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Abstract. A class F of partial recursive functions is called recursively
enumerable if there exists an r.e. set J ⊆ N such that F = {φi | i ∈ J}.
We prove that every r.e. class F of partial recursive functions with infinite
domains must have a recursive witness array, i.e. there is a computable
array of finite sets X = [Xn]n∈ω such that (i) for every f ∈ F one has
f(n) ∈ Xn for infinitely many n and (ii) Xn = ∅ for infinitely many n.
The result gives a powerful diagonalisation tool for proving properties of
r.e. classes. We show for example that no r.e. class of partial functions
with infinite domains can contain all recursive involutions or all cyclefree
recursive permutations.

Keyword and phrases: Recursively enumerable classes, Rice-Shapiro theorem,
recursive witness arrays, recursive permutations.

1 Introduction

In this note we obtain a powerful diagonalisation method for classes of partial
recursive functions with infinite domains. We use it to give elegant proofs of
some properties that show the limitation of these classes.

Let {φi}i∈ω be a common, acceptable indexing of the partial recursive func-
tions [12]. For every partial recursive function φ, we refer to i as an index, or a
program, for φ if φ = φi. A class F of partial recursive functions is called re-
cursively enumerable (r.e.) if there exists an r.e. set J ⊆ N such that F consists
precisely of the functions with an index in J , i.e. F = {φi | i ∈ J}.

The study of recursively enumerable classes was originated by Dekker [3] and
Rice [10]. The problem of characterising r.e. classes is closely connected to, but
different from, that of characterising full index sets. Recall that a class F is called
completely recursively enumerable (c.r.e.) if the set of all indices for the functions
of F is recursively enumerable. By the well-known Rice-Shapiro theorem [7, 8,
10, 12] it follows that, if F is c.r.e., then f ∈ F if and only if f is the extension
of some finite function in F . This characterizes c.r.e. classes quite precisely.

There clearly is a much greater variety of ‘arbitrary’ recursively enumerable
classes of partial recursive functions and, likewise, of sets. The first attempt to
classify all r.e. classes was made by Dekker and Myhill [4] in the late 1950s. They
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also gave examples of r.e. classes whose intersection is not recursively enumer-
able. (Young [14] later gave examples where the intersection is even immune,
i.e. does not have infinite r.e. subclasses.) The theory of r.e. classes is thus very
different from the theory of r.e. sets. For an overview of known results and the
theory of enumerations of r.e. classes, we refer to [8, 12].

We aim at a simple property that certifies whether a certain class of partial
recursive functions is r.e. or not. For this we consider a special kind of arrays of
finite sets. Let F be any class of partial functions.

Definition 1. A computable array of finite sets X = [Xn]n∈ω is said to be a
recursive witness array for F if (i) for every f ∈ F one has f(n) ∈ Xn for
infinitely many n, and (ii) Xn = ∅ for infinitely many n.

An array of finite sets X = [Xn]n∈ω is called ‘computable’ if there exists a
recursive function g : N → N such that for every n ∈ ω, g(n) equals the canonical
index1 of the finite set Xn. In a computable array X = [Xn]n∈ω for some class
F , the empty and non-empty sets among the Xn are easily recognized. This
leads to the following property that we often use later on: for every recursive
witness array X = [Xn]n∈ω there exists an infinite recursive set Y such that
n ∈ Y ⇒ Xn = ∅ (and vice versa). Given Y , all (infinitely many) indices n with
Xn 6= ∅ are contained in its complement.

Every denumerable class of total functions F = {f0, f1, · · · } trivially has a
recursive witness array: take Xn = {f0(n), · · · , fn(n)} for n even, and Xn = ∅
for n odd. This applies in particular to every r.e. class of total recursive func-
tions. However, we are more interested in r.e. classes of functions that are not
necessarily total.

If a class of partial functions F has a recursive witness array, then the func-
tions in F necessarily all have an infinite domain. We will prove that the converse
holds as well: every non-empty r.e. class of partial recursive functions with infi-
nite domains has a recursive witness array.

In Section 2 we prove the theorem. In Section 3 we show that the theorem
gives an elegant tool for proving properties of r.e. classes of functions when the
Rice-Shapiro theorem does not apply. We show, for example, that no r.e. class
of partial recursive functions with infinite domains can contain all recursive
involutions or all cyclefree recursive permutations.

Terminology For non-empty r.e. setsA, any recursive function f withRange(f)
= A called a recursive enumerator of A. In case A is infinite and f is both re-
cursive and one-one, f is called a recursive generator of A. It is well-known that
every non-empty r.e. set A has a recursive enumerator and that every infinite r.e.
set A has a recursive generator [12]. A non-empty r.e. set A is called a splinter if
A = {a, φ(a), φ2(a), · · · } for some recursive function φ and a ∈ A. A is a one-one
splinter if one can take φ recursive and one-one. We refer to [12] and [8] for all
further recursion-theoretic preliminaries.
1 The canonical index of a finite set is a standard encoding of its distinct elements

into a single number. Thus, knowing the canonical index of a set is equivalent to
knowing its individual elements.
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2 Recursive Witness Arrays

We assume throughout that the indexing {φi}i∈ω is given together with a Blum
measure Φ, i.e. an effective enumeration {Φi}i∈ω of partial computable functions
which satisfies the following properties [2]:

– for all i, n: φi(n)↓ ⇔ Φi(n)↓,
– the predicate Φi(n) ≤ m is decidable in i, n and m.

For every i, one can think of Φi as a step-counting function for program i. Step-
counting is used later on in constructions that involve dove-tailing.

Constructing Witness Arrays Let F be an arbitrary, non-empty, r.e. class
of partial recursive functions with infinite domains. Let J ⊆ N be an r.e. set
such that F = {φi | i ∈ J}, and let f be a recursive function that enumerates
the elements of J , possibly with repetitions. Thus F = {φf(0), φf(1), · · · }.

The domain of every φi is recursively enumerable, by definition. If the domain
of φi is infinite, then it is well-known that the domain is the range of a one-to-
one recursive function [12]. This follows from a uniform dovetailing construction,
given the program i. Hence, there exists a recursive function τ such that, if i is
the program of a partial recursive function with infinite domain, then τ(i) is the
program of a recursive generator for the domain of φi. (Compare [12], §5.2.)

For i ∈ ω, let ψi = φτ(f(i)). Thus, with F as above and for any i ∈ ω, we have
φf(i) ∈ F and {ψi(0), ψi(1), · · · } is a complete, one-one recursive enumeration
of its (infinite) domain.

Theorem 1. Every non-empty r.e. class of partial recursive functions with in-
finite domains has a recursive witness array.

Proof. Let F = {φf(0), φf(1), · · · } be any non-empty r.e. class of partial recursive
functions with infinite domains. Let ψi = φτ(f(i)) as defined above.

For i, n ∈ ω, define the sets Ri,n ⊆ N and Rn ⊆ N and the integers Ln and
Mn as follows:

Ri,n = {ψi(0), · · · , ψi(n+ 1)}
Rn =

⋃n
i=0Ri,n

Ln = max0≤i≤n{maxm∈Ri,n Φf(i)(m)}
Mn = maxRn

The sets Ri,n and Rn are all finite and effectively determined and, because
the ψi’s are all one-one, the sets have at least one element greater than n. Thus,
for all n ∈ ω, Mn is effectively determined also and Mn ≥ n+ 1.

Because Ri,n is a subset of the domain of φf(i), Φf(i) is defined for all its
elements and thus Ln is effectively determined as well. Note that, for all n ∈ ω,
we have Mn ≤Mn+1 and Ln ≤ Ln+1, by the definition of the numbers.

Before we can define a suitable witness array for F , we need some auxiliary
numbers and sets first. To start with, define the set Y = {y0, y1, · · · } with
elements y0, y1, · · · determined in order as follows:
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y0 = 0
yn+1 = Myn

+ 1

Because the Mn for n ∈ ω are effectively determined, Y is a recursive set.
Also, because Myn ≥ yn + 1, we have yn+1 ≥ yn + 2. Hence, the ‘sequence’
y0, y1, · · · is monotone increasing. It follows that Y is infinite.

LetX ′
n be the set of outputs obtained by running the programs f(0), · · · , f(n)

on input n for at most Ln steps each. Now define the array of sets X = [Xn]n∈ω

as follows:

if n ∈ Y , then Xn = ∅
if n 6∈ Y , then Xn = X ′

n

We claim that X = [Xn]n∈ω is a recursive witness array for F . Clearly, every
Xn is finite and effectively determined. Also, we have that Xn = ∅ for infinitely
many n, namely for all n occurring in the set Y . It remains to show that for
every i ∈ ω, one has φf(i)(n) ∈ Xn for infinitely many n.

Consider any function φf(i) ∈ F , for i ∈ ω. Let k be any index such that
i ≤ yk. (As y0, y1, · · · is monotone increasing, k exists.) Let

ni,k = maxRi,yk

By the definition of Ri,yk
and Ryk

it follows that yk + 1 ≤ ni,k ≤Myk
. Because

yk+1 = Myk
+ 1, we obtain yk < ni,k < yk+1. In particular we have ni,k 6∈ Y .

Now consider Xni,k
. By definition this set consists of the outputs obtained

by running the programs f(0), · · · , f(ni,k) on input ni,k for at most Lni,k
steps

each. Because i ≤ yk < ni,k, this set of programs includes program f(i). Because
ni,k ∈ Ri,yk

we have that ni,k belongs to the domain of φf(i). It follows that
φf(i)(ni,k)↓, and thus Φf(i)(ni,k)↓ as well. Now observe that

Φf(i)(ni,k) ≤ maxm∈Ri,yk
Φf(i)(m) ≤ Lyk

≤ Lni,k

again because i ≤ yk < ni,k. It follows that the definition of Xni,k
gives program

f(i) enough time to complete on input ni,k. Hence, φf(i)(ni,k) ∈ Xni,k
.

Let s be the smallest integer such that i ≤ ys. Then the above argument
holds for every k with k ≥ s. It follows that φf(i)(ni,k) ∈ Xni,k

for infinitely
many k. Because yk < ni,k < yk+1 for every k ≥ s, the ni,k values are distinct
for distinct values of k. This gives infinitely many n with φf(i)(n) ∈ Xn.

This proves that X = [Xn]n∈ω is a recursive witness array for F . ut

The set Y constructed in the given proof is easily seen to be a one-one
recursive splinter. This follows from the construction, but also from the generic
fact that every non-empty recursive set is a one-one splinter [13].

Corollary 1. Every non-empty r.e. class of partial recursive functions with in-
finite domains has infinitely many recursive witness arrays.

Proof. Clearly, every finite modification of a recursive witness array for F gives
another recursive witness array for F . ut
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In general, every countable class of partial functions with denumerable do-
mains can be seen to have a witness array as intended in Definition 1. The key
issue of Theorem 1 is the recursiveness of the array in the case of r.e. classes of
partial recursive functions with infinite domains. In Section 3 we will see that
Theorem 1 allows for elegant diagonalisation proofs.

3 Applications

By the Rice-Shapiro theorem, no class of partial recursive functions with infinite
domains can be completely recursively enumerable. The question arises what
limitations there are for the classes of this kind that are ‘just’ recursively enu-
merable. Can one say more than that any recursive enumeration of such a class
cannot be ‘complete’ and must miss ‘some’ indices of ‘some’ of the functions in
the class?

We first argue that r.e. classes of partial recursive functions with infinite
domains must be ‘very incomplete’. Next we apply Theorem 1 to a number of
special r.e. classes of partial recursive functions and to recursive permutations,
and to r.e. classes of infinite r.e. sets. In all cases we show that the enumerations
cannot be very comprehensive.

Functions Let F be any non-empty recursively enumerable class of partial
recursive functions with infinite domains and let J be any r.e. set of indices for
F . We first show that any recursive enumeration of F must leave out infinitely
many programs for all functions in F .

Theorem 2. Let F be a non-empty recursively enumerable class of partial re-
cursive functions with infinite domains, and let J be any r.e. set of indices for
F . For every φi ∈ F with i ∈ J , there are infinitely many indices e 6∈ J such
that φe = φi.

Proof. Let J be any r.e. set of indices for F . As J must be non-empty, there is
a total recursive function f with Range(f) = J (cf. [12], §5.2). It follows that
F = {φf(0), φf(1), · · · }.

Let φi be an arbitrary function of F . By the s-m-n theorem [12] there exists
a total recursive function h such that

φh(e)(n) = if e ∈ {f(0), · · · , f(n)} then ↑ else φi(n)

which is clearly a well-defined partial recursive function. By the recursion theo-
rem [12] there are infinitely many indices e such that φh(e)(n) = φe(n).

Consider any index e with φh(e)(n) = φe(n). If e ∈ J , then e would occur
in the enumeration of J for every n large enough and φe(n) would have finite
domain. This contradicts that e ∈ J . Hence, e 6∈ J and thus φe = φi, for every
index e that satisfies φh(e)(n) = φe(n). ut



6 Jan van Leeuwen

Recursively enumerable classes of partial recursive functions with infinite
domains are known not to be very extensive. For example, Rice ([10], Corollary
B) already observed that for every infinite r.e. set A, the set of all partial recursive
functions that enumerate A is not recursively enumerable. We prove a much
stronger statement.

Theorem 3. Let F be a recursively enumerable class of partial recursive func-
tions with infinite domains, and let A be any infinite r.e. set. Then there are
infinitely many recursive generators of A that are not contained in F .

Proof. Let F be a recursively enumerable class of partial recursive functions with
infinite domains. We may assume w.l.o.g. that F is non-empty. By Theorem 1 we
know that F has a recursive witness array X = [Xn]n∈ω. Let Y be any infinite
recursive set such that n ∈ Y ⇒ Xn = ∅. We may assume w.l.o.g. that 0 ∈ Y
(implying that X0 = ∅).

Let A be an infinite r.e. set, f a recursive generator of A, and a an arbitrary
element of A. Now define the function πa recursively as follows.

πa(n) =
– (1) if n = 0: then output a.
– (2) if n > 0 and n ∈ Y : then output the first element x occur-

ring in the enumeration {f(0), f(1), · · · } of A that is different from
πa(0), · · · , πa(n− 1).

– (3) if n > 0 and n 6∈ Y : then output the first element x occur-
ring in the enumeration {f(0), f(1), · · · } of A that is different from
πa(0), · · · , πa(n− 1) and not contained in Xn.

As A is infinite, πa(n) is clearly well-defined for every n. By design πa is
recursive and one-one. Also note that every element x of A is eventually assigned
as the value of πa(n) for some n. If an element is not assigned in (3), then it
certainly is assigned eventually in (2), due to the fact that Y is infinite. Hence,
πa is a recursive generator of A.

Note that for every n we have πa(n) 6∈ Xn, by design. (For n ∈ Y this follows
because Xn = ∅, for n 6∈ Y by clause (3) of the construction.) Thus πa 6∈ F , as
all functions in F must hit the witness array infinitely often and πa does not.

By varying a over all elements of A, we get infinitely many recursive gener-
ators of A that are not contained in F . ut

We conclude that Rice’s Corollary B ([10]) can be strengthened considerably,
as follows.

Corollary 2. Let A be an arbitrary infinite r.e. set, and let F be any recursively
enumerable class of partial recursive enumerators of A. Then there are infinitely
many recursive generators of A that are not contained in F .

Remark. Let F be the class of all partial recursive enumerators of A, for some
infinite r.e. set A. Let G be a recursively enumerable class of functions with G ⊃
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F and let J be any r.e. set of indices for G. Then the indices in J corresponding
to finite functions must form a non-recursive set. This follows because, if they
did not, the recursive enumeration of G could be modified to one of a class
of partial recursive functions with infinite domains, including F . However, by
Theorem 3 such an enumeration must leave out infinitely many elements of F .
Contradiction.

Recursive permutations Let F be an arbitrary non-empty r.e. class of partial
recursive functions with infinite domains again. We showed that F necessarily
misses infinitely many recursive generators of every infinite r.e. set. We now
argue that this even holds for more restricted kinds of generators as well.

Let A = N. The recursive generators for A are known as the recursive per-
mutations of A. A recursive permutation consisting of 1- and 2-cycles only is
called an involution. A recursive permutation π is called cycle-free if and only if
for every non-empty finite set D, π(D) 6= D ([12], Exercise 7-37).

Theorem 4. Let F be any recursively enumerable class of partial recursive func-
tions with infinite domains. Then:
(i) there are infinitely many recursive involutions that are not contained in F ,

and
(ii) there are infinitely many cycle-free recursive permutations that are not con-

tained in F .

Proof. We may assume w.l.o.g. that F is non-empty. By Theorem 1 it follows
that F has a recursive witness array X = [Xn]n∈ω. Let Y be an infinite recursive
set such that n ∈ Y ⇒ Xn = ∅. We may assume w.l.o.g. that 0 ∈ Y (implying
that X0 = ∅).

(i) We construct infinitely many recursive involutions that cannot be con-
tained in F . To obtain them, we proceed as follows.

Let y be an arbitrary element of Y . Define the function πy as follows. Set
πy(0) = y and πy(y) = 0, and iterate the following stages:

Stage
– (1) determine the smallest n for which πy(n) is undefined;
– (2) determine the smallest j ≥ n such that πy(j) is undefined, j 6∈
Xn, and n 6∈ Xj ;

– (3) set πy(n) to j and πy(j) to n.

Observe that during any stage and given the choice of n in action (1), only
finitely many values are excluded for j, including at most finitely many val-
ues from Y . Thus in action (2) a value for j is always found, noting that any
sufficiently large element from Y would already qualify.

Hence, πy is well-defined, and it is an involution by construction. Because πy

violates the key property of the recursive witness array X in all stages, we have
that πy 6∈ F . By letting y range over all elements of Y , we obtain an infinite
class of involutions not contained in F .
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(ii) We now show how to obtain infinitely many cycle-free recursive permu-
tations that cannot be contained in F .

Let a ∈ N be arbitrary, with a > 0. Define a recursive permutation πa as
follows. In stage 0 we set πa(0) = a. In stage n (n ≥ 1) we define πa(n), using
the assignments from the preceding stages. In so doing we may have to modify
the value of πa(j) for some j < n. When this happens, argument j will be called
injured. We must avoid that j gets injured too often, otherwise πa will not settle
on a definite value for argument j.

We proceed inductively as follows. Assume that πa is defined, one-one and
cycle-free on Dn−1 = [0, · · · , n − 1] at the beginning of stage n. (It holds for
n = 1 and it will be satisfied inductively.) In stage n, we have to define πa(n)
such that no cycle is created by the value assigned to πa(n).

At the beginning of stage n, let mn−1 be the smallest integer in Dn−1 that
does not yet occur as image in {πa(0), · · · , πa(n−1)}. Note that mn−1 exists and
is well-defined as otherwise πa(Dn−1) = Dn−1, contradicting that πa is cycle-free
on Dn−1 at this point. Let Mn−1 = max{πa(0), · · · , πa(n− 1)}. Clearly m0 = 0
and M0 = a.

We use i1 → i2 → · · · to denote any (maximal) chain of πa insofar as it is
defined, with i1 ∈ Dn−1 and πa(i1) = i2 and so on. By the cyclefreeness of πa,
chains cannot get stuck on a subset of Dn−1. Thus, chains are finite and must
end in · · · ik → n′ for some ik ∈ Dn−1 and n′ 6∈ Dn−1 (i.e. n′ ≥ n). Note that
πa(n′) is undefined, at the beginning of stage n. If there is no i ∈ Dn−1 with
πa(i) = i1, then i1 is called a root value. Hence, at the start of stage n, mn−1 is
the smallest root value. If a chain ends as · · · ik → n′ for some n′ ≥ n, we call ik
a head value.

Stage n (n > 0).

Carry out the action that applies from the following list, in order of
priority:

– (1) if there is a j that is injured and has πa(j) = n: then set πa(n) to
an integer that is larger than Mn−1 and any element of Xn. Change
the status of j to healed. Set Mn accordingly. Clearly mn = mn−1.

– (2) if n 6∈ Y : then set πa(n) to an integer that is larger than Mn−1

and any element of Xn. Set Mn accordingly. Clearly mn = mn−1.

– (3) if n ∈ Y : consider the chain mn−1 → · · · j → n′ in the defined
part of πa with n′ the first integer encountered with n′ ≥ n. By
cyclefreeness, j and n′ exist, with j ∈ Dn−1. Now carry out the
action that applies from the following list (in order).
• (3a) if n′ = n: then modify πa(j) to Mn−1 +1, turn the status of

j to injured, and set πa(n) to mn−1.
• (3b) if n′ > n: then set πa(n) to mn−1.

Finally, set mn to the new smallest root value in Dn = [0, · · · , n]
and set Mn to Mn−1 + 1 or Mn−1 as appropriate, respectively.
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Note in (3a) that the modification of πa(j) leaves πa cyclefree on Dn−1. In
(3b) πa remains cyclefree as well, because the chain ending at n cannot contain
mn−1 here. Thus, in all cases, setting πa(n) as shown keeps πa one-one and
cycle-free on Dn = [0, · · · , n]. We argue that executing the stages for n from 1
to ∞ yields a cyclefree recursive permutation, despite the modifications of values
along the way.

Observe that only j’s that occur as head values can get injured. If j gets
injured while πa(j) is set to (say) N , then πa(j) remains unaffected until stage
N . In precisely stage N , j is healed by action (1). As πa(N) is assigned a value,
j can never become a head value again from this point onward. Hence, values
can get injured at most once, and if they get injured, they are healed again (and
forever) after finitely many stages.

We now argue that πa is not only one-one but also becomes onto, i.e. every
integer will eventually occur in the image of πa. Consider mn for n→∞. From
the construction one sees that mn is monotonically non-increasing. Observe that
the value of mn is not changed in the actions of type (1) and (2). Whatever
happens in these actions does not change the fact that all values less than mn(=
mn−1) occur as images of πa. Now consider what happens in action (3). If j <
mn−1 in action (3), j remains in the image of πa even if it gets injured. But,
setting πa(n) to mn−1 now leads to a chain n → mn−1 → · · · → N (for some
N > n) and mn−1 gets added to the image of πa. Note also that by this action,
n cannot ever become a head value. Thus mn−1(= πa(n)) is added permanently
to the image of πa in both (3a) and (3b). Hence, in action (3) mn−1 always gets
updated to a value mn with mn > mn−1.

Note that at the start of any stage there can be at most finitely many injured
j’s. If only type (1) and (2) actions would be performed in subsequent stages,
especially type (1) actions will be triggered every once in a while and the number
of injured j’s will steadily decrease. Hence, in finitely many steps some stage n
must be reached with n ∈ Y in which action (3) is performed. Consequently,
mn is increased infinitely often as n → ∞. We conclude that πa becomes onto
and thus, that it is a well-defined and cyclefree recursive permutation. For every
n we have πa(n) 6∈ Xn. (For n ∈ Y this follows because Xn = ∅, for n 6∈ Y it
follows from the definition of actions (1) and (2).) Thus πa 6∈ F , as all functions
in F must hit the witness array infinitely often and πa does not.

The construction does not guarantee that πa(0) keeps its initial value a.
However, πa(0) can never settle at a smaller value. Hence, if we take b = πa(0)+1,
we certainly obtain a cyclefree permutation πb different from πa. Repeating this
ad infinitum gives an infinite class of cyclefree recursive permutations that are
not contained in F . ut

An immediate conclusion is the following.

Corollary 3. The class of recursive involutions and the class of cyclefree recur-
sive permutations are not recursively enumerable.

Proof. Suppose one of the classes was recursively enumerable. Then Theorem 4
immediately gives a contradiction. ut
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Recall that the group of all recursive permutations is not finitely generated,
by virtue of the fact that the class is not recursively enumerable (cf. [12], Exercise
4-6). The following stronger statement can be made.

Corollary 4. No finitely generated group of recursive permutations can con-
tain all recursive involutions, and neither can it contain all cyclefree recursive
permutations.

Proof. Let G be a finitely generated group of recursive permutations. Clearly G
is recursively enumerable. The result now follows from Theorem 4. ut

Sets Finally, we consider an application of Theorem 1 to classes of r.e. sets.
A class S of r.e. sets is called recursively enumerable if there exists an r.e. set
J ⊆ N such that S = {Wi|i ∈ J}, where Wi = Dom(φi) (i ∈ ω) is the usual
indexing of the r.e. sets.

The study of recursively enumerable classes of r.e. sets parallels the one on
classes of partial recursive functions. Fundamental results have been obtained in
terms of sets. For example, there are infinite recursively enumerable classes of
r.e. sets such that the deletion of the set ‘N’ from them gives a class that is no
longer recursively enumerable [9]. More generally, for every m ∈ N, there exists
an infinite recursively enumerable class of r.e. sets which has only m proper
infinite recursively enumerable subclasses, indeed with m = 0 allowed [14, 5].

It is well-known that the class of all r.e. sets and the class of all recursive
sets are both recursively enumerable ([8], Section II.5). See also [1]. On the other
hand, the class of all infinite r.e. sets and the class of all infinite recursive sets
are not r.e. ([8], Exercise II.5.27). A much stronger statement can be proved.

Theorem 5. Let S be any recursively enumerable class of infinite r.e. sets. Then
there is an infinite recursive set A such that neither A nor any infinite r.e. subset
of A belongs to S.

Proof. Let J be any r.e. set of indices such that S = {Wi | i ∈ J}. Consider
the corresponding r.e. class of functions FS = {φi | i ∈ J}. By definition, the
functions in FS have infinite domains.

By Theorem 1, FS has a recursive witness array X = [Xn]n∈ω. Let Y be any
infinite recursive set with the property that n ∈ Y ⇒ Xn = ∅.

Consider any infinite r.e. set W such that W ⊆ Y . Suppose that W ∈ S,
hence that W = We for some e ∈ J . Considering φe we note that there can be
no n such that φe(n) ∈ Xn, contradicting the required property of the witness
array. Hence W 6∈ S. The theorem follows by taking A = Y . ut

4 Conclusion

In this note we considered some properties of classes of partial recursive functions
that are not necessarily completely recursively enumerable and thus do not fit
the criteria of the Rice-Shapiro theorem. In particular, we proved that every
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non-empty r.e. class of partial recursive functions with infinite domains has a
recursive witness array. This property enabled us to give elegant proofs and
improve on some classical results on the power of recursive enumeration for
common r.e. classes of partial recursive functions, recursive permutations, and
sets. It would be of interest to find similar properties that could facilitate proofs
for general r.e. classes.
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