
Exceptional Model Mining with
Tree-Constrained Gradient Ascent

Thomas E. Krak

Ad Feelders

Technical Report UU-CS-2015-002
January 2015

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands
www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands

Exceptional Model Mining with Tree-Constrained Gradient Ascent

Thomas E. Krak
Universiteit Utrecht

Utrecht, The Netherlands
e-mail: T.E.Krak@uu.nl

Ad Feelders
Universiteit Utrecht

Utrecht, The Netherlands
e-mail: A.J.Feelders@uu.nl

Abstract

Exceptional Model Mining (EMM) generalizes the well-
known data mining task of Subgroup Discovery (SD).
Given a model class of interest, the goal of EMM is to
find subgroups of the data for which a model fitted to the
subgroup deviates substantially from the global model. In
both SD and EMM, heuristic search is often employed to
circumvent the problem that exhaustive search of the sub-
group description space is in general not feasible.

We present a novel heuristic search strategy for EMM
called tree-constrained gradient ascent (TCGA). It is de-
signed specifically to exploit information about the influ-
ence of individual records on the quality of a subgroup,
and guarantee at the same time that the subgroups can be
described in the pattern language. By generalizing the no-
tion of subgroups to that of soft subgroups, numerical op-
timization can be applied to find subgroups of high qual-
ity. We introduce a form of constrained gradient ascent
that constructs the constraint in parallel with the numeri-
cal optimization so as to guarantee that the subgroups can
be described in the pattern language, while restricting the
numerical optimization as little as possible.

We show how TCGA can be applied to EMM with lin-
ear regression models and to traditional SD. The proposed
algorithm is experimentally evaluated on both synthetic
and real world data sets. We compare the results to those
obtained with beam search, a heuristic search algorithm
commonly employed in SD and EMM.

1 Introduction

Exceptional Model Mining (EMM) [16] is a form of ex-
ploratory data mining which generalizes Subgroup Dis-
covery (SD) [14]. In EMM we seek to find descriptions
of subgroups within a data set, such that a model induced
on such a subgroup deviates substantially from the same
model induced on the entire data set.

Because it is in general computationally intractable to
exhaustively search the space of subgroup descriptions
for interesting subgroups, heuristics are often employed
instead. For example, a beam search strategy may be
used [16, 9].

It has been shown [15] however, that more specialized
strategies exploiting information about the influence of
individual records on subgroup quality may lead to im-
proved results. The EMDM algorithm proposed by van
Leeuwen [15] exploits such information by alternately
maximizing quality in the subgroup extension space, and
finding descriptions of the resulting subgroup extension.
However, generalizing this algorithm to different model
classes, such as linear regression, is non-trivial. Further-
more, optimization in the subgroup extension space can
produce subgroups that are impossible to describe in the
pattern language.

We propose a novel algorithm called tree-constrained
gradient ascent (TCGA) that exploits information on the
contribution of individual records to subgroup quality and
at the same time guarantees that the subgroup exten-
sion can be described concisely in the pattern language.
Briefly, the algorithm works by generalizing the notion of
a subgroup to that of a soft subgroup. Hereby the qual-
ity measure is made differentiable, and the quality of a
subgroup extension is then optimized numerically using

1

a form of constrained gradient ascent. The constraint is
constructed simultaneously with the optimization in order
to ensure that subgroups can be described in the pattern
language, and at the same time hinder the numerical op-
timization as little as possible. Subsequently we apply a
post-processing step to further simplify and generalize the
patterns found by the algorithm.

This paper is organized as follows. In Section 2 we
give a brief description of EMM and introduce some no-
tation. In Section 3, the TCGA algorithm is described
and motivated; we also discuss the post-processing of pat-
terns found with TCGA. In Section 4 we show how EMM
with linear regression models can be performed with the
TCGA algorithm. Experimental results are discussed in
Section 5, and we finally close with conclusions in Sec-
tion 6.

2 Exceptional Model Mining
In Exceptional Model Mining (EMM) [16], we consider a
data set D as a bag containing n records ri, i = 1, . . . , n,
of the form

(1) ri ≡ 〈ai1, . . . , aik, xi1, . . . , xip〉.

Here, we refer to the various aij as the i-th record’s at-
tributes, and to the xij as that record’s targets. The at-
tributes are used to define subgroups of the data, and the
models are defined on the targets. Let the complete sets
of the i-th record’s attributes and targets be denoted as ai

and xi, respectively. We write the domain of attributes as
A, and that of the targets as X . The attributes are taken
to be some combination of real and categorical attributes,
whereas the choice of X depends more strongly on the
model class under consideration.

Let a pattern be a function P : A → {0, 1} that de-
scribes a subgroup GP ⊆ D,

(2) GP ≡
{
ri ∈ D

∣∣∣P (ai) = 1
}
.

Furthermore, the set of all patterns is called the pattern
language, which is denoted P . Here, we stipulate the pat-
tern language to be the set of all disjunctions of conjunc-
tions of logical conditions on single attributes. In the se-
quel, we will often drop the subscript P when referring to
a subgroup G, in cases where no confusion should arise.

The models fitted to subgroup G and the entire data set
D are denoted by MG and MD respectively. A quality
measure ϕD(·) is defined as a function ϕD : P → R that
quantifies the exceptionality of MG with respect to MD,
i.e., ϕD(·) essentially computes some distance function
between these models. Examples of model classes and
quality measures can be found in [16, 9].

The goal of EMM may now be described as finding a
set of patterns that are given a high score by the measure
ϕD(·).

3 Tree-Constrained Gradient As-
cent for EMM

3.1 Subgroup Optimization
First we consider how to find high quality subgroups in
the subgroup extension space, that is, the set of all pos-
sible subsets of D. This allows us to learn important in-
formation about the influence of individual records on the
quality of a subgroup. We rewrite the quality measure
ϕD(·) as an objective functionO(w), where w is a length
n vector of inclusion indicators {0, 1}. Thus, we say that
the i-th record is included in the subgroup if wi = 1, and
excluded from the subgroup if wi = 0. Finding a high
quality subgroup extension can then be expressed as find-
ing w∗ such that

w∗ = arg max
w∈{0,1}n

{O(w)} .

Because exact solution of this problem is in general com-
putationally intractable, we will have to resort to heuristic
approximations instead.

Rather than solve this problem using a discrete local-
search algorithm, we make use of numerical optimization,
in particular, gradient ascent. To allow for this, the qual-
ity measure should be differentiable with respect to the
inclusion of records in the subgroup. To this end, we gen-
eralize the notion of a subgroup to that of a soft subgroup
by introducing an inclusion weight wi ∈ [0, 1] for each
record ri ∈ D. Letting w now denote the vector of these
inclusion weights, O(w) can often be made differentiable
by making appropriate changes to the estimation of MG

using a weighted-data scheme. The specifics of such a
scheme depend on the model class; in section 4 we show

2

how this can be done for the linear regression model class.
Once we have obtained a differentiable objective function
O(w), a locally optimal solution can be found using gra-
dient ascent. The weights at this optimum can then be
rounded to obtain a crisp subgroup extension.

By looking at the soft subgroup extension space, we are
able to learn an important property of individual records.
In particular, consider

(3) Sign
{
∂O(w)

∂wi

}
.

If this quantity is positive, it indicates that, all other
weights being equal, increasing the weight of the i-th
record will improve the quality of the subgroup. A sim-
ilar observation holds for the case where this quantity is
negative. We will make use of these observations in the
development of our algorithm in the next section.

One way to now obtain a subgroup description from
its extension is to induce a rule-based classifier to find a
pattern describing the subgroup extension found with gra-
dient ascent. That is, the rules induced by such a classifier
would constitute the pattern describing the subgroup. This
approach is taken by van Leeuwen [15].

The fundamental problem with this approach is that we
cannot be sure that the subgroup extension can be de-
scribed concisely, or even at all, in the pattern language
using the records’ attributes in the space A. We may ob-
tain an extremely complex subgroup description, or a very
poor fit by the classifier. Such a poor fit could then re-
sult in a pattern that does not properly capture the sub-
group extension, resulting in a much lower quality pat-
tern compared to the quality of the optimized subgroup.
Experiments that we performed with this approach using
CART [3] as the classifier confirmed that this problem in-
deed occurs in practice.

This leads to the main contribution of this paper. On
the one hand, we would like to exploit information on
the contribution of individual records to subgroup qual-
ity as is realized by optimization in the subgroup exten-
sion space. On the other hand, we would like to guarantee
that the subgroup extension can be described concisely in
the pattern language. Therefore, we propose to constrain
the numerical optimization in such a way that concise de-
scription in the pattern language is guaranteed. To this
end, the algorithm that we introduce in the next section

optimizes the quality of the subgroup, and simultaneously
constructs the constraint to guarantee concise description.
The latter is done in such a way so as to hinder the ‘ideal’,
viz. unconstrained, optimization as little as possible.

3.2 Tree-Constrained Gradient Ascent
We first consider the requirement that the subgroups can
be described concisely in the pattern language. Suppose
we have a partition of D based on the attributes of the
records. Suppose furthermore that this partition can be
expressed using the pattern language P: each block in the
partition is expressible using a rule, which is a conjunc-
tion of single-attribute conditions on the attributes, and
these rules are mutually exclusive and globally exhaus-
tive.

Now, say that we assign to each block a binary indicator
{0, 1} which denotes whether the records covered by it
are included in the subgroup or not. Clearly, the resulting
subgroup can then be expressed by taking the pattern P
to be the disjunction of all rules describing blocks with a
positive inclusion indicator.

To perform subgroup optimization under this scheme,
we have two related problems to solve: how to find a good
partition, and which inclusion indicator to assign to each
block. Focusing first on how to specify the subgroup in-
clusion for each block, we can use the same approach here
as we did before when optimizing in the subgroup exten-
sion space: assign an inclusion weight to each block, and
perform numerical optimization on these weights. Thus,
all records within the same block are assigned the same
inclusion weight, and by performing numerical optimiza-
tion on the set of all these shared weights, a local opti-
mum in the subgroup extension space is found. Since the
records within a given block all share the same weight,
the resulting subgroups can be described in the pattern
language.

To find a partition of the data, we note that the mutu-
ally exclusive and globally exhaustive structure that we
require of the partition may be obtained by recursively
partitioning the space A. We propose to produce this
partition by constructing a classification tree [3] on this
space. The leafs of such a tree then correspond to the in-
dividual blocks.

We aim to construct the tree in such a way so as to hin-
der the optimization as little as possible. For this reason

3

we define the positive class to be the points with a posi-
tive gradient and the negative class to be the points with
a negative gradient. As is usual in classification trees, we
choose the split that separates the positive from the nega-
tive class as well as possible. Intuitively this makes sense
because for the points with positive gradient we would
like to increase their weights, and for points with a neg-
ative gradient we would like to decrease their weights.
Since the weights are constrained to be equal on the points
that fall into the same leaf, we have to perform the same
weight update on those points, and hence we should sep-
arate the points whose weight we would like to increase
from those whose weight we would like to decrease.

Note, however, that the sign of the weights’ gradi-
ent depends on the current position of these weights in
the subgroup extension space. Furthermore, because the
second-order mixed partial derivative of these weights
will in general be non-zero, the signs may actually change
as the optimization progresses. We therefore propose to
interlace growing of the tree with the gradient ascent up-
dates: we alternately split the tree’s leafs and perform gra-
dient ascent updates on the leafs’ weights.

More formally, let Vj denote a leaf in the classification
tree, and let RVj denote the set of indices of records that
are assigned to Vj . Let vj ∈ R denote the output value
of Vj , and let σ : R → [0, 1] denote the logistic sigmoid,
σ(v) ≡ (1 + e−v)−1. We use the logistic sigmoid for
convenience so that we may perform the numerical opti-
mization in R rather than [0, 1]. Thus, gradient ascent is
performed on vj , and the weights of all records assigned
to Vj are given by

(4) ∀i∈RVj : wi = σ(vj).

The (soft) subgroup extension may thus be optimized
numerically by performing gradient ascent on the leafs’
outputs. Taking partial derivatives of the objective func-
tion O(w) with respect to a leaf’s output vj , and making
use of the definition of the logistic sigmoid, we have

∂O(w)

∂vj
=
∑
i∈RVj

∂O(w)

∂wi

∂wi
∂vj

= σ(vj)(1− σ(vj)) ·
∑
i∈RVj

∂O(w)

∂wi
.

(5)

Gradient ascent should then be performed on the output

values of all leafs simultaneously. We emphasize that the
objective function does not decompose over the records
in the data set, nor over the leafs in the tree, because
the second-order mixed partial derivative of the objective
function with respect to the output values of two leafs will,
in general, be non-zero.

The pseudo-code of the full algorithm, which we re-
fer to as Tree-Constrained Gradient Ascent (TCGA), is
given by Algorithm 1. We here first describe a single iter-
ation of the algorithm, which starts at Line 3. First, partial
derivatives are computed for all individual records (Line
4), using the tree’s current output as the current position
in the subgroup extension space [0, 1]n.

The algorithm then tries to split all non-pure leafs in the
tree so as to minimize the impurity (Line 8), where impu-
rity is defined using the Gini-index [3], with the signs of
the individual records’ derivatives constituting the class
labels. To prevent over-fitting of the tree, we use the com-
mon parameters Smin and Lmin, which specify the mini-
mum number of records that a leaf must contain or assign
to each resulting child, respectively, for a split to be con-
sidered valid. Whenever a leaf is split in this way, the
output values of the resulting children are initialized to
the current output of their parent. This ensures differen-
tiability of the objective function by the fact that splitting,
by itself, will not change any of the tree’s outputs. In-
terlacing of tree-growing and gradient ascent updating is
realized by ensuring that the resulting children are not im-
mediately split as well. That is, leafs are split at most once
at each iteration of the algorithm, rather than continuing
this process recursively.

After all leafs are considered in this fashion, a single
gradient ascent update step is performed on the outputs of
all leafs (Line 9), as described above. The gradient that
is used in the update step is given by Equation 5. New
inclusion weights are then computed for all records (Line
10, cf. Equation 4). This process iterates until some stop-
ping criterion is satisfied, which we have implemented by
testing for a vanishing gradient (Lines 5-7). We also stop
after a maximum number of iterations have elapsed (Line
3), because we cannot in general guarantee convergence
for gradient ascent with a fixed step-size.

To find multiple high quality subgroups, we make use
of random restarts. We set the vector w at the algo-
rithm’s first iteration to a random position in [0, 1]n (Line
2). Computing derivatives from different such points will

4

Algorithm 1 TREE-CONSTRAINED GRADIENT ASCENT

Input: A dataset D, step-size η, maximum iterations
τmax, minimum gradient ∇min, and minimum split
supports Smin and Lmin.

Output: A classification tree T .
1: T ← {Vroot}
2: w(0) ← GetRandomStartPos()
3: for τ = 1→ τmax do
4: ∇w(τ−1)

← GetGradient(D,w(τ−1))
5: if

(
‖∇w(τ−1)

‖ ≤ ‖∇min‖
)

then
6: return T
7: end if
8: T ← SplitCurrentLeafs(T,D,∇w(τ−1)

, Smin, Lmin)
9: T ← UpdateOutputValues(T, η,∇w(τ−1)

)
10: w(τ) ← GetOutput(T,D)
11: end for
12: return T

then result in different split-decisions and gradient ascent
updates on the first iteration of tree construction. Subse-
quently running the algorithm as described will then en-
able it to find different local optima for different initial
‘output’ positions.

After convergence, the sigmoid-transformed outputs of
all leafs are rounded to the set {0, 1}, yielding again a
‘crisp’ subgroup extension that is meaningful in the EMM
context. The rule-based pattern describing this subgroup
may then simply be read from the tree.

Observe that this pattern in general consists of a dis-
junction of conjunctions of logical conditions over sin-
gle attributes in the space A. Each conjunction is taken
over the split-conditions encountered on the path from the
tree’s root to a leaf with (rounded) output of 1, specifying
inclusion in the subgroup. The disjunction of these con-
junctions is then taken over all such leafs. In the sequel,
we will refer to such conjunctions as rules, and to their
disjunction as the rule set.

To illustrate, Figure 1 shows an example result of the
tree-constrained gradient ascent algorithm. This tree is
converted into a disjunctive set of crisp inclusion rules.
To do this, we consider the leafs Vj for which σ(vj) ≥ 1

2 ,
that is, the leafs with inclusion weights that are not lower
than 1

2 . From Figure 1, we see that the leafs satisfying this

Figure 1: Tree grown on an example data set with 15
records. The leafs are shown as partitioned rectangles,
showing from top to bottom the node’s identifier Vj , the
set of indices RVj of the records assigned to this leaf, and
the inclusion weights σ(vj) of the corresponding records.

condition are V8 and V12. The corresponding pattern is:

(a3 = 0∧a1 = 1∧a2 = 1)∨ (a3 = 1∧a1 = 1∧a2 = 1)

It is easy to see that this can be simplified to the equiva-
lent description (a1 = 1 ∧ a2 = 1). The post-processing
procedure discussed in the next section will, among other
things, automatically remove such redundancies from the
subgroup description.

3.3 Post-Processing
After the tree-constrained gradient ascent algorithm has
converged, and the corresponding pattern extracted as de-
scribed in Section 3.2, this pattern is subsequently post-
processed. Because this post-processing procedure is for-
mulated in terms of the rule-based pattern, rather than in
terms of the tree structure, it is in fact quite general and
may also be applied to the results of other algorithms such
as beam search.

The entire post-processing procedure is carried out on
a held-out part of the data. We set aside this data by
randomly sub-sampling the dataset into mining and post-
processing data at each random restart of the TCGA al-
gorithm. The procedure itself is most conveniently de-
scribed as a three step process. Briefly, the first step seeks
to maximize quality by removing conditions and rules, the

5

second step serves to remove superfluous conditions with-
out ‘significantly’ changing the subgroup’s model, and the
final step attempts to verify whether the resulting pattern
is indeed ‘interesting’. We detail these steps below.

3.3.1 Quality Maximization

The first step begins by evaluating the quality of all pat-
terns resulting from removing entire rules from the orig-
inal rule set, one at a time. Whenever the highest quality
such pattern has a quality not lower than that of the origi-
nal, that pattern is selected to replace the original, and the
process is repeated until no more rules can be removed in
this fashion. Subsequently, the algorithm seeks to maxi-
mize the quality by removing single conditions from the
remaining rules. This is done by first evaluating the qual-
ity of all patterns resulting from removing single condi-
tions, and sorting the conditions in order of decreasing
quality-after-removal. Conditions are then considered in
order, and removed from the remaining rules whenever
this can be done without decreasing the pattern’s quality.
Whenever a condition is removed in this way, the qual-
ity resulting from removing any of the remaining condi-
tions will change. Therefore, the removal-quality is re-
evaluated whenever the next condition is considered for
removal. This part of the post-processing is quite sim-
ilar to a post-processing step performed in PRIM [10],
but there the removal of conditions is performed by the
user in an interactive fashion. The first step of the post-
processing is completed when all conditions have been
considered in this greedy fashion.

3.3.2 Description Minimization

The second step seeks to remove single conditions from
the remaining rules without ‘significantly’ changing the
subgroup’s model. Note that, here, we do no try to in-
crease the pattern’s quality, per se. Indeed, we allow the
quality to decrease when we remove conditions, as long
as doing so does not ‘significantly’ change the subgroup’s
model. The reasoning here may be explained as an ap-
plication of Occam’s razor; if two patterns describe sub-
groups with roughly identical models, we prefer the least
complex of these patterns, that is, the one with the fewest
conditions.

Algorithmically, the second step works analogously to

the single-condition removal phase of the first step. We
begin by sorting all conditions in the remaining rules, this
time in order of increasing influence on the subgroup’s
model. To this end, we use the quality measure ϕ(·),
which as noted is essentially a distance measure between
two models, computed between the current subgroup and
the subgroup resulting from removing one of the condi-
tions. The conditions are then considered for removal in
order of the influence of their removal on the subgroup’s
model.

Let Λ denote the remaining rule set, and let Λ′ denote
that rule set but with the condition under consideration
removed. That condition is then actually removed, when-
ever the models described by Λ and Λ′ are not signifi-
cantly different at a confidence level to be specified by the
user. Because the exact method of testing for the signif-
icance of the model difference will depend on the model
class, we do not go into detail here; Section 4 will give the
specifics for use with the linear regression model class.
This procedure is repeated for all conditions in the rule
set. The second step of the post-processing is completed
when all conditions have been considered in this fashion.

3.3.3 Interestingness Determination

Finally, the third step of the post-processing attempts to
verify whether the resulting pattern is indeed ‘interest-
ing’, and discards the entire result if it is not. This may be
seen as a way to guard against returning relatively unin-
teresting local optima. Procedurally, we do this by testing
whether the global model and the subgroup’s model are
significantly different at some user-specified confidence
level. If this difference is found not to be significant, we
conclude that the induced models do not differ enough to
consider the result interesting. In this case, the result is
discarded, and optimization re-run from a different start-
ing position. Otherwise, the result is accepted and added
to the set of results to be presented to the user.

4 TCGA with Regression Models

In this section, we instantiate the TCGA algorithm intro-
duced in the previous section for use with linear regres-
sion models.

6

4.1 Model Estimation
For notational convenience, we begin by rewriting the tar-
gets xi of all records in the dataset D in matrix notation.
We note that the domain of these targets is here given
by X = Rp. Let X be an n × p matrix, where for all
i = 1, . . . , n, the i-th row is given by [1, xi1, . . . , x

i
p−1].

Let y denote the n× 1 vector y = [x1p, . . . , x
n
p]>.

We consider the linear regression model given by

(6) y = Xβ + ε,

where β is the p × 1 vector of coefficients, and ε is an
n × 1 vector of i.i.d. Gaussian errors with E[ε] = 0 and
Var[ε] = σ2I. When fitting this model to the entire dataset
D, it is well known that the OLS estimate β̂ is given by

(7) β̂ =
(
X>X

)−1
X>y,

giving estimates ŷ = Xβ̂ and e = y − ŷ.
To fit the model to a subgroup GP described by pattern

P , we introduce the n×n diagonal zero-one matrix WP ,
with diagonal elements wPii = P (ai), for i = 1, . . . , n. In
the sequel, we will generally drop the subscript and refer
to the matrix W for a subgroup G when no confusion
should arise. Using this matrix, we may obtain the matrix
XG = WX, which contains the targets of all records in
the subgroup, and zero-rows at positions of records that
are not included in G. When we instead consider a soft
subgroup parameterized by w, we let the diagonal of W
be given by wii = wi. In either case, the estimate β̂G of
the coefficients of the model induced on G is then given
by the Weighted Least Squares [5] estimate

(8) β̂G =
(
X>WX

)−1
X>Wy.

Using these coefficients, we can still obtain estimates for
all records in the dataset, given by ŷG = Xβ̂G and eG =
y − ŷG.

4.2 Quality Measure
Previous work by Duivesteijn et al. [9] proposed the use
of Cook’s Distance [5] as a quality measure for EMM
with linear regression models. Cook’s Distance D(·) is
given by

(9) D(G) ≡

(
β̂G − β̂

)>
X>X

(
β̂G − β̂

)
ps2

,

where s2 = e>e
n−p is the unbiased estimator of the error

variance σ2. Use of this measure may be motivated as
follows. Cook [5] notes that the (1 − α) × 100% confi-
dence ellipsoid of β̂ is given by all vectors β∗ satisfying
(10)(
β∗ − β̂

)>
X>X

(
β∗ − β̂

)
ps2

≤ F (p, n− p, 1− α),

where F (p, n − p, 1 − α) denotes the 1 − α probability
point of the central F -distribution with p and n−p degrees
of freedom. Thus, for example, if D(G) ≈ F (p, n −
p, 0.5), we may say that β̂G is located roughly at the edge
of the 50% confidence ellipsoid of β̂.

Now, although this measure has the advantage of being
easy to interpret, it does not take into account the support
of a subgroup, and hence has no built-in protection against
over-fitting. Therefore we define the new quality measure

ϕD(P) ≡ |GP |
n
·

(
β̂GP − β̂

)>
X>X

(
β̂GP − β̂

)
ps2

=
|GP |
n
· (ŷGP − ŷ)

>
(ŷGP − ŷ)

ps2

=
Tr(WP)

n
· ‖ŷGP − ŷ‖2

ps2
.(11)

Here, ‖·‖2 is the squared L2-norm, and the trace
Tr(W) =

∑n
i=1 wii = |G| gives the size of the sub-

group. Due to the factor p−1 in Equation 11, the quality is
scale-dependent on the number of regression coefficients
used, which makes the choice of the gradient ascent step-
size more data set-dependent. Hence we finally adjust the
quality measure to:

(12) ϕD(P) ≡ Tr(WP)

n
· ‖ŷGP − ŷ‖2

s2
.

When we parameterize this quality measure as an ob-
jective function O(w) of a vector w of soft inclusion
weights, we may take partial derivatives with respect to
the individual weights. For the i-th weight, this derivative
is given (cf. Appendix A) by

∂O(w)

∂wi
=
‖ŷG − ŷ‖2

2ns2

−Tr(W)

ns2

(
diag(eG)X

(
X>WX

)−1
X>eG

)
i
.

(13)

7

Inspection of this equality reveals that, if one is careful
with the order and method of multiplication used, the
complete set of derivatives can be computed in a time
complexity order of O(p2n) (cf. Appendix B).

4.3 Significance of Model Difference
As described in Section 3.3, we require for the post-
processing procedure a method to determine whether the
difference between two models is significant at a given
confidence level. For two models described by, say, the
rule sets Λ and Λ′, we have implemented this by testing
for the intersection of the (1 − α) × 100% confidence
ellipsoids of the coefficients of these models (cf. Ap-
pendix C). The general formula for these ellipsoids is
given by Equation 10. Note that α is thus a parameter
of the post-processing procedure and that its value is to be
specified by the user.

4.4 Application to SD
There is an interesting relation between the general prob-
lem of Subgroup Discovery (SD) [14] and EMM with lin-
ear regression models. In SD we consider a data set with
records of the form

(14) r ≡ 〈a1, . . . , ak, x〉.

Using this dataset for EMM with linear regression models
is easily seen to reduce the models under consideration to
only the intercept term. Furthermore, the OLS estimate
of the intercept is β̂0 = x̄, where x̄ is the sample mean of
the single target variable. The quality measure given by
Equation 11 thus becomes, after some simplification,

ϕD(P) = |GP | ·
(x̄GP − x̄)2

s2

∝ |GP | · (x̄GP − x̄)2,

(15)

where x̄G denotes the sample mean of the target variable
within the subgroup G. Compare this to the Mean Test
(MT) quality measure described by Klösgen [13], written
for the case where one is interested in subgroups with both
exceptionally high or low target values:

(16) MT(P) ≡
√
|GP | · |x̄GP − x̄|.

Comparison of Equation 15 and Equation 16 reveals that
maximization of ϕD(·) is equivalent to maximization of
MT(·). This relationship shows that we may regard some
forms of SD as special cases of EMM with linear regres-
sion models. Hence, the tree-constrained gradient ascent
algorithm may also be readily applied to these instances
of SD.

5 Experiments
Experiments were performed to evaluate the performance
of the Tree-Constrained Gradient Ascent (TCGA) algo-
rithm. We compare the algorithm both with a stan-
dard Beam Search (BS) strategy, and with a BS strategy
to which we also apply the post-processing method de-
scribed in Section 3.3, which we will refer to as BSPP.

5.1 Synthetic Data
We first discuss experiments performed on synthetic data.
This is useful in the sense that, when considering real
world datasets, we do not have a golden standard. That
is, on real world data we do not know whether a result
is indeed an interesting, or objectively ‘correct’, answer.
By constructing synthetic datasets with explicitly defined
high quality subgroups, we may evaluate the performance
of the algorithms by looking at how many of these ‘cor-
rect’ subgroups are returned.

5.1.1 Initial Experiments

For each data set we defined a global regression model
and several subgroup regression models. The latter were
constructed to have slopes orthogonal to that of the global
model. The values of the target attributes were all drawn
from a normal distribution.

We subdivide the experiments into variation of the
number of subgroups, number of regression coefficients,
and a set of experiments that used numeric descriptive at-
tributes; the first two experiments used binary attributes.
In all of these experiments, we furthermore varied the
length of the subgroup descriptions and the error variance
of the global model. The numeric values of these settings,
as well as the size and number of the datasets sampled,
are given in Table 2. Note that we set aside a third of each

8

SUBGROUPS COEFFICIENTS NUM. ATTRIBUTES

ALGORITHM F1 ϕD HM F1 ϕD HM F1 ϕD HM

(a) TCGA η = 0.1 0.74c,d,e,f 2.61c,d,e,f 0.77c,d,e,f 1.65c,d,e,f 0.67b,c,d 1.40b,c,d

(b) TCGA η = 10.0 0.79a,c,d,e,f 2.23a,c,d,e,f 0.76c,d,e,f 1.95c,d,e,f 0.64c,d 1.85c,d

(c) BS 0.06 5.87 0.04 5.80 0.20 3.33
(d) BSPP depth = 6 0.56c 3.46c 0.39c 3.90c 0.22 3.43
(e) BSPP depth = 7 0.56c 3.43c 0.40c 3.85c − −
(f) BSPP depth = 8 0.57c 3.40c 0.40c 3.85c − −

FRIEDMAN TEST p-VAL 0.00 0.00 0.00 0.00 0.00 0.00

Table 1: Synthetic data results, by experiment type. Columns marked ‘F1’ show the algorithms’ average F1 scores
(higher is better). Columns marked ‘ϕD HM’ show average ranks based on that measure (lower is better). There
is a significant difference between the algorithms’ performance on both the ‘F1’ and ‘ϕD HM’ measures for all
experiments, with p ≈ 0 in all cases. Superscripts behind results denote that the result is significantly better than
that of the algorithm marked with the corresponding index, at the α = 0.01 level. We did not run entries marked −
because they were expected to take a prohibitive amount of time.

dataset for evaluation purposes, and that this part of the
data is not used for mining.

The parameters of the algorithms were chosen from
some preliminary testing on related, but non-included,
datasets. We ran the TCGA algorithm with 2 choices
of step-size (η ∈ {0.1, 10.0}), performing 50 restarts.
TCGA’s minimum split supports were chosen to be
Smin = 50 and Lmin = 10. The BS algorithm’s search
depth was chosen to always correspond to the correct
length of the subgroup descriptions, with a beam width of
50. The BSPP algorithm also had a beam width of 50, but
several choices of search depth (values {6,7,8}), relying
on the post-processing to simplify the descriptions to find
the ‘correct’ ones. The minimum support for both BS and
BSPP was set to 10. The post-processing’s significance-
level was chosen to be α = 0.01 for both TCGA and
BSPP.

Two measures were used for assessing performance.
The first is the F1 score, where we defined recall as the
fraction of ‘correct’ subgroups found, and precision as the
fraction of ‘correct’ results in the entire set of results. In-
tuitively, there will be a trade-off between finding all ‘cor-
rect’ subgroups (perfect recall), and finding only ‘correct’
subgroups (perfect precision), which is captured by the F1

score.
The second measure is based on the quality ϕD, and

it is intended to capture the same trade-off for scenarios
where we do not have access to the ‘correct’ answers, that
is, when we apply the algorithm to real data. It is based
on the assumption that ‘correct’ subgroups will have far
higher quality than ‘incorrect’ ones. To emulate the re-
call measure, we compute the average ϕD over the top
m unique results, where m is the actual number of cor-
rect subgroups in the data (which one would still have to
guess in actual practice). To capture the properties of the
precision measure, we simply take the average ϕD over
the entire set of results. We then introduce the aggre-
gate measure ‘ϕD HM’, which takes the harmonic mean
of these measures in an attempt to again reflect the men-
tioned trade-off.

Performance on ϕD is computed on the held-out eval-
uation datasets. The aggregated results are shown in Ta-
ble 1. The results are compared using a Friedman test [7].
Inspection of Table 1 reveals that there is a significant dif-
ference in performance, on both measures and within all
experiments, with p ≈ 0 in all cases. This was followed
by a Nemenyi post-hoc test [7], to perform a pairwise
evaluation of the algorithms. This test corrects for the
number of comparisons performed. We see that TCGA
always significantly outperforms both BS and BSPP at
the α = 0.01 level. BSPP furthermore significantly out-
performs BS in the ‘subgroups’ and ‘coefficients’ experi-

9

EXPERIMENT

SETTING subgroups coefficients num. attributes

#Subgroups {2, 4, 6} 4 4
#Coefficients 1 {2, 3, 4} 2
#Attributes 64 64 32
Description
Length {4, 5} {4, 5} {2, 4}
Global σ2 {0.5, 2} {0.5, 2} {0.5, 2}
Datasets
Sampled 50 50 50
Mining
Records 3,000 3,000 3,000
Evaluation
Records 1,500 1,500 1,500
Subgroup
Support 12% 12% 12%

Total
Combinations 12 12 4
Total
Datasets 600 600 200

Table 2: Settings used for dataset generation in the three
experiments performed on synthetic data.

ments, at the same confidence level. We finally observe a
strong agreement between the F1 score and the ‘ϕD HM’
measure, which indicates that the latter here seems to cap-
ture the characteristics of the results as intended.

5.1.2 Varying the Slope of the Subgroups

Further experiments were performed to investigate
whether there are specific situations in which TCGA’s per-
formance becomes notably worse, in particular in com-
parison to BS. We conjectured that both a smaller dif-
ference between global slope and subgroup slope, and a
worse degree of fit of the global model could have a nega-
tive impact on the performance of TCGA. This was tested
by performing experiments in which these characteristics
were explicitly controlled. We first consider the impact of
slope difference on the performance of the algorithms.

In our previous experiments, all subgroups’ models
were defined as being orthogonal to the global model. To

vary the subgroups’ quality, experiments were performed
using simple linear regression models, i.e., using mod-
els with only a single regression coefficient. Here, the
subgroups’ regression lines were varied from being com-
pletely orthogonal, to being completely parallel, to that
of the global model. Thus, in the latter case, only the
intercept term of the subgroups’ models would be differ-
ent. We performed these experiments with the same pa-
rameter settings for the algorithms as before, only leaving
out BSPP with a search depth of 8 because of the previ-
ously observed lack of sensitivity to this parameter. We
again used subgroup description lengths of 4 and 5 con-
ditions, and two different values for the error variance of
the global model. As before, 50 datasets were generated
for each combination of these settings. This was repeated
at 11 settings for the subgroups’ slopes. The results of
these experiments are given in Figure 2(a), with perfor-
mance shown on the ‘ϕD HM’ measure averaged over all
200 datasets at each setting of the slope. Here, a value
of -1 for the slope corresponds to complete orthogonal-
ity, while at the value 1 the subgroup model is completely
parallel to the global model.

We observe that the algorithms’ average performance
on this measure is indeed negatively influenced by the
subgroup models’ slope. We furthermore see that TCGA
on average still performs better than both BSPP and BS,
and that BSPP on average has a higher score than BS.

However, we are also interested in the relative perfor-
mance of TCGA compared to the other algorithms. We
therefore look at the average rank of TCGA, and its cor-
relation with the slope of the subgroup models. To do
this, we use the non-parametric Spearman’s rank correla-
tion coefficient ρ [20], computed between the subgroup
models’ slope and the average rank of TCGA, where the
rankings of the algorithms are aggregated over their pa-
rameter settings. Here, we correct for the fact that lower
ranks are better, so that a positive correlation implies im-
proved performance.

From our conjecture, we expected to find a negative
correlation between TCGA’s average rank and the slope
of the subgroup model. However, we found no significant
negative correlation between the (lack of) orthogonality
of the slope of the subgroup models and the rank of the
TCGA algorithm based on the ‘ϕD HM’ measure, at the
α = 0.05 level. When we perform the same test for the
ranking based on the algorithm’s F1 score, however, we

10

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

500

1000

1500

2000

β1
G

ϕ D
 H

M

●

●

●

●

●
●

● ● ● ● ●

● TCGA 0.1
TCGA 10.0
BS
BSPP 6
BSPP 7
+− 1 sd

(a)

0 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1

0

100

200

300

400

R2

ϕ D
 H

M

●
●●●●●●

●

●

●

●

●

●
● ●

● ● ● ●

● TCGA 0.1
TCGA 10.0
BS
BSPP 6
BSPP 7
+− 1 sd

(b)

Figure 2: (a) Average ‘ϕD HM’ vs. slope in the subgroups. (b) Average ‘ϕD HM’ vs. R2 of the global model.

do find a significant negative correlation (Spearman’s ρ ≈
−0.84, with p ≈ 0.001).

5.1.3 Varying R2 of the Global Model

To investigate the influence of the global model’s fit to
the data, we performed experiments in which its R2 value
was varied. Because we are using simple linear regression
models, we can solve for the desired R2 in terms of the
model’s error variance, when keeping fixed the model’s
slope and the explanatory variable’s variance.

We again used the same parameter settings as before,
but here only varied the length of the subgroup descrip-
tions as the error variance was already accounted for.
Thus, we generated 100 datasets for each setting of the
R2. We initially tested 10 different R2 values ranging
from 0.05 to 0.95. Upon observing a very steep increase
in performance of all algorithms between the 0.05 and
0.15 values, we then sampled an additional 9 settings over
the 0.01 to 0.10 range, which smoothed out the results in
this region as desired. The results of these experiments
are given in Figure 2(b), with performance shown on the

‘ϕD HM’ measure averaged over all 100 datasets at each
R2 setting.

We see that the average performance of all the algo-
rithms increases with the global model’s R2. Further-
more, we see that TCGA on average scores higher than
both BSPP and BS, except at fairly low values of the R2.
In such cases, the algorithm’s average performance drops
below that of the other two algorithms. We furthermore
observe that BSPP on average outperforms BS, regardless
of the R2 value.

From our conjecture about the R2’s influence on
TCGA’s relative performance, we here expect to find a
positive correlation between TCGA’s average rank and the
global model’s R2. Performing the same correlation test
as before, we indeed find a significant positive correla-
tion between the R2 of the global model and the rank
based on the ‘ϕD HM’ score (Spearman’s ρ ≈ 0.77,
with p ≈ 8 × 10−5). This is further corroborated by the
correlation of the R2 of the global model with TCGA’s
rank based on the F1 score (Spearman’s ρ ≈ 0.54, with
p ≈ 0.009).

11

5.2 Real Data
A second set of experiments was performed on real world
datasets, taken from a number of sources. Several of these
datasets were used multiple times, with different regres-
sion models as targets. A full overview, including the
sources, is given in Table 3. Table 4 shows some sum-
mary statistics of the datasets. Note that model instances
with p = 1 correspond to instances of SD as described in
Section 4.4. In total, we used 21 different dataset/model
pairs, divided into 10 EMM dataset/model pairs and 11
SD datasets.

DATASET n k p

Adult 30,162 5; 5 4; 1
AmesHousing 2,930 8 3
Bioassay 27,189 153 1
Contraceptives 1,473 8; 6; 8 2; 4; 1
Credit 13,390; 10,461 5; 7 3; 1
EAEF 2,485 39; 36; 41 3; 3; 1
Extramarital 6,366 3; 8 6; 1
Microsoft Web 37,711 293 1
Opt. Digits 5,621 64 1
Plants 34,781 69 1
Spambase 4,601 57 1
WindsorHousing 546 7 5
Wine 9,600 6; 7 4; 1

Table 4: Statistics on the datasets. Columns denote num-
ber of records (n), attributes (k), and targets (p). Semi-
colons separate the values where multiple models are used
on one dataset.

We use the ‘ϕD HM’ measure, described in Sec-
tion 5.1.1, as the quality measure. For each dataset/model
combination and algorithm, the algorithm’s parameter
values were optimized on this measure, and perfor-
mance evaluated, using 5-fold cross-validation with a 4-
fold inner cross-validation parameter optimization loop.
We picked the value of η from {0.1, 10}, of α from
{0.01, 0.05, 0.1}, and the depth of the beam search from
{1, 2, 4}. As before, all algorithms were to return 50 re-
sults, corresponding to 50 restarts or a beam width of
50. The minimum split supports for TCGA were fixed
to Smin = 125 and Lmin = 50. The minimum support for
both BS and BSPP was set to 50. For the computation of

the ‘ϕD HM’ measure we chose m = 5.
The folds were constructed by uniform random sub-

sampling from the dataset, without replacement, up to a
maximum of 1,000 records per fold. This process was re-
peated 10 times, with replacement, for each dataset/model
and algorithm pair, after which algorithms were paired
and ranked for each sub-sampling. Average ranks were
then computed, and the algorithms re-ranked, to ob-
tain the relative performance of each algorithm on that
dataset/model combination. Finally, average ranks were
computed for both the EMM and SD results, to obtain the
final relative performance on both of the problems.

We first discuss the EMM results, which are shown in
the left column of Table 5. Here, the different datasets are
shown in order of their global model’s R2, along with the
algorithms’ average ranks per dataset. We find that TCGA
on average ranks highest on 5 of these 10 dataset/model
pairs, with BS performing best on the other 5. BSPP here
never ranks highest.

Looking at the algorithms’ average ranks over all these
datasets, we see that BS performs slightly better than
TCGA, and that both of these algorithms outperform
BSPP. Again performing a Friedman test to determine
the significance of these differences, we find p ≈ 0.016.
Following with a Nemenyi post-hoc test for the pair-
wise differences, we find no significant difference, at the
α = 0.05 level, between TCGA and BS, nor between
TCGA and BSPP. However, we find that BS outperforms
BSPP with p ≈ 0.04.

Returning to the algorithms’ performance on the indi-
vidual datasets, we see that TCGA tends to rank better
when the global models’ R2 is higher, whereas BS tends
to work better when the models’ fit isn’t as good. This is
consistent with our findings on the synthetic data (see Sec-
tion 5.1.3). Indeed, quantifying the relationship between
the average ranks of TCGA and the global models’ R2,
we here also find a significant positive correlation (Spear-
man’s ρ ≈ 0.59, with p ≈ 0.036).

Looking next at the results on the SD datasets, shown
in the right column of Table 5, we find that BS here tends
to rank highest. On average, the difference between the
algorithms’ ranks is found significant by a Friedman test,
with p ≈ 0.006. A post-hoc test reveals that BS signif-
icantly outperforms TCGA, with p ≈ 0.01, but that no
other significant pairwise differences can be established.

12

EMM Dataset ID Regression Model

Adult [2] (≥ 50K) ∼ β0 + β1 × age + β2 × fnlwgt + β3 × hours per week
AmesHousing [12] sale price ∼ β0 + β1 × lot area + β2 × overall quality
Contraceptives 1 [2] num children ∼ β0 + β1 × age
Contraceptives 2 [2] num children ∼ β0 + β1 × age + β2 × education + β3 × uses contraceptive
Credit [11] is cardholder ∼ β0 + β1 × minordrg + β2 × majordrg
EAEF 1 [8] earnings ∼ β0 + β1 × years school + β2 × years experience
EAEF 2 [8] weight02 ∼ β0 + β1 × weight85 + β2 × height
ExtraMarital [11] num children ∼ β0 + β1 × marriage rating + β2 × years married

+β3 × religiosity + β4 × education + β5 × occupation
WindsorHousing [1] sale price ∼ β0 + β1 × lot size + β2 × nbed + β3 × nbath + β4 × nstoreys
Wine [6] price ∼ β0 + β1 × cases + β2 × score + β3 × age

SD Dataset ID Target

Adult [2] (≥ 50K)
BioAssay 688 [19] outcome
Contraceptives [2] uses contraceptive
Credit [11] default
EAEF [8] earnings
ExtraMarital [11] YRB
MicrosoftWeb [2] visited MS Office Support
OptDigits [2] is five
Plants [2] occurs in Minnesota
Spambase [2] is spam
Wine [6] price

Table 3: Names of the dataset/model pairs that we used, including sources of the datasets. The corresponding EMM
regression models and SD targets are shown in the second column.

13

EMM RESULTS SD RESULTS

ALGORITHMS’ ϕD HM ALGORITHMS’ ϕD HM

DATASET/MODEL MODEL’S R2 TCGA BS BSPP DATASET TCGA BS BSPP

Adult 0.10 3.00 1.10 1.90 Adult 2.90 1.10 2.00
Credit 0.18 2.05 1.60 2.35 BioAssay 688 2.60 1.00 2.40
EAEF 1 0.21 1.15 2.00 2.85 Contraceptives 2.75 1.20 2.05
Contraceptives 1 0.29 1.90 1.10 3.00 Credit 3.00 1.00 2.00
Wine 0.31 2.85 1.35 1.80 EAEF 2.00 1.35 2.65
Contraceptives 2 0.37 1.20 1.80 3.00 ExtraMarital 1.80 2.10 2.10
WindsorHousing 0.54 1.00 2.00 3.00 MicrosoftWeb 1.05 2.00 2.95
ExtraMarital 0.60 1.90 1.35 2.75 OptDigits 3.00 1.00 2.00
EAEF 2 0.67 1.45 2.65 1.90 Plants 3.00 1.00 2.00
AmesHousing 0.68 1.05 2.05 2.90 Spambase 3.00 1.00 2.00

Wine 3.00 1.65 1.35

MEAN 1.76 1.70 2.55 MEAN 2.55 1.31 2.14
FRIEDMAN TEST p ≈ 0.016 FRIEDMAN TEST p ≈ 0.006

PAIRWISE p-VAL TCGA BS BSPP PAIRWISE p-VAL TCGA BS BSPP

TCGA – 0.97 0.07 TCGA – 0.01 0.60
BS 0.97 – 0.04 BS 0.01 – 0.13

BSPP 0.07 0.04 – BSPP 0.60 0.13 –

Table 5: Experimental results on the real data. The table on the left shows the results of EMM with linear regression
models. The table on the right shows the results of the experiments with conventional subgroup discovery.

6 Conclusions and Future Work
We have introduced tree-constrained gradient ascent
(TCGA), a novel search strategy for EMM. On the one
hand, TCGA exploits information on the contribution of
individual records to subgroup quality, and on the other
hand it guarantees that the subgroup extension can be de-
scribed concisely in the pattern language.

Furthermore, we have shown how TCGA can be ap-
plied to EMM with the linear regression model class, and
performed extensive experiments with this instantiation of
TCGA.

Our experiments on synthetic data have shown that
TCGA can significantly outperform beam search. These
experiments also showed that our post-processing tech-
nique can improve the results of beam search, and at the
same time circumvent explicit optimization of that algo-
rithm’s depth parameter.

In further experiments we varied the slope difference
between the global model and the subgroup model, as

well as the degree of fit of the global model. These ex-
periments showed that the relative performance of TCGA
compared to BS decreased as the slope difference and the
fit of the global model became smaller.

The latter association was also observed in our experi-
ments with real data, where we found a significant corre-
lation between the degree of fit of the global model and
the relative performance of TCGA. However, overall we
did not find a significant difference between the perfor-
mance of TCGA and BS in finding exceptional regression
models. On the task of classical subgroup discovery, BS
clearly outperformed TCGA.

Overall we conclude that the task of EMM with lin-
ear regression models can be effectively solved by TCGA
when the degree of fit of the global regression model is
not too small. We do not consider this a large constraint
as it seems to fit the use case in an applied setting.

Our findings also raise a number of questions for fur-
ther research concerning this instantiation of TCGA. For

14

instance, we would like to find an explanation for the ob-
served correlation between theR2 of the global model and
the relative performance of TCGA. Also, it is not clear
why TCGA performs relatively badly on the classical sub-
group discovery task. Finally, while the post-processing
procedure improved the performance of BS on the syn-
thetic data, the opposite effect was observed on the real
data.

The performance of the generic TCGA algorithm might
be improved with more sophisticated numerical optimiza-
tion methods, e.g., by incorporating a line search to auto-
matically determine the step-size. Also, currently only a
single gradient ascent update step is performed in between
two consecutive splitting steps. It would be interesting to
investigate the effect of performing more update steps.

In closing, we note that the TCGA algorithm is quite
general, requiring only that the quality measure can be
made differentiable by the use of soft subgroups. Thus,
extending this work to other EMM model classes may
prove to be both useful and relatively straightforward.

Appendix

This appendix contains some supplementary derivations
and proofs related to our instantiation of TCGA with lin-
ear regression models.

Appendix A contains the derivation of the partial
derivative of the objective function O(·) with respect to
a given inclusion weight wi. We show that this set of n
partial derivatives can be computed in a time complexity
order of O(p2n) in Appendix B. Finally, a method for
testing for the intersection of two confidence ellipsoids is
given in Appendix C.

A Derivative of Objective Function.

In this section, we give the derivation of the derivative of
the objective function O : [0, 1]n → R given by

O(w) ≡ Tr(W)

n
· ‖ŷG − ŷ‖2

2s2
,

where for all i = 1, . . . , n, the i-th diagonal element of
the diagonal matrix W is given by wi.

We show the derivation of the partial derivative of O(·)
with respect to wi. We first note that by application of
the product rule for partial derivatives, and the equality
∂Tr(W)
∂wi

= 1, we have

∂O(·)
∂wi

=
∂

∂wi

[
Tr(W)

n
· ‖ŷG − ŷ‖2

2s2

]
=
∂Tr(W)

∂wi
· ‖ŷG − ŷ‖2

2ns2

+
Tr(W)

ns2
· ∂

∂wi

[
‖ŷG − ŷ‖2

2

]
=
‖ŷG − ŷ‖2

2ns2
+

Tr(W)

ns2
· ∂

∂wi

[
‖ŷG − ŷ‖2

2

]
.

(17)

We expand the remaining partial derivative in the final
equality of Equation 17 separately. Noting first that this
derivative depends only on wi through β̂G, we obtain

∂

∂wi

[
‖ŷG − ŷ‖2

2

]
=

∂

∂wi

[
(ŷG − ŷ)

>
(ŷG − ŷ)

2

]

=
∂

∂wi


(
β̂G − β̂

)>
X>X

(
β̂G − β̂

)
2


=
(
β̂G − β̂

)>
X>X

∂β̂G
∂wi

.

(18)

Again expanding the term ∂β̂G
∂wi

separately, we find

∂β̂G
∂wi

=
∂

∂wi

[
(X>WX)−1X>Wy

]
=

∂

∂wi

[
(X>WX)−1

]
X>Wy

+ (X>WX)−1
∂

∂wi

[
X>Wy

]
,

(19)

by the definition of β̂G and application of the product rule
for partial derivatives. For notational convenience, we de-
fine an auxiliary p× n matrix A such that

A ≡ (X>WX)−1X>.

15

Making use of the definition of A, we can simplify the
second summand in Equation 19 to find

∂β̂G
∂wi

=
∂

∂wi

[
(X>WX)−1

]
X>Wy

+ (X>WX)−1
∂

∂wi

[
X>Wy

]
=

∂

∂wi

[
(X>WX)−1

]
X>Wy

+ (X>WX)−1X>
∂W

∂wi
y

=
∂

∂wi

[
(X>WX)−1

]
X>Wy + A

∂W

∂wi
y.

Also simplifying the first summand, using the equal-
ity [17] ∂M−1

∂x = −M−1 ∂M∂x M−1 for any matrix M, we
obtain

∂β̂G
∂wi

= −(X>WX)−1
∂

∂wi

[
X>WX

]
· (X>WX)−1X>Wy + A

∂W

∂wi
y

= −(X>WX)−1
∂

∂wi

[
X>WX

]
AWy + A

∂W

∂wi
y

= −(X>WX)−1X>
∂W

∂wi
XAWy + A

∂W

∂wi
y

= −A∂W

∂wi
XAWy + A

∂W

∂wi
y

= A
∂W

∂wi
y −A

∂W

∂wi
XAWy.

We note that β̂G is given by

β̂G = (X>WX)−1X>Wy

= AWy.

We thus find

∂β̂G
∂wi

= A
∂W

∂wi
y −A

∂W

∂wi
Xβ̂G

= A
∂W

∂wi
y −A

∂W

∂wi
ŷG

= A
∂W

∂wi
(y − ŷG)

= A
∂W

∂wi
eG.

Note that ∂W∂wi is an n × n matrix with all elements zero,
except for the i-th diagonal element, which equals one.
Denote this matrix as W′, and its diagonal elements as
w′j for all j = 1, . . . , n. We have

∂β̂G
∂wi

= AW′eG(20)

=
∑

1≤j≤n

A.jw
′
j(eG)j(21)

= A.iw
′
i(eG)i +

∑
1≤j≤n
j 6=i

A.jw
′
j(eG)j(22)

= A.i(eG)i,(23)

where A.i is the i-th column of A. Substituting Equation
23 into Equation 18 and transposing yields

∂

∂wi

[
‖ŷG − ŷ‖2

2

]
=
(
β̂G − β̂

)>
X>X

∂β̂G
∂wi

=
(
β̂G − β̂

)>
X>XA.i(eG)i

= (eG)i

(
(A.i)

>
X>X

(
β̂G − β̂

))
= (eG)i

(
(A.i)

>
X>

(
Xβ̂G −Xβ̂

))
.

Noting that we may take the dependency on i outside,
and using the definition of ŷG, we can simplify this as

∂

∂wi

[
‖ŷG − ŷ‖2

2

]
= (eG)i

(
(A.i)

>
X>

(
ŷG −Xβ̂

))
= (eG)i

(
A>X>

(
ŷG −Xβ̂

))
i
.

Temporarily multiplying through the X>, expanding the
term β̂, and multiplying by −1 twice, we find

∂

∂wi

[
‖ŷG − ŷ‖2

2

]
= (eG)i

(
A>

(
X>ŷG −X>Xβ̂

))
i

= (eG)i
(
A>

(
X>ŷG −X>X(X>X)−1X>y

))
i

= (eG)i
(
A>

(
X>ŷG −X>y

))
i

= (eG)i
(
A>X> (ŷG − y)

)
i

= −(eG)i
(
A>X> (y − ŷG)

)
i

= −(eG)i
(
A>X>eG

)
i
.

16

We observe that we may take the element (eG)i inside,
using the diagonal matrix diag(eG). We obtain

∂

∂wi

[
‖ŷG − ŷ‖2

2

]
= −

(
diag(eG)A>X>eG

)
i
.

Expanding the term A> yields

∂

∂wi

[
‖ŷG − ŷ‖2

2

]
=

−
(

diag(eG)X
(
X>WX

)−1
X>eG

)
i
.

(24)

Substituting Equation 24 into Equation 17, we finally ob-
tain

∂O(·)
∂wi

=
‖ŷG − ŷ‖2

2ns2
+

Tr(W)

ns2
· ∂

∂wi

[
‖ŷG − ŷ‖2

2

]
=
‖ŷG − ŷ‖2

2ns2

− Tr(W)

ns2

(
diag(eG)X

(
X>WX

)−1
X>eG

)
i
.

(25)

�

B Computational Complexity of
Derivatives.

In this section, we show that the complete set of n deriva-
tives, the i-th of which is given by Equations 13 and 25,
can be computed in a time complexity order of O(p2n).

In particular, care should be taken that multiplication
with the diagonal matrices W and diag(eG) is not per-
formed naively. Then, the derivatives can be computed in
the following way. We begin by showing how to compute
β̂G in time O(p2n).

Start with the computation of XG = WX, which if
not done naively can be performed in O(pn). Form the
p × p matrix M = (X>WX) by computing X>XG,
which takes O(p2n). Likewise, form the p × 1 vector
z = X>Wy from X>Gy, taking O(pn). Find M−1, the
complexity of which depends on the specific algorithm
used, but a straightforward implementation takes O(p3).
Finally compute β̂G = M−1z in O(p2). The total time
complexity is thusO(pn+p2n+pn+p3+p2) = O(p3+

p2n). By the linear regression assumption that X has full
column rank, we have n ≥ p. Hence, p2n ≥ p3, and
O(p3 + p2n) = O(p2n).

Having obtained β̂G for the current W, we compute
the estimates of the regression target values and the vector
of residuals. We compute ŷG = Xβ̂G, takingO(pn). We
then find eG = y − ŷG in O(n).

As an aside, we assume that ŷ and s2 are already known
at this point, but from the above it is easily seen that these
can also be found in O(p2n+ pn+ n+ n) = O(p2n) by
setting W = I. Here, we have assumed that the estimate
of the error variance s2 is computed in O(n) from s2 =
e>e
n−p , having obtained e as outlined above.

We now have all the terms required to compute the
partial derivatives in time O(pn). The first summand in
Equation 13 can clearly be computed in O(n) using the
pre-computed vectors ŷG and ŷ. Further, this term does
not depend on i, so we do not need to re-compute it for
every partial derivative. Similarly, the scalar of the second
summand, Tr(W)

ns2 , only needs to be computed once, also
taking O(n).

We now show that the entire vector in the derivative’s
second summand can be computed in O(pn). Start by
computing the p × 1 vector a = X>eG in time O(pn).
Having previously obtained M−1 = (X>WX)−1, com-
pute the p× 1 vector b = (X>WX)−1X>eG = M−1a
in time O(p2). Form the n × 1 vector c = Xb in
O(pn). Taking care not to multiply by the diagonal matrix
naively, we finally find the entire vector d in the deriva-
tive’s second summand by computing d = diag(eG)c in
time O(n). Thus, the total time complexity to find d is
O(pn+ p2 + pn+ n) = O(pn).

The i-th partial derivative can now be computed in
O(1) from the pre-computed first summand, the pre-
computed scalar in the second summand, and the i-th ele-
ment in d.

Thus, the total time complexity is O(p2n) to find β̂G,
O(pn) for the estimates ŷG and eG, O(pn) to find the
vector d, and n times O(1) to compute the individual
derivatives, for a total ofO(p2n+pn+pn+n) = O(p2n).

�

17

C Ellipsoid Intersection Testing.
In this section, we describe how to test for the intersection
of two ellipsoids, as this is a non-trivial problem in gen-
eral. The procedure works by reducing the intersection
test to a single variable convex optimization problem with
a single linear inequality constraint, which may then be
solved numerically. In our paper, this procedure is applied
to testing for the intersection of two confidence ellipsoids.
Here, we give a somewhat more general treatment, not-
ing that applying the procedure to confidence ellipsoids is
straightforward.

We consider two ellipsoids E1 and E2, the j-th of
which is given by all vectors x satisfying

(26) Ej(x) ≡ (x− cj)
>Mj(x− cj) ≤ 1.

Here, cj is the center of the j-th ellipsoid, and Mj is a
symmetric positive definite matrix defining the ellipsoid’s
norm.

Our procedure for testing this intersection is a two-step
process. First, we check whether the centers of either of
the ellipsoids lie within the other ellipsoid. If this is the
case, the ellipsoids clearly intersect, and the test is com-
pleted. If this is not the case, we need to solve a con-
strained convex optimization problem to test for intersec-
tion. This optimization problem would also work without
performing the first test, but clearly this would be compu-
tationally less efficient.

For the preliminary intersection test, we may simply
check whether E1(c2) ≤ 1 is satisfied, and mutatis mu-
tandis, for c1 and E2(·). If either of these inequalities
holds, the ellipsoids intersect and the test is completed.

Alternatively, if neither of these inequalities is satisfied,
we need to perform a somewhat more involved intersec-
tion test. This procedure [18] works as follows. With-
out loss of generality, ellipsoid E1 is transformed to the
unit ball centered on the origin, and ellipsoid E2 is trans-
formed accordingly into an ellipsoid E′2. We then find
the point on E′2 that is closest to the origin, i.e., to the
center of the transformed ellipsoid E′1. If the distance of
this closest point to the origin is less than one, it clearly
lies within the unit ball, and hence, the ellipsoids must
intersect. To find this closest point to the origin, E′2 is
transformed into the unit ball centered on the origin, and
the origin of the first transformed space is transformed ac-
cordingly. We then find the point on the unit ball that is

closest to the transformed origin of the first transformed
space. This last step involves solving a specific case of
a Quadratically Constrained Quadratic Program (QCQP)
that reduces to a convex optimization problem with a sin-
gle linear inequality constraint [4].

We now discuss these steps in detail. By the assump-
tion that Mj is symmetric positive definite, we may use
the Cholesky decomposition Mj = LjL

>
j to rewrite

Equation 26 as

Ej(x) = (x− cj)
>LjL

>
j (x− cj)

= ‖L>j (x− cj)‖2 ≤ 1.
(27)

We are now in a position to transform one of the ellipsoids
into the unit ball centered on the origin. Without loss of
generality, we will transform E1 in this way, and trans-
form E2 accordingly. We write E′1 and E′2 for the trans-
formed ellipsoids. For a vector x in the original space, we
write this vector in the transformed space as x′, and let
the transformation be given by

(28) x′ ≡ L>1 (x− c1).

The transformed ellipsoid E′1 is defined by substitution of
Equation 28 into Equation 27 so that we have

(29) E′1(x′) ≡ x′
>
x′ ≤ 1.

This transformation may be reversed through

(30) x = c1 + L−>1 x′.

We may find the transformed ellipsoid E′2 by noting
that it is given by all transformed vectors x′ that satisfy
Equation 27. Moving the parameterization to the trans-
formed space by substituting Equation 30 into Equation
27, we have

E′2(x′) ≡ ‖L>2
(
c1 + L−>1 x′ − c2

)
‖2

= ‖L>2
(
L−>1 x′ − (c2 − c1)

)
‖2

= ‖L>2
(
L−>1 x′ − L−>1 L>1 (c2 − c1)

)
‖2

= ‖L>2 L−>1
(
x′ − L>1 (c2 − c1)

)
‖2

= ‖L′>2 (x′ − c′2)‖2 ≤ 1.

(31)

Here, we write the center c2 of E2 in the transformed
space as c′2. Furthermore, the transformed ellipsoid’s ma-
trix M′2 is obtained through the Cholesky decomposition
M′2 = L′2L

′>
2 where L′2 ≡ L−11 L2.

18

We can now formulate the intersection test as the ques-
tion of whether there exists a point x′∗ that satisfies both
Equation 29 and Equation 31, that is, whether there ex-
ists a point x′∗ that is inside both E′1 and E′2. Because
E′1 is the origin-centered unit ball in x′-space, we can an-
swer this question by finding the point x′∗ inside E′2 that
is closest to the origin. Clearly, we may write the origin of
x′-space as c′1. If this closest point satisfies x′∗>x′∗ ≤ 1,
it must be within E′1, and hence the ellipsoids intersect.

We can find the closest point x′∗, inside E′2, to the ori-
gin by solving

Minimize : (x′ − c′1)>(x′ − c′1)

Subject to : E′2(x′) = ‖L′>2 (x′ − c′2)‖2 ≤ 1.
(32)

The first step in solving this minimization problem is to
again transform the space, this time so that E′2 becomes
the unit ball centered on the origin. We write E′′2 for this
transformed ellipsoid, and refer to the transformed space
as x′′-space. The transformation is given by

(33) x′′ ≡ L′
>
2 (x′ − c′2),

and reversed through

(34) x′ = c′2 + L′
−>
2 x′′.

Substituting Equation 34 into the minimization problem,
we have

Minimize :
(
c′2 + L′

−>
2 x′′ − c′1

)> (
c′2 + L′

−>
2 x′′ − c′1

)
= x′′

>
L′
−1
2 L′

−>
2 x′′ + 2(c′2 − c′1)>x′′

+ (c′2 − c′1)>(c′2 − c′1)

∝ x′′
>
L′
−1
2 L′

−>
2 x′′ + 2(c′2 − c′1)>x′′.

Substituting Equation 33 into the minimization problem’s
constraint, the final problem becomes

Minimize : x′′
>
L′
−1
2 L′

−>
2 x′′ + 2(c′2 − c′1)>x′′

Subject to : x′′
>
x′′ ≤ 1.

After we solve this problem, we can find x′
∗ by apply-

ing Equation 34 to the solution x′′
∗, and check whether

x′
∗>

x′
∗ ≤ 1 to test for intersection. It remains to show

how to solve this minimization problem.

We first reparameterize the problem to clean up our
notation. We write z ≡ x′′, A ≡ L′

−1
2 L′

−>
2 and

b ≡ (c′2 − c′1). We then formulate the problem as an
equivalent QCQP that is given by

Minimize :
1

2
z>Az + b>z

Subject to :
1

2
z>Iz− 1

2
≤ 0.

(35)

Because A is symmetric positive definite by the fact that
its Cholesky decomposition A = L′

−1
2 L′

−>
2 exists, we

can solve this problem in its Lagrangian dual form [4]. We
define the Lagrangian L(z, λ) with Lagrange multiplier λ
as

L(z, λ) ≡ 1

2
z>Ā(λ)z + b>z− λ

2
,

where

Ā(λ) ≡ A + λI.

The Lagrangian dual g(λ) is given by

(36) g(λ) ≡ inf
z
L(z, λ),

which can be found by taking partial derivatives of
L(z, λ) with respect to z and solving for z. We have

∂L(z, λ)

∂z
=

∂

∂z

[
1

2
z>Ā(λ)z + b>z− λ

2

]
=

∂

∂z

[
1

2
z>Ā(λ)z

]
+

∂

∂z

[
b>z

]
= Ā(λ)z + b.

Setting this derivative to zero, we obtain

Ā(λ)z + b = 0

z = −Ā(λ)−1b.

Substituting into Equation 36, we have

g(λ) = inf
z
L(z, λ) = inf

z

{
1

2
z>Ā(λ)z + b>z− λ

2

}
=

1

2

(
−Ā(λ)−1b

)>
Ā(λ)

(
−Ā(λ)−1b

)
+ b>

(
−Ā(λ)−1b

)
− λ

2

=
1

2
b>Ā(λ)−>b− b>Ā(λ)−1b− λ

2

= −1

2
b>Ā(λ)−1b− λ

2
.

19

We can now find the optimal value of the Lagrange mul-
tiplier λ∗ by solving the dual problem

Maximize : −1

2
b>Ā(λ)−1b− λ

2
Subject to : λ ≥ 0.

(37)

This is a single-variable convex optimization problem
with a single linear constraint, and is thus readily solved
with any number of numerical optimization routines. In
case such numerical optimization routines require the
specification of the gradient of g(λ), we show

∂g(λ)

∂λ
=

∂

∂λ

[
−1

2
b>Ā(λ)−1b− λ

2

]
= −1

2
b>

∂

∂λ

[
Ā(λ)−1

]
b− ∂

∂λ

[
λ

2

]
= −1

2
b>

∂

∂λ

[
Ā(λ)−1

]
b− 1

2

=
1

2
b>Ā(λ)−1

∂

∂λ

[
Ā(λ)

]
Ā(λ)−1b− 1

2

=
1

2
b>Ā(λ)−1

∂

∂λ
[(A + λI)] Ā(λ)−1b− 1

2

=
1

2
b>Ā(λ)−1IĀ(λ)−1b− 1

2

=
1

2
b>Ā(λ)−2b− 1

2
.

Here, we have made use of the identity [17] ∂Y−1

∂x =

−Y−1 ∂Y∂xY
−1 for any matrix Y. Using the same equal-

ity, we see that the second-order derivative of g(λ) is
given by

∂2g(λ)

∂λ2
= −b>Ā(λ)−1Ā(λ)−1Ā(λ)−1b

= −b>Ā(λ)−3b.

Because Ā(λ) is symmetric positive definite for λ ≥ 0,
we have that Ā(λ)−3 is also symmetric positive definite
for non-negative λ. It follows that for λ ≥ 0, ∂2g(λ)

∂λ2 is
negative everywhere, and g(λ) is indeed concave.

In closing, by Slater’s condition, strong duality
holds [4] between Equation 37 and Equation 35. Thus,
we can find the closest point x′′∗ on E′′2 to c′′1 through

x′′
∗

= z∗ = −Ā(λ∗)−1b.

�

References
[1] P.M. Anglin, R. Gençay: Semiparametric Estima-

tion of a Hedonic Price Function Journal of Applied
Econometrics 11(6), pp. 633–648, 1996.

[2] K. Bache, M. Lichman: UCI
Machine Learning Repository
[http://archive.ics.uci.edu/ml],
University of California, Irvine, School of Informa-
tion and Computer Science, 2013.

[3] L. Breiman, J. Friedman, C. J. Stone, R. A. Ol-
shen: Classification and Regression Trees, Chapman
& Hall/CRC, 1984.

[4] S. Boyd, L. Vandenberghe: Convex Optimization,
Cambridge University Press, 2004.

[5] R. D. Cook, S. Weisberg: Residuals and Influence in
Regression, Chapman & Hall, London, 1982.

[6] M. Costanigro, R. C. Mittelhammer, J. J. Mc-
Cluskey: Estimating Class-Specific Parametric
Models under Class Uncertainty: Local Polynomial
Regression Clustering in an Hedonic Analysis of
Wine Markets, Journal of Applied Econometrics 24,
2009.

[7] J. Demšar: Statistical Comparison of Classifiers
over Multiple Data Sets, Journal of Machine Learn-
ing Research, Volume 7, 2006.

[8] C. Dougherty: Introduction to Econometrics (4th
edition), Oxford University Press, 2011.

[9] W. Duivesteijn, A. Feelders, A. Knobbe: Different
Slopes for Different Folks: Mining for Exceptional
Regression Models with Cook’s Distance, Proceed-
ings of the 18th ACM SIGKDD international con-
ference on Knowledge discovery and data mining,
2012.

[10] J. H. Friedman, N. I. Fisher: Bump hunting in high-
dimensional data, Statistics and Computing, Vol-
ume 9, Issue 2, 1999.

[11] W. H. Greene: Econometric Analysis (7th Edition),
Prentice Hall, 2011.

20

[12] Journal of Statistics Education Data Archive,
[http://www.amstat.org/publications/
jse/jse data archive.htm]

[13] W. Klösgen: Explora: a multipattern and multi-
strategy discovery assistant, Advances in Knowl-
edge Discovery and Data Mining, 1996.

[14] W. Klösgen: Subgroup Discovery, Handbook of
Data Mining and Knowledge Discovery, Ch. 16.3,
Oxford University Press, 2002.

[15] M. van Leeuwen: Maximal exceptions with minimal
descriptions, Data Mining and Knowledge Discov-
ery, Volume 21, Issue 2, 2010.

[16] D. Leman, A. Feelders, A. Knobbe: Ex-
ceptional Model Mining, Proceedings of the
ECML/PKDD’08, Volume 5212, 2008.

[17] K. B. Petersen, M. S. Pedersen: The Matrix Cook-
book, Technical University of Denmark, 2008.

[18] S. B. Pope: Algorithms for Ellipsoids, Sibley School
of Mechanical & Aerospace Engineering, Cornell
University, Report: FDA-08-01, 2008.

[19] A. C. Schierz: Virtual Screening of Bioassay Data,
Journal of Cheminformatics, 2009.

[20] C. Spearman: The proof and measurement of associ-
ation between two things., American journal of Psy-
chology, Volume 15, Issue 1, 1904.

21

