

Decomposition approaches for
recoverable robust optimization
problems

J.M. van den Akker
P.C. Bouman
J.A. Hoogeveen
D.D. Tönissen

Technical Report <Technical Report number>
September 2014
Department of Information and Computing Sciences
Utrecht University, Utrecht, The Netherlands
www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands

Decomposition approaches for recoverable robust optimization
problems

J.M. van den Akkera,∗, P.C. Boumanb,1, J.A. Hoogeveena, D.D. Tönissenc,1

aDepartment of Information and Computing Sciences Utrecht University, Princetonplein 5, 3584 CC Utrecht,
The Netherlands

bRotterdam School of Management Erasmus University, Burgemeester Oudlaan 50, 3062 PA Rotterdam, The
Netherlands

cSchool of Industrial Engineering Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The
Netherlands

Abstract

Real-life planning problems are often complicated by the occurrence of disturbances, which imply

that the original plan cannot be followed anymore and some recovery action must be taken to

cope with the disturbance. In such a situation it is worthwhile to arm yourself against possible

disturbances by including recourse actions in your planning strategy. Well-known approaches to

create plans that take possible, common disturbances into account are robust optimization and

stochastic programming. More recently, another approach has been developed that combines the

best of these two: recoverable robustness. In this paper, we solve recoverable robust optimization

problems by the technique of column generation. We consider two types of decomposition ap-

proaches: separate recovery and combined recovery. We investigate our approach for two example

problems: the size robust knapsack problem, in which the knapsack size may get reduced, and the

demand robust shortest path problem, in which the sink is uncertain and the cost of edges may

increase. For each problem, we present elaborate computational experiments. We think that our

approach is very promising and can be generalized to many other problems.

Keywords: column generation; robustness; knapsack; shortest path

1. Introduction

Most optimization algorithms rely on the assumption that all input data are deterministic and

known in advance. However, in many practical optimization problems, such as planning in public

transportation or health care, data may be subject to changes. To deal with this uncertainty,

∗Correspondig author
Email addresses: J.M.vandenAkker@uu.nl (J.M. van den Akker), PBouman@rsm.nl (P.C. Bouman),

J.A.Hoogeveen@uu.nl (J.A. Hoogeveen), D.D.Tonissen@tue.nl (D.D. Tönissen)
1The research was performed while this author was at Utrecht University

Preprint submitted to Elsevier October 14, 2014

different approaches have been developed. In case of robust optimization (see [2], [3]) we choose

the solution with minimum cost that remains feasible for a given set of disturbances in the param-

eters. In case of stochastic programming [4], we take first stage decisions on basis of the current

information and, after the true value of the uncertain data has been revealed, we take the second

stage or recourse decisions. The objective here is to minimize the cost of the first stage decisions

plus the expected cost of the recourse decisions. The recourse decision variables may be restricted

to a polyhedron through the so-called technology matrix [4]. Summarized, robust optimization

wants the initial solution to be completely immune for a predefined set of disturbances, while

stochastic programming includes a lot of options to postpone decisions to a later stage or change

decisions in a later stage.

Recently, the notion of recoverable robustness [17] has been developed, which combines robust

optimization and second-stage recovery options. Recoverable robust optimization computes solu-

tions, which for a given set of scenarios can be recovered to a feasible solution according to a set

of pre-described, fast, and simple recovery algorithms. The main difference between recoverable

robustness and stochastic programming is the way in which recourse actions are limited. The

property of recoverable robustness that recourse actions must be achieved by applying a simple

algorithm instead of being bounded by a polyhedron makes this approach very suitable for combi-

natorial problems. As an example, consider the planning of buses and drivers in a large city. We

may expect that during rush hours buses may be delayed, and hence may be too late to perform

the next trip in their schedule. In case of robust optimization, we can counter this only by making

the time between two consecutive trips larger than the maximum delay that we want to take into

account. This may lead to a very conservative schedule. In case of recoverable robustness, we are

allowed to change, if necessary, the bus schedule, but this is limited by the choice of the recovery

algorithm. For example, we may schedule a given number of stand-by drivers and buses, which

can take over the trip of a delayed driver/bus combination. Especially in the area of railway

optimization recoverable robust optimization methods have gained a lot of attention (see e.g. [10],

[11])

In this paper we present a new approach for solving recoverable robust optimization problems.

We use column generation for recoverable robust optimization. We will present column generation

models for the size robust knapsack problem and for the demand robust shortest path problem.

We consider two types of solution approaches: Separate Recovery and Combined Recovery. Our

approach can be generalized to many other problems. This paper extends our conference paper [5]

by presenting a general definition of our decomposition approaches and a further study of the solu-

tion algorithm for the demand robust shortest path problem. This study includes different column

generation strategies and elaborate computational experiments. To the best of our knowledge, [5]

2

and this paper are the first ones applying column generation to recoverable robust optimization.

Another decomposition approach, namely Benders decomposition, is used in [9] to assess the Price

of Recoverability for recoverable robust rolling stock planning in railways.

The remainder of the paper is organized as follows. In Section 2, we define the concept of recover-

able robustness. In Section 3, we present our two different decomposition approaches. In Section 4,

we consider the size robust knapsack problem. We investigate the two decomposition approaches

and we present computational experiments in which we compare different solution algorithms. Be-

sides algorithms based on Separate and Combined Recovery Decomposition, we test hill-climbing,

dynamic programming and branch-and-bound. The experiments indicate that Separate Recovery

Decomposition performs best. Section 5 is devoted to the demand robust shortest path problem.

Since Separate Recovery Decomposition does not seem to be appropriate for this problem, we

focus on Combined Recovery Decomposition and consider the settings of the branch-and-price

algorithm in more detail. In our experiments we show that the column generation strategy has a

significant influence on the computation time. Finally, Section 6 concludes the paper.

2. Recoverable robustness

In this section we formally define the concept of recoverable robustness. We are given an opti-

mization problem

P = min{f(x)|x ∈ F},

where x ∈ Rn are the decision variables, f is the objective function and F is the set of feasible

solutions.

Disturbances are modeled by a set of discrete scenarios S. We use Fs to denote the set of feasible

solutions for scenario s ∈ S, and we denote the decision variables for scenarios s by ys. The set

of algorithms that can be used for recovery are denoted by A, where A(x, s) ∈ A determines a

feasible solution ys from a given initial solution x in case of scenario s. In case of planning buses

and drivers a scenario corresponds to a set of bus trips that are delayed, and the algorithms in A

decide about the use of standby drivers.

The recovery robust optimization problem is now defined as:

RRPA = min{f(x) + g({cs(ys)|s ∈ S})|x ∈ F, A ∈ A, ∀s∈Sys = A(x, s)}.

Here, cs(ys) denotes the cost associated with the recovery variables ys and g the function to

combine these cost into the objective function. There are many possible choices for g. A few

examples are as follows:

3

1. g is defined as the all-zero function. This models the situation where our only concern is the

feasibility of the recovered solutions.

2. g is equal to the maximum function, i.e., it models the maximal cost of the recovered solutions

ys. This corresponds to minimizing the worst-case cost. If cs(ys) measures the deviation of

the solution ys from x, we minimize the maximum deviation from the initial solution. Note

that this deviation may also be limited by the recovery algorithms.

3. Suppose we are given the probabilities ps of scenarios s. Then g can be defined as the

expected value of the solution after recovery, i.e.,
∑

s∈S psc
s(ys).

Although earlier papers on recoverable robustness (e.g. [17]) consider the latter type of definition

of g as two-stage stochastic programming, we think that the requirement of a pre-described easy

recovery algorithms makes this definition fit into the framework of recoverable robustness.

3. Decomposition approaches

We discuss two decomposition approaches for recovery robust optimization problems. In both

cases we reformulate the problem such that we have to select one solution for the initial problem

and one for each scenario. The difference consists of the way we deal with the scenarios.

3.1. Separate Recovery Decomposition

In Separate Recovery Decomposition, we select an initial solution and separately we select a solution

for each scenario. This means that for each feasible initial solution k ∈ F we have a decision

variable xk signalling if this solution is selected; similarly for each feasible solution for each scenario

q ∈ Fs we have a decision variable ysq . In the formulation we enforce that we select exactly one

initial solution and one solution for each scenario. We also enforce that for each scenario the initial

solution can be transformed into a feasible solution by the given recovery algorithm. We assume

that the recovery constraint and the objective function can be expressed linearly. We now obtain

an Integer Linear Programming formulation which is formulated as follows (for maximization

objective):

max f({xk|k ∈ F}) + g({cs({ysq |q ∈ Fs})|s ∈ S})

subject to ∑
k∈F

xk = 1 (1)∑
q∈Fs

ysq = 1 for all s ∈ S (2)

A1x+As
2y

s ≤ b for all s ∈ S (3)

4

xk ∈ {0, 1} for all k ∈ F (4)

ysq ∈ {0, 1} for all q ∈ Fs, s ∈ S (5)

Here ys denotes the vector of all entries ysq . We want to solve this ILP formulation using Branch-

and-Price [1]. We relax the integrality constraints (4) and (5) into xk ≥ 0 and ysq ≥ 0, and solve

this LP-relaxation. To deal with the large number of variables we are going to solve the problem

by column generation.

Figure 1: Column generation process Separate Recovery Decomposition

The column generation process is depicted in Figure 1. We start with a limited subset of the

variables and solve the LP-relaxation for this subset only; this is called the Restricted Master

Problem. Then we solve the Pricing Problem, i.e., we look for variables that are not yet included

in the Restricted Master Problem and can improve the solution if their value is made positive.

For variables xk this boils down to an optimization problem over F , i.e. a variant of the initial

problem, and for variables ysq for scenario s to an optimization problem over Fs, i.e. a variant of

the original problem in case of scenario s. If improving variables are found, they are added to the

Restricted Master Problem, it is solved again, after which pricing is performed etc. If pricing does

not find any new variables we know that the Master Problem has been solved to optimality. To

find an integral solution, we are going to apply Branch-and-Price, i.e., combine column generation

with Branch-and-Bound, where the solution value of the LP is used as an upper bound.

3.2. Combined Recovery Decomposition

In Combined Recovery Decomposition, we select for each scenario a combination of an initial

solution together with the optimal recovery a solution for that single scenario. This means that

for each scenario s ∈ S we have for each combination of an initial solution k ∈ F and the

corresponding solution q ∈ Fs obtained by the recovery algorithm a binary variable zskq signalling

if this combination is selected. We enforce that only one combination will get selected for each

scenario in the master problem. Moreover, it is important to ensure that the combinations selected

for the different scenarios all correspond to the same initial solution. We assume that the functions

5

f and g can be expressed in a linear way. We obtain the following Integer Linear Programming

formulation:

max f(x) + g({cs({zskq| k ∈ F, q ∈ Fs, q = A(k, s)})|s ∈ S})

subject to∑
(k,q)∈F×Fs

zskq = 1 for all s ∈ S (6)

x = Azs for all s ∈ S (7)

zskq ∈ {0, 1} for all k ∈ F , q ∈ Fs, q = A(k, s), s ∈ S, (8)

Here zs denotes the vector of all entries zskq. We also solve this ILP formulation by Branch-and-

Price. The column generation process is depicted in Figure 2. The Pricing Problem now boils down

to finding an optimal combination of an initial solution and a recovery solution for a given scenario.

Figure 2: Column generation process Combined Recovery Decomposition

We think that our approach can be applied to different recoverable robust optimization problems.

In the next two sections, we will demonstrate the approach for two different problems.

4. Size robust knapsack problem

We consider the following knapsack problem. We are given n items, where item j (j = 1, . . . , n)

has revenue cj and weight aj . Each item can be selected at most once. The knapsack size is

b. We define the size robust knapsack problem as the knapsack problem where the knapsack size

b is subject to uncertainty. We denote by bs < b the size of the knapsack in scenario s ∈ S.

We assume that the knapsack will keep its original size with probability p0 and that scenario s

will occur with probability ps. Our objective is to maximize the expected revenue after recovery.

We study the situation in which recovery has to be performed by removing items. As soon as it

becomes clear which scenario s appears, recovery is performed by removing items in such a way

that the remaining items give a knapsack with maximal revenue and size at most bs. This boils

6

down to solving a knapsack problem where the item set is the set of items selected in the initial

solution and the knapsack size is bs. Hence, our set of recovery algorithms is given by the dynamic

programming algorithm for solving these knapsacks.

Recently [7] have studied a different version of our knapsack problem, where they focus on un-

certainty in the weights. They show NP-hardness of several variants of the problem and develop

a polyhedral approach to solve these problems. A follow-up paper [8] presents an integer linear

programming formulation of quadratic size and evaluates the gain of recovery. There is also some

research with a focus on approximation algorithms. Disser et al [14] consider policies for packing

a knapsack with unknown capacity and Goerigk et al [15] consider the knapsack problem in which

there is a limited budget to decrease item weights.

In this section, we are going to discuss our two decomposition approaches for the size robust

knapsack problem and present elaborate computational experiments in which we compare our

method with other algorithms.

4.1. Separate Recovery Decomposition

We define K(b) as the set of feasible knapsack fillings with size at most b. For k ∈ K(b), we

denote its revenue by Ck =
∑

i∈k ci. In the same way, we denote the revenue of q ∈ K(bs) by

Cs
q =

∑
i∈q ci.

We define decision variables:

xk =

 1 if knapsack k ∈ K(b) is selected,

0 otherwise.

and

ysq =

 1 if knapsack q ∈ K(bs) is selected for scenario s,

0 otherwise.

The problem can now be formulated as follows.

max p0
∑

k∈K(b)

Ckxk +
∑
s∈S

ps
∑

q∈K(bs)

Cs
qy

s
q

subject to ∑
k∈K(b)

xk = 1 (9)

∑
q∈K(bs)

ysq = 1 for all s ∈ S (10)

∑
k∈K(b)

aikxk −
∑

q∈K(bs)

asiqy
s
q ≥ 0 for all i ∈ {1, 2, . . . , n}, s ∈ S (11)

xk ∈ {0, 1} for all k ∈ K(b) (12)

ysq ∈ {0, 1} for all q ∈ K(bs), s ∈ S, (13)

7

where the index variables aik and asiq are defined as follows:

aik =

 1 if item i is in knapsack k ∈ K(b),

0 otherwise.

and

asiq =

 1 if item i is in knapsack q ∈ K(bs),

0 otherwise.

In the above model constraint (9) states that exactly one knapsack is selected for the original

situation and constraints (10) that exactly one knapsack is selected for each scenario. Constraints

(11) ensures that recovery is done by removing items.

Recall that we solve this ILP formulation using Branch-and-Price, we relax the integrality con-

straints (12) and (13) into xk ≥ 0 and ysk ≥ 0, and solve this LP-relaxation by column generation.

The pricing problem

From the theory of linear programming it is well-known that for a maximization problem increasing

the value of a variable will improve the current solution if and only if its reduced cost is positive.

The pricing problem then boils down to maximizing the reduced cost.

Let λ, µs, and πis be the dual variables of constraints (9), (10), and (11) respectively. Now the

reduced cost cred(xk) of xk is given by

cred(xk) = p0
∑
i∈k

ci − λ−
n∑

i=1

∑
s∈S

aikπis

=

n∑
i=1

aik(p0ci −
∑
s∈S

πis)− λ.

The pricing problem is to find a feasible knapsack for the original scenario, where the revenue of

item i, equals (p0ci−
∑

s∈S πis). This is just the original knapsack problem with modified objective

coefficients. Similarly the reduced cost cred(ysq) are given by cred(ysq) =
∑n

i=1 a
s
iq(psci + πis)− µs

It follows that the pricing is exactly the knapsack problem with knapsack size bs and modified

objective coefficients. Note that in the pricing problem an item may have a negative revenue.

Clearly such items can be discarded.

To find an integral solution, we are going to apply Branch-and-Price. We branch on items that are

fractional in the current solution, i.e. items i for which
∑

k∈K(b) aikxk is fractional. This is easily

combined with column generation, since enforcing that an item is taken in or omitted from the

knapsack, can easily be included in the pricing problem. If all values
∑

k∈K(b) aikxk are integral,

then a single initial knapsack is selected with value 1. Now consider a basic solution to the LP for

8

scenario s. It is easy to see that this solution contains an optimal subset of the initial knapsack

with total weight at most bs which is selected with value 1. Consequently, the solution is integral.

4.2. Combined Recovery Decomposition

In contrast to the Separate Recovery Decomposition, we consider fillings of the initial knapsack

in combination with the optimal recovery for one scenario. Consequently, we introduce decision

variables:

zskq =


1 if the combination of initial solution k ∈ K(b)

and recovery solution q ∈ K(bs) is selected for scenario s,

0 otherwise.

Clearly, zskq is only defined if q is a subset of k. The ILP model further contains the original

variable xi signaling if item i is contained in the initial knapsack. We can formulate the problem

as follows:

max p0

n∑
i=1

cixi +
∑
s∈S

ps
∑

(k,q)∈K(b)×K(bs)

Cs
qz

s
kq

subject to ∑
(k,q)∈K(b)×K(bs)

zskq = 1 for all s ∈ S (14)

xi −
∑

(k,q)∈K(b)×K(bs)

aikz
s
kq = 0 for all i ∈ {1, 2, . . . , n}, s ∈ S (15)

xi, ∈ {0, 1} for all i ∈ {1, 2, . . . , n} (16)

zskq, ∈ {0, 1} for all k ∈ K(b), q ∈ K(bs), s ∈ S, (17)

Constraints (14) enforce that exactly one combination is selected for each scenario; constraints

(15) ensure that the same initial knapsack filling is selected for all scenarios.

Again, we are going to solve the LP-relaxation by column generation. We include the variables xi

in the restricted master LP and, hence pricing is only performed for the variables zskq. We denote

the dual variables of constraints (14) and (15) by ρs and σis, respectively. The reduced cost of zskq

is now equal to:

cred(zskq) =

n∑
i=1

asiqpsci +

n∑
i=1

aikσis − ρs.

We solve the pricing problem for each scenario separately. We have to find an initial and recovery

solution. This can be solved by dynamic programming. The main observation is that there are

three types of items: items included in both the initial and recovery knapsack, items selected

for the initial knapsack, but removed by the recovery, and non-selected items. We define state

9

variables D(i, w0, ws) as the best value for a combination of an initial and recovery knapsack

for scenario s, such that the initial knapsack is a subset of {1, 2 . . . , i}, the recovery knapsack is

a subset of the initial knapsack, and the initial and recovery knapsack have weight w0 and ws,

respectively. The recurrence relation is as follows:

D(i, 0, 0) = 0 ∀i

D(0, w0, ws) = −∞ for w0, ws > 0

D(i, w0, ws) = max


D(i− 1, w0, ws)

D(i− 1, w0 − ai, ws) + σis

D(i− 1, w0 − ai, ws − ai) + σis + psci

4.3. Computational results

We performed extensive computational experiments with the knapsack problem. The algorithms

were implemented in the Java Programming language and the Linear Programs were solved using

ILOG CPLEX 11.0. All experiments were run on a PC with an Intel R©CoreTMDuo 2.13 GHz

processor.

Our experiments were performed in three phases. Since we want to focus on difficult instances, in

the first phase we tested 12 different instance types to find out which types are the most difficult.

Our instance types are based on the instance types in [16], where we have to add the knapsack

weight bs and the probability ps for each of the scenarios. In the second phase, we tested many

different algorithms on relatively small instances. In the third phase we tested the best algorithms

from the second phase on larger instances. In this section, we will present the most important

observations from the second and third phase. We omit further details for reasons of brevity.

In the second phase we tested 5 instance classes, including subset sum instances. We considered

instances with 5, 10, 15 and 25 items and with 2, 4, 6 and 8 scenarios (except for 5 items were

we only considered 2 and 4 scenarios). For each combination we generated 100 item sets (20 from

each instance class) and for each item set we generated 3 sets of scenarios, with large, middle,

and small values of bs relative to b, respectively. This means that we considered 4200 instances in

total.

We report results on the following algorithms:

• Separate Recovery Decomposition with Branch-and-Price, where we branch on the fractional

item with largest
cj
aj

ratio and first evaluate the node which includes the item.

• Combined Recovery Decomposition with Branch-and-Price, where we branch in the same

way as in Separate Recovery decomposition.

10

Algorithm Failed avg t(ms) max t(ms) avg c
c∗ min c

c∗ avg nodes max nodes

Separate Recovery 128 107 2563 - - 3.27 122

Combined Recovery 1407 417 2969 - - 1.12 17

Branch and Bound 190 111 2906 - - 1281 33321

DP 2840 347 2984 - - - -

Hill Climbing 0 17.3 422 0.99 0.85 - -

Table 1: Second Phase Results

• Branch-and-Bound where we branch on the fractional item with smallest
cj
aj

ratio and first

evaluate the node which includes the item.

• Dynamic programming: a generalization of the DP solving the pricing problem in case of

Combined Recovery Decomposition.

• Hill Climbing: we apply neighborhood search on the initial knapsack and compute for each

initial knapsack the optimal recovery by Dynamic programming. Hill climbing performs 100

restarts.

For the branching algorithms we tested different branching strategies. In the Branch-and-Price

algorithms the difference in performance turned out to be minor and we report on the strategy

that performed best in Separate Recovery Decomposition. However, in the Branch-and-Bound

algorithm some difference could be observed and we report on the strategy that shows the best

performance for this algorithm.

The results of the second phase are given in Table 1. For each instance and each algorithm, we

allowed at most 3000 milliseconds of computation time. For each algorithm, we report on the

number of instances (out of 4200) that could not be solved within 3000 ms, the average and max-

imum computation time over the successful instances. For Hill Climbing we give the average and

minimal performance ratio and for the branching algorithms the average and maximum number

of evaluated nodes. For Hill Climbing ‘Failed’ means that it was not able to finish all restarts in

the given time.

The results indicate that for this problem Separate Recovery Decomposition outperforms Com-

bined Recovery Decomposition. DP is inferior to Branch-and-Bound and Hill Climbing.

In the third phase we experimented with larger instances for the two best algorithms. We present

results for instances with 50 and 100 items and 2, 3, 4, 10, or 20 scenarios. Again, for each

combination of number of items, number of scenarios, we generated 100 item sets (20 from each

instance class) with each 3 scenario sets. This results in 300 instances per combination of number of

11

items and number of scenarios, where the maximum computation time per instance per algorithm

is 4 minutes. The results are depicted in Tables 2 and 3.

Items Scenarios Failed avg ms max ms avg nodes max nodes

50 2 2 686 56312 1.56 68

50 3 12 2724 53454 1.7 25

50 4 46 3799 58688 2.6 35

50 10 125 3295 53483 2.29 35

50 20 144 1473 38766 1.4 17

100 2 114 1695 47531 1.05 5

100 3 173 703 24781 1.16 11

100 4 176 964 46172 2.03 59

100 10 213 469 34547 1.39 25

100 20 210 103 2703 1.13 13

Table 2: Third Phase Results for Separate Recovery decomposition

Items Scenarios Failed avg ms max ms avg c
c∗ min c

c∗

50 2 0 104 969 0.98 0.68

50 3 0 173 1204 0.98 0.84

50 4 0 180 1203 0.98 0.83

50 10 0 268 1407 1 0.94

50 20 0 309 1515 1 0.84

100 2 0 887 19656 0.98 0.66

100 3 0 1257 25578 1 0.86

100 4 0 1783 32625 1 0.8

100 10 0 3546 34703 1 0.8

100 20 0 4546 37312 1 0.94

Table 3: Third Phase Results for Hill Climbing

The results suggest that the computation time of Separate Recovery Decomposition scales very

well with the number of scenarios. As may be expected, Hill Climbing shows a significant increase

in the computation time when the number of scenarios is increased. Moreover, the small number

of nodes indicates that Separate Recovery Decomposition is well-suited for instances with a larger

number of scenarios. On average the quality of the solutions from Hill Climbing is very high.

However, the minimum performance ratios of about 0.66 show that there is no guarantee of

quality. Observe that there is a difference in the notion of Failed. For the Separate Recovery

12

Decomposition it means failed to solve to full optimality and for Hill Climbing failed complete the

algorithm with 100 restarts.

5. The demand robust shortest path problem

The demand robust shortest path problem is an extension of the shortest path problem and has

been introduced in [12]. We are given a graph (V,E) with cost ce on the edges e ∈ E, and a source

node vsource ∈ V . The question is to find the cheapest path from source to the sink, but the exact

location of the sink is subject to uncertainty. Moreover, the cost of the edges may change over

time. More formally, there are multiple scenarios s ∈ S that each define a sink vssink and a factor

fs > 1 by which the cost of the edges are scaled. To work with the same problem as [12], we

choose as objective to minimize the cost of the worst case scenario. It is not difficult to see that

this problem is NP -hard, as it generalises the Steiner Tree Problem. When we pick each fs high

enough, the optimal solution is to buy a minimum cost tree that connects the source and all sinks

during the first phase.

In contrast to [6], we can buy any set of edges in the initial planning phase. In the recovery phase,

we have to extend the initial set such that it contains a path from the source to the sink vssink,

while paying increased cost for the additional edges. Remark that, when the sink gets revealed,

the recovery problem can be solved as a shortest path problem, where the edges already bought

get zero cost. Hence, the recovery algorithm is a shortest path algorithm.

Observe that the recovery problem has the constraint that the union of the edges selected during

recovery and the initially selected edges contains a path from source vsource to sink vssink. It is quite

involved to express this constraint using linear inequalities, and hence to apply Separate Recovery

Decomposition. However, the constraint fits very well into Combined Recovery Decomposition.

Our Combined Recovery Decomposition model contains the variable xe signaling if edge e ∈ E

is selected initially. Moreover, for each scenario, it contains variables indicating which edges are

selected initially and which edges are selected during the recovery:

zskq =


1 if the combination of initial edge set k ⊆ E

and recovery edge set q ⊆ E is selected for scenario s,

0 otherwise.

Observe that zskq is only defined if k and q are feasible, i.e., their intersection is empty and their

union contains a path from vsource to vssink. Finally, it contains zmax defined as the maximal

recovery cost.

13

We can formulate the problem as follows:

min
∑
e∈E

cexe + zmax

subject to ∑
(k,q)⊆E×E

zskq = 1 for all s ∈ S (18)

xe −
∑

(k,q)⊆E×E

aekz
s
kq = 0 for all e ∈ E, s ∈ S (19)

zmax −
∑
e∈E

fsce
∑

(k,q)⊆E×E

aseqz
s
kq ≥ 0 for all s ∈ S (20)

xe, ∈ {0, 1} for all e ∈ E (21)

zskq, ∈ {0, 1} for all k ⊆ E, q ⊆ E, s ∈ S, (22)

where the binary index variables aek signal if edge e is in edge set k and the binary index variables

aseq signal if edge e is in edge set q for scenario s.

Constraints (18) ensure that exactly one combination of initial and recovery edges is selected

for each scenario; constraints (19) enforces that the same set of initial edges is selected for each

scenario. Finally, constraints (20) make sure that zmax represents the cost of the worst case

scenario.

5.1. Solving the LP by column generation

We first relax the integrality constraints (21) and (22) into xe ≥ 0 and zskq ≥ 0, and solve this

LP-relaxation. To deal with the huge number of variables we are going to solve the problem by

column generation.

The pricing problem

In this case, the pricing problem then boils down to minimizing the reduced cost.

Let λs, ρes, and πs be the dual variables of the constraints (18), (19), and (20) respectively. The

reduced cost of zskq is now equal to:

cred(zskq) = −λs +
∑
e∈E

ρesaek +
∑
e∈E

πsf
scea

s
eq

We have to solve the pricing problem for each scenario separately. For a given scenario s, the

pricing problem boils down to minimizing cred(zskq) over all feasible aek and aseq. This means that

we have to select a subset of edges that contains a path from vsource to vssink. This subset consists

of edges which have been bought initially and edges which are attained during recovery. The first

type corresponds to aek = 1 and has cost ρes and the second type to aseq = 1 and has cost πsf
sce.

14

The pricing problem is close to a shortest path problem, but we have two binary decision variables

for each edge. However, we can apply the following preprocessing steps:

1. First, we select all edges with negative cost. From LP theory it follows that all dual variables

πs are nonnegative, and hence, all recovery edges have nonnegative cost. So we only select

initial phase edges with negative cost ρes. From now on, the cost of these edges is considered

to be 0.

2. The other edges can either be selected in the initial phase or in the recovery phase. To

minimize the reduced cost, we have to choose the cheapest option. This means that we can

set the cost of an edge equal to min(ρes, πsf
sce).

The pricing problem now boils down to a shortest path problem with nonnegative cost on the edges

and hence can be solved by Dijkstra’s algorithm. We implemented the algorithm by a min heap

with running time O(|E| log(|V |)).

Since we solve the pricing problem for each scenario separately, the following questions arise: ”For

which scenarios do we actually solve the pricing problem?” and ”Which columns do we actually

add to the restricted LP?”. We investigate the following strategies:

• Interleaved: goes through the pricing problems of the different scenarios one by one. As

soon as a variable with negative reduced cost is identified, the corresponding column is

added and the master problem gets resolved. After that, it goes to the next scenario. When

the pricing problem has a solution with nonnegative reduced cost for every scenario the

column generation process is stopped.

• Best: Solves the pricing problem for all scenarios, but only a column zskq with overall minimal

reduced cost is added to the master problem. The master problem is solved again and this

repeats itself until the minimal reduced cost is nonnegative.

• All: Solves the pricing problem for all scenarios and adds a column for all scenarios for

which a variable zskq with negative reduced cost was found, after adding all those columns it

resolves the master problem.

Within the first few experiments it became very clear that the LP problem is very degenerate. Cer-

tainly for larger graphs with a lot of scenarios this tends to slow down the computation enormously.

Observe that every solution needs at least |S| columns. To get a complete solution, because of

constraint (19), we need a collection of columns such that for each edge e the total amount by

which it is selected in the initial solution
∑

(k,q)⊆E×E aekz
s
kq is the same for every scenario s. This

has the consequence that, although it is included in the basis, a promising new column often does

not influence the primal solution. To deal with this problem, we use the following method: When

15

a column is added, we always guarantee that it can be selected for the solution by generating

for every scenario the best column with the same initial edges. Those columns are generated by

fixing the set of initial edges and finding the best recovery edges by running Dijkstra for all |S|−1

scenarios.

As a starting solution we take the column in which all edges are taken in the initial solution. Other

strategies were tested but the differences were small and instance dependent.

Moreover, we have investigated column deletion, i.e. deletion of columns with too positive reduced

cost. However, this does not seem to work well in combination with including additional columns.

5.2. Solving the ILP

If the solution of the LP-relaxation is integral, our problem is solved to optimality. Otherwise, we

proceed by Branch-and-Price [1], i.e. Branch-and-Bound, where we generate additional column in

the nodes of the search tree.

In a Branch-and-Price algorithm the branching strategy has to be designed in such a way that we

are still able to solve the pricing problem in each node of the tree. In our algorithm we branch on

the variables xe. In a node with xe = 1 we only generate columns where edge e is bought in the

initial phase. This implies that in the first preprocessing step of the pricing we buy edge e at cost

ρes and then set its cost to 0. In a node with xe = 0 we are not allowed to buy edge e in the initial

phase. Therefore, we have to define the cost of the edge as πsf
sce instead of min(ρesπsf

sce).

Concerning the choice of the edge for branching, besides considering the edges in order of their

index, we implemented branching on the most doubtful edge. This means that the we branch on

the edge for which |xe − 1
2 | is minimal. This strongly speeds up the computation.

Moreover, we investigated different node selection strategies. We considered best bound branching,

i.e. branching on the node with the minimal lower bound, breadth first search, depth first search

and also best depth first, which from the deepest nodes in the tree selects the one with the

best lower bound. In our experiments best depth first did not improve depth first search very

much. Although depth first search sometimes slightly improved best bound search, it showed a

less stable behaviour. The same is true for breadth first search. Therefore we chose to use best

bound branching in our algorithm.

To compute an upper bound three rounding heuristics were tested. The first heuristic was to select

for the initial phase only edges with xe = 1 in the LP-solution. In the second heuristic, all edges

with xe ≥ 1
2 were selected in the initial solution. As a third alternative we applied a randomized

strategy: each edge was selected in the initial solution with a probability equal to the value of xe

in the optimal solution of the LP-relaxation. In all three cases, for each scenario the best recovery

16

solution was determined by Dijkstra’s algorithm [13]. There did not seem to be much difference

in performance between the heuristics and we applied the second one since we thought it to be

the most intuitive one.

5.3. Computational results

We have implemented our column generation and branch-and-price algorithms in Java and used

ILOG CPLEX 12.4 as linear programming solver. We ran experiments on an Intel R©CoreTMDuo

2.66 GHz processor.

Again, our experiments were performed in three phases. We first investigated all column generation

strategies, to determine the best one. Secondly, we performed a sensitivity analysis. Finally, we

ran our algorithm on some larger instances.

We first present results for linear programming to illustrate the effect of the different column

addition strategies from Section 5.1. The strategies InterA, BestA, and AllA denote extensions of

the strategies Inter, Best and All, in which, when we add a column, we also add for each scenario

the best column with the same initial edges. In Table 4 we give results for 4 different relatively

small instances, where Gn,e has a graph with n nodes and e edges. The recovery factor f for these

instances is fixed at 2.0 and every non source node is a possible sink and thus a scenario. For

each instance, we give the number of iterations (it),the number of added columns (col) and the

computation time in milliseconds (t).

G4,5 G14,13 G17,23 G17,31

Method it col t it col t it col t it col t

Inter 32 40 10 613 639 1014 3701 3740 25.941 7132 7179 134213

Best 22 30 10 545 571 1038 2835 2874 19.278 6065 6112 136585

All 17 39 8 114 699 554 577 3632 8069 1101 7453 54145

InterA 5 21 6 33 443 55 64 1048 393 537 8624 13132

BestA 6 24 4 24 326 39 73 1192 583 257 4144 7503

AllA 8 21 3 40 443 55 81 1048 407 652 8624 16649

Table 4: Results for linear programming

Our results reveal that the strategies with additional columns strongly speed up the computation.

In most of our cases the number of columns is also reduced, but as may be expected, the reduction

is not that strong.

We also solved the ILP for these instances, where we applied all combinations of strategies in the

root and in the tree. The strategies without additional columns resulted in large running times.

17

Moreover, it did not pay off to use a different strategy in the root than in the remainder of the tree.

Therefore, for Integer Linear Programming, we only consider strategies with additional columns

and use the same strategy for the complete tree.

Recall that we branch on the most doubtful edge with |xe − 1
2 | minimal and select the node with

the best lower bound. We first report results for a set G500 of 500 random instances. They are

based on graphs with 10 to 29 edges, where for each number of edges we vary the number of nodes.

For every number of edges a total of 25 graphs are generated. All graphs are connected, the cost

of the edges uniformly random from the interval [0; 100], every non-source is a possible sink, and

f has a random value in the interval [1; 10].

The average solution times for those instances are 53.6, 21.2, 66.7 and 34.8 seconds for InterA,

BestA, and AllA and BestANoSort, where in the latter strategy we branch on the edges in order of

their numbering instead of on the most doubtful edge. The BestA method performs significantly

better than the other methods according the Wilcoxon signed-rank test (done with R version 3.1.1,

with p = 3.823e−13 as the highest p). Table 5 shows results for a subset of the set of random

instances G500. For each number of edges and each strategy, we report on the average total number

of iterations of column generation (it), the average number of nodes in the branch-and-bound tree

(nodes), and the average computation time in milliseconds (t).

InterA BestA BestANoSort AllA

ed it nd t it nd t it nd t it nd t

11 37 1 20 30 1 19 36 2 24 49 1 20

14 153 5 135 104 6 129 143 10 158 195 5 139

17 385 11 791 209 10 510 358 19 689 472 11 824

20 715 17 2842 414 19 1510 1042 77 2417 888 17 2951

23 2493 41 24669 1353 49 10208 2782 119 14832 3016 41 26606

26 10121 157 174213 4520 154 64500 18514 1238 119645 11921 157 193029

29 20630 325 488442 9641 256 184075 21837 638 297424 23939 272 571894

Table 5: Results for branch-and price with random instances

In Figure 3 we plot on a logarithmic scale the computation time for each number of edges.

These results suggest that especially for larger graphs BestA outperforms the other column addi-

tion strategies. Even when BestA is combined with the inferior branching strategy of branching

on edges in lexicographical order, this is faster than the other column addition strategies.

We also did some sensitivity experiments on the influence of the edge cost and the recovery factor

f . To test the influence of the costs of the edges we used G14,13 and G17,31 with fixed recovery

18

Figure 3: Logarithmic time results of the methods.

factor f = 2. We created 500 random cost versions by generating the edge costs uniformly random

from the interval [0; 50]. For the recovery factor f we generated similar instances only now we

fixed the cost and varied the recovery factor in the interval [1; 10]. Because the G17,31 graph with

random recovery factor f was solved relatively slow, we only solved 25 instances. These are solved

with the BestA method and the results of these instances can be found in Table 6.

G14,13 c G17,31 c G14,13 f G17,31 f

it nd t it nd t it nd t it nd t

best 30 3 57 146 3 281 27 1 161 483 1 42651

25% 134 13 235 1044 38 6323 51 1 325 3183 39 100754

median 185 29 325 1922 85 13289 74 1 416 6964 99 173167

75% 235 49 445 3177 166 18687 116 9 606 9404 153 238108

worst 675 211 1475 9753 1567 51236 279 73 1112 51923 1221 520106

Table 6: Results for varying the cost (c) and the recovery factor (f) of the edges

These results suggest that cost as well as recovery factor have a large influence on the solution

time of the instance, this different can be a factor of more than 100. This might be explained by

the fact that some combinations of cost and recovery factor result in alternative solutions with

approximately the same value, which have an impact on the size of the search tree. We consider

a small example with 3 nodes: one source s and two possible sink t1 and t2 each occurring with

probability 1
2 . There are two edges (s, t1) and (s, t2) with the same initial cost Q. If f = 2, then

it does not make a difference if you buy all edges, one edge, or no edges in the initial phase.

19

The experiments from now on, were performed with a better computer with an Intel R©CoreTMi5

3.40 GHz processor. This computer is approximately twice as fast. Until now we considered

instances were every non-source node could be the sink, which are instances with a relatively large

number of scenarios. Since the size of the ILP model is linear in the number of scenarios, we may

expect that instances with fewer scenarios can be solved faster. From the set G500 used before we

generated 42747 new random instances by varying the number of scenarios. These were solved

with the BestA method. Solving all 42747 instances took 56.4 hours. In Table 7 we show the

average computation time in milliseconds for different numbers of edges and different numbers of

scenarios.

number of scenarios

edges 5 10 15 20

11 9 - - -

14 19 123 - -

23 102 1390 7103 -

26 120 3495 19941 59429

29 573 16296 107511 249716

Table 7: Results different number of scenarios

Moreover, in Figures 4 and 5, we plot the computation time on a logarithmic scale, per number

of edges as a function of the number of scenarios and per number of scenarios as a function of the

number of edges, respectively. A larger version of the figures can be found in the appendix.

Figure 4: Time results per number of edges Figure 5: Time results per number of scenarios

Our results suggest that the number of edges has a strong impact on the computation time, our

graph indicates exponential behaviour. The impact of the number of scenarios, seems very strong

in the beginning but then somewhat flattens out in the logarithmic scale. We conclude that both

20

have a strong influence.

Finally, we performed experiments for a few larger instances, with the maximum number of sce-

narios: every non source node is a possible sink. In Table 8 we show the number of nodes and

edges, the time to solve the LP, the time to solve the ILP, and the total solution time, and the

number of nodes in the branch-and-bound tree, together with the node in which the best solution

was found.

Graph |V | |E| tLP tILP t n nsol

G1 13 50 3.6 min 3.6 min 7.2 min 3 2

G2 25 50 19.3 min 2083 min 35 hr 1597 1332

G3 15 60 27.2 min 167 min 3.2 hr 207 142

G4 30 60 167 min - - - -

Table 8: Results for large instances

6. Conclusion

In this paper we investigated column generation for recoverable robust optimization. We think

that our approach is very promising and that it might be applicable to many other problems.

We presented two methods: Separate Recovery Decomposition and Combined Recovery Decompo-

sition. In the first approach, we work with separate solutions for the initial problem and recovery

solutions for the different scenarios; in the second one, we work with combined solutions for the

initial problem and the recovery problem for a single scenario.

We considered the size robust knapsack problem. We applied Separate Recovery Decomposition

and Combined Recovery Decomposition. In the first model, the pricing problem is a knapsack

problem for both the initial solution columns and the recovery solution columns. In the second

model, the pricing problem is to find an optimal column containing a combination of an initial and

a recovery solution for a single scenario, i.e., recoverable robust optimization for a single scenario

case. We implemented branch-and-price algorithms for both models. Our computational experi-

ments revealed that for this problem Separate Recovery Decomposition outperformed Combined

Recovery Decomposition and the first method scaled very well with the number of scenarios. We

also tested a few other methods, such as a branch-and-bound and a hill-climbing algorithm. Sep-

arate Recovery Decomposition outperformed the branch-and-bound algorithm. The hill-climbing

algorithm provided very good solutions but no performance guarantee (for one instances we ob-

served a performance ratio of 0.66). If we improve the primal heuristic in the Separate Recovery

21

Decomposition algorithm, it will find a feasible solution faster, which is able to reduce the com-

putation time and in this way the number of Failed instances as reported in Table 2. This is an

interesting topic for further research.

We presented a Combined Recovery Decomposition model for the demand robust shortest path

problem. The pricing problem boils down to a shortest path problem. We developed and tested a

branch-and-price algorithm to solve this problem. The column addition strategy turns out to be

extremely important. In particular, the algorithm is strongly improved when we include additional

columns in the following way. Whenever a column with negative reduced cost is added, also for

each scenario the column with the same initial solution and the best recovery solution is added.

The most effective strategy is the one we call ’BestA’. This strategy finds the minimum reduced

cost column for each scenario, adds the single column with the most negative reduced cost over

all scenarios, and then includes additional columns as described above.

The solution time is very sensitive to the cost of the edges and the recovery factor, this makes it

unfortunately hard to predict how long it takes to solve a specific instance. By solving a large

amount of graphs insight on the influence of the amount of edges and scenarios is gained. For our

instances the number of edges seems to have an exponential influence on the time.

Interesting issues for further research are restrictions on the recovery solution such as a limited

budget for the cost of the recovery solution or an upper bound on the number of edges obtained

during recovery.

Finally, we think that our approach can be generalized to solve many other problems. We are

currently investigating our framework for different applications.

References

[1] Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P. Savelsbergh, and

Pamela H. Vance. Branch-and-price: Column generation for solving huge integer programs.

Operations Research, 46(3):316–329, 1998.

[2] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton University

Press, 2009.

[3] D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–53, 2004.

[4] John R. Birge and François Louveaux. Introduction to Stochastic Programming. Springer

Series in Operations Research and Financial Engineering. Springer, 1997.

22

[5] P.C. Bouman, J.M. van den Akker, and J.A. Hoogeveen. Recoverable robustness by column

generation. In Camil Demetrescu and Magnús M. Halldorsson, editors, Algorithms ESA

2011, volume 6942 of Lecture Notes in Computer Science, pages 215–226. Springer Berlin

Heidelberg, 2011.

[6] Christina Büsing. Recoverable robust shortest path problems. Networks, 59(1):181–189, 2012.

[7] Christina Büsing, Arie Koster, and Manuel Kutschka. Recoverable robust knapsacks: the

discrete scenario case. Optimization Letters, pages 1–14, 2011.

[8] Christina Büsing, Arie M.C.A. Koster, and Manuel Kutschka. Recoverable robust knapsacks:

γ-scenarios. In Julia Pahl, Torsten Reiners, and Stefan Voß, editors, Network Optimization,

volume 6701 of Lecture Notes in Computer Science, pages 583–588. Springer Berlin Heidel-

berg, 2011.

[9] Valentina Cacchiani, Alberto Caprara, Laura Galli, Leo G. Kroon, and Gábor Maróti. Re-

coverable robustness for railway rolling stock planning. In ATMOS 2008 - 8th Workshop on

Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, Karlsruhe,

Germany, 2008.

[10] Alberto Caprara, Laura Galli, Leo G. Kroon, Gábor Maróti, and Paolo Toth. Robust train

routing and online re-scheduling. In ATMOS 2010 - 10th Workshop on Algorithmic Ap-

proaches for Transportation Modeling, Optimization, and Systems, pages 24–33, Liverpool,

United Kingdom, 2010.

[11] Serafino Cicerone, Gianlorenzo D’Angelo, Gabriele Di Stefano, Daniele Frigioni, Alfredo

Navarra, Michael Schachtebeck, and Anita Schöbel. Recoverable robustness in shunting and

timetabling. In Robust and Online Large-Scale Optimization: Models and Techniques for

Transportation Systems, pages 28–60. 2009.

[12] Kedar Dhamdhere, Vineet Goyal, R. Ravi, and Mohit Singh. How to pay, come what may:

Approximation algorithms for demand-robust covering problems. In Proceedings of the 46th

Annual IEEE Symposium on Foundations of Computer Science, FOCS ’05, pages 367–378,

Washington, DC, USA, 2005. IEEE Computer Society.

[13] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,

1:269–271, 1959.

[14] Yann Disser, Max Klimm, Nicole Megow, and Sebastian Stiller. Packing a Knapsack of

Unknown Capacity. In Ernst W. Mayr and Natacha Portier, editors, 31st International

Symposium on Theoretical Aspects of Computer Science (STACS 2014), volume 25 of Leibniz

International Proceedings in Informatics (LIPIcs), pages 276–287, Dagstuhl, Germany, 2014.

23

[15] Marc Goerigk, Yogish Sabharwal, Anita Schöbel, and Sandeep Sen. Approximation algorithms

for the weight-reducible knapsack problem. In T.V. Gopal, Manindra Agrawal, Angsheng

Li, and S.Barry Cooper, editors, Theory and Applications of Models of Computation, volume

8402 of Lecture Notes in Computer Science, pages 203–215. Springer International Publishing,

2014.

[16] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, Berlin, Germany,

2004.

[17] Christian Liebchen, Marco E. Lübbecke, Rolf H. Möhring, and Sebastian Stiller. The concept

of recoverable robustness, linear programming recovery, and railway applications. In Robust

and Online Large-Scale Optimization: Models and Techniques for Transportation Systems,

pages 1–27. 2009.

Appendix A. Time results per amount of edges/scenarios on a logarithmic scale

Figure A.6: Time results per amount of edges on a logarithmic scale

24

Figure A.7: Time results per amount of scenarios on a logarithmic scale

25

