random dataset, original HTML input

We first present the results of running the four different algorithms
on the dataset consisting of 82 randomly selected pages. On average
we have 12.24 relevant blocks on a random page. BlockFusion
returns on average about twice as many blocks as there are relevant
blocks. PageSegmenter returns about four times as many blocks as
there are relevant blocks. VIPS returns too few blocks on average.
Finally, WebTerrain is the closest in the number of retrieved results
to relevant results. As we expected, results are considerably better
for the fuzzy match metric as compared to the exact match.

Exact match metric

Under the exact match metric, Precision and Recall are generally
very low. BlockFusion and VIPS recognize hardly anything. Preci-
sion is highest for WebTerrain and Recall is highest for PageSeg-
menter.

[Algorithm [Prec. [Recall [F-Score | Retr. | Hits [Rel. |

BlockFusion | 0.03 | 0.06 0.04 |2599|0.77 | 12.24
PageSegmenter | 0.11 | 0.27 0.14 |46.96 (297 | 12.24
VIPS 0.07 | 0.06 0.06 742 | 091 | 12.24
WebTerrain | 0.25 | 0.22 0.21 10.9 | 223 |12.24

Table 2. Results for Random-HTML-Exact. Note that the reported
numbers are averages over 82 web pages. For example, the reported
F-score was computed by first computing the F-score for each web
page, and then taking the average of these 82 F-scores. Therefore
the reported values for Precision, Recall and F-score may not sat-
isfy the formula for the F-score as given in the text.

Fuzzy match metric

Precision and Recall are clearly better for the fuzzy match met-
ric with the number of hits roughly doubling. Especially VIPS im-
proves substantially, indicating that a number of its blocks were
only slightly off from the ground truth. The best F-Score (0.42,
WebTerrain) is still rather low.

[Algorithm [Prec. [Recall [F-Score | Retr. | Hits [Rel. |
BlockFusion | 0.06 | 0.11 0.07 |25.99|1.51 1224
PageSegmenter | 0.19 | 0.45 024 |46.96|5.24|12.24
VIPS 0.28 | 0.16 0.17 7.42 | 1.99 | 12.24
WebTerrain 0.48 | 043 0.42 109 | 45 [12.24

Table 3. Random-HTML-Fuzzy

Random dataset, DOM HTML input

For the DOM HTML input, we again observe a notable improve-
ment when comparing the exact to the fuzzy match metric, but not
quite as dramatic as for the original HTML. The number of re-
trieved blocks is generally higher (WebTerrain is minimally lower),
reflecting the observation that the DOM HTML is typically more
complex (as mostly things are added, rather than removed).

Exact match metric

BlockFusion is performing poorly, but better than on the original
HTML. PageSegmenter again exhibits low precision and high re-
call. VIPS has the best precision and lower recall, while WebTer-
rain does similarly on both, giving it the best F-Score.

2014/6/16

[Algorithm [Prec. [Recall [F-Score | Retr. | Hits [Rel.]

[Algorithm [Prec. [Recall [F-Score | Retr. [Hits [Rel. |

BlockFusion | 0.08 | 0.14 0.09 |30.96|1.79 | 12.24

BlockFusion | 0.05 | 0.12 0.06 72.85 |2.07 | 16.15

PageSegmenter | 0.11 | 0.39 0.16 | 65.04 | 447 | 12.24

PageSegmenter | 0.09 | 0.42 0.13 | 124.43|6.74 | 16.22

VIPS 0.36 | 0.21 0.24 9.24 | 273 12.24

VIPS 0.13 | 0.15 0.12 16.72 | 2.23 | 16.11

WebTerrain | 0.34 | 0.29 0.29 | 10.58|3.04 | 12.24

WebTerrain | 0.37 | 0.35 0.33 13.86 | 4.81 | 16.09

Table 4. Random-DOM-Exact

Fuzzy match metric

We see about a 50% improvement compared to the exact match
metric. WebTerrain and VIPS have the highest precision, and Page-
Segmenter and WebTerrain have the highest recall. Compared to
the original HTML we see some improvements as well, especially
for the VIPS algorithm. Overall we see the highest scores here out
of all benchmarks.

[Algorithm [Prec. [Recall [F-Score | Retr. | Hits [Rel.]

BlockFusion | 0.1 | 0.17 0.12 130.96 | 2.35]12.24
PageSegmenter | 0.15 | 0.51 0.2 65.04 | 6.12 | 12.24
VIPS 0.51 | 0.26 0.3 9.24 13.33]12.24
WebTerrain | 0.57 | 0.49 049 | 10.58|5.33 | 12.24

Table 7. Popular-HTML-Fuzzy

Popular dataset, DOM HTML input

Similar to what we saw in the random dataset the improvement
from exact to fuzzy matches is smaller than it was for the original
HTML, but still substantial.

Exact match metric

The results are overall better than for original HTML with the
biggest gains for VIPS and WebTerrain. WebTerrain has both the
highest precision and the highest recall in this test.

[Algorithm [Prec. [Recall [F-Score | Retr. [Hits [Rel. |

BlockFusion | 0.03 | 0.08 0.04 81.75 | 1.34 | 16.15
PageSegmenter | 0.05 | 0.27 0.07 | 163.71 | 456 | 16.3

Table 5. Random-DOM-Fuzzy

The popular dataset

Here we present the results of running the four different algorithms
on the dataset consisting of 70 popular pages. On average we have
16.1 relevant blocks on a page. The slight variation in relevant
blocks is because we had to exclude a few (no more than four)
pages for some of the algorithms, as they would not be handled
properly due to issues in their implementation (e.g. a GTK window
would simply keep hanging).

Between the original HTML and the DOM HTML one can see
that the number of retrieved blocks universally goes up, giving an-
other sign that the DOM HTML generally contains more content.
Overall the results are again better for the DOM HTML, question-
ing the use of the original HTML in web page segmentation algo-
rithms.

Popular dataset, original HTML input

The pattern seen in the random dataset repeats: results for the fuzzy
match metric are about twice better than for the exact match metric.
Both BlockFusion and PageSegmenter return decidedly too many
blocks on average, but only PageSegmenter can translate this into
high recall scores. VIPS and WebTerrain are fairly close to the
relevant number of blocks.

Exact match metric

The results are generally poor with WebTerrain having the best
precision and PageSegmenter having the best recall.

[Algorithm [Prec. [Recall [F-Score | Retr. [Hits [Rel. |
BlockFusion | 0.03 | 0.06 0.03 | 72.85 | 1.07 | 16.15
PageSegmenter | 0.05 | 0.24 0.08 124.43 1 4.05 | 16.22
VIPS 0.07 | 0.09 0.07 16.72 | 1.17 | 16.11
WebTerrain | 0.18 | 0.17 0.16 13.86 |2.19 | 16.09

Table 6. Popular-HTML-Exact

Fuzzy match metric

The results are better than for the exact match metric, but overall
still not convincing. Again WebTerrain and PageSegmenter are the
best for precision and recall respectively.

Submitted to ESEM ’14

VIPS 0.13 | 0.14 0.12 19.51 | 2.25 | 16.11
WebTerrain | 0.27 | 0.28 0.26 14.75 | 3.77 | 16.09

Table 8. Popular-DOM-Exact

Fuzzy match metric

The results for the popular dataset are the best again, as in the
random dataset, when running on the DOM HTML and using the
fuzzy match metric. The results for BlockFusion are again the
worst. PageSegmenter has again low precision and high recall.
Noticeably different is VIPS, as it does not exhibit a high precision,
as it did for the random dataset. Recall is similar, though slightly
lower. WebTerrain exhibits the highest precision and recall, but
precision is 0.1 points lower and recall 0.03 points lower than for
the random dataset.

[Algorithm [Prec. [Recall [F-Score | Retr. | Hits [Rel.]

BlockFusion | 0.04 | 0.12 0.06 |81.75(2.13 | 16.15
PageSegmenter | 0.07 | 0.41 0.11 164 | 6.68 | 16.22
VIPS 0.19 | 0.21 0.17 | 19.51]3.29 | 16.11
WebTerrain | 0.47 | 0.46 042 | 14.74|6.43 | 16.09

Table 9. Popular-DOM-Fuzzy

5. Reflection

In this section, we discuss the results of the previous section in
some detail. We first consider what the observed effects were of the
various testing variables.

Random vs. popular datasets We created one dataset consist-
ing of random pages and one consisting of popular pages to see
whether the segmentation algorithms perform differently on them.
As can be seen from our results all algorithms perform virtually
always better on the random pages than on the popular pages. We
believe this is due to the increased complexity of popular pages,
which can be seen from the fact that they on average had 32% more
blocks than a random page. Furthermore we also found that a pop-
ular page on average consists of 196.2 files in total (this number
includes all the external resources referenced from a page), while a
random page only consists of 79.4 files on average. The number of
retrieved blocks are also universally higher for all algorithms on the
popular pages. But while the number of blocks in the ground truth
was only 32% higher, the numbers for the algorithms increased

2014/6/16

by (much) more than that: BlockFusion 164.1%, PageSegmenter
152.1%, VIPS 111.1%, WebTerrain 39.3%. It thus seems that the
algorithms do not scale well with increasing complexity. This could
also partly explain why our results are generally less favorable than
what has been found in earlier publications, as they are up to 10
years old, and the Web has become much more complex since then.
It also shows the need for new techniques that deal well with this
increased complexity.

Exact vs. fuzzy match metric We found that the number of
recognized blocks improved significantly when using the fuzzy
match metric as opposed to the exact match metric, as was to be
expected. We believe that the results from the fuzzy match metric
are generally more valuable since the quality of blocks will still
be sufficient for most applications. Furthermore it can easily be
adjusted to find more or less precise matches by adjusting the
matching ratio.

Original HTML vs. DOM HTML Comparing the original and
the DOM HTML we found that the results of the segmentation for
the DOM HTML are virtually always better, which is true for all
algorithms on both datasets. This is due to the fact that the DOM
HTML is what the user ultimately sees in the browser, it is thus
the final result of the rendering process. While in the past it might
have been sufficient to analyze only the original HTML, this is
not true any more. As the Web becomes more dynamic and the
use of Javascript to manipulate the page becomes more prevalent,
there is not necessarily a link between original and DOM HTML
any more. This also implies that one cited advantage of text-based
segmentation algorithms, namely that they do not require the DOM
to be built and are thus very fast, is not true any longer, as even
for these algorithms it is necessary to obtain the final HTML for
optimal results.

The four segmentation algorithms

The four algorithms differ widely in their performance, and none
of them performed well enough to be universally applicable, as
the highest average F-Score was 0.49 (WebTerrain). Our comments
here pertain to the test runs using the fuzzy match metric and the
DOM HTML because we consider those the most relevant. But the
general conclusions hold for the other testing combinations as well.
BlockFusion This algorithm showed the worst performance on
both datasets. Both precision and recall are very low (< 0.1 and
< 0.2 respectively). It also returns too many blocks on average
(2.5x too many for the random dataset and 5.1x too many for
the popular dataset). We could thus not repeat the results from
(Kohlschiitter and Nejdl |2008). We conclude that a solely text-
based metric is not sufficient for a good segmentation, but that it
can be used to augment other approaches.

PageSegmenter This algorithm exhibits low precision and (rela-
tively) high recall (< 0.2 and > 0.4 respectively). This is due to
the fact that it retrieves by far the most blocks from all algorithms
(5.3x too many for the random dataset and 10.1x too many for the
popular dataset). The number of false positives is thus very high.
It would thus be interesting to see if this algorithm could be opti-
mized to return fewer blocks while retaining the good recall rates.
VIPS This algorithm showed the biggest difference between the
random and the popular dataset. Precision was high and recall
mediocre for the random dataset (0.51 and 0.26 respectively), while
both were low for the popular dataset (0.19 and 0.21 respectively).
It is not clear why there is such a substantial difference. The num-
ber of retrieved results is slightly too low for the random dataset,
while it is slightly too high for the popular dataset (25% too low
and 21% too high respectively). In terms of the F-Score the VIPS
algorithm had the second-best result.

WebTerrain This algorithm showed relatively high precision and
recall for both datasets (both > 0.4). It retrieved slightly too few

Submitted to ESEM ’14

blocks for both datasets (14% too few for the random dataset and
8% too few for the popular dataset). We thus find that a combina-
tion of structural and rendering-based approaches enhances over-
all results. Furthermore the terrain heuristic seems promising. Fu-
ture work could therefore likely improve upon these results by us-
ing more sophisticated combinations of different approaches and
heuristics.

Analysis of variance

We performed an analysis of variance (ANOVA) of our raw results
to test the impact of the four factors algorithm (with levels:
blockfusion, pagesegmenter, VIPS, WebTerrain), html

(levels: dom, html), dataset (levels: popular, random)

and metric (levels: exact, fuzzy) on the F-score. The re-
sults of the analysis are shown in Table[T0}

[| Df [SumSq[MeanSq [Fstat. [p-value |

algorithm 3 20.59 6.864 |319.416 | < 2e-16
html 1 1.58 1.581 73.569 | < 2e-16
dataset 1 2.28 2280 |106.119 | < 2e-16
metric 1 4.44 4.438]206.536 | < 2e-16
algorithm:html 3 1.26 0.419 19.505 | 1.74e-12
algorithm:dataset | 3 0.24 0.080 3.731 0.0108
algorithm:metric 3 2.19 0.730 33983 | <2e-16
html:dataset 1 0.17 0.172 8.006 | 0.0047
html:metric 1 0.05 0.052 2.401 0.1214
dataset:metric 1 0.10 0.096 4.468 0.0346
Residuals 2298 | 49.38 0.021

Table 10. ANOVA summary

We can read from the column labeled p-value that for all terms
except html :metric the null hypothesis of 'no effect’ will be re-
jected at the conventional significance level of & = 0.05. To avoid
confusion we note that the Analysis of Variance was performed on
the F scores obtained for different combinations of factor levels,
which is an entirely different quantity then the F statistic which is
used to test the significance of different (combinations of) factors
in explaining the variation in observed F scores.

We see in Table @] that the four factors algorithm, html,
dataset and metric are all highly significant (p-value < 2e-
16) in explaining observed variation in F-scores. The analysis thus
confirms our intuition that these factors are relevant for an analysis
of web page segmentation algorithms.

We also included interaction terms in the analysis (all the colon-
separated variables, such as algorithm:html). An interaction
term is the product of two variables that can in itself be a signifi-
cant predictor of the outcome. A high significance for an interaction
term means that the two variables interact, i.e. the effect on the out-
come (in our case the F-score) for a given variable z is different for
different values of a variable y (for a given interaction term x : y).

In Table [T0] we see that all interaction terms are significant
at « = 0.05, except for the term html:metric. The term
html:metric not being significant means that the influence of
metric on the F-score is typically similar for different values of
html. We can explain this by looking at the results reported in
Section [4] where we found that the fuzzy metric always returns
a higher F-score than the exact metric, regardless of the type of
HTML used.

Encountered problems

We ran into a number of complications and inconveniences during
our work. The first is the discovery was that there is no de-facto
“standard” dataset on which everybody bases the evaluation of their

2014/6/16

segmentation algorithm, as is common in other fields such as spam
detection. We have open-sourced our datasets and hope that they
will be of use to others (Kreuzer et al.|2013).

The second problem was that we could not obtain the original
implementation of any of the three algorithms in our comparison
(the implementation of VIPS is not from the original authors). This
again leads to duplication of work, as we had to re-implement these
algorithms, and it makes the results more fragile as it is impossible
to prove that they were implemented exactly according to their
specification. This is true as often the descriptions of algorithms
are not specific enough and required interpretation.

While people in general have a shared understanding of what
constitutes a semantic block on a particular level (i.e. top-level, sub-
block, sub-sub-block), there can still be a difference in the granu-
larity that a specific algorithm is targeting. This needs to be taken
into account when comparing different segmentation algorithms.

5.1 Threats to validity

As in any empirical study there are various threats to validity. Un-
less noted otherwise, all discussed threats are to external validity.

A threat to construct validity concerns the implementations and
our interpretations of the algorithm. Because we had to make these
interpretations, and we did not obtain answers to our e-mails about
these interpretations from the authors, we run the risk that we are
not exactly measuring their algorithm, but a variation thereof. We
have made clear in the paper what our interpretations are, and why
we judge them to be reasonable.

In our study, we compare approaches to web page segmenta-
tion by looking at a particular instance of each approach. In our se-
lection we have chosen well-known, often-cited representatives of
each approach. To compensate, we have made our framework and
datasets open for everyone to use, so that others can easily extend
upon our work, by implementing other instances of the paradigms
testing these against the ones that we have implemented.

When it comes to the experimental data, we used two datasets:
one with popular web pages, mainly because doing well on pages
that are often read by people is something an algorithm should be
rewarded for, but also to serve as a “worst-case” since we expected
these websites to be more complex than the average website. Since
we also did not want to bias too much towards such pages, we
also included a large sample of random pages, with the aim of
increasing external validity. However, we did have to drop 48 out
of 200 web pages, because when rendered locally they differed
from the original web page. This means that our results may not
generalize to websites that essentially exploit JavaScript references
in a complicated way.

The mark up was performed according to a particular ontology
(Section [3), which may hurt external validity. We do believe our
ontology to be generic enough to be applicable to most existing
websites. A second issue at this point is construct validity: did our
three test subjects understand the ontology, and what was expected
of them? To make sure that that was the case, the first author first
explained the ontology to them, and checked five segmentation
results for each test subject to see whether they had understood
him well enough. It was also verified for a few samples pages
that the volunteers agreed on the web page segmentation for those
pages. Another study confirms this finding (Vadrevu et al.|2005).
We should note that our test subjects all have an IT background,
which may decrease external validity.

An issue in our study is that one of the algorithms we consider
has been of our own devising. We note, however, that having con-
firmed that our implementation was correct, i.e., it behaved as we
designed it to do on a few web pages, we did not make any modi-
fications to it during or after we ran our experiments. This to avoid
the danger of overfitting our algorithm to the chosen datasets.

Submitted to ESEM ’14

6. Related Work

The research on structuring information on web pages into seman-
tic units goes back at least to 1997 (Hammer et al.|1997), in which
an extraction tool is described where the user can declaratively
specify where the data of interest is located and how the extracted
data should be interpreted. Subsequent authors tried to automate the
process of locating where the information of interest resided. The
process can be broken into two distinct steps: segmentation (what
belongs together in blocks) and labeling (what is the best descrip-
tion for the block, in terms of some chosen ontology).

In (Vadrevu et al.[2005)), we find the PageSegmenter algorithm
that uses the structural and presentation regularities of web pages
to transform them into hierarchical content structures (i.e., “seman-
tic blocks”). They then proceed to tag the blocks automatically us-
ing an abstract ontology consisting of Concepts, Attributes, Val-
ues and None. They tested their work experimentally against the
TAP knowledge base (Guha and McCool|2003) (which was not not
available anymore for our study) and on a home-made dataset con-
sisting of CS department websites. In (Vadrevu and Velipasaoglu
2011), the authors also rate the individual blocks by learning a sta-
tistical predictor of segment content quality and use those ratings
to improve search results.

In (Kovacevic et al.|[2002)), the approach is based on heuristics
that take visual information into account. They built their own basic
browser engine to accomplish this, but do not take style sheets into
account, and they avoid calculating rendering information for every
node in the HTML tree. They then define a number of heuristics
on the rendered tree assuming that the areas of interest on a page
are header, footer, left menu, right menu and center of the page,
and where they should be located, e.g. header on top. An issue is
that this assumption does not hold for web pages that are more
similar to desktop applications. The authors test their algorithm
experimentally by first building a dataset where they manually
label areas on 515 different pages, then run their algorithm on
the dataset and subsequently compare the manual and algorithmic
results. Their overall accuracy in recognizing targeted areas is 73%.

In (Chakrabarti et al.[2008), the authors turn the DOM tree into
a complete graph, where every DOM node is a vertex in the graph.
Each edge is then assigned a weight that denotes the cost of putting
these two vertices into the same segment. The weights are learned
from a dataset regarded as the ground truth by looking at predefined
visual- and context-based features. Finally they group the nodes
into segments by using either a correlation clustering algorithm, or
an algorithm based on energy-minimizing cuts; the latter performs
considerably better in their empirical evaluation. Their evaluation
is based on manually labeled data (1088 segments on 105 different
web pages).

Another approach is to consider text-density as the driving
heuristic (Kohlschiitter and Nejdl||2008)). Instead of analyzing the
DOM tree, like many other authors do, the focus is on discovering
patterns in the displayed text itself. Their key observation is that
the density of tokens in a text fragment is a valuable cue for decid-
ing where to separate the fragment. More details were given eatlier
in the paper. They evaluate their approach experimentally using a
dataset consisting of 111 pages. They achieve a better precision
and recall than (Chakrabarti et al.[2008)).

In (Cai et al.|2003a), we find an approach based on the visual
representation of a web page. Instead of looking at the DOM tree
representation of a web page, they developed a recursive vision-
based content structure where they split every page into a set of
sub-pages (visual blocks of a page), a set of separators and a func-
tion that describes the relationship between each pair of blocks of
a page in terms of their shared separators. They deduce this con-
tent structure using the VIPS algorithm(Cai et al.|[2003b) which
goes top-down through the DOM and takes both the DOM structure

2014/6/16

and the visual information (position, color, font size) into account.
They test their algorithm experimentally by sampling 140 pages
from different categories of the Yahoo directory and running their
algorithm on it and then manually assessing whether the segmen-
tation was “Perfect”, “Satisfactory” or “Failed”. Later work rates
web page blocks according to their importance (Song et al.|2004).

(Balujal2006)) focuses on the application of optimizing existing
web pages for mobile phones by, first, dividing the web page into a
3x3-grid. The user can then interactively arrange for the website to
be optimized for mobile phone screen. The page segmentation al-
gorithm is based on clues from the DOM combined with a number
of computer vision algorithms. Specifically, they use an entropy
measurement to construct a decision tree that determines how to
segment the page. They test their approach on a number of popu-
lar websites where they achieve good results in most cases (they
rarely cut through coherent texts). One artificial limitation of their
approach is that it divides the page into at most 9 segments, but it
seems possible to adapt it to other grid sizes.

In (Akpinar and Yesiladal[2012), the authors improve upon the
popular VIPS algorithm. They focus on improving the first phase
of VIPS, the visual block extraction. They observe that the original
algorithm has certain deficiencies due to its age (it is from 2003)
and the evolving nature of the Web. They address these issues by
dividing all HTML tags (including the ones introduced by HTML
5) not into three classes but into nine instead, and define new
separation rules for these classes based on visual cues and tag
properties of the nodes. Unfortunately they do not give an empirical
evaluation of their updated algorithm.

We found only one paper that, like us, is focused on comparing
existing approaches to web page segmentation and labeling: (Yesi-
lada|2011)). The author answers the five W’s (Who, What, Where,
When and Why) for about 80 papers. The classification of the ap-
proaches is largely qualitative including bottom-up vs. top-down,
DOM-based vs. visual, how the evaluation of the approaches is
measured (precision and recall, success rate, or execution time),
and whether specific heuristics are made based on assumptions
about the layout of web pages. The paper also lists the assumptions
and limitations of the different algorithms.

7. Conclusion and Future Work

As to our first research question, how well do existing web page
segmentation algorithms work on modern websites, we conclude
that performance in general has gotten worse over time. While all
three older algorithms, BlockFusion, PageSegmenter and VIPS,
showed a strong performance in their original publications, this
does not hold any more on our dataset using recent web pages.
As our study shows, the main reason for this is the increasing
complexity of websites and their ever more dynamic behavior due
to the increasing prevalence of DOM manipulations via Javascript.

Regarding the second research question, whether the existing
approaches can be improved, we showed that this is indeed possible
by combining two of three approaches in the WebTerrain algorithm,
which consistently had the highest F-scores in our benchmarks.

The systematic exploration and testing of the different algo-
rithms was enabled by the testing framework we developed for our
research. It allows to exchange datasets and algorithms and is also
easily extensible with more page segmentation algorithms. It thus
forms a solid basis for future work in this field. Researchers have
already contacted us to use our datasets for their own validation.
Promising-looking directions are more sophisticated combinations
of different approaches and more directed segmentation algorithms
that e.g. only focus on certain segments on a page or that target only
specific domains of websites.

Submitted to ESEM ’14

References

Python webkit DOM bindings. http://www.gnu.org/software/pythonwebkit/,
2013. URL http://www.gnu.org/software/pythonwebkit/\

E. Akpinar and Y. Yesilada. Vision based page segmentation: Extended and
improved algorithm. http://cng.ncc.metu.edu.tr/content/emine.php, Jan.
2012. URL http://cng.ncc.metu.edu.tr/content/emine. php.

S. Baluja. Browsing on small screens: recasting web-page segmentation
into an efficient machine learning framework. In Proceedings of the
15th international conference on World Wide Web, page 33—42, 2006.

D. Cai, S. Yu, J. R. Wen, and W. Y. Ma. Extracting content structure for
web pages based on visual representation. In Proceedings of the 5th
Asia-Pacific web conference on Web technologies and applications, page
406417, 2003a.

D. Cai, S. Yu, J. R. Wen, and W. Y. Ma. VIPS: a visionbased page
segmentation algorithm. Technical report, Microsoft Technical Report,
MSR-TR-2003-79, 2003b. URL ftp://ftp.research.microsoft.
com/pub/tr/TR-2003-79.pdf.

D. Chakrabarti, R. Kumar, and K. Punera. A graph-theoretic approach
to webpage segmentation. In Proceeding of the 17th international
conference on World Wide Web, page 377-386, 2008.

Crawled by the Laboratory of Web Algorithmics, University of Mi-
lan, http://law.dsi.unimi.it/. Yahoo! research: "Web spam collections”.
http://barcelona.research.yahoo.net/webspam/datasets//datasets/uk2007/.
URL http://barcelona.research.yahoo.net/webspam/
datasets//datasets/uk2007/.

R. Guha and R. McCool. TAP: a semantic web test-bed. Web Semantics:
Science, Services and Agents on the World Wide Web, 1(1):81-87, Dec.
2003. ISSN 1570-8268. doi:10.1016/j.websem.2003.07.004,

J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo. Extracting
semistructured information from the web. 1997. URLhttp://ilpubs.
stanford.edu:8090/250/.

C. Kohlschiitter and W. Nejdl. A densitometric approach to web page
segmentation. In Proceeding of the 17th ACM conference on Information
and knowledge management, page 1173-1182, 2008.

C. Kohlschiitter, P. Fankhauser, and W. Nejdl. Boilerplate detection using
shallow text features. In Proceedings of the third ACM international
conference on Web search and data mining, WSDM ’10, page 441450,
New York, NY, USA, 2010. ACM.

M. Kovacevic, M. Diligenti, M. Gori, and V. Milutinovic. Recognition
of common areas in a web page using visual information: a possible
application in a page classification. In IEEE International Conference on
Data Mining, pages 250 — 257, 2002. doi{10.1109/ICDM.2002.1183910.

R. Kreuzer. A quantitative comparison of semantic web page segmentation
algorithms (msc thesis), 2013. http://www.cs.uu.nl/wiki/Hage/
SupervisedMScTheses.

R. Kreuzer, M. El-Lari, R. van Nuenen, and S. Hospes. Random and
popular datasets for validating web page segmentation algorithms,
2013. https://github.com/rkrzr/dataset-randomhttps://
github.com/rkrzr/dataset-popular.

T. Popela. Implementation of algorithm for visual web page segmentation
(msc thesis), 2012. URL http://wuw.fit.vutbr.cz/study/DP/
DP.php?id=14163&file=t.

R. Song, H. Liu, J. R. Wen, and W. Y. Ma. Learning block importance mod-

els for web pages. In Proceedings of the 13th international conference
on World Wide Web, page 203-211, 2004.

S. Vadrevu and E. Velipasaoglu. Identifying primary content from web
pages and its application to web search ranking. In Proceedings of
the 20th international conference companion on World wide web, page
135-136, 2011.

S. Vadrevu, F. Gelgi, and H. Davulcu. Semantic partitioning of web pages.
In A. Ngu, M. Kitsuregawa, E. Neuhold, J.-Y. Chung, and Q. Sheng,
editors, Web Information Systems Engineering — WISE 2005, volume
3806 of Lecture Notes in Computer Science, pages 107-118. Springer
Berlin / Heidelberg, 2005. ISBN 978-3-540-30017-5.

Y. Yesilada. Web page segmentation: A review. 2011.
//wel-eprints.cs.manchester.ac.uk/148/|

URL http:

2014/6/16

http://www.gnu.org/software/pythonwebkit/
http://cng.ncc.metu.edu.tr/content/emine.php
ftp://ftp.research.microsoft.com/pub/tr/TR-2003-79.pdf
ftp://ftp.research.microsoft.com/pub/tr/TR-2003-79.pdf
http://barcelona.research.yahoo.net/webspam/datasets//datasets/uk2007/
http://barcelona.research.yahoo.net/webspam/datasets//datasets/uk2007/
http://dx.doi.org/10.1016/j.websem.2003.07.004
http://ilpubs.stanford.edu:8090/250/
http://ilpubs.stanford.edu:8090/250/
http://dx.doi.org/10.1109/ICDM.2002.1183910
http://www.cs.uu.nl/wiki/Hage/SupervisedMScTheses
http://www.cs.uu.nl/wiki/Hage/SupervisedMScTheses
https://github.com/rkrzr/dataset-random
https://github.com/rkrzr/dataset-popular
https://github.com/rkrzr/dataset-popular
http://www.fit.vutbr.cz/study/DP/DP.php?id=14163&file=t
http://www.fit.vutbr.cz/study/DP/DP.php?id=14163&file=t
http://wel-eprints.cs.manchester.ac.uk/148/
http://wel-eprints.cs.manchester.ac.uk/148/

	Introduction
	Approaches and algorithms
	The DOM-based approach (PageSegmenter)
	The visual approach (VIPS)
	The text based approach (BlockFusion)
	A combined approach (WebTerrain)

	The datasets
	External resources in web pages
	The testing framework

	Results
	Reflection
	Threats to validity

	Related Work
	Conclusion and Future Work

